WO2024135592A1 - Optical filter, sterilizing device, and uv ray detecting device - Google Patents

Optical filter, sterilizing device, and uv ray detecting device Download PDF

Info

Publication number
WO2024135592A1
WO2024135592A1 PCT/JP2023/045218 JP2023045218W WO2024135592A1 WO 2024135592 A1 WO2024135592 A1 WO 2024135592A1 JP 2023045218 W JP2023045218 W JP 2023045218W WO 2024135592 A1 WO2024135592 A1 WO 2024135592A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical filter
refractive index
transparent substrate
film
high refractive
Prior art date
Application number
PCT/JP2023/045218
Other languages
French (fr)
Japanese (ja)
Inventor
啓一 佐原
圭市 北村
努 今村
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2024135592A1 publication Critical patent/WO2024135592A1/en

Links

Images

Definitions

  • the present invention relates to an optical filter that can transmit light in a specific wavelength range, as well as a sterilization device and an ultraviolet detection device that use the optical filter.
  • ultraviolet transmission filters that can transmit light in a specific wavelength range have been widely used in a variety of applications.
  • ultraviolet transmission filters are used in water sterilization devices, curing devices used to harden ultraviolet-curable resins, ultraviolet sensors, and other applications.
  • Patent Document 1 discloses an ultraviolet transmission filter having a glass plate with a spectral transmittance of 70% or more at a wavelength of 254 nm at a thickness of 0.5 mm, and a protective film provided on the main surface of the glass plate. Patent Document 1 also describes that the average transmittance of the ultraviolet transmission filter at wavelengths of 200 nm to 300 nm is 60% or less.
  • Patent Document 2 discloses a microorganism inactivation treatment device that inactivates the microorganisms to be treated by irradiating light emitted from a light source through an optical filter.
  • Patent Document 2 describes that when light emitted from a light source is incident at an incident angle of 0°, the optical filter transmits at least a portion of ultraviolet light with a wavelength of 190 nm or more and 230 nm or less, and at least a portion of ultraviolet light with a wavelength of more than 230 nm and 237 nm or less, and blocks the transmission of ultraviolet light outside the wavelength range of 190 nm or more and 237 nm or less.
  • the optical filters in Patent Documents 1 and 2 selectively transmit ultraviolet light in a specific wavelength range, which limits the types of objects to be treated, such as viruses.
  • the optical filters in Patent Documents 1 and 2 do not have sufficient ultraviolet light transmittance, so there are cases in which the sterilization effect cannot be fully enhanced, and there is also the problem that it takes time to inactivate the objects to be treated.
  • the object of the present invention is to provide an optical filter that can effectively transmit ultraviolet light over a wide wavelength range and increase the transmittance, as well as a sterilization device and an ultraviolet light detection device that use the optical filter.
  • This article describes various aspects of an optical filter that solves the above problems, as well as a sterilization device and an ultraviolet detection device that use the optical filter.
  • the optical filter according to a first aspect of the present invention comprises a transparent substrate made of glass and having a thickness of 1.0 mm or less, and a dielectric multilayer film containing hafnium oxide and provided on at least one main surface of the transparent substrate, the optical filter being characterized in that the minimum value of the spectral transmittance in the wavelength range of 240 nm to 300 nm is 92% or more, and the wavelength ⁇ 60 at which the spectral transmittance becomes 60% is 230 nm or less.
  • the dielectric multilayer film has a high refractive index film with a relatively high refractive index and a low refractive index film with a relatively low refractive index, and it is preferable that the high refractive index film contains hafnium oxide.
  • the thickness of the high refractive index film of the outermost layer, which is the furthest from the transparent substrate, among the plurality of high refractive index films is thicker than the thickness of the high refractive index film of the innermost layer, which is the closest to the transparent substrate.
  • the ratio of the thickness of the high refractive index film of the outermost layer to the thickness of the high refractive index film of the innermost layer (outermost layer/innermost layer) is 2 or more.
  • the number of layers of the dielectric multilayer film provided on one main surface of the transparent substrate is 10 or less.
  • the total thickness of the high refractive index films constituting the dielectric multilayer film is 500 nm or less.
  • the dielectric multilayer film is provided on both main surfaces of the transparent substrate.
  • the transparent substrate has a dome shape.
  • the ratio of the height of the dome-shaped openings to the spacing (height/spacing of openings) is 0.1 or more.
  • the sterilization device is a sterilization device for inactivating a processing object, and is characterized in that it comprises a light source that emits light having a wavelength in the ultraviolet wavelength range, and an optical filter according to any one of aspects 1 to 9, and that the light source and the optical filter are arranged so that the processing object is inactivated by irradiating the light emitted from the light source through the optical filter.
  • the ultraviolet detection device is an ultraviolet detection device for detecting ultraviolet light, and is characterized by comprising an optical filter according to any one of aspects 1 to 9, and an ultraviolet light receiving element.
  • the present invention provides an optical filter that can effectively transmit ultraviolet light over a wide wavelength range and increase the transmittance, as well as a sterilization device and an ultraviolet light detection device that use the optical filter.
  • FIG. 1 is a schematic front view showing an optical filter according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an optical filter according to one embodiment of the present invention.
  • 3A to 3C are schematic cross-sectional views for explaining a film forming method for an optical filter according to one embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a sterilization device according to one embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing an ultraviolet detection device according to an embodiment of the present invention.
  • FIG. 6 is a diagram showing the transmission spectra of the optical filter obtained in Example 1 and the glass substrate of Comparative Example 1 in the wavelength range of 200 nm to 400 nm.
  • FIG. 7 is an enlarged view of the transmission spectrum in the wavelength range of 200 nm to 300 nm in FIG.
  • FIG. 8 is a diagram showing the transmission spectra of the optical filters obtained in Examples 2 to 7 at wavelengths of 200 nm to 400 nm.
  • FIG. 9 is an enlarged view of the transmission spectrum in the wavelength range of 200 nm to 300 nm in FIG.
  • FIG. 1 is a schematic front view showing an optical filter according to one embodiment of the present invention.
  • Fig. 2 is a schematic cross-sectional view showing an optical filter according to one embodiment of the present invention.
  • Fig. 2 is a schematic cross-sectional view assuming that the optical filter in Fig. 1 is flat.
  • the dielectric multilayer film is shown enlarged for explanation.
  • the optical filter 1 comprises a transparent substrate 2, a first dielectric multilayer film 3A, and a second dielectric multilayer film 3B.
  • the transparent substrate 2 is made of glass.
  • the thickness of the transparent substrate 2 is 1.0 mm or less.
  • the transparent substrate 2 also has a first main surface 2a and a second main surface 2b that face each other.
  • a first dielectric multilayer film 3A containing hafnium oxide is provided on the first main surface 2a of the transparent substrate 2.
  • a second dielectric multilayer film 3B containing hafnium oxide is provided on the second main surface 2b of the transparent substrate 2.
  • the first dielectric multilayer film 3A and the second dielectric multilayer film 3B are multilayer films having the same configuration.
  • the dielectric multilayer films 3A and 3B have a high refractive index film with a relatively high refractive index and a low refractive index film with a relatively low refractive index.
  • the high refractive index film also contains hafnium oxide.
  • the optical filter 1 is an anti-reflection filter designed to prevent reflection of ultraviolet light by optical interference by including dielectric multilayer films 3A and 3B. More specifically, the minimum value of the spectral transmittance of the optical filter 1 in the wavelength range of 240 nm to 300 nm is 92% or more. Moreover, the wavelength ⁇ 60 at which the spectral transmittance of the optical filter 1 is 60% is 230 nm or less.
  • the spectral transmittance can be determined, for example, by measuring the spectral transmittance of the entire optical filter 1 using a spectral transmittance meter.
  • a spectral transmittance meter For example, a model UH4150 manufactured by Hitachi High-Tech Science Corporation can be used as the spectral transmittance meter.
  • the spectral transmittance can be measured under the conditions of an incident angle of 0° and a measurement wavelength of 200 nm to 800 nm.
  • the optical filter 1 of this embodiment has the above-mentioned configuration, and therefore can effectively transmit ultraviolet light in a wide wavelength range and can increase the transmittance. Therefore, when used in a sterilization device, for example, the optical filter 1 can improve the sterilization effect by increasing the types of objects to be treated (microorganisms, viruses, etc.) that can be treated and shortening the time required for inactivation treatment of the objects to be treated. Furthermore, when used in an ultraviolet detection device, the optical filter 1 can detect ultraviolet light in a wide wavelength range with high sensitivity.
  • the minimum value of the spectral transmittance of the optical filter 1 at wavelengths of 240 nm to 300 nm is 92% or more, preferably 93% or more, more preferably 94% or more, even more preferably 96% or more, and particularly preferably 97% or more. In this case, ultraviolet light in a wide wavelength range can be transmitted more effectively.
  • the upper limit of the minimum value of the spectral transmittance at wavelengths of 240 nm to 300 nm is not particularly limited, but can be, for example, 99.5%.
  • the wavelength ⁇ 60 at which the spectral transmittance of the optical filter 1 is 60% is 230 nm or less, preferably 225 nm or less, and more preferably 220 nm or less. In this case, ultraviolet rays in a wide wavelength range can be transmitted more effectively.
  • the lower limit of the wavelength ⁇ 60 at which the spectral transmittance of the optical filter 1 is 60% is not particularly limited, but can be, for example, 200 nm.
  • the optical filter 1 has a dome shape.
  • the planar shape of the optical filter 1 may be approximately circular or approximately rectangular.
  • the optical filter 1 has a dome shape, the effective irradiation area of the ultraviolet light transmitted through the optical filter 1 can be made larger.
  • the optical filter 1 may have a rectangular plate shape or a disk shape, and the shape is not particularly limited.
  • optical filter 1 The components that make up the optical filter 1 are explained in detail below.
  • the transparent substrate 2 has a dome shape.
  • the planar shape of the transparent substrate 2 may be substantially circular or substantially rectangular.
  • the transparent substrate 2 may have a rectangular plate shape or a disk shape, and the shape is not particularly limited.
  • the height H of the openings shown in FIG. 1 is preferably 0.5 mm or more, more preferably 0.6 mm or more, and preferably 1.5 mm or less, more preferably 1.2 mm or less.
  • the spacing R of the openings is preferably 2.0 mm or more, more preferably 2.5 mm or more, and preferably 6.0 mm or less, more preferably 5.5 mm or less. Note that, for example, when the planar shape of the transparent substrate 2 is approximately circular, the spacing R of the openings corresponds to the diameter of the openings.
  • the ratio of the height H to the spacing R of the dome-shaped openings is preferably 0.1 or more, more preferably 0.15 or more, even more preferably 0.2 or more, and is preferably 0.6 or less, more preferably 0.5 or less, even more preferably 0.4 or less.
  • the ratio (height H/spacing R of openings) is within the above range, the effective irradiation area of the ultraviolet light transmitted through the optical filter 1 can be made larger.
  • the transparent substrate 2 is made of glass.
  • the transparent substrate 2 is preferably glass that is transparent in the wavelength range used by the optical filter 1. More specifically, the transparent substrate 2 preferably has an average light transmittance of 80% or more in the ultraviolet wavelength range of 200 nm to 400 nm.
  • Examples of the glass constituting the transparent substrate 2 include quartz glass, borosilicate glass, etc.
  • the quartz glass may be synthetic quartz glass or fused quartz glass.
  • the borosilicate glass preferably contains, in mass %, 50%-80% SiO 2 , 0%-10% Al 2 O 3 , 5%-30% B 2 O 3 , 0%-5% CaO, 0%-5% BaO, and 0%-15% Li 2 O + Na 2 O + K 2 O, and more preferably contains, in mass %, 55%-75% SiO 2 , 1%-10% Al 2 O 3 , 10%-30% B 2 O 3 , 0%-5% CaO, 0%-5% BaO, and 1.0%-15% Li 2 O + Na 2 O + K 2 O.
  • SiO 2 is a component that forms a glass network and also significantly increases the light transmittance from the ultraviolet wavelength region to the visible region. In particular, in the case of high refractive index glass, the effect of increasing the light transmittance is easily obtained. SiO 2 is also a component that improves heat resistance and weather resistance.
  • the content of SiO 2 is preferably 50% to 80%, more preferably 55% to 75%, and even more preferably 58% to 70%. If the content of SiO 2 is too small, it is difficult to obtain the above effects.
  • the film-attached transparent substrate is heat-treated after the film is formed, it is likely to soften and deform. On the other hand, if the content of SiO 2 is too large, the softening point becomes high and it becomes difficult to mold the transparent substrate 2.
  • Al 2 O 3 is a component that forms a glass network and also increases the light transmittance from the ultraviolet wavelength region to the visible region. In particular, in the case of high refractive index glass, the effect of increasing the light transmittance is easily obtained.
  • the content of Al 2 O 3 is preferably 0% to 10%, more preferably 1% to 10%, even more preferably 3% to 10%, even more preferably 4% to 9.5%, and particularly preferably more than 4% to 9%. If the content of Al 2 O 3 is too small, it is difficult to obtain the above effect. In addition, when the transparent substrate with the film after the film formation is heat-treated, it is likely to soften and deform. On the other hand, if the content of Al 2 O 3 is too large, the softening point becomes high, making it difficult to mold the transparent substrate 2.
  • B 2 O 3 is a component that forms a glass network and also increases the light transmittance from the ultraviolet wavelength region to the visible region. In particular, in the case of high refractive index glass, the effect of increasing the light transmittance is easily obtained.
  • the content of B 2 O 3 is preferably 5% to 30%, more preferably 10% to 30%, and even more preferably 12% to 28%. If the content of B 2 O 3 is too low, it becomes difficult to obtain the above effect. On the other hand, if the content of B 2 O 3 is too high, the transparent substrate with the film is easily softened and deformed when the transparent substrate with the film is heat-treated after the film is formed.
  • the glass composition may contain MgO, CaO, SrO, BaO and ZnO.
  • MgO, CaO, SrO, BaO and ZnO are components that act as fluxes.
  • MgO, CaO, SrO, BaO and ZnO are also components that suppress devitrification and improve weather resistance.
  • the content of MgO+CaO+SrO+BaO+ZnO is preferably 0% to 10%, more preferably 0.1% to 9%, even more preferably 0.5% to 8%, even more preferably 1% to 7%, even more preferably 1.5% to 6%, and particularly preferably 2% to 5%.
  • the content of MgO, CaO, SrO, BaO and ZnO is too high, devitrification is likely to occur during molding and sintering. In addition, the light transmittance is likely to decrease.
  • the content of MgO, CaO, SrO, BaO and ZnO is preferably 0% to 10%, more preferably 0.1% to 9%, even more preferably 0.5% to 8%, even more preferably 1% to 7%, even more preferably 1.5% to 6%, and particularly preferably 2% to 5%.
  • Li 2 O, Na 2 O, and K 2 O are components that lower the softening point.
  • the content of Li 2 O + Na 2 O + K 2 O is preferably 0.1% to 15%, more preferably 0.5% to 10%, and even more preferably 1 to 5%. If the content of Li 2 O, Na 2 O, or K 2 O is too small, it becomes difficult to obtain the above effects. On the other hand, if the content of Li 2 O, Na 2 O, or K 2 O is too large, the weather resistance and refractive index tend to decrease, and the light transmittance tends to decrease.
  • the borosilicate glass more preferably contains, as a glass composition, 0% to 0.001% TiO 2 , 0% to 0.001% Fe 2 O 3 , and 0.5% to 2.0% F.
  • the content of TiO2 is preferably 1% or less, more preferably 0.5% or less, even more preferably 0.1% or less, even more preferably 0.01% or less, and particularly preferably 0.001% or less.
  • Fe2O3 tends to significantly reduce the light transmittance and also tends to increase the softening point. Therefore, the content of Fe2O3 is preferably 1% or less, more preferably 0.5% or less, even more preferably 0.1% or less, even more preferably 0.01% or less, and particularly preferably 0.001% or less.
  • F is a component that lowers the softening point.
  • F is a component that significantly increases the light transmittance in the ultraviolet region.
  • the F content is preferably 0% to 5%, more preferably 0.1% to 4.5%, even more preferably 0.2% to 5%, even more preferably 0.3% to 4%, even more preferably 0.4% to 3%, and particularly preferably 0.5% to 2%. If the F content is too high, the weather resistance and resistance to devitrification are likely to deteriorate.
  • the thickness of the transparent substrate 2 is preferably 0.5 mm or less, more preferably 0.3 mm or less, and even more preferably 0.2 mm or less. In this case, shapes such as a dome shape can be easily formed.
  • the lower limit of the thickness of the transparent substrate 2 is not particularly limited, but from the viewpoint of making it easier to form the dielectric multilayer films 3A and 3B on the transparent substrate 2, it is preferably 0.05 mm or more, and more preferably 0.1 mm or more.
  • the dielectric multilayer films 3A and 3B are dielectric multilayer films having the same configuration. However, the dielectric multilayer films 3A and 3B may be dielectric multilayer films having different configurations, and are not particularly limited.
  • the dielectric multilayer film used for the dielectric multilayer films 3A and 3B is a multilayer film having a high refractive index film 4 with a relatively high refractive index and a low refractive index film 5 with a relatively low refractive index.
  • the multilayer film is formed by alternately stacking the high refractive index film 4 and the low refractive index film 5 in this order on the main surfaces 2a and 2b on both sides of the transparent substrate 2, respectively.
  • the high refractive index film 4 is made of hafnium oxide and is a film whose main component is hafnium oxide.
  • a part of the high refractive index film 4 may be a film whose main component is aluminum oxide or the like.
  • the low refractive index film 5 is made of silicon oxide and is a film containing silicon oxide as its main component. However, the low refractive index film 5 may also be a film containing aluminum oxide, zirconium oxide, tin oxide, magnesium fluoride, or silicon nitride as its main component. These materials for the low refractive index film 5 may be used alone or in combination.
  • a film containing a material as a main component refers to a film containing 50% or more by mass of the material.
  • the material be contained in the film at 80% or more by mass, and more preferably at 90% or more by mass.
  • a film containing a material as a main component may be a film containing 100% by mass of the material.
  • the total thickness of the dielectric multilayer films 3A and 3B is not particularly limited, but is preferably 160 nm or more, more preferably 200 nm or more, and is preferably 700 nm or less, more preferably 600 nm or less, even more preferably 500 nm or less, and particularly preferably 400 nm or less.
  • the total thickness of the dielectric multilayer films 3A and 3B is within the above range, ultraviolet rays in a wider wavelength range can be effectively transmitted, and the transmittance can be further increased.
  • the wavelength ⁇ 60 at which the spectral transmittance of the optical filter 1 is 60% can be shifted to the lower wavelength side.
  • the total thickness of the high refractive index film 4 (the sum of the thicknesses of the high refractive index films 4) is preferably 70 nm or more, more preferably 80 nm or more, even more preferably 90 nm or more, preferably 500 nm or less, more preferably 480 nm or less, even more preferably 350 nm or less, and particularly preferably 240 nm or less.
  • the total thickness of the high refractive index film 4 is within the above range, ultraviolet rays in a wider wavelength range can be effectively transmitted, and the transmittance can be further increased.
  • the wavelength ⁇ 60 at which the spectral transmittance of the optical filter 1 becomes 60% can be shifted to the lower wavelength side.
  • each layer of the high refractive index film 4 is not particularly limited, but is preferably 1.0 nm or more, more preferably 2.0 nm or more, even more preferably 4.0 nm or more, and is preferably 220 nm or less, more preferably 200 nm or less, even more preferably 150 nm or less.
  • the thickness of the high refractive index film 4B which is the outermost layer and is the furthest from the transparent substrate 2 is thicker than the thickness of the high refractive index film 4A, which is the innermost layer and is closest to the transparent substrate 2.
  • the high refractive index film 4 has a film thickness gradient structure in which the thickness increases from the innermost high refractive index film 4A to the outermost high refractive index film 4B. In this case, the minimum value of the spectral transmittance of the optical filter 1 in the wavelength range of 240 nm to 300 nm can be further increased.
  • the thickness ratio of the high refractive index film 4B of the outermost layer to the high refractive index film 4A of the innermost layer (outermost layer/innermost layer) is preferably 2 or more, more preferably 3 or more, even more preferably 5 or more, even more preferably 8 or more, even more preferably 10 or more, even more preferably 15 or more, and preferably 120 or less, more preferably 100 or less, even more preferably 80 or less, even more preferably 60 or less, even more preferably 50 or less, even more preferably 30 or less, and particularly preferably 20 or less.
  • ultraviolet rays in a wider wavelength range can be effectively transmitted, and the transmittance can be further increased.
  • the minimum value of the spectral transmittance of the optical filter 1 at wavelengths of 240 nm to 300 nm can be further increased.
  • the thickness of the innermost high refractive index film 4A is preferably 1.0 nm or more, more preferably 2.0 nm or more, more preferably 4.0 nm or more, preferably 20 nm or less, more preferably 10 nm or less.
  • the thickness of the outermost high refractive index film 4B is preferably 20 nm or more, more preferably 30 nm or more, preferably 220 nm or less, more preferably 110 nm or less.
  • the total thickness of the low refractive index film 5 (the sum of the thicknesses of each low refractive index film 5) is preferably 60 nm or more, more preferably 80 nm or more, even more preferably 100 nm or more, preferably 500 nm or less, more preferably 450 nm or less, even more preferably 320 nm or less.
  • each layer of the low refractive index film 5 is not particularly limited, but is preferably 1.0 nm or more, more preferably 2.0 nm or more, even more preferably 3.0 nm or more, and is preferably 130 nm or less, more preferably 100 nm or less.
  • the total thickness of the dielectric multilayer films 3A and 3B, the high refractive index film 4, and the low refractive index film 5 is the total thickness of the films provided on one main surface (the first main surface 2a or the second main surface 2b) of the transparent substrate 2.
  • the number of layers constituting the dielectric multilayer films 3A and 3B is preferably 4 or more, preferably 14 or less, more preferably 10 or less, and even more preferably 4 or less.
  • the number of layers constituting the dielectric multilayer films 3A and 3B is within the above range, ultraviolet rays in a wider wavelength range can be effectively transmitted, and the transmittance can be further increased.
  • the wavelength ⁇ 60 at which the spectral transmittance of the optical filter 1 becomes 60% can be shifted to the lower wavelength side.
  • the number of layers constituting the high refractive index film 4 is preferably 1 or more, preferably 7 or less, more preferably 2 or less.
  • the number of layers constituting the low refractive index film 5 is preferably 1 or more, preferably 7 or less, more preferably 2 or less.
  • the number of layers constituting the dielectric multilayer films 3A and 3B, the high refractive index film 4, and the low refractive index film 5 is the number of layers provided on one main surface (the first main surface 2a or the second main surface 2b) of the transparent substrate 2.
  • the dielectric multilayer films 3A and 3B contain hafnium oxide crystals. More specifically, it is preferable that the high refractive index film 4 constituting the dielectric multilayer films 3A and 3B contains hafnium oxide crystals, and more preferably contains one or more types selected from cubic hafnium oxide crystals and tetragonal hafnium oxide crystals. In this case, the wavelength ⁇ 60 at which the spectral transmittance of the optical filter 1 becomes 60% can be shifted to the lower wavelength side.
  • cubic hafnium oxide crystals are contained can be confirmed by observing whether or not a diffraction peak due to the (1,1,1) crystal plane derived from cubic hafnium oxide crystals or tetragonal hafnium oxide crystals is observed in an X-ray diffraction measurement.
  • X-ray diffraction measurement can be performed by wide-angle X-ray diffraction.
  • an X-ray diffraction device manufactured by Rigaku Corporation, model number "SmartLab” can be used.
  • CuK ⁇ radiation can be used as the radiation source.
  • the entire optical filter 1 is subjected to measurement from the main surface side of the dielectric multilayer films 3A and 3B.
  • the diffraction peak due to the (1,1,1) crystal plane originating from a cubic hafnium oxide crystal or a tetragonal hafnium oxide crystal is larger than the diffraction peak due to the (-1,1,1) crystal plane originating from a monoclinic hafnium oxide crystal.
  • the wavelength ⁇ 60 at which the spectral transmittance of the optical filter 1 becomes 60% can be shifted to the lower wavelength side.
  • the ratio Ic/Im of the peak area intensity Ic of the diffraction peak due to the (1,1,1) crystal plane derived from cubic hafnium oxide crystal or tetragonal hafnium oxide crystal to the peak area intensity Im of the diffraction peak due to the (-1,1,1) crystal plane derived from monoclinic hafnium oxide crystal is preferably 0.1 or more, more preferably 1 or more, even more preferably 2 or more, particularly preferably 2.5 or more, and most preferably 3 or more.
  • the ratio Ic/Im is equal to or more than the lower limit, the wavelength ⁇ 60 at which the spectral transmittance of the optical filter 1 becomes 60% can be shifted to the lower wavelength side.
  • the upper limit of the ratio Ic/Im is not particularly limited, but can be set to, for example, 10,000.
  • the dielectric multilayer films 3A, 3B are provided on both main surfaces 2a, 2b of the transparent substrate 2. In this way, in the present invention, it is preferable that the dielectric multilayer films 3A, 3B are provided on both main surfaces 2a, 2b of the transparent substrate 2, but it is sufficient that the dielectric multilayer films 3A, 3B are provided on one of the first main surface 2a and the second main surface 2b of the transparent substrate 2.
  • a film-attached transparent substrate forming step First, as shown in Fig. 3(a), a transparent substrate base material 22 is prepared, and the transparent substrate base material 22 is fixed to a film forming jig 26 using a fixing member 27.
  • a base material having a plurality of dome-shaped portions 22A arranged thereon can be used as the transparent substrate base material 22.
  • the transparent substrate base material 22 has a flat plate shape, and the dome-shaped portions 22A are arranged in both the length direction and the width direction in a plan view.
  • a tape such as a polyimide tape can be used as the fixing member 27.
  • a dielectric multilayer film 3A (not shown in Figs. 3(a) to (c)) is formed on the first main surface 22a of the transparent substrate base material 22 on the apex side of the dome shape.
  • the dielectric multilayer film 3A can be formed by alternately stacking a high refractive index film 4 and a low refractive index film 5 in this order on the first main surface 22a of the transparent substrate base material 22.
  • the high refractive index film 4 and the low refractive index film 5 can be formed by deposition, sputtering, CVD, or the like.
  • the high refractive index film 4 and the low refractive index film 5 are preferably formed by a RAS (Radical Assisted Sputtering) sputtering method from the viewpoint of controlling the thickness of each layer with higher precision and forming a denser film.
  • RAS Rotary Assisted Sputtering
  • the temperature of the transparent substrate base material 22 when forming the high refractive index film 4 is preferably 300°C or less, and more preferably 150°C or less.
  • the lower limit of the temperature of the transparent substrate base material 22 when forming the high refractive index film 4 can be, for example, 20°C (room temperature).
  • the high refractive index film 4 can be formed, for example, by using a target of the material that constitutes the high refractive index film 4, setting the flow rate of an inert gas such as argon gas as a carrier gas at 50 sccm to 500 sccm, and applying a power of 0.5 kW to 40 kW.
  • an inert gas such as argon gas as a carrier gas
  • the temperature of the transparent substrate base material 22 when forming the low refractive index film 5 is preferably 300°C or less, and more preferably 270°C or less.
  • the lower limit of the temperature of the transparent substrate base material 22 when forming the low refractive index film 5 can be, for example, 20°C (room temperature).
  • the low refractive index film 5 can be formed, for example, by using a target of the material that constitutes the low refractive index film 5, setting the flow rate of an inert gas such as argon gas as a carrier gas at 50 sccm to 500 sccm, and applying a power of 0.5 kW to 40 kW.
  • an inert gas such as argon gas as a carrier gas
  • a concave surface forming jig 28 is attached to the film forming jig 26 to prepare a film forming jig 29 with holes in the same arrangement as the dome-shaped portion 22A.
  • the transparent substrate base material 22 is placed so that the first main surface 22a on the apex side of the dome shape is positioned on the hole side of the film-forming jig 29, and the transparent substrate base material 22 is fixed to the film-forming jig 29 using the fixing member 27.
  • a dielectric multilayer film 3B (not shown in FIGS. 3(a) to (c)) is formed on the second main surface 22b opposite the apex of the dome shape to form a film-coated transparent substrate base material.
  • the dielectric multilayer film 3B can be formed in the same manner as the dielectric multilayer film 3A.
  • the film-coated transparent substrate base material 22 can be divided into individual pieces to obtain a film-coated transparent substrate.
  • the obtained film-attached transparent substrate is heat-treated.
  • the optical filter 1 can be obtained.
  • the temperature of the heat treatment can be, for example, 450° C. or higher.
  • the content of cubic hafnium oxide crystals can be relatively increased. Therefore, in the obtained optical filter 1, the wavelength ⁇ 60 at which the spectral transmittance becomes 60% can be shifted to the lower wavelength side.
  • the temperature of the heat treatment of the film-coated transparent substrate is preferably 450° C. or higher, more preferably 500° C. or higher, even more preferably 550° C. or higher, and preferably 800° C. or lower, more preferably 750° C. or lower.
  • the wavelength ⁇ 60 at which the spectral transmittance of the optical filter 1 becomes 60% can be shifted to the shorter wavelength side.
  • the heat treatment time for the film-attached transparent substrate is not particularly limited, but can be, for example, 10 minutes or more and 120 minutes or less.
  • the minimum value of the spectral transmittance in the wavelength range of 240 nm to 300 nm is 92% or more.
  • the wavelength ⁇ 60 at which the spectral transmittance becomes 60% is 230 nm or less.
  • the minimum value of the spectral transmittance of the optical filter 1 at wavelengths of 240 nm to 300 nm can be increased, for example, by increasing the ratio of the thickness of the outermost high refractive index film 4B to the thickness of the innermost high refractive index film 4A.
  • the wavelength ⁇ 60 at which the spectral transmittance of the optical filter 1 becomes 60% can be shifted to a shorter wavelength side, for example, by reducing the number of laminated films constituting the dielectric multilayer films 3A and 3B, by reducing the total thickness of the dielectric multilayer films 3A and 3B, or by reducing the total thickness of the high refractive index film 4.
  • a heat treatment process may be subsequently performed, and then the base material of the film-coated transparent substrate may be divided into individual pieces to obtain the film-coated transparent substrate.
  • an optical filter may be obtained without carrying out a heat treatment.
  • FIG. 4 is a schematic cross-sectional view showing a sterilization device according to one embodiment of the present invention.
  • the sterilization device 30 shown in FIG. 4 is a sterilization device for inactivating objects to be treated (microorganisms, viruses, etc.) that are attached to or contained in the sterilization object P.
  • the sterilization device 30 includes a light source 32, a reflector 33, a housing 34, and an optical filter 1.
  • the sterilization device 30 is equipped with the dome-shaped optical filter 1 described above.
  • the optical filter 1 is arranged on the housing 34 such that the first main surface 2a at the apex side of the dome shape is disposed on the outside (the side of the object to be sterilized P).
  • the emitted light emitted from the light source 32 is irradiated onto the object to be sterilized P via the optical filter 1.
  • a light source 32 and a reflector 33 are arranged inside the housing 34.
  • the light source 32 is a light source that emits light with a wavelength in the ultraviolet wavelength range (for example, a wavelength range of 200 nm to 400 nm).
  • the reflector 33 is capable of diffusing the light emitted from the light source over a wide range.
  • the light source 32 is arranged facing the concave surface of the optical filter 1.
  • an excimer lamp can be used as the light source 32.
  • an excimer lamp it is preferable to use an excimer lamp that emits ultraviolet light with a wavelength in the range of 220 nm to 300 nm.
  • an excimer lamp for example, a KrCl excimer lamp can be used.
  • the excimer lamp may be a KrF excimer lamp.
  • multiple UV-LEDs with different peak wavelengths in the range of 250 nm to 320 nm may be used.
  • the sterilization device 30 can efficiently transmit ultraviolet light, which is useful for sterilization, and therefore can efficiently perform ultraviolet sterilization on the object to be sterilized P.
  • ultraviolet light can be applied to the DNA within the cells of microorganisms such as bacteria to selectively inactivate the microorganisms, or ultraviolet light can be applied to viruses to selectively inactivate them.
  • the sterilization device 30 of this embodiment is equipped with the optical filter 1, which allows ultraviolet light in a wide wavelength range to pass effectively and increases the transmittance. Therefore, when the optical filter 1 is used in a sterilization device, it can improve the sterilization effect by broadening the range of applicable treatment objects (microorganisms, viruses, etc.) and shortening the time required for inactivation treatment.
  • the optical filter 1 allows ultraviolet light in a wide wavelength range to pass effectively and increases the transmittance. Therefore, when the optical filter 1 is used in a sterilization device, it can improve the sterilization effect by broadening the range of applicable treatment objects (microorganisms, viruses, etc.) and shortening the time required for inactivation treatment.
  • the optical filter 1 is provided in a dome shape. Therefore, emitted light with a small angle of incidence can be made to be incident not only near the center of the optical filter 1 located above the light source 32, but also in a portion of the optical filter 1 located diagonally above the light source 32 and away from the center. Therefore, according to the sterilization device 30, even if the effective irradiation area of the light emitted from the light source 32 is increased, ultraviolet light useful for sterilization processing can be efficiently transmitted.
  • the optical filter 1 is arranged concentrically around the light source 32 in a cross-sectional view along the thickness direction. In this case, it is possible to increase the effective irradiation area of the emitted light while more efficiently transmitting ultraviolet light that is useful for sterilization processing.
  • the sterilization device 30 uses one light source 32, but multiple light sources 32 emitting light with different wavelength ranges may be used.
  • multiple light sources 32 capable of emitting light in a corresponding wavelength range for each of multiple processing objects having different wavelength ranges that enhance the sterilization effect, multiple processing objects can be sterilized simultaneously.
  • the multiple light sources 32 may be arranged in the same housing 34, or may be arranged individually in multiple housings 34.
  • FIG. 5 is a schematic cross-sectional view showing an ultraviolet detection device according to an embodiment of the present invention.
  • the ultraviolet detection device 40 shown in FIG. 5 includes a base 42, an ultraviolet light receiving element 41, and an optical filter 1.
  • ultraviolet light from the outside enters the base 42 through the optical filter 1.
  • the ultraviolet light that enters the base 42 can then be detected by the ultraviolet light receiving element 41.
  • the ultraviolet detection device 40 of this embodiment is equipped with an optical filter 1, so it can transmit ultraviolet light in a wide wavelength range and can increase the transmittance. Therefore, the ultraviolet detection device 40 can detect ultraviolet light in a wide wavelength range with high sensitivity.
  • Example 1 First, a borosilicate glass substrate having a thickness of 0.2 mm (manufactured by Nippon Electric Glass Co., Ltd., product number "BU-41", dimensions: 100 mm x 100 mm x 0.2 mm) was prepared. Next, the prepared glass substrate was processed into a dome shape by press molding to prepare a transparent base material (spacing of openings: 4.0 mm, height: 1.0 mm). The glass substrate may be processed into a dome shape by heating and thermal deformation.
  • a dielectric multilayer film was formed on one main surface of the transparent substrate processed into a dome shape by a sputtering method of the RAS method. Specifically, first, argon gas and oxygen gas were used as carrier gases to sputter a hafnium target, and a hafnium oxide film (HfO 2 film) was formed on one main surface of the transparent substrate. At this time, the flow rate of argon gas was set to 500 sccm, the flow rate of oxygen gas was set to 156 sccm, and the target applied power (film forming power) was set to 4.5 kW.
  • argon gas and oxygen gas were used as carrier gases to sputter a silicon target, and a silicon oxide film (SiO 2 film) was formed on the HfO 2 film.
  • the flow rate of argon gas was set to 600 sccm
  • the flow rate of oxygen gas was set to 240 sccm
  • the target applied power was set to 5.0 kW.
  • the atmosphere temperature was room temperature (20 ° C.) without external heating.
  • the transparent substrate with a film was heat-treated at a temperature of 600 ° C. for 60 minutes in an air atmosphere to obtain an optical filter.
  • the thickness of each layer in the dielectric multilayer film is as shown in Table 1 below.
  • Examples 2 to 7 An optical filter was obtained in the same manner as in Example 1, except that the dielectric multilayer film was formed to have the structure and thickness as shown in Table 1 above and that no heat treatment was performed after film formation.
  • Spectral transmittance The spectral transmittance was measured using a spectral transmittance meter (manufactured by Hitachi High-Tech Science Corporation, product number "UH4150") for the optical filter of Example 1 and the transparent substrate of Comparative Example 1. Specifically, the angle of incidence (AOI) was set to 0°, and the measurement wavelength was set to 200 nm to 400 nm.
  • AOI angle of incidence
  • FIG. 6 is a diagram showing the transmission spectra at wavelengths of 200 nm to 400 nm of the optical filter obtained in Example 1 and the glass substrate of Comparative Example 1.
  • FIG. 7 is a diagram showing an enlarged view of the transmission spectra at wavelengths of 200 nm to 300 nm in FIG. 6. Note that in FIGS. 6 and 7, the transmission spectrum of the optical filter (after firing) obtained in Example 1 is shown by a solid line, and the transmission spectrum of the optical filter obtained in Example 1 before firing is shown by a dashed line. Also, the transmission spectrum of the glass substrate of Comparative Example 1 is shown by a dashed line.
  • Example 1 the transmittance of ultraviolet light is increased over a wide wavelength range, and in particular, the spectral transmittance in the wavelength range of 240 nm to 300 nm is higher than that of the transparent substrate itself in Comparative Example 1.
  • Fig. 8 shows the transmission spectra of the optical filters obtained in Examples 2 to 7 at wavelengths of 200 nm to 400 nm.
  • Fig. 9 shows an enlarged view of the transmission spectra of Fig. 8 at wavelengths of 200 nm to 300 nm.
  • Examples 2 to 7 show improved transmittance of ultraviolet light over a wide wavelength range.

Landscapes

  • Optical Filters (AREA)

Abstract

Provided is an optical filter that can effectively transmit UV rays of a wide wavelength range and that can increase transmittance of the same. An optical filter 1 comprises: a transparent base material 2 that is composed of glass and has a thickness of 1.0 mm or less; and dielectric multilayer films 3A, 3B that are provided on main surfaces 2a, 2b of at least one side of the transparent base material 2 and that contain a hafnium oxide. The minimum value of the spectral transmittance at wavelengths of 240-300 nm is 92% or greater, and the wavelength λ60 at which the spectral transmittance is 60% is 230 nm or less.

Description

光学フィルタ、殺菌装置、及び紫外線検出装置Optical filters, sterilizers, and ultraviolet detectors
 本発明は、特定の波長域の光を透過させることのできる、光学フィルタ、並びに該光学フィルタを用いた殺菌装置及び紫外線検出装置に関する。 The present invention relates to an optical filter that can transmit light in a specific wavelength range, as well as a sterilization device and an ultraviolet detection device that use the optical filter.
 従来、特定の波長域の光を透過させることのできる光学フィルタが、種々の用途で広く用いられている。例えば、紫外線透過フィルタは、水殺菌装置、紫外線硬化型樹脂の硬化に用いる硬化装置、紫外線センサ等の用途に用いられている。 Optical filters that can transmit light in a specific wavelength range have been widely used in a variety of applications. For example, ultraviolet transmission filters are used in water sterilization devices, curing devices used to harden ultraviolet-curable resins, ultraviolet sensors, and other applications.
 下記の特許文献1には、厚さ0.5mmにおける分光透過率において、波長254nmの透過率が70%以上であるガラス板と、ガラス板の主面に備えられた保護膜とを有する、紫外線透過フィルタが開示されている。また、特許文献1には、紫外線透過フィルタの波長200nm~300nmの平均透過率が60%以下であることが記載されている。 The following Patent Document 1 discloses an ultraviolet transmission filter having a glass plate with a spectral transmittance of 70% or more at a wavelength of 254 nm at a thickness of 0.5 mm, and a protective film provided on the main surface of the glass plate. Patent Document 1 also describes that the average transmittance of the ultraviolet transmission filter at wavelengths of 200 nm to 300 nm is 60% or less.
 下記の特許文献2には、光源からの放出光を、光学フィルタを介して照射することにより、処理対象微生物を不活化処理する微生物の不活化処理装置が開示されている。特許文献2において、上記光学フィルタは、光源からの放出光が入射角0°で入射したとき、波長190nm以上230nm以下にある紫外線の少なくとも一部、及び波長230nm超237nm以下にある紫外線の少なくとも一部を透過させるとともに、波長190nm以上237nm以下の波長域以外の紫外線の透過を阻止するものであることが記載されている。 Patent Document 2 below discloses a microorganism inactivation treatment device that inactivates the microorganisms to be treated by irradiating light emitted from a light source through an optical filter. Patent Document 2 describes that when light emitted from a light source is incident at an incident angle of 0°, the optical filter transmits at least a portion of ultraviolet light with a wavelength of 190 nm or more and 230 nm or less, and at least a portion of ultraviolet light with a wavelength of more than 230 nm and 237 nm or less, and blocks the transmission of ultraviolet light outside the wavelength range of 190 nm or more and 237 nm or less.
国際公開第2018/100991号International Publication No. 2018/100991 特開2019-115525号公報JP 2019-115525 A
 しかしながら、特許文献1や特許文献2の光学フィルタは、特定の波長域の紫外線を選択的に透過させるものであることから、ウイルスなどの処理対象物の種類が限定されるという問題がある。また、特許文献1や特許文献2の光学フィルタでは、紫外線の透過率がなお十分ではなく、殺菌効果を十分に高められない場合があり、処理対象物の不活化処理に時間を要するという問題もある。このような背景から、広範な波長域の紫外線を効果的に透過させることができ、しかもその透過率を高めることができる光学フィルタが求められている。 However, the optical filters in Patent Documents 1 and 2 selectively transmit ultraviolet light in a specific wavelength range, which limits the types of objects to be treated, such as viruses. In addition, the optical filters in Patent Documents 1 and 2 do not have sufficient ultraviolet light transmittance, so there are cases in which the sterilization effect cannot be fully enhanced, and there is also the problem that it takes time to inactivate the objects to be treated. Against this background, there is a demand for optical filters that can effectively transmit ultraviolet light in a wide wavelength range and can also increase the transmittance.
 本発明の目的は、広範な波長域の紫外線を効果的に透過させることができ、しかもその透過率を高めることができる、光学フィルタ、並びに該光学フィルタを用いた殺菌装置及び紫外線検出装置を提供することにある。 The object of the present invention is to provide an optical filter that can effectively transmit ultraviolet light over a wide wavelength range and increase the transmittance, as well as a sterilization device and an ultraviolet light detection device that use the optical filter.
 上記課題を解決する光学フィルタ、並びに該光学フィルタを用いた殺菌装置及び紫外線検出装置の各態様について説明する。 This article describes various aspects of an optical filter that solves the above problems, as well as a sterilization device and an ultraviolet detection device that use the optical filter.
 本発明の態様1に係る光学フィルタは、ガラスにより構成されており、厚みが1.0mm以下である、透明基材と、前記透明基材の少なくとも一方側の主面上に設けられており、酸化ハフニウムを含む、誘電体多層膜とを備え、波長240nm~300nmにおける分光透過率の最小値が、92%以上であり、分光透過率が60%になる波長λ60が、230nm以下であることを特徴としている。 The optical filter according to a first aspect of the present invention comprises a transparent substrate made of glass and having a thickness of 1.0 mm or less, and a dielectric multilayer film containing hafnium oxide and provided on at least one main surface of the transparent substrate, the optical filter being characterized in that the minimum value of the spectral transmittance in the wavelength range of 240 nm to 300 nm is 92% or more, and the wavelength λ 60 at which the spectral transmittance becomes 60% is 230 nm or less.
 態様2に係る光学フィルタでは、態様1において、前記誘電体多層膜は、相対的に屈折率が高い高屈折率膜と、相対的に屈折率が低い低屈折率膜とを有し、前記高屈折率膜が、酸化ハフニウムを含むことが好ましい。 In the optical filter according to aspect 2, in aspect 1, the dielectric multilayer film has a high refractive index film with a relatively high refractive index and a low refractive index film with a relatively low refractive index, and it is preferable that the high refractive index film contains hafnium oxide.
 態様3に係る光学フィルタでは、態様2において、複数の前記高屈折率膜のうち、前記透明基材から最も離れている最外層の前記高屈折率膜の厚みが、前記透明基材に最も近い最内層の前記高屈折率膜の厚みよりも厚いことが好ましい。 In the optical filter according to aspect 3, in aspect 2, it is preferable that the thickness of the high refractive index film of the outermost layer, which is the furthest from the transparent substrate, among the plurality of high refractive index films, is thicker than the thickness of the high refractive index film of the innermost layer, which is the closest to the transparent substrate.
 態様4に係る光学フィルタでは、態様3において、前記最内層の前記高屈折率膜に対する前記最外層の前記高屈折率膜の厚みの比(最外層/最内層)が、2以上であることが好ましい。 In the optical filter according to aspect 4, in aspect 3, it is preferable that the ratio of the thickness of the high refractive index film of the outermost layer to the thickness of the high refractive index film of the innermost layer (outermost layer/innermost layer) is 2 or more.
 態様5に係る光学フィルタでは、態様1から態様4のいずれか一つの態様において、前記透明基材の一方側の主面上に設けられている、前記誘電体多層膜の積層数が10層以下であることが好ましい。 In the optical filter according to aspect 5, in any one of aspects 1 to 4, it is preferable that the number of layers of the dielectric multilayer film provided on one main surface of the transparent substrate is 10 or less.
 態様6に係る光学フィルタでは、態様2から態様5のいずれか一つの態様において、前記誘電体多層膜を構成する前記高屈折率膜の総厚みが、500nm以下であることが好ましい。 In the optical filter according to aspect 6, in any one of aspects 2 to 5, it is preferable that the total thickness of the high refractive index films constituting the dielectric multilayer film is 500 nm or less.
 態様7に係る光学フィルタでは、態様1から態様6のいずれか一つの態様において、前記透明基材の両側の主面上に前記誘電体多層膜が設けられていることが好ましい。 In the optical filter according to aspect 7, in any one of aspects 1 to 6, it is preferable that the dielectric multilayer film is provided on both main surfaces of the transparent substrate.
 態様8に係る光学フィルタでは、態様1から態様7のいずれか一つの態様において、前記透明基材が、ドーム形状を有することが好ましい。 In the optical filter according to aspect 8, in any one of aspects 1 to 7, it is preferable that the transparent substrate has a dome shape.
 態様9に係る光学フィルタでは、態様1から態様8のいずれか一つの態様において、前記ドーム形状の開口部の間隔に対する高さの比(高さ/開口部の間隔)が、0.1以上であることが好ましい。 In the optical filter according to aspect 9, in any one of aspects 1 to 8, it is preferable that the ratio of the height of the dome-shaped openings to the spacing (height/spacing of openings) is 0.1 or more.
 本発明の態様10に係る殺菌装置は、処理対象物を不活化処理するための殺菌装置であって、放出光の波長が、紫外線の波長域である光源と、態様1から態様9のいずれか一つの態様の光学フィルタとを備え、前記光源からの放出光を、前記光学フィルタを介して照射することにより、前記処理対象物が不活化処理されるように、前記光源及び前記光学フィルタが配置されていることを特徴としている。 The sterilization device according to aspect 10 of the present invention is a sterilization device for inactivating a processing object, and is characterized in that it comprises a light source that emits light having a wavelength in the ultraviolet wavelength range, and an optical filter according to any one of aspects 1 to 9, and that the light source and the optical filter are arranged so that the processing object is inactivated by irradiating the light emitted from the light source through the optical filter.
 本発明の態様11に係る紫外線検出装置は、紫外線を検出するための紫外線検出装置であって、態様1から態様9のいずれか一つの態様の光学フィルタと、紫外線受光素子とを備えることを特徴としている。 The ultraviolet detection device according to aspect 11 of the present invention is an ultraviolet detection device for detecting ultraviolet light, and is characterized by comprising an optical filter according to any one of aspects 1 to 9, and an ultraviolet light receiving element.
 本発明によれば、広範な波長域の紫外線を効果的に透過させることができ、しかもその透過率を高めることができる、光学フィルタ、並びに該光学フィルタを用いた殺菌装置及び紫外線検出装置を提供することができる。 The present invention provides an optical filter that can effectively transmit ultraviolet light over a wide wavelength range and increase the transmittance, as well as a sterilization device and an ultraviolet light detection device that use the optical filter.
図1は、本発明の一実施形態に係る光学フィルタを示す模式的正面図である。FIG. 1 is a schematic front view showing an optical filter according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る光学フィルタを示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing an optical filter according to one embodiment of the present invention. 図3(a)~(c)は、本発明の一実施形態に係る光学フィルタの成膜方法を説明するための模式的断面図である。3A to 3C are schematic cross-sectional views for explaining a film forming method for an optical filter according to one embodiment of the present invention. 図4は、本発明の一実施形態に係る殺菌装置を示す模式的断面図である。FIG. 4 is a schematic cross-sectional view showing a sterilization device according to one embodiment of the present invention. 図5は、本発明の一実施形態に係る紫外線検出装置を示す模式的断面図である。FIG. 5 is a schematic cross-sectional view showing an ultraviolet detection device according to an embodiment of the present invention. 図6は、実施例1で得られた光学フィルタ及び比較例1のガラス基板の波長200nm~400nmにおける透過スペクトルを示す図である。FIG. 6 is a diagram showing the transmission spectra of the optical filter obtained in Example 1 and the glass substrate of Comparative Example 1 in the wavelength range of 200 nm to 400 nm. 図7は、図6の波長200nm~300nmにおける透過スペクトルを拡大して示す図である。FIG. 7 is an enlarged view of the transmission spectrum in the wavelength range of 200 nm to 300 nm in FIG. 図8は、実施例2~7で得られた光学フィルタの波長200nm~400nmにおける透過スペクトルを示す図である。FIG. 8 is a diagram showing the transmission spectra of the optical filters obtained in Examples 2 to 7 at wavelengths of 200 nm to 400 nm. 図9は、図8の波長200nm~300nmにおける透過スペクトルを拡大して示す図である。FIG. 9 is an enlarged view of the transmission spectrum in the wavelength range of 200 nm to 300 nm in FIG.
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。 Below, preferred embodiments are described. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments. In addition, in each drawing, components having substantially the same functions may be referred to by the same reference numerals.
 [光学フィルタ]
 図1は、本発明の一実施形態に係る光学フィルタを示す模式的正面図である。また、図2は、本発明の一実施形態に係る光学フィルタを示す模式的断面図である。なお、図2は、図1の光学フィルタが平坦であると仮定したときの模式的断面図である。また、図2においては、誘電体多層膜を説明のために拡大して示している。
[Optical Filter]
Fig. 1 is a schematic front view showing an optical filter according to one embodiment of the present invention. Fig. 2 is a schematic cross-sectional view showing an optical filter according to one embodiment of the present invention. Fig. 2 is a schematic cross-sectional view assuming that the optical filter in Fig. 1 is flat. In Fig. 2, the dielectric multilayer film is shown enlarged for explanation.
 図1に示すように、光学フィルタ1は、透明基材2と、第1の誘電体多層膜3Aと、第2の誘電体多層膜3Bとを備える。 As shown in FIG. 1, the optical filter 1 comprises a transparent substrate 2, a first dielectric multilayer film 3A, and a second dielectric multilayer film 3B.
 透明基材2は、ガラスにより構成されている。透明基材2の厚みは、1.0mm以下である。また、透明基材2は、対向している第1の主面2a及び第2の主面2bを有する。 The transparent substrate 2 is made of glass. The thickness of the transparent substrate 2 is 1.0 mm or less. The transparent substrate 2 also has a first main surface 2a and a second main surface 2b that face each other.
 透明基材2の第1の主面2a上には、酸化ハフニウムを含む、第1の誘電体多層膜3Aが設けられている。また、透明基材2の第2の主面2b上には、酸化ハフニウムを含む、第2の誘電体多層膜3Bが設けられている。なお、本実施形態において、第1の誘電体多層膜3A及び第2の誘電体多層膜3B(以下、誘電体多層膜3A,3Bともいう)は、同じ構成を有する多層膜である。 A first dielectric multilayer film 3A containing hafnium oxide is provided on the first main surface 2a of the transparent substrate 2. A second dielectric multilayer film 3B containing hafnium oxide is provided on the second main surface 2b of the transparent substrate 2. In this embodiment, the first dielectric multilayer film 3A and the second dielectric multilayer film 3B (hereinafter also referred to as dielectric multilayer films 3A and 3B) are multilayer films having the same configuration.
 本実施形態において、誘電体多層膜3A,3Bは、相対的に屈折率が高い高屈折率膜と、相対的に屈折率が低い低屈折率膜とを有している。また、高屈折率膜は、酸化ハフニウムを含んでいる。 In this embodiment, the dielectric multilayer films 3A and 3B have a high refractive index film with a relatively high refractive index and a low refractive index film with a relatively low refractive index. The high refractive index film also contains hafnium oxide.
 光学フィルタ1は、誘電体多層膜3A,3Bを備えることにより、光の干渉で紫外線の反射を防止させるように設計された反射防止フィルタである。より具体的には、光学フィルタ1の波長240nm~300nmにおける分光透過率の最小値は、92%以上である。また、光学フィルタ1の分光透過率が60%になる波長λ60は、230nm以下である。 The optical filter 1 is an anti-reflection filter designed to prevent reflection of ultraviolet light by optical interference by including dielectric multilayer films 3A and 3B. More specifically, the minimum value of the spectral transmittance of the optical filter 1 in the wavelength range of 240 nm to 300 nm is 92% or more. Moreover, the wavelength λ 60 at which the spectral transmittance of the optical filter 1 is 60% is 230 nm or less.
 なお、分光透過率は、例えば、分光透過率計を用いて光学フィルタ1全体の分光透過率を測定することにより求めることができる。分光透過率計としては、例えば、日立ハイテクサイエンス社製、品番「UH4150」等を用いることができる。また、分光透過率の測定条件としては、入射角度を0°とし、測定波長を200nm~800nmとして測定することができる。 The spectral transmittance can be determined, for example, by measuring the spectral transmittance of the entire optical filter 1 using a spectral transmittance meter. For example, a model UH4150 manufactured by Hitachi High-Tech Science Corporation can be used as the spectral transmittance meter. The spectral transmittance can be measured under the conditions of an incident angle of 0° and a measurement wavelength of 200 nm to 800 nm.
 本実施形態の光学フィルタ1は、上記の構成を備えるので、広範な波長域の紫外線を効果的に透過させることができ、しかもその透過率を高めることができる。従って、光学フィルタ1は、例えば、殺菌装置に用いたときに、適用できる処理対象物(微生物及びウイルス等)の種類を多くしたり、処理対象物の不活化処理の時間を短縮したりするなど、殺菌効果を向上させることができる。また、光学フィルタ1は、紫外線検出装置に用いたときに、広範な波長域の紫外線を高感度で検知することができる。 The optical filter 1 of this embodiment has the above-mentioned configuration, and therefore can effectively transmit ultraviolet light in a wide wavelength range and can increase the transmittance. Therefore, when used in a sterilization device, for example, the optical filter 1 can improve the sterilization effect by increasing the types of objects to be treated (microorganisms, viruses, etc.) that can be treated and shortening the time required for inactivation treatment of the objects to be treated. Furthermore, when used in an ultraviolet detection device, the optical filter 1 can detect ultraviolet light in a wide wavelength range with high sensitivity.
 本実施形態において、光学フィルタ1の波長240nm~300nmにおける分光透過率の最小値は、92%以上、好ましくは93%以上、より好ましくは94%以上、さらに好ましくは96%以上、特に好ましくは97%以上である。この場合、広範な波長域の紫外線をより効果的に透過させることができる。なお、波長240nm~300nmにおける分光透過率の最小値の上限値は、特に限定されないが、例えば、99.5%とすることができる。 In this embodiment, the minimum value of the spectral transmittance of the optical filter 1 at wavelengths of 240 nm to 300 nm is 92% or more, preferably 93% or more, more preferably 94% or more, even more preferably 96% or more, and particularly preferably 97% or more. In this case, ultraviolet light in a wide wavelength range can be transmitted more effectively. The upper limit of the minimum value of the spectral transmittance at wavelengths of 240 nm to 300 nm is not particularly limited, but can be, for example, 99.5%.
 また、光学フィルタ1の分光透過率が60%になる波長λ60は、230nm以下、好ましくは225nm以下、より好ましくは220nm以下である。この場合、広範な波長域の紫外線をより効果的に透過させることができる。光学フィルタ1の分光透過率が60%になる波長λ60の下限値は、特に限定されないが、例えば、200nmとすることができる。 The wavelength λ 60 at which the spectral transmittance of the optical filter 1 is 60% is 230 nm or less, preferably 225 nm or less, and more preferably 220 nm or less. In this case, ultraviolet rays in a wide wavelength range can be transmitted more effectively. The lower limit of the wavelength λ 60 at which the spectral transmittance of the optical filter 1 is 60% is not particularly limited, but can be, for example, 200 nm.
 本実施形態において、光学フィルタ1は、ドーム形状を有する。この場合、光学フィルタ1の平面形状は、略円状であってもよく、略矩形状であってもよい。光学フィルタ1がドーム形状を有する場合、光学フィルタ1を透過した紫外線の有効照射面積をより大きくすることができる。もっとも、光学フィルタ1は、矩形板状や円板状の形状を有していてもよく、その形状は特に限定されない。 In this embodiment, the optical filter 1 has a dome shape. In this case, the planar shape of the optical filter 1 may be approximately circular or approximately rectangular. When the optical filter 1 has a dome shape, the effective irradiation area of the ultraviolet light transmitted through the optical filter 1 can be made larger. However, the optical filter 1 may have a rectangular plate shape or a disk shape, and the shape is not particularly limited.
 以下、光学フィルタ1を構成する各部材の詳細について説明する。 The components that make up the optical filter 1 are explained in detail below.
 (透明基材)
 透明基材2は、ドーム形状を有する。この場合、透明基材2の平面形状は、略円状であってもよく、略矩形状であってもよい。透明基材2がドーム形状を有する場合、光学フィルタ1を透過した紫外線の有効照射面積をより大きくすることができる。もっとも、透明基材2は、矩形板状や円板状の形状を有していてもよく、その形状は特に限定されない。
(Transparent substrate)
The transparent substrate 2 has a dome shape. In this case, the planar shape of the transparent substrate 2 may be substantially circular or substantially rectangular. When the transparent substrate 2 has a dome shape, the effective irradiation area of the ultraviolet light transmitted through the optical filter 1 can be increased. However, the transparent substrate 2 may have a rectangular plate shape or a disk shape, and the shape is not particularly limited.
 透明基材2がドーム形状を有する場合、図1に示す開口部の高さHが、好ましくは0.5mm以上、より好ましくは0.6mm以上であり、好ましくは1.5mm以下、より好ましくは1.2mm以下である。また、開口部の間隔Rは、好ましくは2.0mm以上、より好ましくは2.5mm以上であり、好ましくは6.0mm以下、より好ましくは5.5mm以下である。なお、開口部の間隔Rは、例えば、透明基材2の平面形状が、略円状である場合は、開口部の直径に相当するものとする。 When the transparent substrate 2 has a dome shape, the height H of the openings shown in FIG. 1 is preferably 0.5 mm or more, more preferably 0.6 mm or more, and preferably 1.5 mm or less, more preferably 1.2 mm or less. The spacing R of the openings is preferably 2.0 mm or more, more preferably 2.5 mm or more, and preferably 6.0 mm or less, more preferably 5.5 mm or less. Note that, for example, when the planar shape of the transparent substrate 2 is approximately circular, the spacing R of the openings corresponds to the diameter of the openings.
 ドーム形状の開口部の間隔Rに対する高さHの比(高さH/開口部の間隔R)は、好ましくは0.1以上、より好ましくは0.15以上、さらに好ましくは0.2以上であり、好ましくは0.6以下、より好ましくは0.5以下、さらに好ましくは0.4以下である。比(高さH/開口部の間隔R)が上記範囲内にある場合、光学フィルタ1を透過した紫外線の有効照射面積をより大きくすることができる。 The ratio of the height H to the spacing R of the dome-shaped openings (height H/spacing R of openings) is preferably 0.1 or more, more preferably 0.15 or more, even more preferably 0.2 or more, and is preferably 0.6 or less, more preferably 0.5 or less, even more preferably 0.4 or less. When the ratio (height H/spacing R of openings) is within the above range, the effective irradiation area of the ultraviolet light transmitted through the optical filter 1 can be made larger.
 透明基材2は、ガラスにより構成されている。なかでも、透明基材2は、光学フィルタ1の使用波長域で透明なガラスであることが好ましい。より具体的には、透明基材2は、波長200nm~400nmにおける紫外波長域の平均光透過率が80%以上であることが好ましい。 The transparent substrate 2 is made of glass. In particular, the transparent substrate 2 is preferably glass that is transparent in the wavelength range used by the optical filter 1. More specifically, the transparent substrate 2 preferably has an average light transmittance of 80% or more in the ultraviolet wavelength range of 200 nm to 400 nm.
 透明基材2を構成するガラスとしては、例えば、石英ガラス、ホウケイ酸ガラス等が挙げられる。石英ガラスは、合成石英ガラスであってもよく、溶融石英ガラスであってもよい。ホウケイ酸ガラスは、ガラス組成として、質量%で、SiO 50%~80%、Al 0%~10%、B 5%~30%、CaO 0%~5%、BaO 0%~5%、LiO+NaO+KO 0%~15%を含有することが好ましく、ガラス組成として、質量%で、SiO 55%~75%、Al 1%~10%、B 10%~30%、CaO 0%~5%、BaO 0%~5%、LiO+NaO+KO 1.0%~15%を含有することがより好ましい。 Examples of the glass constituting the transparent substrate 2 include quartz glass, borosilicate glass, etc. The quartz glass may be synthetic quartz glass or fused quartz glass. The borosilicate glass preferably contains, in mass %, 50%-80% SiO 2 , 0%-10% Al 2 O 3 , 5%-30% B 2 O 3 , 0%-5% CaO, 0%-5% BaO, and 0%-15% Li 2 O + Na 2 O + K 2 O, and more preferably contains, in mass %, 55%-75% SiO 2 , 1%-10% Al 2 O 3 , 10%-30% B 2 O 3 , 0%-5% CaO, 0%-5% BaO, and 1.0%-15% Li 2 O + Na 2 O + K 2 O.
 SiOは、ガラスネットワークを形成する成分であり、また紫外波長域~可視域の光透過率を顕著に高める成分である。特に高屈折率のガラスの場合は、光透過率を高める効果が得られやすい。また、SiOは、耐熱性や耐候性を向上させる成分でもある。SiOの含有量は、好ましくは50%~80%、より好ましくは55%~75%、さらに好ましくは58%~70%である。SiOの含有量が少なすぎると、上記効果が得られにくくなる。また、成膜後の膜付き透明基材を加熱処理する場合に、軟化変形しやすくなる。一方、SiOの含有量が多すぎると、軟化点が高くなり、透明基材2を成形しにくくなる。 SiO 2 is a component that forms a glass network and also significantly increases the light transmittance from the ultraviolet wavelength region to the visible region. In particular, in the case of high refractive index glass, the effect of increasing the light transmittance is easily obtained. SiO 2 is also a component that improves heat resistance and weather resistance. The content of SiO 2 is preferably 50% to 80%, more preferably 55% to 75%, and even more preferably 58% to 70%. If the content of SiO 2 is too small, it is difficult to obtain the above effects. In addition, when the film-attached transparent substrate is heat-treated after the film is formed, it is likely to soften and deform. On the other hand, if the content of SiO 2 is too large, the softening point becomes high and it becomes difficult to mold the transparent substrate 2.
 Alは、ガラスネットワークを形成する成分であり、また紫外波長域~可視域の光透過率を高める成分である。特に高屈折率のガラスの場合は、光透過率を高める効果が得られやすい。Alの含有量は、好ましくは0%~10%、より好ましくは1%~10%、さらに好ましくは3%~10%、さらにより好ましくは4%~9.5%、特に好ましくは4%超~9%である。Alの含有量が少なすぎると、上記効果が得られにくくなる。また、成膜後の膜付き透明基材を加熱処理する場合に、軟化変形しやすくなる。一方、Alの含有量が多すぎると、軟化点が高くなり、透明基材2を成形しにくくなる。 Al 2 O 3 is a component that forms a glass network and also increases the light transmittance from the ultraviolet wavelength region to the visible region. In particular, in the case of high refractive index glass, the effect of increasing the light transmittance is easily obtained. The content of Al 2 O 3 is preferably 0% to 10%, more preferably 1% to 10%, even more preferably 3% to 10%, even more preferably 4% to 9.5%, and particularly preferably more than 4% to 9%. If the content of Al 2 O 3 is too small, it is difficult to obtain the above effect. In addition, when the transparent substrate with the film after the film formation is heat-treated, it is likely to soften and deform. On the other hand, if the content of Al 2 O 3 is too large, the softening point becomes high, making it difficult to mold the transparent substrate 2.
 Bは、ガラスネットワークを形成する成分であり、また紫外波長域~可視域の光透過率を高める成分である。特に高屈折率のガラスの場合は、光透過率を高める効果が得られやすい。Bの含有量は、好ましくは5%~30%、より好ましくは10%~30%、さらに好ましくは12%~28%である。Bの含有量が少なすぎると、上記効果が得られにくくなる。一方、Bの含有量が多すぎると、成膜後の膜付き透明基材を加熱処理する場合に、軟化変形しやすくなる。 B 2 O 3 is a component that forms a glass network and also increases the light transmittance from the ultraviolet wavelength region to the visible region. In particular, in the case of high refractive index glass, the effect of increasing the light transmittance is easily obtained. The content of B 2 O 3 is preferably 5% to 30%, more preferably 10% to 30%, and even more preferably 12% to 28%. If the content of B 2 O 3 is too low, it becomes difficult to obtain the above effect. On the other hand, if the content of B 2 O 3 is too high, the transparent substrate with the film is easily softened and deformed when the transparent substrate with the film is heat-treated after the film is formed.
 ガラス組成として、MgO、CaO、SrO、BaO及びZnOを含有させてもよい。MgO、CaO、SrO、BaO及びZnOは、融剤として作用する成分である。また、MgO、CaO、SrO、BaO及びZnOは、失透を抑制したり、耐候性を向上させたりする成分でもある。MgO+CaO+SrO+BaO+ZnOの含有量は、好ましくは0%~10%、より好ましくは0.1%~9%、さらに好ましくは0.5%~8%、さらにより好ましくは1%~7%、さらにより好ましくは1.5%~6%、特に好ましくは2%~5%である。一方、MgO、CaO、SrO、BaO及びZnOの含有量が多すぎると、成形時や焼結時に失透しやすくなる。また、光透過率が低下しやすくなる。 The glass composition may contain MgO, CaO, SrO, BaO and ZnO. MgO, CaO, SrO, BaO and ZnO are components that act as fluxes. In addition, MgO, CaO, SrO, BaO and ZnO are also components that suppress devitrification and improve weather resistance. The content of MgO+CaO+SrO+BaO+ZnO is preferably 0% to 10%, more preferably 0.1% to 9%, even more preferably 0.5% to 8%, even more preferably 1% to 7%, even more preferably 1.5% to 6%, and particularly preferably 2% to 5%. On the other hand, if the content of MgO, CaO, SrO, BaO and ZnO is too high, devitrification is likely to occur during molding and sintering. In addition, the light transmittance is likely to decrease.
 MgO、CaO、SrO、BaO及びZnOの含有量はそれぞれ、好ましくは0%~10%、より好ましくは0.1%~9%、さらに好ましくは0.5%~8%、さらにより好ましくは1%~7%、さらにより好ましくは1.5%~6%、特に好ましくは2%~5%である。 The content of MgO, CaO, SrO, BaO and ZnO is preferably 0% to 10%, more preferably 0.1% to 9%, even more preferably 0.5% to 8%, even more preferably 1% to 7%, even more preferably 1.5% to 6%, and particularly preferably 2% to 5%.
 LiO、NaO、KOは、軟化点を低下させる成分である。LiO+NaO+KOの含有量は、好ましくは0.1%~15%、より好ましくは0.5%~10%、さらに好ましくは1~5%である。LiO、NaO、KOの含有量が少なすぎると、上記効果が得られにくくなる。一方、LiO、NaO、KOの含有量が多すぎると、耐候性や屈折率が低下しやすくなったり、光透過率が低下しやすくなる。 Li 2 O, Na 2 O, and K 2 O are components that lower the softening point. The content of Li 2 O + Na 2 O + K 2 O is preferably 0.1% to 15%, more preferably 0.5% to 10%, and even more preferably 1 to 5%. If the content of Li 2 O, Na 2 O, or K 2 O is too small, it becomes difficult to obtain the above effects. On the other hand, if the content of Li 2 O, Na 2 O, or K 2 O is too large, the weather resistance and refractive index tend to decrease, and the light transmittance tends to decrease.
 さらには、ホウケイ酸ガラスは、上記成分に加え、ガラス組成として、TiO 0%~0.001%、Fe 0%~0.001%、F 0.5%~2.0%を含有することがさらに好ましい。 Furthermore, in addition to the above components, the borosilicate glass more preferably contains, as a glass composition, 0% to 0.001% TiO 2 , 0% to 0.001% Fe 2 O 3 , and 0.5% to 2.0% F.
 TiOは、不純物としてFe成分がガラス中に多く含まれる場合(例えば20ppm以上)は、光透過率を顕著に低下させる傾向があり、また軟化点が上昇しやすくなる。従って、TiOの含有量は、好ましくは1%以下、より好ましくは0.5%以下、さらに好ましくは0.1%以下、さらにより好ましくは0.01%以下、特に好ましくは0.001%以下である。 When the glass contains a large amount of Fe as an impurity (for example, 20 ppm or more), TiO2 tends to significantly reduce the light transmittance and the softening point tends to increase. Therefore, the content of TiO2 is preferably 1% or less, more preferably 0.5% or less, even more preferably 0.1% or less, even more preferably 0.01% or less, and particularly preferably 0.001% or less.
 Feは光透過率を顕著に低下させる傾向があり、また軟化点が上昇しやすくなる。従って、Feの含有量は、好ましくは1%以下、より好ましくは0.5%以下、さらに好ましくは0.1%以下、さらにより好ましくは0.01%以下、特に好ましくは0.001%以下である。 Fe2O3 tends to significantly reduce the light transmittance and also tends to increase the softening point. Therefore, the content of Fe2O3 is preferably 1% or less, more preferably 0.5% or less, even more preferably 0.1% or less, even more preferably 0.01% or less, and particularly preferably 0.001% or less.
 Fは、軟化点を低下させる成分である。また、Fは、紫外域の光透過率を顕著に高める成分である。Fの含有量は、好ましくは0%~5%、より好ましくは0.1%~4.5%、さらに好ましくは0.2%~5%、さらにより好ましくは0.3%~4%、さらにより好ましくは0.4%~3%、特に好ましくは0.5%~2%である。Fの含有量が多すぎると、耐候性、耐失透性が悪化しやすくなる。 F is a component that lowers the softening point. In addition, F is a component that significantly increases the light transmittance in the ultraviolet region. The F content is preferably 0% to 5%, more preferably 0.1% to 4.5%, even more preferably 0.2% to 5%, even more preferably 0.3% to 4%, even more preferably 0.4% to 3%, and particularly preferably 0.5% to 2%. If the F content is too high, the weather resistance and resistance to devitrification are likely to deteriorate.
 透明基材2の厚みは、好ましくは0.5mm以下、より好ましくは0.3mm以下、さらに好ましくは0.2mm以下である。この場合、ドーム形状などの形状を容易に形成することができる。なお、透明基材2の厚みの下限値は、特に限定されないが、透明基材2の上に誘電体多層膜3A,3Bをより一層容易に成膜させる観点から、好ましくは0.05mm以上、より好ましくは0.1mm以上である。 The thickness of the transparent substrate 2 is preferably 0.5 mm or less, more preferably 0.3 mm or less, and even more preferably 0.2 mm or less. In this case, shapes such as a dome shape can be easily formed. The lower limit of the thickness of the transparent substrate 2 is not particularly limited, but from the viewpoint of making it easier to form the dielectric multilayer films 3A and 3B on the transparent substrate 2, it is preferably 0.05 mm or more, and more preferably 0.1 mm or more.
 (誘電体多層膜)
 誘電体多層膜3A,3Bは、同じ構成を有する誘電体多層膜である。もっとも、誘電体多層膜3A,3Bは、別の構成を有する誘電体多層膜により構成されていてもよく、特に限定はされない。
(Dielectric multilayer film)
The dielectric multilayer films 3A and 3B are dielectric multilayer films having the same configuration. However, the dielectric multilayer films 3A and 3B may be dielectric multilayer films having different configurations, and are not particularly limited.
 誘電体多層膜3A,3Bに用いられる誘電体多層膜は、相対的に屈折率が高い高屈折率膜4と相対的に屈折率が低い低屈折率膜5とを有する、多層膜である。本実施形態では、透明基材2の両側の主面2a,2b上に、それぞれ、高屈折率膜4及び低屈折率膜5がこの順に交互に積層されることにより、多層膜が構成されている。 The dielectric multilayer film used for the dielectric multilayer films 3A and 3B is a multilayer film having a high refractive index film 4 with a relatively high refractive index and a low refractive index film 5 with a relatively low refractive index. In this embodiment, the multilayer film is formed by alternately stacking the high refractive index film 4 and the low refractive index film 5 in this order on the main surfaces 2a and 2b on both sides of the transparent substrate 2, respectively.
 本実施形態において、高屈折率膜4は、酸化ハフニウムにより構成されており、酸化ハフニウムを主成分とする膜である。もっとも、本発明の効果を阻害しない限りにおいて、一部の高屈折率膜4は、酸化アルミニウム等を主成分とする膜であってもよい。 In this embodiment, the high refractive index film 4 is made of hafnium oxide and is a film whose main component is hafnium oxide. However, as long as the effect of the present invention is not hindered, a part of the high refractive index film 4 may be a film whose main component is aluminum oxide or the like.
 また、低屈折率膜5は、酸化ケイ素により構成されており、酸化ケイ素を主成分とする膜である。もっとも、低屈折率膜5は、酸化アルミニウム、酸化ジルコニウム、酸化スズ、フッ化マグネシウム、又は窒化ケイ素を主成分とする膜であってもよい。これらの低屈折率膜5の材料は、1種を単独で用いてもよく、複数種を併用してもよい。 The low refractive index film 5 is made of silicon oxide and is a film containing silicon oxide as its main component. However, the low refractive index film 5 may also be a film containing aluminum oxide, zirconium oxide, tin oxide, magnesium fluoride, or silicon nitride as its main component. These materials for the low refractive index film 5 may be used alone or in combination.
 なお、本明細書において、主成分とする膜とは、膜中にその材料が50質量%以上含まれている膜のことをいうものとする。主成分とする膜においては、膜中にその材料が80質量%以上含まれていることが好ましく、90質量%以上含まれていることがより好ましい。当然ながら、主成分とする膜は、膜中にその材料を100質量%含む膜であってもよい。 In this specification, a film containing a material as a main component refers to a film containing 50% or more by mass of the material. In a film containing a material as a main component, it is preferable that the material be contained in the film at 80% or more by mass, and more preferably at 90% or more by mass. Naturally, a film containing a material as a main component may be a film containing 100% by mass of the material.
 本実施形態において、誘電体多層膜3A,3Bの総厚みとしては、特に限定されないが好ましくは160nm以上、より好ましくは200nm以上であり、好ましくは700nm以下、より好ましくは600nm以下、さらに好ましくは500nm以下、特に好ましくは400nm以下である。誘電体多層膜3A,3Bの総厚みが上記範囲内にある場合、より広範な波長域の紫外線を効果的に透過させることができ、しかもその透過率をより高めることができる。特に、誘電体多層膜3A,3Bの総厚みが上記上限値以下である場合、光学フィルタ1の分光透過率が60%になる波長λ60をより低波長側にシフトさせることができる。 In this embodiment, the total thickness of the dielectric multilayer films 3A and 3B is not particularly limited, but is preferably 160 nm or more, more preferably 200 nm or more, and is preferably 700 nm or less, more preferably 600 nm or less, even more preferably 500 nm or less, and particularly preferably 400 nm or less. When the total thickness of the dielectric multilayer films 3A and 3B is within the above range, ultraviolet rays in a wider wavelength range can be effectively transmitted, and the transmittance can be further increased. In particular, when the total thickness of the dielectric multilayer films 3A and 3B is equal to or less than the above upper limit, the wavelength λ 60 at which the spectral transmittance of the optical filter 1 is 60% can be shifted to the lower wavelength side.
 高屈折率膜4の総厚み(各高屈折率膜4の厚みの合計)は、好ましくは70nm以上、より好ましくは80nm以上、さらに好ましくは90nm以上、好ましくは500nm以下、より好ましくは480nm以下、さらに好ましくは350nm以下、特に好ましくは240nm以下である。高屈折率膜4の総厚みが上記範囲内にある場合、より広範な波長域の紫外線を効果的に透過させることができ、しかもその透過率をより高めることができる。特に、高屈折率膜4の総厚みが上記上限値以下である場合、光学フィルタ1の分光透過率が60%になる波長λ60をより低波長側にシフトさせることができる。 The total thickness of the high refractive index film 4 (the sum of the thicknesses of the high refractive index films 4) is preferably 70 nm or more, more preferably 80 nm or more, even more preferably 90 nm or more, preferably 500 nm or less, more preferably 480 nm or less, even more preferably 350 nm or less, and particularly preferably 240 nm or less. When the total thickness of the high refractive index film 4 is within the above range, ultraviolet rays in a wider wavelength range can be effectively transmitted, and the transmittance can be further increased. In particular, when the total thickness of the high refractive index film 4 is equal to or less than the above upper limit, the wavelength λ 60 at which the spectral transmittance of the optical filter 1 becomes 60% can be shifted to the lower wavelength side.
 高屈折率膜4の1層当たりの厚みは、特に限定されないが、好ましくは1.0nm以上、より好ましくは2.0nm以上、さらに好ましくは4.0nm以上、好ましくは220nm以下、より好ましくは200nm以下、さらに好ましくは150nm以下である。 The thickness of each layer of the high refractive index film 4 is not particularly limited, but is preferably 1.0 nm or more, more preferably 2.0 nm or more, even more preferably 4.0 nm or more, and is preferably 220 nm or less, more preferably 200 nm or less, even more preferably 150 nm or less.
 本実施形態では、高屈折率膜4のうち、透明基材2から最も離れている最外層の高屈折率膜4Bの厚みが、透明基材2に最も近い最内層の高屈折率膜4Aの厚みよりも厚いことが好ましい。この場合、より広範な波長域の紫外線を効果的に透過させることができ、しかもその透過率をより高めることができる。なお、高屈折率膜4においては、最内層の高屈折率膜4Aから、最外層の高屈折率膜4Bに向かって厚みが厚くなる膜厚傾斜構造を有していることが好ましい。この場合、光学フィルタ1の波長240nm~300nmにおける分光透過率の最小値をより一層大きくすることができる。 In this embodiment, it is preferable that the thickness of the high refractive index film 4B, which is the outermost layer and is the furthest from the transparent substrate 2, is thicker than the thickness of the high refractive index film 4A, which is the innermost layer and is closest to the transparent substrate 2. In this case, ultraviolet light in a wider wavelength range can be effectively transmitted, and the transmittance can be further increased. It is preferable that the high refractive index film 4 has a film thickness gradient structure in which the thickness increases from the innermost high refractive index film 4A to the outermost high refractive index film 4B. In this case, the minimum value of the spectral transmittance of the optical filter 1 in the wavelength range of 240 nm to 300 nm can be further increased.
 本実施形態では、最内層の高屈折率膜4Aに対する最外層の高屈折率膜4Bの厚みの比(最外層/最内層)が、好ましくは2以上、より好ましくは3以上、さらに好ましくは5以上、さらにより好ましくは8以上、さらにより好ましくは10以上、さらにより好ましくは15以上であり、好ましくは120以下、より好ましくは100以下、さらに好ましくは80以下、さらにより好ましくは60以下、さらにより好ましくは50以下、さらにより好ましくは30以下、特に好ましくは20以下である。この場合、より広範な波長域の紫外線を効果的に透過させることができ、しかもその透過率をより高めることができる。特に、最内層の高屈折率膜4Aに対する最外層の高屈折率膜4Bの厚みの比(最外層/最内層)が上記下限値以上である場合、光学フィルタ1の波長240nm~300nmにおける分光透過率の最小値をより一層大きくすることができる。 In this embodiment, the thickness ratio of the high refractive index film 4B of the outermost layer to the high refractive index film 4A of the innermost layer (outermost layer/innermost layer) is preferably 2 or more, more preferably 3 or more, even more preferably 5 or more, even more preferably 8 or more, even more preferably 10 or more, even more preferably 15 or more, and preferably 120 or less, more preferably 100 or less, even more preferably 80 or less, even more preferably 60 or less, even more preferably 50 or less, even more preferably 30 or less, and particularly preferably 20 or less. In this case, ultraviolet rays in a wider wavelength range can be effectively transmitted, and the transmittance can be further increased. In particular, when the thickness ratio of the high refractive index film 4B of the outermost layer to the high refractive index film 4A of the innermost layer (outermost layer/innermost layer) is equal to or greater than the above lower limit, the minimum value of the spectral transmittance of the optical filter 1 at wavelengths of 240 nm to 300 nm can be further increased.
 最内層の高屈折率膜4Aの厚みは、好ましくは1.0nm以上、さらに好ましくは2.0nm以上、より好ましくは4.0nm以上、好ましくは20nm以下、より好ましくは10nm以下である。また、最外層の高屈折率膜4Bの厚みは、好ましくは20nm以上、より好ましくは30nm以上、好ましくは220nm以下、より好ましくは110nm以下である。 The thickness of the innermost high refractive index film 4A is preferably 1.0 nm or more, more preferably 2.0 nm or more, more preferably 4.0 nm or more, preferably 20 nm or less, more preferably 10 nm or less. The thickness of the outermost high refractive index film 4B is preferably 20 nm or more, more preferably 30 nm or more, preferably 220 nm or less, more preferably 110 nm or less.
 低屈折率膜5の総厚み(各低屈折率膜5の厚みの合計)は、好ましくは60nm以上、より好ましくは80nm以上、さらに好ましくは100nm以上、好ましくは500nm以下、より好ましくは450nm以下、さらに好ましくは320nm以下である。 The total thickness of the low refractive index film 5 (the sum of the thicknesses of each low refractive index film 5) is preferably 60 nm or more, more preferably 80 nm or more, even more preferably 100 nm or more, preferably 500 nm or less, more preferably 450 nm or less, even more preferably 320 nm or less.
 低屈折率膜5の1層当たりの厚みは、特に限定されないが、好ましくは1.0nm以上、より好ましくは2.0nm以上、さらに好ましくは3.0nm以上、好ましくは130nm以下、より好ましくは100nm以下である。 The thickness of each layer of the low refractive index film 5 is not particularly limited, but is preferably 1.0 nm or more, more preferably 2.0 nm or more, even more preferably 3.0 nm or more, and is preferably 130 nm or less, more preferably 100 nm or less.
 なお、上記誘電体多層膜3A,3B、高屈折率膜4、及び低屈折率膜5の総厚みは、透明基材2の片側の主面(第1の主面2a又は第2の主面2b)に設けられる膜の総厚みであるものとする。 The total thickness of the dielectric multilayer films 3A and 3B, the high refractive index film 4, and the low refractive index film 5 is the total thickness of the films provided on one main surface (the first main surface 2a or the second main surface 2b) of the transparent substrate 2.
 本実施形態において、誘電体多層膜3A,3Bを構成する膜の層数は、好ましくは4層以上、好ましくは14層以下、より好ましくは10層以下、さらに好ましくは4層以下である。誘電体多層膜3A,3Bを構成する膜の層数が上記範囲内にある場合、より広範な波長域の紫外線を効果的に透過させることができ、しかもその透過率をより高めることができる。特に、誘電体多層膜3A,3Bを構成する膜の層数が上記上限値以下である場合、光学フィルタ1の分光透過率が60%になる波長λ60をより低波長側にシフトさせることができる。 In this embodiment, the number of layers constituting the dielectric multilayer films 3A and 3B is preferably 4 or more, preferably 14 or less, more preferably 10 or less, and even more preferably 4 or less. When the number of layers constituting the dielectric multilayer films 3A and 3B is within the above range, ultraviolet rays in a wider wavelength range can be effectively transmitted, and the transmittance can be further increased. In particular, when the number of layers constituting the dielectric multilayer films 3A and 3B is equal to or less than the upper limit value, the wavelength λ60 at which the spectral transmittance of the optical filter 1 becomes 60% can be shifted to the lower wavelength side.
 高屈折率膜4を構成する膜の層数は、好ましくは1層以上、好ましくは7層以下、より好ましくは2層以下である。また、低屈折率膜5を構成する膜の層数は、好ましくは1層以上、好ましくは7層以下、より好ましくは2層以下である。 The number of layers constituting the high refractive index film 4 is preferably 1 or more, preferably 7 or less, more preferably 2 or less. The number of layers constituting the low refractive index film 5 is preferably 1 or more, preferably 7 or less, more preferably 2 or less.
 なお、上記誘電体多層膜3A,3B、高屈折率膜4、及び低屈折率膜5を構成する膜の層数は、透明基材2の片側の主面(第1の主面2a又は第2の主面2b)に設けられる膜の層数であるものとする。 The number of layers constituting the dielectric multilayer films 3A and 3B, the high refractive index film 4, and the low refractive index film 5 is the number of layers provided on one main surface (the first main surface 2a or the second main surface 2b) of the transparent substrate 2.
 本実施形態においては、誘電体多層膜3A,3Bが、酸化ハフニウム結晶を含んでいることが好ましい。より具体的には、誘電体多層膜3A,3Bを構成する高屈折率膜4が、酸化ハフニウム結晶を含んでいることが好ましく、立方晶系酸化ハフニウム結晶及び正方晶系酸化ハフニウム結晶から選ばれる1種以上を含んでいることがより好ましい。この場合、光学フィルタ1の分光透過率が60%になる波長λ60をより低波長側にシフトさせることができる。 In this embodiment, it is preferable that the dielectric multilayer films 3A and 3B contain hafnium oxide crystals. More specifically, it is preferable that the high refractive index film 4 constituting the dielectric multilayer films 3A and 3B contains hafnium oxide crystals, and more preferably contains one or more types selected from cubic hafnium oxide crystals and tetragonal hafnium oxide crystals. In this case, the wavelength λ 60 at which the spectral transmittance of the optical filter 1 becomes 60% can be shifted to the lower wavelength side.
 なお、本明細書において、立方晶系酸化ハフニウム結晶を含んでいるか否かは、X線回折測定において、立方晶系酸化ハフニウム結晶又は正方晶系酸化ハフニウム結晶に由来する(1,1,1)結晶面による回折ピークが観察されるか否かにより確認することができる。 In this specification, whether or not cubic hafnium oxide crystals are contained can be confirmed by observing whether or not a diffraction peak due to the (1,1,1) crystal plane derived from cubic hafnium oxide crystals or tetragonal hafnium oxide crystals is observed in an X-ray diffraction measurement.
 また、本明細書において、X線回折測定は、広角X線回折法によって測定することができる。X線回折装置としては、例えば、リガク社製、品番「SmartLab」を用いることができる。また、線源としては、CuKα線を用いることができる。なお、X線回折測定においては、光学フィルタ1全体を誘電体多層膜3A,3Bの主面側から測定に供するものとする。 In addition, in this specification, X-ray diffraction measurement can be performed by wide-angle X-ray diffraction. For example, an X-ray diffraction device manufactured by Rigaku Corporation, model number "SmartLab" can be used. Furthermore, CuKα radiation can be used as the radiation source. In addition, in the X-ray diffraction measurement, the entire optical filter 1 is subjected to measurement from the main surface side of the dielectric multilayer films 3A and 3B.
 本発明においては、X線回折測定において、立方晶系酸化ハフニウム結晶又は正方晶系酸化ハフニウム結晶に由来する(1,1,1)結晶面による回折ピークが、単斜晶系酸化ハフニウム結晶に由来する(-1,1,1)結晶面による回折ピークよりも大きいことが好ましい。この場合、光学フィルタ1の分光透過率が60%になる波長λ60をより低波長側にシフトさせることができる。 In the present invention, in an X-ray diffraction measurement, it is preferable that the diffraction peak due to the (1,1,1) crystal plane originating from a cubic hafnium oxide crystal or a tetragonal hafnium oxide crystal is larger than the diffraction peak due to the (-1,1,1) crystal plane originating from a monoclinic hafnium oxide crystal. In this case, the wavelength λ60 at which the spectral transmittance of the optical filter 1 becomes 60% can be shifted to the lower wavelength side.
 本発明においては、立方晶系酸化ハフニウム結晶又は正方晶系酸化ハフニウム結晶に由来する(1,1,1)結晶面による回折ピークのピーク面積強度Icと、単斜晶系酸化ハフニウム結晶に由来する(-1,1,1)結晶面による回折ピークのピーク面積強度Imとの比Ic/Imが、好ましくは0.1以上、より好ましくは1以上、さらに好ましくは2以上、特に好ましくは2.5以上、最も好ましくは3以上である。比Ic/Imが上記下限値以上である場合、光学フィルタ1の分光透過率が60%になる波長λ60をより低波長側にシフトさせることができる。なお、比Ic/Imの上限値は、特に限定されないが、例えば、10000とすることができる。 In the present invention, the ratio Ic/Im of the peak area intensity Ic of the diffraction peak due to the (1,1,1) crystal plane derived from cubic hafnium oxide crystal or tetragonal hafnium oxide crystal to the peak area intensity Im of the diffraction peak due to the (-1,1,1) crystal plane derived from monoclinic hafnium oxide crystal is preferably 0.1 or more, more preferably 1 or more, even more preferably 2 or more, particularly preferably 2.5 or more, and most preferably 3 or more. When the ratio Ic/Im is equal to or more than the lower limit, the wavelength λ 60 at which the spectral transmittance of the optical filter 1 becomes 60% can be shifted to the lower wavelength side. The upper limit of the ratio Ic/Im is not particularly limited, but can be set to, for example, 10,000.
 本実施形態では、透明基材2の両側の主面2a,2b上に、誘電体多層膜3A,3Bが設けられている。このように、本発明においては、透明基材2の両側の主面2a,2b上に、誘電体多層膜3A,3Bが設けられていることが好ましいが、透明基材2の第1の主面2a及び第2の主面2bのうち一方の主面上に誘電体多層膜3A,3Bが設けられていればよい。 In this embodiment, the dielectric multilayer films 3A, 3B are provided on both main surfaces 2a, 2b of the transparent substrate 2. In this way, in the present invention, it is preferable that the dielectric multilayer films 3A, 3B are provided on both main surfaces 2a, 2b of the transparent substrate 2, but it is sufficient that the dielectric multilayer films 3A, 3B are provided on one of the first main surface 2a and the second main surface 2b of the transparent substrate 2.
 なお、本発明の効果を阻害しない限りにおいて、透明基材2の主面2a,2b上には、防汚膜等の他の膜が積層されていてもよい。 In addition, other films such as antifouling films may be laminated on the main surfaces 2a and 2b of the transparent substrate 2 as long as the effects of the present invention are not impaired.
 以下、光学フィルタ1の製造方法の一例について詳細に説明する。 Below, an example of a method for manufacturing the optical filter 1 is described in detail.
 (光学フィルタの製造方法)
 膜付き透明基材形成工程;
 まず、図3(a)に示すように、透明基材の母材22を用意し、固定部材27を用いて透明基材の母材22を成膜用治具26に固定する。透明基材の母材22としては、ドーム形状部分22Aが複数並べられた母材を用いることができる。なお、図示は省略しているが、本実施形態において、透明基材の母材22は平板状の形状を有しており、平面視において、長さ方向及び幅方向のそれぞれに、ドーム形状部分22Aが並べられている。また、固定部材27としては、例えば、ポリイミドテープなどのテープを用いることができる。
(Method of Manufacturing Optical Filter)
A film-attached transparent substrate forming step;
First, as shown in Fig. 3(a), a transparent substrate base material 22 is prepared, and the transparent substrate base material 22 is fixed to a film forming jig 26 using a fixing member 27. A base material having a plurality of dome-shaped portions 22A arranged thereon can be used as the transparent substrate base material 22. Although not shown in the drawings, in this embodiment, the transparent substrate base material 22 has a flat plate shape, and the dome-shaped portions 22A are arranged in both the length direction and the width direction in a plan view. Also, a tape such as a polyimide tape can be used as the fixing member 27.
 次に、透明基材の母材22において、ドーム形状の頂点側の第1の主面22a上に誘電体多層膜3A(図3(a)~(c)では図示を省略)を成膜する。誘電体多層膜3Aは、透明基材の母材22の第1の主面22a上に、高屈折率膜4及び低屈折率膜5をこの順に交互に積層することにより形成することができる。高屈折率膜4及び低屈折率膜5は、それぞれ、蒸着法、スパッタリング法、又はCVD法等により成膜することができる。なかでも、高屈折率膜4及び低屈折率膜5は、各層の厚みをより高精度に制御し、より緻密な膜を形成する観点から、RAS(Radical Assisted Sputtering)方式のスパッタリング法により成膜することが好ましい。 Next, a dielectric multilayer film 3A (not shown in Figs. 3(a) to (c)) is formed on the first main surface 22a of the transparent substrate base material 22 on the apex side of the dome shape. The dielectric multilayer film 3A can be formed by alternately stacking a high refractive index film 4 and a low refractive index film 5 in this order on the first main surface 22a of the transparent substrate base material 22. The high refractive index film 4 and the low refractive index film 5 can be formed by deposition, sputtering, CVD, or the like. In particular, the high refractive index film 4 and the low refractive index film 5 are preferably formed by a RAS (Radical Assisted Sputtering) sputtering method from the viewpoint of controlling the thickness of each layer with higher precision and forming a denser film.
 高屈折率膜4を成膜するときの透明基材の母材22の温度は、好ましくは300℃以下、より好ましくは150℃以下である。なお、高屈折率膜4を成膜するときの透明基材の母材22の温度の下限値は、例えば、20℃(室温)とすることができる。 The temperature of the transparent substrate base material 22 when forming the high refractive index film 4 is preferably 300°C or less, and more preferably 150°C or less. The lower limit of the temperature of the transparent substrate base material 22 when forming the high refractive index film 4 can be, for example, 20°C (room temperature).
 高屈折率膜4の成膜は、例えば、高屈折率膜4を構成する材料のターゲットを用い、キャリアガスとしてのアルゴンガスなどの不活性ガスの流量を50sccm~500sccmとし、印加電力を0.5kW~40kWとして行うことができる。 The high refractive index film 4 can be formed, for example, by using a target of the material that constitutes the high refractive index film 4, setting the flow rate of an inert gas such as argon gas as a carrier gas at 50 sccm to 500 sccm, and applying a power of 0.5 kW to 40 kW.
 低屈折率膜5を成膜するときの透明基材の母材22の温度は、好ましくは300℃以下、より好ましくは270℃以下である。なお、低屈折率膜5を成膜するときの透明基材の母材22の温度の下限値は、例えば、20℃(室温)とすることができる。 The temperature of the transparent substrate base material 22 when forming the low refractive index film 5 is preferably 300°C or less, and more preferably 270°C or less. The lower limit of the temperature of the transparent substrate base material 22 when forming the low refractive index film 5 can be, for example, 20°C (room temperature).
 低屈折率膜5の成膜は、例えば、低屈折率膜5を構成する材料のターゲットを用い、キャリアガスとしてのアルゴンガスなどの不活性ガスの流量を50sccm~500sccmとし、印加電力を0.5kW~40kWとして行うことができる。 The low refractive index film 5 can be formed, for example, by using a target of the material that constitutes the low refractive index film 5, setting the flow rate of an inert gas such as argon gas as a carrier gas at 50 sccm to 500 sccm, and applying a power of 0.5 kW to 40 kW.
 次に、図3(b)に示すように、凹面形成用治具28を成膜用治具26に貼り付け、ドーム形状部分22Aと同じ配列で穴の開いた成膜用治具29を用意する。 Next, as shown in FIG. 3(b), a concave surface forming jig 28 is attached to the film forming jig 26 to prepare a film forming jig 29 with holes in the same arrangement as the dome-shaped portion 22A.
 次に、図3(c)に示すように、透明基材の母材22において、ドーム形状の頂点側の第1の主面22aが成膜用治具29の穴部側に配置されるように、透明基板の母材22を載置し、固定部材27を用いて透明基材の母材22を成膜用治具29に固定する。 Next, as shown in FIG. 3(c), the transparent substrate base material 22 is placed so that the first main surface 22a on the apex side of the dome shape is positioned on the hole side of the film-forming jig 29, and the transparent substrate base material 22 is fixed to the film-forming jig 29 using the fixing member 27.
 次に、透明基材の母材22において、ドーム形状の頂点とは反対側の第2の主面22b上に誘電体多層膜3B(図3(a)~(c)では図示を省略)を成膜し、膜付き透明基材の母材を形成する。なお、誘電体多層膜3Bは、誘電体多層膜3Aと同様の方法で成膜することができる。次に、膜付き透明基材の母材22を個片化することにより膜付き透明基材を得ることができる。 Next, in the transparent substrate base material 22, a dielectric multilayer film 3B (not shown in FIGS. 3(a) to (c)) is formed on the second main surface 22b opposite the apex of the dome shape to form a film-coated transparent substrate base material. The dielectric multilayer film 3B can be formed in the same manner as the dielectric multilayer film 3A. Next, the film-coated transparent substrate base material 22 can be divided into individual pieces to obtain a film-coated transparent substrate.
 熱処理工程;
 次に、得られた膜付き透明基材を加熱処理する。それによって、光学フィルタ1を得ることができる。加熱処理の温度は、例えば、450℃以上とすることができる。特に、膜付き透明基材を450℃以上の温度で加熱する場合、立方晶系酸化ハフニウム結晶の含有量を相対的に大きくすることができる。そのため、得られる光学フィルタ1において、分光透過率が60%になる波長λ60をより低波長側にシフトさせることができる。
Heat treatment process;
Next, the obtained film-attached transparent substrate is heat-treated. As a result, the optical filter 1 can be obtained. The temperature of the heat treatment can be, for example, 450° C. or higher. In particular, when the film-attached transparent substrate is heated at a temperature of 450° C. or higher, the content of cubic hafnium oxide crystals can be relatively increased. Therefore, in the obtained optical filter 1, the wavelength λ 60 at which the spectral transmittance becomes 60% can be shifted to the lower wavelength side.
 膜付き透明基材における加熱処理の温度は、好ましくは450℃以上、より好ましくは500℃以上、さらに好ましくは550℃以上、好ましくは800℃以下、より好ましくは750℃以下である。加熱処理の温度が上記範囲内にある場合、光学フィルタ1の分光透過率が60%になる波長λ60をより低波長側にシフトさせることができる。 The temperature of the heat treatment of the film-coated transparent substrate is preferably 450° C. or higher, more preferably 500° C. or higher, even more preferably 550° C. or higher, and preferably 800° C. or lower, more preferably 750° C. or lower. When the heat treatment temperature is within the above range, the wavelength λ 60 at which the spectral transmittance of the optical filter 1 becomes 60% can be shifted to the shorter wavelength side.
 膜付き透明基材における加熱処理の時間は、特に限定されないが、例えば、10分以上、120分以下とすることができる。 The heat treatment time for the film-attached transparent substrate is not particularly limited, but can be, for example, 10 minutes or more and 120 minutes or less.
 得られる光学フィルタ1において、波長240nm~300nmにおける分光透過率の最小値は、92%以上である。また、得られる光学フィルタ1において、分光透過率が60%になる波長λ60は、230nm以下である。 In the obtained optical filter 1, the minimum value of the spectral transmittance in the wavelength range of 240 nm to 300 nm is 92% or more. In the obtained optical filter 1, the wavelength λ 60 at which the spectral transmittance becomes 60% is 230 nm or less.
 なお、光学フィルタ1の波長240nm~300nmにおける分光透過率の最小値は、例えば、最内層の高屈折率膜4Aに対する最外層の高屈折率膜4Bの厚みの比を大きくすることにより、大きくすることができる。 The minimum value of the spectral transmittance of the optical filter 1 at wavelengths of 240 nm to 300 nm can be increased, for example, by increasing the ratio of the thickness of the outermost high refractive index film 4B to the thickness of the innermost high refractive index film 4A.
 また、光学フィルタ1の分光透過率が60%になる波長λ60は、例えば、誘電体多層膜3A,3Bを構成する膜の積層数を少なくしたり、誘電体多層膜3A,3Bの総厚みを小さくしたり、高屈折率膜4の総厚みを小さくしたりすることにより、低波長側にシフトさせることができる。 Furthermore, the wavelength λ60 at which the spectral transmittance of the optical filter 1 becomes 60% can be shifted to a shorter wavelength side, for example, by reducing the number of laminated films constituting the dielectric multilayer films 3A and 3B, by reducing the total thickness of the dielectric multilayer films 3A and 3B, or by reducing the total thickness of the high refractive index film 4.
 なお、膜付き透明基材形成工程の後に引き続き熱処理工程を行い、次に、膜付き透明基材の母材を個片化することにより膜付き透明基材を得るようにしてもよい。 In addition, after the film-coated transparent substrate forming process, a heat treatment process may be subsequently performed, and then the base material of the film-coated transparent substrate may be divided into individual pieces to obtain the film-coated transparent substrate.
 また、膜付き透明基材の母材を個片化した後、熱処理を行わずに光学フィルタを得てもよい。 In addition, after the base material of the transparent substrate with the film is divided into individual pieces, an optical filter may be obtained without carrying out a heat treatment.
 [殺菌装置]
 図4は、本発明の一実施形態に係る殺菌装置を示す模式的断面図である。
[Sterilization device]
FIG. 4 is a schematic cross-sectional view showing a sterilization device according to one embodiment of the present invention.
 図4に示す殺菌装置30は、殺菌対象物Pに付着等により含まれる処理対象物(微生物及びウイルス等)を不活化処理するための殺菌装置である。殺菌装置30は、光源32と、リフレクター33と、筐体34と、光学フィルタ1とを備える。 The sterilization device 30 shown in FIG. 4 is a sterilization device for inactivating objects to be treated (microorganisms, viruses, etc.) that are attached to or contained in the sterilization object P. The sterilization device 30 includes a light source 32, a reflector 33, a housing 34, and an optical filter 1.
 殺菌装置30では、上述したドーム形状の光学フィルタ1が備えられている。光学フィルタ1は、筐体34上において、ドーム形状の頂点側の第1の主面2aが外側(殺菌対象物P側)に配置されるように設けられている。殺菌装置30では、光源32から発せられた放出光が、光学フィルタ1を介して、殺菌対象物Pに照射される。 The sterilization device 30 is equipped with the dome-shaped optical filter 1 described above. The optical filter 1 is arranged on the housing 34 such that the first main surface 2a at the apex side of the dome shape is disposed on the outside (the side of the object to be sterilized P). In the sterilization device 30, the emitted light emitted from the light source 32 is irradiated onto the object to be sterilized P via the optical filter 1.
 筐体34の内部に、光源32及びリフレクター33が配置されている。光源32は、放出光の波長が紫外線の波長域(例えば、200nm~400nmの波長域)に存在する光源である。リフレクター33は、光源から放出された光を広範囲に拡散可能である。光源32は、光学フィルタ1の凹面に対向して配置されている。 A light source 32 and a reflector 33 are arranged inside the housing 34. The light source 32 is a light source that emits light with a wavelength in the ultraviolet wavelength range (for example, a wavelength range of 200 nm to 400 nm). The reflector 33 is capable of diffusing the light emitted from the light source over a wide range. The light source 32 is arranged facing the concave surface of the optical filter 1.
 光源32としては、例えば、エキシマランプを用いることができる。エキシマランプとしては、波長220nm~300nmの範囲の紫外線を発光するエキシマランプを用いることが好ましい。このようなエキシマランプとしては、例えば、KrClエキシマランプを用いることができる。エキシマランプは、KrFエキシマランプであってもよい。また、波長250nm~320nmの範囲に異なるピーク波長をもつUV-LEDを複数個用いてもよい。 As the light source 32, for example, an excimer lamp can be used. As the excimer lamp, it is preferable to use an excimer lamp that emits ultraviolet light with a wavelength in the range of 220 nm to 300 nm. As such an excimer lamp, for example, a KrCl excimer lamp can be used. The excimer lamp may be a KrF excimer lamp. In addition, multiple UV-LEDs with different peak wavelengths in the range of 250 nm to 320 nm may be used.
 殺菌装置30を用いることにより、殺菌対象物Pに付着等により含まれる処理対象物(微生物及びウイルス等)を不活化処理することができる。殺菌装置30では、殺菌処理に有用な紫外線を効率よく透過させることができるので、殺菌対象物Pに対して、紫外線殺菌を効率よく行うことができる。例えば、紫外線殺菌では、細菌等の微生物の細胞内のDNAに紫外線を作用させて、微生物を選択的に不活化させたり、ウイルスに紫外線を作用させて選択的に不活化させたりすることができる。 By using the sterilization device 30, it is possible to inactivate the objects to be sterilized (microorganisms, viruses, etc.) that are attached to the object to be sterilized P and are contained therein. The sterilization device 30 can efficiently transmit ultraviolet light, which is useful for sterilization, and therefore can efficiently perform ultraviolet sterilization on the object to be sterilized P. For example, in ultraviolet sterilization, ultraviolet light can be applied to the DNA within the cells of microorganisms such as bacteria to selectively inactivate the microorganisms, or ultraviolet light can be applied to viruses to selectively inactivate them.
 本実施形態の殺菌装置30は、光学フィルタ1を備えているので、広範な波長域の紫外線を効果的に透過させることができ、しかもその透過率を高めることができる。そのため、光学フィルタ1は殺菌装置に用いたときに、適用できる処理対象物(微生物及びウイルス等)の種類を幅広くしたり、不活化処理の時間を短縮したりするなど、殺菌効果を向上させることができる。 The sterilization device 30 of this embodiment is equipped with the optical filter 1, which allows ultraviolet light in a wide wavelength range to pass effectively and increases the transmittance. Therefore, when the optical filter 1 is used in a sterilization device, it can improve the sterilization effect by broadening the range of applicable treatment objects (microorganisms, viruses, etc.) and shortening the time required for inactivation treatment.
 また、本実施形態の殺菌装置30では、光学フィルタ1が、ドーム形状で備えられている。そのため、光源32の上方に位置する光学フィルタ1の中央付近だけでなく、光源32の斜め上方に位置し、光学フィルタ1の中央から離れた部分においても、入射角が小さい放射光を入射させることができる。従って、殺菌装置30によれば、光源32からの放出光の有効照射面積を大きくした場合においても、殺菌処理に有用な紫外線を効率よく透過させることができる。 Furthermore, in the sterilization device 30 of this embodiment, the optical filter 1 is provided in a dome shape. Therefore, emitted light with a small angle of incidence can be made to be incident not only near the center of the optical filter 1 located above the light source 32, but also in a portion of the optical filter 1 located diagonally above the light source 32 and away from the center. Therefore, according to the sterilization device 30, even if the effective irradiation area of the light emitted from the light source 32 is increased, ultraviolet light useful for sterilization processing can be efficiently transmitted.
 本実施形態の殺菌装置30では、図4に示すように、光学フィルタ1が、厚み方向に沿う断面視において、光源32を中心として同心円状に配置されていることが好ましい。この場合、殺菌処理に有用な紫外線をより一層効率よく透過させつつ、放出光の有効照射面積を大きくすることができる。 In the sterilization device 30 of this embodiment, as shown in FIG. 4, it is preferable that the optical filter 1 is arranged concentrically around the light source 32 in a cross-sectional view along the thickness direction. In this case, it is possible to increase the effective irradiation area of the emitted light while more efficiently transmitting ultraviolet light that is useful for sterilization processing.
 なお、本実施形態の殺菌装置30では、1つの光源32が用いられているが、例えば、照射する光の波長域が異なる複数の光源32を用いてもよい。この場合、殺菌効果が高められる波長域の異なる複数の処理対象物において、それぞれに対応する波長域の光を照射できる光源32を用いることにより、複数の処理対象物を同時に殺菌処理することができる。なお、複数の光源32は、同じ筐体34内に配置されてもよく、複数の筐体34に個別に配置されてもよい。 In the present embodiment, the sterilization device 30 uses one light source 32, but multiple light sources 32 emitting light with different wavelength ranges may be used. In this case, by using a light source 32 capable of emitting light in a corresponding wavelength range for each of multiple processing objects having different wavelength ranges that enhance the sterilization effect, multiple processing objects can be sterilized simultaneously. In addition, the multiple light sources 32 may be arranged in the same housing 34, or may be arranged individually in multiple housings 34.
 [紫外線検出装置]
 図5は、本発明の一実施形態に係る紫外線検出装置を示す模式的断面図である。
[Ultraviolet Detector]
FIG. 5 is a schematic cross-sectional view showing an ultraviolet detection device according to an embodiment of the present invention.
 図5に示す紫外線検出装置40は、基体42と、紫外線受光素子41と、光学フィルタ1とを備える。紫外線検出装置40では、外部からの紫外線が光学フィルタ1を介して基体42内に入射する。そして、基体42内に入射した紫外線を紫外線受光素子41で検出することができる。 The ultraviolet detection device 40 shown in FIG. 5 includes a base 42, an ultraviolet light receiving element 41, and an optical filter 1. In the ultraviolet detection device 40, ultraviolet light from the outside enters the base 42 through the optical filter 1. The ultraviolet light that enters the base 42 can then be detected by the ultraviolet light receiving element 41.
 本実施形態の紫外線検出装置40は、光学フィルタ1を備えているので、広範な波長域の紫外線を透過させることができ、しかもその透過率を高めることができる。そのため、紫外線検出装置40によれば、広範な波長域の紫外線を高感度で検知することができる。 The ultraviolet detection device 40 of this embodiment is equipped with an optical filter 1, so it can transmit ultraviolet light in a wide wavelength range and can increase the transmittance. Therefore, the ultraviolet detection device 40 can detect ultraviolet light in a wide wavelength range with high sensitivity.
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。 The present invention will now be described in more detail with reference to specific examples. The present invention is not limited to the following examples, and can be modified as appropriate without departing from the spirit of the invention.
 (実施例1)
 まず、厚み0.2mmのホウケイ酸ガラス基板(日本電気硝子社製、品番「BU-41」、寸法:100mm×100mm×0.2mm)を用意した。次に、用意したガラス基板をプレス成型により、ドーム形状に加工し、透明基材(開口部の間隔:4.0mm、高さ:1.0mm)を用意した。なお、ガラス基板のドーム形状への加工は、加熱して熱変形させることにより成形してもよい。
Example 1
First, a borosilicate glass substrate having a thickness of 0.2 mm (manufactured by Nippon Electric Glass Co., Ltd., product number "BU-41", dimensions: 100 mm x 100 mm x 0.2 mm) was prepared. Next, the prepared glass substrate was processed into a dome shape by press molding to prepare a transparent base material (spacing of openings: 4.0 mm, height: 1.0 mm). The glass substrate may be processed into a dome shape by heating and thermal deformation.
 次に、ドーム形状に加工した透明基材の一方側主面上に、RAS方式のスパッタリング法により誘電体多層膜を成膜した。具体的には、まず、キャリアガスとしてアルゴンガスと酸素ガスとを用い、ハフニウムのターゲットをスパッタリングし、透明基材の一方側主面上に酸化ハフニウム膜(HfO膜)を成膜した。なお、この際、アルゴンガスの流量を500sccmとし、酸素ガスの流量を156sccmとし、ターゲット印加電力(成膜電力)を4.5kWとした。次に、キャリアガスとしてアルゴンガスと酸素ガスとを用い、シリコンのターゲットをスパッタリングし、HfO膜の上に酸化ケイ素膜(SiO膜)を成膜した。なお、この際、アルゴンガスの流量を600sccmとし、酸素ガスの流量を240sccmとし、ターゲット印加電力(成膜電力)を5.0kWとした。この操作を繰り返すことにより、透明基材の一方側主面上に、HfO膜とSiO膜とが、この順に1層ずつ交互に積層された、合計4層の膜を有する誘電体多層膜を形成した。同様にして、透明基材の他方側主面上に、HfO膜とSiO膜とが、この順に1層ずつ交互に積層された、合計4層の膜を有する誘電体多層膜を形成し、膜付き透明基材を得た。なお、成膜の間、雰囲気温度は、外部加熱せず、室温(20℃)とした。次に、膜付き透明基材を、大気雰囲気下、600℃の温度で60分間加熱処理することにより、光学フィルタを得た。 Next, a dielectric multilayer film was formed on one main surface of the transparent substrate processed into a dome shape by a sputtering method of the RAS method. Specifically, first, argon gas and oxygen gas were used as carrier gases to sputter a hafnium target, and a hafnium oxide film (HfO 2 film) was formed on one main surface of the transparent substrate. At this time, the flow rate of argon gas was set to 500 sccm, the flow rate of oxygen gas was set to 156 sccm, and the target applied power (film forming power) was set to 4.5 kW. Next, argon gas and oxygen gas were used as carrier gases to sputter a silicon target, and a silicon oxide film (SiO 2 film) was formed on the HfO 2 film. At this time, the flow rate of argon gas was set to 600 sccm, the flow rate of oxygen gas was set to 240 sccm, and the target applied power (film forming power) was set to 5.0 kW. By repeating this operation, a dielectric multilayer film having a total of four layers of films, in which HfO 2 films and SiO 2 films are alternately stacked one by one in this order, was formed on one main surface of the transparent substrate. In the same manner, a dielectric multilayer film having a total of four layers of films, in which HfO 2 films and SiO 2 films are alternately stacked one by one in this order, was formed on the other main surface of the transparent substrate, and a transparent substrate with a film was obtained. Note that during the film formation, the atmosphere temperature was room temperature (20 ° C.) without external heating. Next, the transparent substrate with a film was heat-treated at a temperature of 600 ° C. for 60 minutes in an air atmosphere to obtain an optical filter.
 なお、誘電体多層膜における各層の厚みは、下記の表1に示す通りである。 The thickness of each layer in the dielectric multilayer film is as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例2~7)
 誘電体多層膜の構成と膜厚を上記表1に示すように成膜したこと及び成膜後に加熱処理をしなかったこと以外は、実施例1と同様にして光学フィルタを得た。
(Examples 2 to 7)
An optical filter was obtained in the same manner as in Example 1, except that the dielectric multilayer film was formed to have the structure and thickness as shown in Table 1 above and that no heat treatment was performed after film formation.
 (比較例1)
 厚み0.2mmのホウケイ酸ガラス基板(日本電気硝子社製、品番「BU-41」、寸法:100mm×100mm×0.2mm)を用意した。次に、用意したガラス基板をプレス成型により、ドーム形状(開口部の間隔:4.0mm、高さ:1.0mm)に加工し、透明基材を用意し、誘電体多層膜を成膜せずにそのまま用いた。
(Comparative Example 1)
A borosilicate glass substrate having a thickness of 0.2 mm (manufactured by Nippon Electric Glass Co., Ltd., product number "BU-41", dimensions: 100 mm x 100 mm x 0.2 mm) was prepared. Next, the prepared glass substrate was processed into a dome shape (spacing of openings: 4.0 mm, height: 1.0 mm) by press molding to prepare a transparent base material, which was used as it was without forming a dielectric multilayer film.
 [評価]
 (分光透過率)
 実施例1の光学フィルタ及び比較例1の透明基材について、分光透過率計(日立ハイテクサイエンス社製、品番「UH4150」)を用いて、分光透過率を測定した。具体的には、入射角(AOI)を0°とし、測定波長を200nm~400nmとした。
[evaluation]
(Spectral transmittance)
The spectral transmittance was measured using a spectral transmittance meter (manufactured by Hitachi High-Tech Science Corporation, product number "UH4150") for the optical filter of Example 1 and the transparent substrate of Comparative Example 1. Specifically, the angle of incidence (AOI) was set to 0°, and the measurement wavelength was set to 200 nm to 400 nm.
 図6は、実施例1で得られた光学フィルタ及び比較例1のガラス基板の波長200nm~400nmにおける透過スペクトルを示す図である。また、図7は、図6の波長200nm~300nmにおける透過スペクトルを拡大して示す図である。なお、図6及び図7においては、実施例1で得られた光学フィルタ(焼成後)の透過スペクトルを実線で示しており、実施例1で得られた光学フィルタの焼成前の透過スペクトルを一点鎖線で示している。また、比較例1のガラス基板の透過スペクトルを破線で示している。 FIG. 6 is a diagram showing the transmission spectra at wavelengths of 200 nm to 400 nm of the optical filter obtained in Example 1 and the glass substrate of Comparative Example 1. FIG. 7 is a diagram showing an enlarged view of the transmission spectra at wavelengths of 200 nm to 300 nm in FIG. 6. Note that in FIGS. 6 and 7, the transmission spectrum of the optical filter (after firing) obtained in Example 1 is shown by a solid line, and the transmission spectrum of the optical filter obtained in Example 1 before firing is shown by a dashed line. Also, the transmission spectrum of the glass substrate of Comparative Example 1 is shown by a dashed line.
 図6及び図7に示すように、実施例1では、幅広い波長域における紫外線の透過率が高められており、特に波長240nm~300nmにおける分光透過率が、比較例1の透明基材そのものよりも高められていることがわかる。 As shown in Figures 6 and 7, in Example 1, the transmittance of ultraviolet light is increased over a wide wavelength range, and in particular, the spectral transmittance in the wavelength range of 240 nm to 300 nm is higher than that of the transparent substrate itself in Comparative Example 1.
 さらに、図8は、実施例2~7で得られた光学フィルタの波長200nm~400nmにおける透過スペクトルを示す図である。また、図9は、図8の波長200nm~300nmにおける透過スペクトルを拡大して示す図である。 Furthermore, Fig. 8 shows the transmission spectra of the optical filters obtained in Examples 2 to 7 at wavelengths of 200 nm to 400 nm. Also, Fig. 9 shows an enlarged view of the transmission spectra of Fig. 8 at wavelengths of 200 nm to 300 nm.
 図8及び図9に示すように、実施例2~7では、幅広い波長域における紫外線の透過率が高められていることがわかる。 As shown in Figures 8 and 9, Examples 2 to 7 show improved transmittance of ultraviolet light over a wide wavelength range.
1…光学フィルタ
2…透明基材
2a,22a…第1の主面
2b,22b…第2の主面
3A,3B…第1,第2の誘電体多層膜
4…高屈折率膜
4A…最内層の高屈折率膜
4B…最外層の高屈折率膜
5…低屈折率膜
22…透明基材の母材
22A…ドーム形状部分
26,29…成膜用治具
27…固定部材
28…凹面形成用治具
30…殺菌装置
32…光源
33…リフレクター
34…筐体
40…紫外線検出装置
41…紫外線受光素子
42…基体
P…殺菌対象物
DESCRIPTION OF SYMBOLS 1...Optical filter 2... Transparent substrate 2a, 22a...First main surface 2b, 22b...Second main surface 3A, 3B...First and second dielectric multilayer films 4...High refractive index film 4A...Innermost high refractive index film 4B...Outermost high refractive index film 5...Low refractive index film 22...Transparent substrate base material 22A...Dome-shaped portion 26, 29...Film-forming jig 27...Fixing member 28...Concave surface forming jig 30...Sterilization device 32...Light source 33...Reflector 34...Housing 40...Ultraviolet light detection device 41...Ultraviolet light receiving element 42...Substrate P...Object to be sterilized

Claims (11)

  1.  ガラスにより構成されており、厚みが1.0mm以下である、透明基材と、
     前記透明基材の少なくとも一方側の主面上に設けられており、酸化ハフニウムを含む、誘電体多層膜と、
    を備え、
     波長240nm~300nmにおける分光透過率の最小値が、92%以上であり、
     分光透過率が60%になる波長λ60が、230nm以下である、光学フィルタ。
    A transparent substrate made of glass and having a thickness of 1.0 mm or less;
    a dielectric multilayer film provided on at least one main surface of the transparent substrate and containing hafnium oxide;
    Equipped with
    The minimum spectral transmittance in the wavelength range of 240 nm to 300 nm is 92% or more;
    An optical filter having a wavelength λ60 at which the spectral transmittance is 60% being 230 nm or less.
  2.  前記誘電体多層膜は、相対的に屈折率が高い高屈折率膜と、相対的に屈折率が低い低屈折率膜とを有し、
     前記高屈折率膜が、酸化ハフニウムを含む、請求項1に記載の光学フィルタ。
    the dielectric multilayer film has a high refractive index film having a relatively high refractive index and a low refractive index film having a relatively low refractive index,
    The optical filter of claim 1 , wherein the high refractive index film comprises hafnium oxide.
  3.  複数の前記高屈折率膜のうち、前記透明基材から最も離れている最外層の前記高屈折率膜の厚みが、前記透明基材に最も近い最内層の前記高屈折率膜の厚みよりも厚い、請求項2に記載の光学フィルタ。 The optical filter according to claim 2, wherein the thickness of the high refractive index film of the outermost layer, which is the furthest from the transparent substrate, is greater than the thickness of the high refractive index film of the innermost layer, which is the closest to the transparent substrate.
  4.  前記最内層の前記高屈折率膜に対する前記最外層の前記高屈折率膜の厚みの比(最外層/最内層)が、2以上である、請求項3に記載の光学フィルタ。 The optical filter according to claim 3, wherein the ratio of the thickness of the high refractive index film of the outermost layer to the thickness of the high refractive index film of the innermost layer (outermost layer/innermost layer) is 2 or more.
  5.  前記透明基材の一方側の主面上に設けられている、前記誘電体多層膜の積層数が10層以下である、請求項1~4のいずれか1項に記載の光学フィルタ。 The optical filter according to any one of claims 1 to 4, wherein the number of layers of the dielectric multilayer film provided on one main surface of the transparent substrate is 10 or less.
  6.  前記誘電体多層膜を構成する前記高屈折率膜の総厚みが、500nm以下である、請求項2~4のいずれか1項に記載の光学フィルタ。 The optical filter according to any one of claims 2 to 4, wherein the total thickness of the high refractive index films constituting the dielectric multilayer film is 500 nm or less.
  7.  前記透明基材の両側の主面上に前記誘電体多層膜が設けられている、請求項1~4のいずれか1項に記載の光学フィルタ。 The optical filter according to any one of claims 1 to 4, wherein the dielectric multilayer film is provided on both main surfaces of the transparent substrate.
  8.  前記透明基材が、ドーム形状を有する、請求項1~4のいずれか1項に記載の光学フィルタ。 The optical filter according to any one of claims 1 to 4, wherein the transparent substrate has a dome shape.
  9.  前記ドーム形状の開口部の間隔に対する高さの比(高さ/開口部の間隔)が、0.1以上である、請求項8に記載の光学フィルタ。 The optical filter of claim 8, wherein the ratio of the height of the dome-shaped openings to the spacing between them (height/spacing between openings) is 0.1 or greater.
  10.  処理対象物を不活化処理するための殺菌装置であって、
     放出光の波長が、紫外線の波長域である光源と、
     請求項1~4のいずれか1項に記載の光学フィルタと、
    を備え、
     前記光源からの放出光を、前記光学フィルタを介して照射することにより、前記処理対象物が不活化処理されるように、前記光源及び前記光学フィルタが配置されている、殺菌装置。
    A sterilization apparatus for inactivating an object to be treated, comprising:
    A light source that emits light having a wavelength in the ultraviolet wavelength range;
    An optical filter according to any one of claims 1 to 4;
    Equipped with
    A sterilization device, wherein the light source and the optical filter are arranged so that the object to be treated is inactivated by irradiating the object with light emitted from the light source via the optical filter.
  11.  紫外線を検出するための紫外線検出装置であって、
     請求項1~4のいずれか1項に記載の光学フィルタと、
     紫外線受光素子と、
    を備える、紫外線検出装置。
    An ultraviolet detection device for detecting ultraviolet light, comprising:
    An optical filter according to any one of claims 1 to 4;
    An ultraviolet light receiving element;
    An ultraviolet detection device comprising:
PCT/JP2023/045218 2022-12-23 2023-12-18 Optical filter, sterilizing device, and uv ray detecting device WO2024135592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022206770 2022-12-23
JP2022-206770 2022-12-23

Publications (1)

Publication Number Publication Date
WO2024135592A1 true WO2024135592A1 (en) 2024-06-27

Family

ID=91588539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/045218 WO2024135592A1 (en) 2022-12-23 2023-12-18 Optical filter, sterilizing device, and uv ray detecting device

Country Status (1)

Country Link
WO (1) WO2024135592A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130292584A1 (en) * 2012-05-02 2013-11-07 Chao-Tsang Wei Optical element for transmitting ultraviolet light and light source device including same
JP2018010275A (en) * 2016-06-30 2018-01-18 旭硝子株式会社 Uv transmitting filter
WO2019167123A1 (en) * 2018-02-27 2019-09-06 株式会社島津製作所 Dielectric multilayer film mirror
JP2021523412A (en) * 2018-05-11 2021-09-02 コーニング インコーポレイテッド Curved film and its manufacturing method
WO2022079597A1 (en) * 2020-10-14 2022-04-21 3M Innovative Properties Company Multilayer articles including an absorbent layer and an ultraviolet mirror, systems, devices, and methods of disinfecting
WO2022113943A1 (en) * 2020-11-24 2022-06-02 株式会社紫光技研 Ultraviolet radiation apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130292584A1 (en) * 2012-05-02 2013-11-07 Chao-Tsang Wei Optical element for transmitting ultraviolet light and light source device including same
JP2018010275A (en) * 2016-06-30 2018-01-18 旭硝子株式会社 Uv transmitting filter
WO2019167123A1 (en) * 2018-02-27 2019-09-06 株式会社島津製作所 Dielectric multilayer film mirror
JP2021523412A (en) * 2018-05-11 2021-09-02 コーニング インコーポレイテッド Curved film and its manufacturing method
WO2022079597A1 (en) * 2020-10-14 2022-04-21 3M Innovative Properties Company Multilayer articles including an absorbent layer and an ultraviolet mirror, systems, devices, and methods of disinfecting
WO2022113943A1 (en) * 2020-11-24 2022-06-02 株式会社紫光技研 Ultraviolet radiation apparatus

Similar Documents

Publication Publication Date Title
US6844976B1 (en) Heat-absorbing filter and method for making same
KR101913871B1 (en) Method for producing a material including a substrate provided with a coating
KR101828097B1 (en) Glass-ceramic with bulk scattering properties and methods of making them
JPH0370202B2 (en)
US20070082205A1 (en) Photocatalytic member
CA2279425A1 (en) Coatings, methods and apparatus for reducing reflection from optical substrates
TW202002898A (en) Glass angle limiting filters, methods for making the same, and pulse oximeters including the same
KR20200019559A (en) Infrared band pass filter
WO2023042682A1 (en) Optical filter, optical filter component, sterilizer, and optical filter production method
US6611375B2 (en) Selectively tuned ultraviolet optical filters and methods of use thereof
WO2024135592A1 (en) Optical filter, sterilizing device, and uv ray detecting device
WO2022039216A1 (en) Optical filter, method for producing same and sterilization device
US20200170134A1 (en) Ultraviolet light-resistant articles and methods for making the same
TW201420358A (en) Light-permeable electrically-conductive film, and touch panel equipped with light-permeable electrically-conductive film
KR101469318B1 (en) Transparent laminate having anti-reflection film and the method for manufacturing the same
WO2023112940A1 (en) Optical filter and sterilization device
WO2023042683A1 (en) Optical filter and sterilization device
CN110579829A (en) Near-infrared filter, preparation method thereof and filtering equipment
JP2023025521A (en) Optical filter and sterilizing device
KR20210022653A (en) Inner light extraction layer cured by near-infrared rays
JPH01245201A (en) Ultraviolet ray cut filter
US20170137320A1 (en) Method for obtaining a material comprising a functional layer made from silver resistant to a high-temperature treatment
WO2022138683A1 (en) Optical element
US20230103350A1 (en) Optical filter
JPH11219613A (en) Ultraviolet ray cold filter