WO2023042682A1 - Optical filter, optical filter component, sterilizer, and optical filter production method - Google Patents

Optical filter, optical filter component, sterilizer, and optical filter production method Download PDF

Info

Publication number
WO2023042682A1
WO2023042682A1 PCT/JP2022/033090 JP2022033090W WO2023042682A1 WO 2023042682 A1 WO2023042682 A1 WO 2023042682A1 JP 2022033090 W JP2022033090 W JP 2022033090W WO 2023042682 A1 WO2023042682 A1 WO 2023042682A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical filter
less
wavelength
film
ultraviolet rays
Prior art date
Application number
PCT/JP2022/033090
Other languages
French (fr)
Japanese (ja)
Inventor
友良 中室
哲也 小嶋
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2023042682A1 publication Critical patent/WO2023042682A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to an optical filter capable of selectively transmitting light in a specific wavelength range, an optical filter component using the optical filter, a sterilization device, and a method for manufacturing the optical filter.
  • optical filters capable of selectively transmitting light in a specific wavelength range have been widely used for various purposes.
  • a bandpass filter using a dielectric film is known.
  • a sterilization device that selectively inactivates the DNA in the cells of organisms to be sterilized, such as bacteria, by applying ultraviolet rays without harming human cells.
  • the light in the wavelength range of 190 nm to 230 nm is transmitted, and the light with wavelengths other than the above wavelength range is cut.
  • a filter is used.
  • Patent Literature 1 discloses a microorganism inactivation apparatus that inactivates microorganisms to be treated by irradiating emitted light from a light source through an optical filter.
  • the optical filter filters at least part of ultraviolet rays with a wavelength of 190 nm or more and 230 nm or less and at least one of ultraviolet rays with a wavelength of more than 230 nm and 237 nm or less when emitted light from a light source is incident at an incident angle of 0°. It is described that the ultraviolet ray having a wavelength other than the wavelength range of 190 nm or more and 237 nm or less is prevented from being transmitted.
  • the object of the present invention is to efficiently transmit ultraviolet rays useful for sterilization while suppressing the transmission of ultraviolet rays harmful to the human body, and to increase the effective irradiation area of the light emitted from the light source.
  • An object of the present invention is to provide an optical filter, an optical filter component using the optical filter, a sterilization device, and a method for manufacturing the optical filter.
  • An optical filter according to the present invention comprises a transparent base material made of glass and having a thickness of 0.2 mm or less, and a dielectric multilayer film provided on the transparent base material and containing hafnium oxide.
  • the minimum value of spectral transmittance at wavelengths of 220 nm to 225 nm is 50% or more
  • the maximum value of spectral transmittance at wavelengths of 240 nm to 320 nm is 5% or less.
  • the optical filter is mutually deformable between a flat state in which the optical filter is not curved and a state in which the optical filter is curved, and can be used in the curved state. preferable.
  • the optical filter is preferably used in a curved state with a radius of curvature of 100 mm or less.
  • An optical filter component according to the present invention is characterized by comprising an optical filter configured according to the present invention and a holding portion for holding the optical filter in a curved state.
  • a sterilization device is a sterilization device for inactivating microorganisms to be treated, and comprises a light source emitting light having a wavelength in a wavelength range of 190 nm to 230 nm, and an optical filter configured according to the present invention. and a holding portion for holding the optical filter in a curved state, and the microorganism to be treated is inactivated by irradiating the light emitted from the light source through the optical filter.
  • the light source and the optical filter are arranged as follows.
  • the optical filters are arranged concentrically around the light source in a cross-sectional view along the thickness direction.
  • a method for manufacturing an optical filter according to the present invention is a method for manufacturing an optical filter configured according to the present invention, wherein a transparent substrate made of glass and having a thickness of 0.2 mm or less is laid flat. and forming the dielectric multilayer film on at least one main surface of the transparent substrate.
  • the present invention it is possible to efficiently transmit ultraviolet rays useful for sterilization while suppressing the transmission of ultraviolet rays harmful to the human body, and to increase the effective irradiation area of the light emitted from the light source. It is possible to provide an optical filter, an optical filter component using the optical filter, a sterilization device, and a method for manufacturing the optical filter.
  • FIG. 1(a) is a schematic front view showing an uncurved flat state of an optical filter according to a first embodiment of the present invention
  • FIG. 1(b) is a first optical filter according to the present invention
  • FIG. 4 is a schematic front view showing a curved state of the optical filter according to the embodiment
  • FIG. 2 is a schematic cross-sectional view showing an optical filter according to the first embodiment of the invention
  • FIG. 3 is a schematic cross-sectional view showing an optical filter according to a second embodiment of the invention.
  • FIG. 4 is a schematic cross-sectional view showing a sterilization device according to one embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing a conventional sterilization device.
  • FIG. 6 is a diagram showing the transmission spectrum of the optical filter obtained in Comparative Example 1 at each incident angle.
  • FIG. 7 is a transmission spectrum showing an enlarged portion of the transmission spectrum of FIG. 6 where the transmittance is 10% or less.
  • FIG. 1(a) is a schematic front view showing the optical filter according to the first embodiment of the present invention in a flat, uncurved state.
  • FIG. 1(b) is a schematic front view showing a curved state of the optical filter according to the first embodiment of the present invention.
  • the optical filter 1 includes a transparent substrate 2 and a dielectric multilayer film 3.
  • a dielectric multilayer film 3 is provided on a transparent substrate 2 .
  • the transparent substrate 2 has a rectangular plate shape.
  • the transparent base material 2 may have, for example, a disk-like shape, and the shape is not particularly limited.
  • the transparent base material 2 is made of glass.
  • the transparent substrate 2 is preferably made of glass transparent in the wavelength range used by the optical filter 1 . More specifically, the transparent base material 2 preferably has an average light transmittance of 80% or more in the ultraviolet wavelength region at a wavelength of 220 nm to 225 nm.
  • Examples of the glass forming the transparent substrate 2 include quartz glass and borosilicate glass.
  • the quartz glass may be synthetic quartz glass or fused quartz glass.
  • Borosilicate glass has a glass composition of 55% to 75% SiO 2 , 1% to 10% Al 2 O 3 , 10% to 30% B 2 O 3 , 0% to 5% CaO, and 0 BaO in mass %. % to 5%, Li 2 O + Na 2 O + K 2 O 1.0% to 15%, and further TiO 2 0% to 0.001%, Fe 2 O 3 0% to 0.001% , F 0.5% to 2.0%.
  • the transparent base material 2 has a thickness of 0.2 mm or less and has a thin plate shape. Therefore, the optical filter 1 is mutually deformable between the uncurved flat state (flat shape) shown in FIG. 1(a) and the curved state (curved shape) shown in FIG. 1(b). can be made
  • the thickness of the transparent substrate 2 is preferably 0.20 mm or less, more preferably 0.15 mm or less, and even more preferably 0.10 mm or less. In this case, the optical filter 1 can be more easily deformed between the uncurved flat state and the curved state.
  • the lower limit of the thickness of the transparent substrate 2 is not particularly limited, it is preferably 2 ⁇ m or more, more preferably 5 ⁇ m, from the viewpoint of forming the dielectric multilayer film 3 on the transparent substrate 2 more easily. That's it.
  • FIG. 2 is a schematic cross-sectional view showing an optical filter according to the first embodiment of the invention.
  • 2 is a schematic cross-sectional view of the optical filter 1 in a flat state shown in FIG. 1(a).
  • the vertical direction is reversed from that in FIG. 1(a) in order to facilitate the explanation.
  • the transparent substrate 2 has a first major surface 2a and a second major surface 2b facing each other.
  • a dielectric multilayer film 3 is provided as a filter section on the first main surface 2a of the transparent base material 2 .
  • the dielectric multilayer film 3 is a multilayer film having a high refractive index film 4 with a relatively high refractive index and a low refractive index film 5 with a relatively low refractive index.
  • a multilayer film is configured by alternately laminating the high refractive index film 4 and the low refractive index film 5 on the first main surface 2a of the transparent substrate 2 in this order.
  • the high refractive index film 4 is composed of hafnium oxide, and is a film containing hafnium oxide as its main component.
  • the low refractive index film 5 is composed of silicon oxide and is a film containing silicon oxide as a main component.
  • the low refractive index film 5 may be a film containing aluminum oxide, zirconium oxide, tin oxide, magnesium fluoride, or silicon nitride as a main component.
  • One of these materials for the low refractive index film 5 may be used alone, or two or more of them may be used in combination.
  • a film containing the material as a main component means a film containing 50% by mass or more of the material.
  • the film containing the material as the main component preferably contains 80% by mass or more of the material, more preferably 90% by mass or more.
  • the main component film may be a film containing 100% by weight of the material in the film.
  • the optical filter 1 of this embodiment is a band-pass filter designed to selectively transmit light in a specific wavelength range by light interference by including such a dielectric multilayer film 3 .
  • the band-pass filter is designed so that the minimum spectral transmittance is 50% or more at wavelengths of 220 nm to 225 nm, and the maximum spectral transmittance is 5% or less at wavelengths of 240 nm to 320 nm.
  • the spectral transmittance can be obtained by measuring the spectral transmittance of the entire optical filter 1 using, for example, a spectral transmittance meter (manufactured by Hitachi High-Tech Science Co., Ltd., product number "UH4150").
  • a spectral transmittance meter manufactured by Hitachi High-Tech Science Co., Ltd., product number "UH4150"
  • measurement can be performed from the main surface 1a side of the optical filter 1, with an incident angle of 0° and a measurement wavelength of 190 nm to 400 nm.
  • a feature of this embodiment is that the thickness of the transparent base material 2 is 0.2 mm or less, whereby the optical filter 1 is mutually deformable between a flat state without bending and a curved state. It is said that Further, the optical filter 1 includes the dielectric multilayer film 3, the minimum value of the spectral transmittance of the optical filter 1 at a wavelength of 220 nm to 225 nm is 50% or more, and the maximum value of the spectral transmittance at a wavelength of 240 nm to 320 nm is 5%. It consists in the following.
  • the optical filter 1 of the present embodiment has the above configuration, it is possible to efficiently transmit ultraviolet rays useful for sterilization while suppressing the transmission of ultraviolet rays harmful to the human body. Effective irradiation area can be increased. This point will be explained in detail in the section of the sterilization apparatus described later.
  • the minimum spectral transmittance at wavelengths of 220 nm to 225 nm is preferably 60% or higher, more preferably 70% or higher.
  • ultraviolet rays which are useful for sterilization such as skin sterilization, can be transmitted more effectively.
  • the upper limit of the minimum value of the spectral transmittance at wavelengths of 220 nm to 225 nm is not particularly limited, it can be set to 95%, for example.
  • the maximum spectral transmittance at wavelengths of 240 nm to 320 nm is preferably 3% or less, more preferably 2.5% or less, and even more preferably 1% or less. In this case, transmission of ultraviolet rays harmful to the human body can be more effectively suppressed.
  • the lower limit of the maximum spectral transmittance at wavelengths of 240 nm to 320 nm is not particularly limited, it can be set to 0.2%, for example.
  • the total thickness t H of the high refractive index films 4 is preferably 250 nm or more, more preferably 300 nm or more, still more preferably 400 nm or more, and particularly preferably 500 nm. above, preferably 1000 nm or less, more preferably 800 nm or less, even more preferably 700 nm or less, and particularly preferably 600 nm or less.
  • the total thickness tH of the high refractive index film 4 is equal to or greater than the above lower limit, the maximum value of the spectral transmittance at wavelengths of 240 nm to 320 nm can be further reduced.
  • the total thickness t H of the high refractive index film 4 is equal to or less than the upper limit, the minimum spectral transmittance at wavelengths of 220 nm to 225 nm can be further increased.
  • each layer of the high refractive index film 4 is not particularly limited, it is preferably 5 nm or more, more preferably 10 nm or more, preferably 60 nm or less, and more preferably 50 nm or less.
  • the total thickness t L of the low refractive index film 5 (total thickness of each low refractive index film 5) is preferably 500 nm or more, more preferably 600 nm or more, even more preferably 700 nm or more, and particularly preferably 800 nm or more. is 2000 nm or less, more preferably 1700 nm or less, still more preferably 1500 nm or less, and particularly preferably 1400 nm or less.
  • the total thickness t L of the low refractive index film 5 is equal to or greater than the above lower limit, the maximum spectral transmittance at wavelengths of 240 nm to 320 nm can be further reduced.
  • the total thickness t L of the low refractive index film 5 is equal to or less than the above upper limit, the minimum value of spectral transmittance at wavelengths of 220 nm to 225 nm can be further increased.
  • the thickness per layer of the low refractive index film 5 is not particularly limited, but is preferably 5 nm or more, more preferably 10 nm or more, preferably 80 nm or less, and more preferably 60 nm or less.
  • the ratio ( tH / tL ) of the total thickness tH of the high refractive index film 4 to the total thickness tL of the low refractive index film 5 is preferably 0.2 or more, more preferably 0.3 or more, and further Preferably 0.4 or more, particularly preferably 0.5 or more, most preferably 0.6 or more, preferably 1 or less, more preferably 0.9 or less, still more preferably 0.8 or less, particularly preferably 0 0.75 or less.
  • the ratio (t H /t L ) is equal to or greater than the above lower limit, the minimum value of spectral transmittance at wavelengths of 220 nm to 225 nm can be further increased. Further, when the ratio (t H /t L ) is equal to or less than the upper limit, the maximum spectral transmittance at wavelengths of 240 nm to 320 nm can be further reduced.
  • the number of layers of the films constituting the dielectric multilayer film 3 is preferably 20 layers or more, more preferably 25 layers or more, still more preferably 30 layers or more, particularly preferably 35 layers or more, and preferably 100 layers or less. , more preferably 80 layers or less, still more preferably 60 layers or less, and particularly preferably 45 layers or less.
  • the maximum value of the spectral transmittance at wavelengths of 240 nm to 320 nm can be further reduced.
  • the minimum value of the spectral transmittance at wavelengths of 220 nm to 225 nm can be further increased.
  • the dielectric multilayer film 3 preferably contains hafnium oxide crystals. More specifically, the high refractive index film 4 constituting the dielectric multilayer film 3 preferably contains hafnium oxide crystals, and more preferably contains cubic hafnium oxide crystals. In this case, the transmittance of ultraviolet rays with a wavelength of 240 nm to 320 nm can be further suppressed, while the transmittance of ultraviolet rays with a wavelength of 220 nm to 225 nm can be further enhanced.
  • the X-ray diffraction measurement can be measured by a wide-angle X-ray diffraction method.
  • the X-ray diffractometer for example, product number "SmartLab” manufactured by Rigaku Corporation can be used.
  • CuK ⁇ rays can be used as the radiation source.
  • the entire optical filter 1 is measured from the main surface 1a side.
  • an antireflection film may be provided on the second main surface 2b of the transparent substrate 2.
  • a film other than an antireflection film may be laminated on the second main surface 2b of the transparent substrate 2 as long as the effects of the present invention are not impaired. Further, a film other than the dielectric multilayer film 3 may be provided on the first main surface 2a of the transparent substrate 2 as long as the effects of the present invention are not impaired. In this case, a film may be provided between the transparent substrate 2 and the dielectric multilayer film 3 , or a film may be provided on the dielectric multilayer film 3 .
  • (Manufacturing method of optical filter) film-coated transparent substrate forming step First, the transparent base material 2 is prepared, and the transparent base material 2 is arranged in a flat state. Next, a dielectric multilayer film 3 is formed on the first main surface 2a of the transparent substrate 2. As shown in FIG. Thereby, a film-coated transparent substrate is obtained. Note that the dielectric multilayer film 3 may be formed on the second main surface 2 b of the transparent substrate 2 . Also, the dielectric multilayer film 3 may be formed on both the first principal surface 2a and the second principal surface 2b of the transparent base material 2 .
  • the dielectric multilayer film 3 can be formed by alternately laminating a high refractive index film 4 and a low refractive index film 5 on the first main surface 2a of the transparent substrate 2 in this order.
  • the high refractive index film 4 and the low refractive index film 5 can each be formed by a sputtering method.
  • the temperature of the substrate when forming the high refractive index film 4 is preferably 300° C. or less, more preferably 270° C. or less.
  • the obtained optical filter 1 can more effectively transmit ultraviolet rays in the wavelength range of 220 nm to 225 nm while further suppressing transmission of ultraviolet rays in the wavelength range of 240 nm to 320 nm.
  • the lower limit of the temperature of the substrate when forming the high refractive index film 4 can be set to 20° C., for example.
  • the high refractive index film 4 is formed by, for example, using a target of the material constituting the high refractive index film 4, setting the flow rate of an inert gas such as argon gas as a carrier gas to 50 sccm to 500 sccm, and applying an electric power of 0.5 sccm. It can be performed as 5 kW to 40 kW.
  • the obtained film-coated transparent substrate is heat-treated.
  • the optical filter 1 can be obtained.
  • the temperature of the heat treatment can be, for example, 450° C. or higher.
  • the content of cubic hafnium oxide crystals can be relatively increased. Therefore, in the obtained optical filter 1, the transmittance of ultraviolet rays with a wavelength of 240 nm to 320 nm can be further suppressed, and the transmittance of ultraviolet rays with a wavelength of 220 nm to 225 nm can be further enhanced.
  • the heat treatment time for the film-coated transparent substrate is not particularly limited, but can be, for example, 10 minutes or more and 120 minutes or less.
  • the intensity of the diffraction peak due to the ( ⁇ 1,1,1) crystal plane derived from the monoclinic hafnium oxide crystal is Small is preferred.
  • the intensity of the diffraction peak due to the ( ⁇ 1,1,1) crystal plane derived from the monoclinic hafnium oxide crystal is preferably at the microcrystal level, and the height of the peak intensity is higher than the peak intensity of the amorphous halo. It is more preferably within three times the height.
  • the peak area intensity Ic of the diffraction peak due to the (1,1,1) crystal plane derived from the cubic hafnium oxide crystal and the ( ⁇ 1,1 1) can be further increased. Therefore, in the obtained optical filter 1, the transmittance of ultraviolet rays with a wavelength of 240 nm to 320 nm can be further suppressed, and the transmittance of ultraviolet rays with a wavelength of 220 nm to 225 nm can be further enhanced.
  • the transmittance of ultraviolet rays at a wavelength of 240 nm to 320 nm and the transmittance of ultraviolet rays at a wavelength of 220 nm to 225 nm are, for example, the total number, film thickness, and material of the films constituting the dielectric multilayer film 3, and the transparent film with the film. It can be adjusted by the heat treatment temperature of the substrate.
  • the transmission of ultraviolet rays at a wavelength of 240 nm to 320 nm is further suppressed, and the transmission of ultraviolet rays at a wavelength of 220 nm to 225 nm is further effectively improved by the heat treatment temperature of the transparent substrate with the film. can be enhanced.
  • FIG. 3 is a schematic cross-sectional view showing an optical filter according to a second embodiment of the invention.
  • the outermost layer 26 of the dielectric multilayer film 23 is the high refractive index film 4 made of hafnium oxide.
  • Other points are the same as in the first embodiment.
  • the thickness of the transparent base material 2 is 0.2 mm or less, so that the optical filter 21 is mutually deformed between the uncurved flat state and the curved state. It is possible.
  • the optical filter 21 includes a dielectric multilayer film 23, the minimum value of the spectral transmittance of the optical filter 21 at a wavelength of 220 nm to 225 nm is 50% or more, and the maximum value of the spectral transmittance at a wavelength of 240 nm to 320 nm is 5%. % or less. Therefore, the optical filter 21 can efficiently transmit ultraviolet rays useful for sterilization while suppressing the transmission of ultraviolet rays harmful to the human body, and can increase the effective irradiation area of the emitted light from the light source. .
  • the outermost layer 26 of the dielectric multilayer film 23 is composed of hafnium oxide, it is possible to further suppress the erosion due to the acidic gas, and the change in optical characteristics is suppressed. can be further suppressed.
  • FIG. 4 is a schematic cross-sectional view showing a sterilization device according to one embodiment of the present invention.
  • the optical filter 1 is provided in a curved state.
  • a dielectric multilayer film 3 is positioned on the concave side of the optical filter 1, and a transparent substrate 2 is positioned on the convex side.
  • the emitted light emitted from the light source 32 is applied to the sterilization target P through the optical filter 1 .
  • the transparent substrate 2 may be positioned on the concave surface side of the optical filter 1, and the dielectric multilayer film 3 may be positioned on the convex surface side, and the positional relationship therebetween is not particularly limited.
  • an excimer lamp can be used as the light source 32 .
  • the excimer lamp it is preferable to use an excimer lamp that emits ultraviolet light having a wavelength of 220 nm to 225 nm.
  • an excimer lamp for example, a KrCl excimer lamp can be used.
  • the excimer lamp may be a KrBr excimer lamp.
  • the objects to be treated adhering to the object P to be sterilized can be inactivated.
  • the sterilization device 30 since ultraviolet rays useful for sterilization treatment can be efficiently transmitted, the object P to be sterilized can be sterilized with ultraviolet rays efficiently.
  • ultraviolet rays can be applied to the DNA in the cells of microorganisms such as bacteria to selectively inactivate the microorganisms, or viruses can be selectively inactivated by the application of ultraviolet rays.
  • the object to be treated is preferably a microorganism or virus, more preferably a microorganism. That is, the sterilization device 30 is preferably used for inactivating microorganisms or viruses to be treated, and more preferably used for inactivating microorganisms to be treated.
  • FIG. 5 is a schematic cross-sectional view for explaining a conventional sterilization device.
  • an optical filter 101 is placed flat on a housing 104.
  • FIG. Therefore, near the center of the optical filter 101 located above the light source 102, emitted light with a small incident angle is incident.
  • emitted light with a large incident angle is incident on a portion located obliquely above the light source 102 and away from the center of the optical filter 101 .
  • the angle of incidence means an angle ⁇ inclined with respect to the direction perpendicular to the main surface 101a of the optical filter 101 as the normal direction. and Therefore, the direction along the normal direction has an incident angle of 0°.
  • the optical filter 1 is provided in a curved state. Therefore, the radiant light with a small incident angle ⁇ is made incident not only near the center of the optical filter 1 located above the light source 32, but also at a portion located obliquely above the light source 32 and away from the center of the optical filter 1. be able to. Therefore, according to the sterilization device 30, even when the effective irradiation area of the emitted light from the light source 32 is increased, it is possible to efficiently transmit ultraviolet rays useful for sterilization while suppressing the transmission of ultraviolet rays harmful to the human body. can be done.
  • the optical filter 1 is provided in a curved state as in this embodiment, the incident angle .theta.
  • the optical filter 1 is preferably used in a curved state with a radius of curvature of 100 mm or less. In this case, it is possible to more efficiently transmit ultraviolet rays useful for sterilization, while further suppressing the transmission of ultraviolet rays harmful to the human body. can.
  • Example 1 First, a 0.1 mm-thick borosilicate glass substrate (manufactured by Nippon Electric Glass Co., Ltd., product number “BU-41”, dimensions: 70 mm ⁇ 52 mm ⁇ 0.1 mm) was prepared as a transparent substrate. Next, a dielectric multilayer film was formed by sputtering on one main surface of the prepared transparent substrate. Specifically, first, using argon gas and oxygen gas as carrier gases, a hafnium target was sputtered to form a hafnium oxide film (HfO 2 film) on one main surface of the transparent substrate.
  • a hafnium oxide film hafnium oxide film
  • the thickness of each layer in the dielectric multilayer film is as shown in Table 1 below.
  • Example 1 An optical filter was obtained in the same manner as in Example 1, except that a 1 mm-thick quartz glass plate (manufactured by USTRON, product number "FLH311", dimensions: 70 mm x 52 mm x 1 mm) was used as the transparent substrate.
  • a 1 mm-thick quartz glass plate manufactured by USTRON, product number "FLH311", dimensions: 70 mm x 52 mm x 1 mm
  • the angle of incidence was set to 0° or 40°, and the measurement wavelength was set to 200 nm to 320 nm.
  • the incident angle was adjusted by rotating the folder in which the sample was placed.
  • Comparative Example 1 when the incident angle is 40°, the minimum spectral transmittance at wavelengths of 220 nm to 225 nm is reduced. Also, in Comparative Example 1, when the incident angle is 40°, the maximum value of the spectral transmittance at wavelengths of 240 nm to 320 nm is high.
  • the minimum value of spectral transmittance at wavelengths of 220 nm to 225 nm and the maximum value of spectral transmittance at wavelengths of 240 nm to 320 nm were measured.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

The present invention provides an optical filter with which it is possible to efficiently allow the passage of ultraviolet rays useful for a sterilization treatment while suppressing the passage of ultraviolet rays harmful to the human body, and also possible to increase the effective irradiation area of light discharged from a light source. An optical filter 1 comprises: a transparent base material 2 that is composed of glass and has a thickness of 0.2 mm or less; and a dielectric multilayer film 3 that is provided on the transparent base material 2 and contains a hafnium oxide. The minimum value of the spectral transmittance at a wavelength of 220 nm to 225 nm inclusive is 50% or more, and the maximum value of the spectral transmittance at a wavelength of 240 nm to 320 nm inclusive is 5% or less.

Description

光学フィルタ、光学フィルタ部品、殺菌装置、及び光学フィルタの製造方法Optical filter, optical filter component, sterilizer, and method for manufacturing optical filter
 本発明は、特定の波長域の光を選択的に透過させることのできる、光学フィルタ、並びに該光学フィルタを用いた光学フィルタ部品、殺菌装置、及び該光学フィルタの製造方法に関する。 The present invention relates to an optical filter capable of selectively transmitting light in a specific wavelength range, an optical filter component using the optical filter, a sterilization device, and a method for manufacturing the optical filter.
 従来、特定の波長域の光を選択的に透過させることのできる光学フィルタが、種々の用途で広く用いられている。このような光学フィルタとしては、誘電体膜を用いたバンドパスフィルタが知られている。 Conventionally, optical filters capable of selectively transmitting light in a specific wavelength range have been widely used for various purposes. As such an optical filter, a bandpass filter using a dielectric film is known.
 また、近年、ヒト細胞を害することなく、細菌などの殺菌対象生物の細胞内におけるDNAに紫外線を作用させて選択的に不活化する殺菌装置が提案されている。この殺菌装置においては、光源から放出される光のうち、波長190nm~230nmの波長域の光を透過させ、かつ上記波長域以外の波長の光をカットすることを目的とし、光学フィルタとしての干渉フィルタが用いられている。 Also, in recent years, a sterilization device has been proposed that selectively inactivates the DNA in the cells of organisms to be sterilized, such as bacteria, by applying ultraviolet rays without harming human cells. In this sterilization device, among the light emitted from the light source, the light in the wavelength range of 190 nm to 230 nm is transmitted, and the light with wavelengths other than the above wavelength range is cut. A filter is used.
 例えば、下記の特許文献1には、光源からの放出光を、光学フィルタを介して照射することにより、処理対象微生物を不活化処理する微生物の不活化処理装置が開示されている。特許文献1において、上記光学フィルタは、光源からの放出光が入射角0°で入射したとき、波長190nm以上230nm以下にある紫外線の少なくとも一部、及び波長230nm超237nm以下にある紫外線の少なくとも一部を透過させるとともに、波長190nm以上237nm以下の波長域以外の紫外線の透過を阻止するものであることが記載されている。 For example, Patent Literature 1 below discloses a microorganism inactivation apparatus that inactivates microorganisms to be treated by irradiating emitted light from a light source through an optical filter. In Patent Document 1, the optical filter filters at least part of ultraviolet rays with a wavelength of 190 nm or more and 230 nm or less and at least one of ultraviolet rays with a wavelength of more than 230 nm and 237 nm or less when emitted light from a light source is incident at an incident angle of 0°. It is described that the ultraviolet ray having a wavelength other than the wavelength range of 190 nm or more and 237 nm or less is prevented from being transmitted.
特開2019-115525号公報JP 2019-115525 A
 ところで、光学フィルタでは、光源からの放出光の有効照射面積を大きくしようとすると、入射角の大きな放出光を入射させる必要がある。 By the way, in an optical filter, in order to increase the effective irradiation area of emitted light from a light source, emitted light with a large incident angle needs to be incident.
 しかしながら、本発明者らは、特許文献1のような光学フィルタにおいて、入射角の大きな放出光を入射させると、殺菌対象生物の細胞を選択的に不活化させる波長190nm~230nmの紫外線透過率が低下し、一方で人体に有害な波長240nm~280nmの紫外線透過率が高くなるという課題が生じることを見出した。 However, the present inventors have found that in an optical filter such as Patent Document 1, when emitted light with a large incident angle is incident, the ultraviolet transmittance with a wavelength of 190 nm to 230 nm that selectively inactivates the cells of the organism to be sterilized is On the other hand, it has been found that the transmittance of ultraviolet rays having a wavelength of 240 nm to 280 nm, which is harmful to the human body, increases.
 従って、従来の光学フィルタでは、光学フィルタに入射する放出光の入射角を小さくする必要があり、有効照射面積を大きくすることが難しいという問題がある。 Therefore, with conventional optical filters, it is necessary to reduce the incident angle of emitted light incident on the optical filter, and there is the problem that it is difficult to increase the effective irradiation area.
 本発明の目的は、殺菌処理に有用な紫外線を効率よく透過させつつ、人体に有害な紫外線の透過を抑制することができ、しかも光源からの放出光の有効照射面積を大きくすることができる、光学フィルタ、並びに該光学フィルタを用いた光学フィルタ部品、殺菌装置、及び該光学フィルタの製造方法を提供することにある。 The object of the present invention is to efficiently transmit ultraviolet rays useful for sterilization while suppressing the transmission of ultraviolet rays harmful to the human body, and to increase the effective irradiation area of the light emitted from the light source. An object of the present invention is to provide an optical filter, an optical filter component using the optical filter, a sterilization device, and a method for manufacturing the optical filter.
 本発明に係る光学フィルタは、ガラスにより構成されており、厚みが0.2mm以下である、透明基材と、前記透明基材上に設けられており、酸化ハフニウムを含む、誘電体多層膜とを備え、波長220nm~225nmにおける分光透過率の最小値が、50%以上であり、波長240nm~320nmにおける分光透過率の最大値が、5%以下であることを特徴としている。 An optical filter according to the present invention comprises a transparent base material made of glass and having a thickness of 0.2 mm or less, and a dielectric multilayer film provided on the transparent base material and containing hafnium oxide. , the minimum value of spectral transmittance at wavelengths of 220 nm to 225 nm is 50% or more, and the maximum value of spectral transmittance at wavelengths of 240 nm to 320 nm is 5% or less.
 本発明において、前記光学フィルタは、前記光学フィルタが湾曲されていない平らな状態と、前記光学フィルタが湾曲された状態との間で相互に変形可能であり、湾曲された状態で用いられることが好ましい。 In the present invention, the optical filter is mutually deformable between a flat state in which the optical filter is not curved and a state in which the optical filter is curved, and can be used in the curved state. preferable.
 本発明において、前記光学フィルタは、曲率半径が100mm以下となるように湾曲された状態で用いられることが好ましい。 In the present invention, the optical filter is preferably used in a curved state with a radius of curvature of 100 mm or less.
 本発明に係る光学フィルタ部品は、本発明に従って構成される光学フィルタと、前記光学フィルタを湾曲させた状態で保持するための保持部とを備えることを特徴としている。 An optical filter component according to the present invention is characterized by comprising an optical filter configured according to the present invention and a holding portion for holding the optical filter in a curved state.
 本発明に係る殺菌装置は、処理対象微生物を不活化処理するための殺菌装置であって、放出光の波長が、190nm~230nmの波長域に存在する光源と、本発明に従って構成される光学フィルタと、前記光学フィルタを湾曲させた状態で保持するための保持部とを備え、前記光源からの放出光を、前記光学フィルタを介して照射することにより、前記処理対象微生物が不活化処理されるように、前記光源及び前記光学フィルタが配置されていることを特徴としている。 A sterilization device according to the present invention is a sterilization device for inactivating microorganisms to be treated, and comprises a light source emitting light having a wavelength in a wavelength range of 190 nm to 230 nm, and an optical filter configured according to the present invention. and a holding portion for holding the optical filter in a curved state, and the microorganism to be treated is inactivated by irradiating the light emitted from the light source through the optical filter. The light source and the optical filter are arranged as follows.
 本発明においては、前記光学フィルタが、厚み方向に沿う断面視において、前記光源を中心として同心円状に配置されていることが好ましい。 In the present invention, it is preferable that the optical filters are arranged concentrically around the light source in a cross-sectional view along the thickness direction.
 本発明に係る光学フィルタの製造方法は、本発明に従って構成される光学フィルタの製造方法であって、ガラスにより構成されており、厚みが0.2mm以下である、透明基材を平らな状態で配置する工程と、前記透明基材における少なくとも一方側の主面上に、前記誘電体多層膜を成膜する工程とを備えることを特徴としている。 A method for manufacturing an optical filter according to the present invention is a method for manufacturing an optical filter configured according to the present invention, wherein a transparent substrate made of glass and having a thickness of 0.2 mm or less is laid flat. and forming the dielectric multilayer film on at least one main surface of the transparent substrate.
 本発明によれば、殺菌処理に有用な紫外線を効率よく透過させつつ、人体に有害な紫外線の透過を抑制することができ、しかも光源からの放出光の有効照射面積を大きくすることができる、光学フィルタ、並びに該光学フィルタを用いた光学フィルタ部品、殺菌装置、及び該光学フィルタの製造方法を提供することができる。 According to the present invention, it is possible to efficiently transmit ultraviolet rays useful for sterilization while suppressing the transmission of ultraviolet rays harmful to the human body, and to increase the effective irradiation area of the light emitted from the light source. It is possible to provide an optical filter, an optical filter component using the optical filter, a sterilization device, and a method for manufacturing the optical filter.
図1(a)は、本発明の第1の実施形態に係る光学フィルタにおいて、湾曲されていない平らな状態を示す模式的正面図であり、図1(b)は、本発明の第1の実施形態に係る光学フィルタにおいて、湾曲された状態を示す模式的正面図である。FIG. 1(a) is a schematic front view showing an uncurved flat state of an optical filter according to a first embodiment of the present invention, and FIG. 1(b) is a first optical filter according to the present invention. FIG. 4 is a schematic front view showing a curved state of the optical filter according to the embodiment; 図2は、本発明の第1の実施形態に係る光学フィルタを示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing an optical filter according to the first embodiment of the invention. 図3は、本発明の第2の実施形態に係る光学フィルタを示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing an optical filter according to a second embodiment of the invention. 図4は、本発明の一実施形態に係る殺菌装置を示す模式的断面図である。FIG. 4 is a schematic cross-sectional view showing a sterilization device according to one embodiment of the present invention. 図5は、従来の殺菌装置を示す模式的断面図である。FIG. 5 is a schematic cross-sectional view showing a conventional sterilization device. 図6は、比較例1で得られた光学フィルタの各入射角における透過スペクトルを示す図である。FIG. 6 is a diagram showing the transmission spectrum of the optical filter obtained in Comparative Example 1 at each incident angle. 図7は、図6の透過スペクトルにおいて、透過率が10%以下の部分を拡大して示す透過スペクトルである。FIG. 7 is a transmission spectrum showing an enlarged portion of the transmission spectrum of FIG. 6 where the transmittance is 10% or less.
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。 A preferred embodiment will be described below. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments. Also, in each drawing, members having substantially the same function may be referred to by the same reference numerals.
 [光学フィルタ]
 (第1の実施形態)
 図1(a)は、本発明の第1の実施形態に係る光学フィルタにおいて、湾曲されていない平らな状態を示す模式的正面図である。また、図1(b)は、本発明の第1の実施形態に係る光学フィルタにおいて、湾曲されている状態を示す模式的正面図である。
[Optical filter]
(First embodiment)
FIG. 1(a) is a schematic front view showing the optical filter according to the first embodiment of the present invention in a flat, uncurved state. FIG. 1(b) is a schematic front view showing a curved state of the optical filter according to the first embodiment of the present invention.
 図1(a)に示すように、光学フィルタ1は、透明基材2と、誘電体多層膜3とを備える。透明基材2上に、誘電体多層膜3が設けられている。 As shown in FIG. 1(a), the optical filter 1 includes a transparent substrate 2 and a dielectric multilayer film 3. A dielectric multilayer film 3 is provided on a transparent substrate 2 .
 本実施形態において、透明基材2は、矩形板状の形状を有する。もっとも、透明基材2は、例えば、円板状等の形状を有していてもよく、その形状は特に限定されない。 In this embodiment, the transparent substrate 2 has a rectangular plate shape. However, the transparent base material 2 may have, for example, a disk-like shape, and the shape is not particularly limited.
 透明基材2は、ガラスにより構成されている。なかでも、透明基材2は、光学フィルタ1の使用波長域で透明なガラスであることが好ましい。より具体的には、透明基材2は、波長220nm~225nmにおける紫外波長域の平均光透過率が80%以上であることが好ましい。 The transparent base material 2 is made of glass. Among others, the transparent substrate 2 is preferably made of glass transparent in the wavelength range used by the optical filter 1 . More specifically, the transparent base material 2 preferably has an average light transmittance of 80% or more in the ultraviolet wavelength region at a wavelength of 220 nm to 225 nm.
 透明基材2を構成するガラスとしては、例えば、石英ガラス、ホウケイ酸ガラス等が挙げられる。石英ガラスは、合成石英ガラスであってもよく、溶融石英ガラスであってもよい。ホウケイ酸ガラスは、ガラス組成として、質量%で、SiO 55%~75%、Al 1%~10%、B 10%~30%、CaO 0%~5%、BaO 0%~5%、LiO+NaO+KO 1.0%~15%を含有することが好ましく、さらには、TiO 0%~0.001%、Fe 0%~0.001%、F 0.5%~2.0%を含有することがより好ましい。 Examples of the glass forming the transparent substrate 2 include quartz glass and borosilicate glass. The quartz glass may be synthetic quartz glass or fused quartz glass. Borosilicate glass has a glass composition of 55% to 75% SiO 2 , 1% to 10% Al 2 O 3 , 10% to 30% B 2 O 3 , 0% to 5% CaO, and 0 BaO in mass %. % to 5%, Li 2 O + Na 2 O + K 2 O 1.0% to 15%, and further TiO 2 0% to 0.001%, Fe 2 O 3 0% to 0.001% , F 0.5% to 2.0%.
 本実施形態において、透明基材2の厚みは0.2mm以下であり、薄板状の形状を有している。そのため、光学フィルタ1は、図1(a)に示す湾曲されていない平らな状態(平らな形状)と、図1(b)に示す湾曲された状態(湾曲形状)との間で相互に変形させることができる。 In this embodiment, the transparent base material 2 has a thickness of 0.2 mm or less and has a thin plate shape. Therefore, the optical filter 1 is mutually deformable between the uncurved flat state (flat shape) shown in FIG. 1(a) and the curved state (curved shape) shown in FIG. 1(b). can be made
 透明基材2の厚みは、好ましくは0.20mm以下、より好ましくは0.15mm以下、さらに好ましくは0.10mm以下である。この場合、湾曲されていない平らな状態と、湾曲された状態との間で、光学フィルタ1をより一層容易に変形させることができる。なお、透明基材2の厚みの下限値は、特に限定されないが、透明基材2の上に誘電体多層膜3をより一層容易に成膜させる観点から、好ましくは2μm以上、より好ましくは5μm以上である。 The thickness of the transparent substrate 2 is preferably 0.20 mm or less, more preferably 0.15 mm or less, and even more preferably 0.10 mm or less. In this case, the optical filter 1 can be more easily deformed between the uncurved flat state and the curved state. Although the lower limit of the thickness of the transparent substrate 2 is not particularly limited, it is preferably 2 μm or more, more preferably 5 μm, from the viewpoint of forming the dielectric multilayer film 3 on the transparent substrate 2 more easily. That's it.
 図2は、本発明の第1の実施形態に係る光学フィルタを示す模式的断面図である。なお、図2は、図1(a)に示す平らな状態における光学フィルタ1の模式的断面図である。なお、図2では、説明を容易にするために図1(a)と上下方向を反転させている。 FIG. 2 is a schematic cross-sectional view showing an optical filter according to the first embodiment of the invention. 2 is a schematic cross-sectional view of the optical filter 1 in a flat state shown in FIG. 1(a). In FIG. 2, the vertical direction is reversed from that in FIG. 1(a) in order to facilitate the explanation.
 図2に示すように、透明基材2は、対向している第1の主面2a及び第2の主面2bを有する。透明基材2の第1の主面2a上には、フィルタ部としての誘電体多層膜3が設けられている。 As shown in FIG. 2, the transparent substrate 2 has a first major surface 2a and a second major surface 2b facing each other. A dielectric multilayer film 3 is provided as a filter section on the first main surface 2a of the transparent base material 2 .
 誘電体多層膜3は、相対的に屈折率が高い高屈折率膜4と相対的に屈折率が低い低屈折率膜5とを有する、多層膜である。本実施形態では、透明基材2の第1の主面2a上に、高屈折率膜4及び低屈折率膜5がこの順に交互に積層されることにより、多層膜が構成されている。 The dielectric multilayer film 3 is a multilayer film having a high refractive index film 4 with a relatively high refractive index and a low refractive index film 5 with a relatively low refractive index. In this embodiment, a multilayer film is configured by alternately laminating the high refractive index film 4 and the low refractive index film 5 on the first main surface 2a of the transparent substrate 2 in this order.
 本実施形態において、高屈折率膜4は、酸化ハフニウムにより構成されており、酸化ハフニウムを主成分とする膜である。 In the present embodiment, the high refractive index film 4 is composed of hafnium oxide, and is a film containing hafnium oxide as its main component.
 また、低屈折率膜5は、酸化ケイ素により構成されており、酸化ケイ素を主成分とする膜である。もっとも、低屈折率膜5は、酸化アルミニウム、酸化ジルコニウム、酸化スズ、フッ化マグネシウム、又は窒化ケイ素を主成分とする膜であってもよい。これらの低屈折率膜5の材料は、1種を単独で用いてもよく、複数種を併用してもよい。 In addition, the low refractive index film 5 is composed of silicon oxide and is a film containing silicon oxide as a main component. However, the low refractive index film 5 may be a film containing aluminum oxide, zirconium oxide, tin oxide, magnesium fluoride, or silicon nitride as a main component. One of these materials for the low refractive index film 5 may be used alone, or two or more of them may be used in combination.
 なお、本明細書において、主成分とする膜とは、膜中にその材料が50質量%以上含まれている膜のことをいうものとする。主成分とする膜においては、膜中にその材料が80質量%以上含まれていることが好ましく、90質量%以上含まれていることがより好ましい。当然ながら、主成分とする膜は、膜中にその材料を100質量%含む膜であってもよい。 In this specification, a film containing the material as a main component means a film containing 50% by mass or more of the material. The film containing the material as the main component preferably contains 80% by mass or more of the material, more preferably 90% by mass or more. Of course, the main component film may be a film containing 100% by weight of the material in the film.
 本実施形態の光学フィルタ1は、このような誘電体多層膜3を備えることにより、光の干渉で特定の波長域の光を選択的に透過させるように設計されたバンドパスフィルタである。具体的には、波長220nm~225nmにおける分光透過率の最小値が50%以上となり、波長240nm~320nmにおける分光透過率の最大値が5%以下となるように設計されたバンドパスフィルタである。 The optical filter 1 of this embodiment is a band-pass filter designed to selectively transmit light in a specific wavelength range by light interference by including such a dielectric multilayer film 3 . Specifically, the band-pass filter is designed so that the minimum spectral transmittance is 50% or more at wavelengths of 220 nm to 225 nm, and the maximum spectral transmittance is 5% or less at wavelengths of 240 nm to 320 nm.
 なお、本明細書において、分光透過率は、例えば、分光透過率計(日立ハイテクサイエンス社製、品番「UH4150」)を用いて光学フィルタ1全体の分光透過率を測定することにより求めることができる。測定条件としては、例えば、光学フィルタ1の主面1a側から測定し、入射角度を0°とし、測定波長を190nm~400nmとして測定することができる。 In this specification, the spectral transmittance can be obtained by measuring the spectral transmittance of the entire optical filter 1 using, for example, a spectral transmittance meter (manufactured by Hitachi High-Tech Science Co., Ltd., product number "UH4150"). . As for the measurement conditions, for example, measurement can be performed from the main surface 1a side of the optical filter 1, with an incident angle of 0° and a measurement wavelength of 190 nm to 400 nm.
 本実施形態の特徴は、透明基材2の厚みが0.2mm以下であり、それによって、光学フィルタ1が、湾曲されていない平らな状態と、湾曲された状態との間で相互に変形可能とされていることにある。また、光学フィルタ1が誘電体多層膜3を備え、光学フィルタ1の波長220nm~225nmにおける分光透過率の最小値が50%以上であり、波長240nm~320nmにおける分光透過率の最大値が5%以下であることにある。 A feature of this embodiment is that the thickness of the transparent base material 2 is 0.2 mm or less, whereby the optical filter 1 is mutually deformable between a flat state without bending and a curved state. It is said that Further, the optical filter 1 includes the dielectric multilayer film 3, the minimum value of the spectral transmittance of the optical filter 1 at a wavelength of 220 nm to 225 nm is 50% or more, and the maximum value of the spectral transmittance at a wavelength of 240 nm to 320 nm is 5%. It consists in the following.
 本実施形態の光学フィルタ1は、上記の構成を備えるので、殺菌処理に有用な紫外線を効率よく透過させつつ、人体に有害な紫外線の透過を抑制することができ、しかも光源からの放出光の有効照射面積を大きくすることができる。なお、この点については、後述の殺菌装置の欄で詳細に説明するものとする。 Since the optical filter 1 of the present embodiment has the above configuration, it is possible to efficiently transmit ultraviolet rays useful for sterilization while suppressing the transmission of ultraviolet rays harmful to the human body. Effective irradiation area can be increased. This point will be explained in detail in the section of the sterilization apparatus described later.
 本実施形態においては、波長220nm~225nmにおける分光透過率の最小値が、好ましくは60%以上、より好ましくは70%以上である。この場合、皮膚の殺菌処理などの殺菌処理に有用な紫外線をより一層効果的に透過させることができる。なお、波長220nm~225nmにおける分光透過率の最小値の上限値は、特に限定されないが、例えば、95%とすることができる。 In the present embodiment, the minimum spectral transmittance at wavelengths of 220 nm to 225 nm is preferably 60% or higher, more preferably 70% or higher. In this case, ultraviolet rays, which are useful for sterilization such as skin sterilization, can be transmitted more effectively. Although the upper limit of the minimum value of the spectral transmittance at wavelengths of 220 nm to 225 nm is not particularly limited, it can be set to 95%, for example.
 また、波長240nm~320nmにおける分光透過率の最大値が、好ましくは3%以下、より好ましくは2.5%以下、さらに好ましくは1%以下である。この場合、人体に有害な紫外線の透過をより一層効果的に抑制させることができる。なお、波長240nm~320nmにおける分光透過率の最大値の下限値は、特に限定されないが、例えば、0.2%とすることができる。 In addition, the maximum spectral transmittance at wavelengths of 240 nm to 320 nm is preferably 3% or less, more preferably 2.5% or less, and even more preferably 1% or less. In this case, transmission of ultraviolet rays harmful to the human body can be more effectively suppressed. Although the lower limit of the maximum spectral transmittance at wavelengths of 240 nm to 320 nm is not particularly limited, it can be set to 0.2%, for example.
 本実施形態において、高屈折率膜4の総厚みt(各高屈折率膜4の厚みの合計)は、好ましくは250nm以上、より好ましくは300nm以上、さらに好ましくは400nm以上、特に好ましくは500nm以上であり、好ましくは1000nm以下、より好ましくは800nm以下、さらに好ましくは700nm以下、特に好ましくは600nm以下である。高屈折率膜4の総厚みtが上記下限値以上である場合、波長240nm~320nmにおける分光透過率の最大値をより一層小さくすることができる。一方、高屈折率膜4の総厚みtが、上記上限値以下である場合、波長220nm~225nmにおける分光透過率の最小値をより一層大きくすることができる。 In the present embodiment, the total thickness t H of the high refractive index films 4 (total thickness of each high refractive index film 4) is preferably 250 nm or more, more preferably 300 nm or more, still more preferably 400 nm or more, and particularly preferably 500 nm. above, preferably 1000 nm or less, more preferably 800 nm or less, even more preferably 700 nm or less, and particularly preferably 600 nm or less. When the total thickness tH of the high refractive index film 4 is equal to or greater than the above lower limit, the maximum value of the spectral transmittance at wavelengths of 240 nm to 320 nm can be further reduced. On the other hand, when the total thickness t H of the high refractive index film 4 is equal to or less than the upper limit, the minimum spectral transmittance at wavelengths of 220 nm to 225 nm can be further increased.
 高屈折率膜4の1層当たりの厚みは、特に限定されないが、好ましくは5nm以上、より好ましくは10nm以上、好ましくは60nm以下、より好ましくは50nm以下である。 Although the thickness of each layer of the high refractive index film 4 is not particularly limited, it is preferably 5 nm or more, more preferably 10 nm or more, preferably 60 nm or less, and more preferably 50 nm or less.
 低屈折率膜5の総厚みt(各低屈折率膜5の厚みの合計)は、好ましくは500nm以上、より好ましくは600nm以上、さらに好ましくは700nm以上、特に好ましくは800nm以上であり、好ましくは2000nm以下、より好ましくは1700nm以下、さらに好ましくは1500nm以下、特に好ましくは1400nm以下である。低屈折率膜5の総厚みtが、上記下限値以上である場合、波長240nm~320nmにおける分光透過率の最大値をより一層小さくすることができる。一方、低屈折率膜5の総厚みtが、上記上限値以下である場合、波長220nm~225nmにおける分光透過率の最小値をより一層大きくすることができる。 The total thickness t L of the low refractive index film 5 (total thickness of each low refractive index film 5) is preferably 500 nm or more, more preferably 600 nm or more, even more preferably 700 nm or more, and particularly preferably 800 nm or more. is 2000 nm or less, more preferably 1700 nm or less, still more preferably 1500 nm or less, and particularly preferably 1400 nm or less. When the total thickness t L of the low refractive index film 5 is equal to or greater than the above lower limit, the maximum spectral transmittance at wavelengths of 240 nm to 320 nm can be further reduced. On the other hand, when the total thickness t L of the low refractive index film 5 is equal to or less than the above upper limit, the minimum value of spectral transmittance at wavelengths of 220 nm to 225 nm can be further increased.
 低屈折率膜5の1層当たりの厚みは、特に限定されないが、好ましくは5nm以上、より好ましくは10nm以上、好ましくは80nm以下、より好ましくは60nm以下である。 The thickness per layer of the low refractive index film 5 is not particularly limited, but is preferably 5 nm or more, more preferably 10 nm or more, preferably 80 nm or less, and more preferably 60 nm or less.
 高屈折率膜4の総厚みtと、低屈折率膜5の総厚みtとの比(t/t)が、好ましくは0.2以上、より好ましくは0.3以上、さらに好ましくは0.4以上、特に好ましくは0.5以上、最も好ましくは0.6以上であり、好ましくは1以下、より好ましくは0.9以下、さらに好ましくは0.8以下、特に好ましくは0.75以下である。比(t/t)が、上記下限値以上である場合、波長220nm~225nmにおける分光透過率の最小値をより一層大きくすることができる。また、比(t/t)が、上記上限値以下である場合、波長240nm~320nmにおける分光透過率の最大値をより一層小さくすることができる。 The ratio ( tH / tL ) of the total thickness tH of the high refractive index film 4 to the total thickness tL of the low refractive index film 5 is preferably 0.2 or more, more preferably 0.3 or more, and further Preferably 0.4 or more, particularly preferably 0.5 or more, most preferably 0.6 or more, preferably 1 or less, more preferably 0.9 or less, still more preferably 0.8 or less, particularly preferably 0 0.75 or less. When the ratio (t H /t L ) is equal to or greater than the above lower limit, the minimum value of spectral transmittance at wavelengths of 220 nm to 225 nm can be further increased. Further, when the ratio (t H /t L ) is equal to or less than the upper limit, the maximum spectral transmittance at wavelengths of 240 nm to 320 nm can be further reduced.
 誘電体多層膜3の総厚みとしては、特に限定されないが、好ましくは800nm以上、より好ましくは1000nm以上、さらに好ましくは1100nm以上、特に好ましくは1200nm以上であり、好ましくは2500nm以下、より好ましくは2200nm以下、さらに好ましくは2000nm以下、特に好ましくは1900nm以下である。誘電体多層膜3の総厚みが上記下限値以上である場合、波長240nm~320nmにおける分光透過率の最大値をより一層小さくすることができる。一方、誘電体多層膜3の総厚みが上記上限値以下である場合、波長220nm~225nmにおける分光透過率の最小値をより一層大きくすることができる。 The total thickness of the dielectric multilayer film 3 is not particularly limited, but is preferably 800 nm or more, more preferably 1000 nm or more, still more preferably 1100 nm or more, particularly preferably 1200 nm or more, preferably 2500 nm or less, more preferably 2200 nm. Below, more preferably 2000 nm or less, particularly preferably 1900 nm or less. When the total thickness of the dielectric multilayer film 3 is equal to or greater than the above lower limit, the maximum value of the spectral transmittance at wavelengths of 240 nm to 320 nm can be further reduced. On the other hand, when the total thickness of the dielectric multilayer film 3 is equal to or less than the upper limit, the minimum spectral transmittance at wavelengths of 220 nm to 225 nm can be further increased.
 また、誘電体多層膜3を構成する膜の層数は、好ましくは20層以上、より好ましくは25層以上、さらに好ましくは30層以上、特に好ましくは35層以上であり、好ましくは100層以下、より好ましくは80層以下、さらに好ましくは60層以下、特に好ましくは45層以下である。誘電体多層膜3を構成する膜の層数が上記下限値以上である場合、波長240nm~320nmにおける分光透過率の最大値をより一層小さくすることができる。また、誘電体多層膜3を構成する膜の層数が上記上限値以下である場合、波長220nm~225nmにおける分光透過率の最小値をより一層大きくすることができる。 The number of layers of the films constituting the dielectric multilayer film 3 is preferably 20 layers or more, more preferably 25 layers or more, still more preferably 30 layers or more, particularly preferably 35 layers or more, and preferably 100 layers or less. , more preferably 80 layers or less, still more preferably 60 layers or less, and particularly preferably 45 layers or less. When the number of layers of the films constituting the dielectric multilayer film 3 is equal to or greater than the above lower limit value, the maximum value of the spectral transmittance at wavelengths of 240 nm to 320 nm can be further reduced. Moreover, when the number of layers of the films constituting the dielectric multilayer film 3 is equal to or less than the above upper limit, the minimum value of the spectral transmittance at wavelengths of 220 nm to 225 nm can be further increased.
 本実施形態においては、誘電体多層膜3が、酸化ハフニウム結晶を含んでいることが好ましい。より具体的には、誘電体多層膜3を構成する高屈折率膜4が、酸化ハフニウム結晶を含んでいることが好ましく、立方晶系酸化ハフニウム結晶を含んでいることがより好ましい。この場合、波長240nm~320nmにおける紫外線の透過をより一層抑制しつつ、波長220nm~225nmにおける紫外線の透過性をより一層高めることができる。 In this embodiment, the dielectric multilayer film 3 preferably contains hafnium oxide crystals. More specifically, the high refractive index film 4 constituting the dielectric multilayer film 3 preferably contains hafnium oxide crystals, and more preferably contains cubic hafnium oxide crystals. In this case, the transmittance of ultraviolet rays with a wavelength of 240 nm to 320 nm can be further suppressed, while the transmittance of ultraviolet rays with a wavelength of 220 nm to 225 nm can be further enhanced.
 なお、本明細書において、立方晶系酸化ハフニウム結晶を含んでいるか否かは、X線回折測定において、立方晶系酸化ハフニウム結晶に由来する(1,1,1)結晶面による回折ピークが観察されるか否かにより確認することができる。 In this specification, whether or not a cubic hafnium oxide crystal is contained is determined by observing a diffraction peak due to a (1,1,1) crystal plane derived from a cubic hafnium oxide crystal in X-ray diffraction measurement. It can be confirmed by whether it is done or not.
 また、本明細書において、X線回折測定は、広角X線回折法によって測定することができる。X線回折装置としては、例えば、株式会社リガク製、品番「SmartLab」を用いることができる。また、線源としては、CuKα線を用いることができる。なお、X線回折測定においては、光学フィルタ1全体を主面1a側から測定に供するものとする。 Also, in this specification, the X-ray diffraction measurement can be measured by a wide-angle X-ray diffraction method. As the X-ray diffractometer, for example, product number "SmartLab" manufactured by Rigaku Corporation can be used. Moreover, CuKα rays can be used as the radiation source. In the X-ray diffraction measurement, the entire optical filter 1 is measured from the main surface 1a side.
 本発明においては、X線回折測定において、立方晶系酸化ハフニウム結晶に由来する(1,1,1)結晶面による回折ピークが、単斜晶系酸化ハフニウム結晶に由来する(-1,1,1)結晶面による回折ピークよりも大きいことが好ましい。この場合、波長240nm~320nmにおける紫外線の透過をより一層抑制しつつ、波長220nm~225nmにおける紫外線の透過性をより一層高めることができる。 In the present invention, in the X-ray diffraction measurement, the diffraction peak due to the (1,1,1) crystal plane derived from the cubic hafnium oxide crystal is derived from the monoclinic hafnium oxide crystal (-1,1, 1) It is preferably larger than the diffraction peak due to the crystal plane. In this case, the transmittance of ultraviolet rays with a wavelength of 240 nm to 320 nm can be further suppressed, while the transmittance of ultraviolet rays with a wavelength of 220 nm to 225 nm can be further enhanced.
 本発明においては、立方晶系酸化ハフニウム結晶に由来する(1,1,1)結晶面による回折ピークのピーク面積強度Icと、単斜晶系酸化ハフニウム結晶に由来する(-1,1,1)結晶面による回折ピークのピーク面積強度Imとの比Ic/Imが、好ましくは0.1以上、より好ましくは1以上、さらに好ましくは2以上、特に好ましくは2.5以上、最も好ましくは3以上である。比Ic/Imが上記下限値以上である場合、波長240nm~320nmにおける紫外線の透過をより一層抑制しつつ、波長220nm~225nmにおける紫外線の透過性をより一層高めることができる。なお、比Ic/Imの上限値は、特に限定されないが、例えば、10000とすることができる。 In the present invention, the peak area intensity Ic of the diffraction peak due to the (1,1,1) crystal plane derived from the cubic hafnium oxide crystal and the (-1,1,1 ) The ratio Ic/Im of the diffraction peak due to the crystal plane to the peak area intensity Im is preferably 0.1 or more, more preferably 1 or more, still more preferably 2 or more, particularly preferably 2.5 or more, and most preferably 3 That's it. When the ratio Ic/Im is equal to or higher than the above lower limit, it is possible to further suppress the transmission of ultraviolet rays having a wavelength of 240 nm to 320 nm while further increasing the transmittance of ultraviolet rays having a wavelength of 220 nm to 225 nm. Although the upper limit of the ratio Ic/Im is not particularly limited, it can be set to 10,000, for example.
 なお、本発明においては、透明基材2の第2の主面2b上に、反射防止膜が設けられていてもよい。この場合、波長220nm~225nmにおける紫外線の透過性をより一層高めることができる。 In the present invention, an antireflection film may be provided on the second main surface 2b of the transparent substrate 2. In this case, it is possible to further increase the transmittance of ultraviolet light having a wavelength of 220 nm to 225 nm.
 反射防止膜としては、特に限定されず、例えば、相対的に屈折率が高い高屈折率膜と相対的に屈折率が低い低屈折率膜とを有する、多層膜を用いることができる。多層膜は、高屈折率膜及び低屈折率膜がこの順に交互に設けられることにより構成されていてもよい。上記高屈折率膜としては、例えば、酸化ハフニウムを主成分とする膜を用いることができる。上記低屈折率膜としては、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、酸化スズ、フッ化マグネシウム、又は窒化ケイ素等を主成分とする膜が挙げられる。また、上記多層膜を構成する膜の層数は、例えば、4層以上、100層以下とすることができる。 The antireflection film is not particularly limited, and for example, a multilayer film having a high refractive index film with a relatively high refractive index and a low refractive index film with a relatively low refractive index can be used. The multilayer film may be configured by alternately providing a high refractive index film and a low refractive index film in this order. As the high refractive index film, for example, a film containing hafnium oxide as a main component can be used. Examples of the low refractive index film include films containing silicon oxide, aluminum oxide, zirconium oxide, tin oxide, magnesium fluoride, silicon nitride, or the like as a main component. Further, the number of layers of films constituting the multilayer film can be, for example, 4 or more and 100 or less.
 なお、本発明の効果を阻害しない限りにおいて、透明基材2の第2の主面2b上には、反射防止膜以外の膜が積層されていてもよい。また、本発明の効果を阻害しない限りにおいて、透明基材2の第1の主面2a上にも、誘電体多層膜3以外の膜が設けられていてもよい。この場合、透明基材2と、誘電体多層膜3との間に膜が設けられていてもよいし、誘電体多層膜3の上に膜が設けられていてもよい。 A film other than an antireflection film may be laminated on the second main surface 2b of the transparent substrate 2 as long as the effects of the present invention are not impaired. Further, a film other than the dielectric multilayer film 3 may be provided on the first main surface 2a of the transparent substrate 2 as long as the effects of the present invention are not impaired. In this case, a film may be provided between the transparent substrate 2 and the dielectric multilayer film 3 , or a film may be provided on the dielectric multilayer film 3 .
 以下、光学フィルタ1の製造方法の一例について詳細に説明する。 An example of the method for manufacturing the optical filter 1 will be described in detail below.
 (光学フィルタの製造方法)
 膜付き透明基材形成工程;
 まず、透明基材2を用意し、透明基材2を平らな状態で配置する。次に、透明基材2の第1の主面2a上に誘電体多層膜3を形成する。それによって、膜付き透明基材を得る。なお、誘電体多層膜3は、透明基材2の第2の主面2b上に形成してもよい。また、誘電体多層膜3は、透明基材2の第1の主面2a上及び第2の主面2b上の双方に形成してもよい。
(Manufacturing method of optical filter)
film-coated transparent substrate forming step;
First, the transparent base material 2 is prepared, and the transparent base material 2 is arranged in a flat state. Next, a dielectric multilayer film 3 is formed on the first main surface 2a of the transparent substrate 2. As shown in FIG. Thereby, a film-coated transparent substrate is obtained. Note that the dielectric multilayer film 3 may be formed on the second main surface 2 b of the transparent substrate 2 . Also, the dielectric multilayer film 3 may be formed on both the first principal surface 2a and the second principal surface 2b of the transparent base material 2 .
 誘電体多層膜3は、透明基材2の第1の主面2a上に、高屈折率膜4及び低屈折率膜5をこの順に交互に積層することにより形成することができる。高屈折率膜4及び低屈折率膜5は、それぞれ、スパッタリング法により形成することができる。 The dielectric multilayer film 3 can be formed by alternately laminating a high refractive index film 4 and a low refractive index film 5 on the first main surface 2a of the transparent substrate 2 in this order. The high refractive index film 4 and the low refractive index film 5 can each be formed by a sputtering method.
 高屈折率膜4を成膜するときの基板の温度は、好ましくは300℃以下、より好ましくは270℃以下である。この場合、得られる光学フィルタ1において、波長240nm~320nmにおける紫外線の透過をより一層抑制しつつ、波長220nm~225nmの範囲の紫外線をより一層効果的に透過させることができる。なお、高屈折率膜4を成膜するときの基板の温度の下限値は、例えば、20℃とすることができる。 The temperature of the substrate when forming the high refractive index film 4 is preferably 300° C. or less, more preferably 270° C. or less. In this case, the obtained optical filter 1 can more effectively transmit ultraviolet rays in the wavelength range of 220 nm to 225 nm while further suppressing transmission of ultraviolet rays in the wavelength range of 240 nm to 320 nm. The lower limit of the temperature of the substrate when forming the high refractive index film 4 can be set to 20° C., for example.
 高屈折率膜4の成膜は、例えば、高屈折率膜4を構成する材料のターゲットを用い、キャリアガスとしてのアルゴンガスなどの不活性ガスの流量を50sccm~500sccmとし、印加電力を0.5kW~40kWとして行うことができる。 The high refractive index film 4 is formed by, for example, using a target of the material constituting the high refractive index film 4, setting the flow rate of an inert gas such as argon gas as a carrier gas to 50 sccm to 500 sccm, and applying an electric power of 0.5 sccm. It can be performed as 5 kW to 40 kW.
 低屈折率膜5の成膜は、例えば、低屈折率膜5を構成する材料のターゲットを用い、キャリアガスとしてのアルゴンガスなどの不活性ガスの流量を50sccm~500sccmとし、印加電力を0.5kW~40kWとして行うことができる。 The low refractive index film 5 is formed by, for example, using a target of the material constituting the low refractive index film 5, setting the flow rate of an inert gas such as argon gas as a carrier gas to 50 sccm to 500 sccm, and applying an electric power of 0.5 sccm. It can be performed as 5 kW to 40 kW.
 熱処理工程;
 次に、得られた膜付き透明基材を加熱処理する。それによって、光学フィルタ1を得ることができる。加熱処理の温度は、例えば、450℃以上とすることができる。特に、膜付き透明基材を450℃以上の温度で加熱する場合、立方晶系酸化ハフニウム結晶の含有量を相対的に大きくすることができる。そのため、得られる光学フィルタ1において、波長240nm~320nmにおける紫外線の透過をより一層抑制しつつ、波長220nm~225nmにおける紫外線の透過性をより一層高めることができる。
heat treatment process;
Next, the obtained film-coated transparent substrate is heat-treated. Thereby, the optical filter 1 can be obtained. The temperature of the heat treatment can be, for example, 450° C. or higher. In particular, when the film-coated transparent substrate is heated at a temperature of 450° C. or higher, the content of cubic hafnium oxide crystals can be relatively increased. Therefore, in the obtained optical filter 1, the transmittance of ultraviolet rays with a wavelength of 240 nm to 320 nm can be further suppressed, and the transmittance of ultraviolet rays with a wavelength of 220 nm to 225 nm can be further enhanced.
 膜付き透明基材における加熱処理の温度は、好ましくは450℃以上、より好ましくは500℃以上、さらに好ましくは550℃以上、好ましくは800℃以下、より好ましくは750℃以下である。加熱処理の温度が上記範囲内にある場合、波長240nm~320nmにおける紫外線の透過をより一層抑制しつつ、波長220nm~225nmにおける紫外線の透過性をより一層高めることができる。 The temperature of the heat treatment for the film-coated transparent substrate is preferably 450°C or higher, more preferably 500°C or higher, still more preferably 550°C or higher, preferably 800°C or lower, and more preferably 750°C or lower. When the temperature of the heat treatment is within the above range, it is possible to further suppress the transmission of ultraviolet rays having a wavelength of 240 nm to 320 nm and further increase the transmittance of ultraviolet rays having a wavelength of 220 nm to 225 nm.
 膜付き透明基材における加熱処理の時間は、特に限定されないが、例えば、10分以上、120分以下とすることができる。 The heat treatment time for the film-coated transparent substrate is not particularly limited, but can be, for example, 10 minutes or more and 120 minutes or less.
 なお、本実施形態においては、加熱処理前の膜付き透明基材のX線回折測定において、単斜晶系酸化ハフニウム結晶に由来する(-1,1,1)結晶面による回折ピークの強度が小さいことが好ましい。単斜晶系酸化ハフニウム結晶に由来する(-1,1,1)結晶面による回折ピークの強度が、微結晶レベルであることが好ましく、ピーク強度の高さはアモルファスのハローのピーク強度の高さの3倍以内であることがより好ましい。この場合、加熱処理によって、立方晶系酸化ハフニウム結晶に由来する(1,1,1)結晶面による回折ピークのピーク面積強度Icと、単斜晶系酸化ハフニウム結晶に由来する(-1,1,1)結晶面による回折ピークのピーク面積強度Imとの比Ic/Imをより一層大きくすることができる。そのため、得られる光学フィルタ1において、波長240nm~320nmにおける紫外線の透過をより一層抑制しつつ、波長220nm~225nmにおける紫外線の透過性をより一層高めることができる。 In the present embodiment, in the X-ray diffraction measurement of the film-coated transparent substrate before heat treatment, the intensity of the diffraction peak due to the (−1,1,1) crystal plane derived from the monoclinic hafnium oxide crystal is Small is preferred. The intensity of the diffraction peak due to the (−1,1,1) crystal plane derived from the monoclinic hafnium oxide crystal is preferably at the microcrystal level, and the height of the peak intensity is higher than the peak intensity of the amorphous halo. It is more preferably within three times the height. In this case, by the heat treatment, the peak area intensity Ic of the diffraction peak due to the (1,1,1) crystal plane derived from the cubic hafnium oxide crystal and the (−1,1 1) The ratio Ic/Im of the diffraction peak due to the crystal plane to the peak area intensity Im can be further increased. Therefore, in the obtained optical filter 1, the transmittance of ultraviolet rays with a wavelength of 240 nm to 320 nm can be further suppressed, and the transmittance of ultraviolet rays with a wavelength of 220 nm to 225 nm can be further enhanced.
 本実施形態において、波長240nm~320nmにおける紫外線の透過率及び波長220nm~225nmにおける紫外線の透過率は、例えば、誘電体多層膜3を構成する膜の総数、膜厚、及び材料や、膜付き透明基材の加熱処理温度により調整することができる。特に、膜付き透明基材の加熱処理温度により、得られる光学フィルタ1において、波長240nm~320nmにおける紫外線の透過をより一層抑制しつつ、波長220nm~225nmにおける紫外線の透過性をより一層効果的に高めることができる。 In the present embodiment, the transmittance of ultraviolet rays at a wavelength of 240 nm to 320 nm and the transmittance of ultraviolet rays at a wavelength of 220 nm to 225 nm are, for example, the total number, film thickness, and material of the films constituting the dielectric multilayer film 3, and the transparent film with the film. It can be adjusted by the heat treatment temperature of the substrate. In particular, in the obtained optical filter 1, the transmission of ultraviolet rays at a wavelength of 240 nm to 320 nm is further suppressed, and the transmission of ultraviolet rays at a wavelength of 220 nm to 225 nm is further effectively improved by the heat treatment temperature of the transparent substrate with the film. can be enhanced.
 (第2の実施形態)
 図3は、本発明の第2の実施形態に係る光学フィルタを示す模式的断面図である。図3に示すように、光学フィルタ21では、誘電体多層膜23の最外層26が、酸化ハフニウムにより構成されている、高屈折率膜4である。その他の点は、第1の実施形態と同様である。
(Second embodiment)
FIG. 3 is a schematic cross-sectional view showing an optical filter according to a second embodiment of the invention. As shown in FIG. 3, in the optical filter 21, the outermost layer 26 of the dielectric multilayer film 23 is the high refractive index film 4 made of hafnium oxide. Other points are the same as in the first embodiment.
 第2の実施形態においても、透明基材2の厚みが0.2mm以下であり、それによって、光学フィルタ21が、湾曲されていない平らな状態と、湾曲された状態との間で相互に変形可能とされている。また、光学フィルタ21は、誘電体多層膜23を備え、光学フィルタ21の波長220nm~225nmにおける分光透過率の最小値が50%以上であり、波長240nm~320nmにおける分光透過率の最大値が5%以下である。そのため、光学フィルタ21では、殺菌処理に有用な紫外線を効率よく透過させつつ、人体に有害な紫外線の透過を抑制することができ、しかも光源からの放出光の有効照射面積を大きくすることができる。 Also in the second embodiment, the thickness of the transparent base material 2 is 0.2 mm or less, so that the optical filter 21 is mutually deformed between the uncurved flat state and the curved state. It is possible. In addition, the optical filter 21 includes a dielectric multilayer film 23, the minimum value of the spectral transmittance of the optical filter 21 at a wavelength of 220 nm to 225 nm is 50% or more, and the maximum value of the spectral transmittance at a wavelength of 240 nm to 320 nm is 5%. % or less. Therefore, the optical filter 21 can efficiently transmit ultraviolet rays useful for sterilization while suppressing the transmission of ultraviolet rays harmful to the human body, and can increase the effective irradiation area of the emitted light from the light source. .
 ところで、波長220nm~225nmの範囲の紫外線を発光するエキシマランプ等を用いた場合、照射される光により装置部材が劣化し、酸性のガスが発生する場合がある。このガスにより光学フィルタの膜が浸食され、それによって光学特性が変化し、要求特性を満たせない場合がある。 By the way, when an excimer lamp or the like that emits ultraviolet light with a wavelength of 220 nm to 225 nm is used, the irradiated light may deteriorate the device members and generate acidic gas. The gas corrodes the film of the optical filter, which changes the optical characteristics and may not satisfy the required characteristics.
 これに対して、光学フィルタ21のように、誘電体多層膜23の最外層26が酸化ハフニウムにより構成されている場合、酸性のガスによる浸食をより一層抑制することができ、光学特性の変化をより一層抑制することができる。 On the other hand, like the optical filter 21, when the outermost layer 26 of the dielectric multilayer film 23 is composed of hafnium oxide, it is possible to further suppress the erosion due to the acidic gas, and the change in optical characteristics is suppressed. can be further suppressed.
 また、最外層26の厚みは、好ましくは1nm以上、より好ましくは2nm以上、好ましくは10nm以下、より好ましくは7nm以下である。最外層26の厚みが上記下限値以上である場合、酸性のガスによる浸食をより一層抑制することができ、光学特性の変化をより一層抑制することができる。一方、最外層26の厚みが上記上限値以下である場合、波長240nm~320nmにおける紫外線の透過をより一層抑制しつつ、波長220nm~225nmにおける紫外線をより一層効果的に透過させることができる。 Further, the thickness of the outermost layer 26 is preferably 1 nm or more, more preferably 2 nm or more, preferably 10 nm or less, more preferably 7 nm or less. When the thickness of the outermost layer 26 is equal to or greater than the above lower limit, erosion due to acidic gases can be further suppressed, and changes in optical properties can be further suppressed. On the other hand, when the thickness of the outermost layer 26 is equal to or less than the above upper limit, it is possible to further suppress the transmission of ultraviolet rays with a wavelength of 240 nm to 320 nm, and more effectively transmit the ultraviolet rays with a wavelength of 220 nm to 225 nm.
 [光学フィルタ部品及び殺菌装置]
 図4は、本発明の一実施形態に係る殺菌装置を示す模式的断面図である。
[Optical filter parts and sterilizer]
FIG. 4 is a schematic cross-sectional view showing a sterilization device according to one embodiment of the present invention.
 図4に示す殺菌装置30は、処理対象物を不活化処理するための殺菌装置である。殺菌装置30は、光源32と、リフレクター33と、筐体34と、光学フィルタ部品31とを備える。光学フィルタ部品31は、第1の実施形態の光学フィルタ1と、光学フィルタ1を湾曲させた状態に保持する保持部35とを備える。 The sterilization device 30 shown in FIG. 4 is a sterilization device for inactivating the object to be processed. The sterilization device 30 comprises a light source 32 , a reflector 33 , a housing 34 and an optical filter component 31 . The optical filter component 31 includes the optical filter 1 of the first embodiment and a holding portion 35 that holds the optical filter 1 in a curved state.
 殺菌装置30では、光学フィルタ1が、湾曲した状態で備えられている。光学フィルタ1の凹面側に誘電体多層膜3が位置し、凸面側に透明基材2が位置している。殺菌装置30では、光源32から発せられた放出光が、光学フィルタ1を介して、殺菌対象物Pに照射される。なお、光学フィルタ1の凹面側に透明基材2が位置し、凸面側に誘電体多層膜3が位置していてもよく、これらの位置関係は特に限定されない。 In the sterilization device 30, the optical filter 1 is provided in a curved state. A dielectric multilayer film 3 is positioned on the concave side of the optical filter 1, and a transparent substrate 2 is positioned on the convex side. In the sterilization device 30 , the emitted light emitted from the light source 32 is applied to the sterilization target P through the optical filter 1 . The transparent substrate 2 may be positioned on the concave surface side of the optical filter 1, and the dielectric multilayer film 3 may be positioned on the convex surface side, and the positional relationship therebetween is not particularly limited.
 筐体34の内部に、光源32及びリフレクター33が配置されている。光源32は、放出光の波長が190nm~230nmの波長域に存在する光源である。リフレクター33は、光源から放出された光を広範囲に拡散可能である。光源32は、光学フィルタ1の凹面に対向して配置されている。 A light source 32 and a reflector 33 are arranged inside the housing 34 . The light source 32 is a light source that emits light in a wavelength range of 190 nm to 230 nm. The reflector 33 can widely diffuse the light emitted from the light source. The light source 32 is arranged to face the concave surface of the optical filter 1 .
 光源32としては、例えば、エキシマランプを用いることができる。エキシマランプとしては、波長220nm~225nmの範囲の紫外線を発光するエキシマランプを用いることが好ましい。このようなエキシマランプとしては、例えば、KrClエキシマランプを用いることができる。エキシマランプは、KrBrエキシマランプであってもよい。 For example, an excimer lamp can be used as the light source 32 . As the excimer lamp, it is preferable to use an excimer lamp that emits ultraviolet light having a wavelength of 220 nm to 225 nm. As such an excimer lamp, for example, a KrCl excimer lamp can be used. The excimer lamp may be a KrBr excimer lamp.
 保持部35の形状等の構成は特に限定されない。保持部35は、光学フィルタ1を所定の湾曲形状とした状態で保持可能であればよい。保持部35の形状としては、例えば、枠状及び箱状が挙げられる。なお、保持部35は、独立した一部品として構成されるものであってもよく、例えば、筐体34の一部として備えられていてもよい。保持部35の材料としては、例えば、アルミニウムを用いることができる。 The configuration such as the shape of the holding portion 35 is not particularly limited. The holding portion 35 may hold the optical filter 1 in a predetermined curved shape. Examples of the shape of the holding portion 35 include a frame shape and a box shape. Note that the holding portion 35 may be configured as an independent part, and may be provided as part of the housing 34, for example. Aluminum, for example, can be used as the material of the holding portion 35 .
 殺菌装置30を用いることにより、殺菌対象物Pに付着等した処理対象物(微生物及びウイルス等)を不活化処理することができる。殺菌装置30では、殺菌処理に有用な紫外線を効率よく透過させることができるので、殺菌対象物Pに対して、紫外線殺菌を効率よく行うことができる。例えば、紫外線殺菌では、細菌等の微生物の細胞内のDNAに紫外線を作用させて、微生物を選択的に不活化させたり、ウイルスに紫外線を作用させて選択的に不活化させたりすることができる。そのため、上記処理対象物は、微生物又はウイルスであることが好ましく、微生物であることがより好ましい。すなわち、殺菌装置30は、処理対象微生物又は処理対象ウイルスを不活化処理するために用いられることが好ましく、処理対象微生物を不活化処理するために用いられることがより好ましい。 By using the sterilization device 30, the objects to be treated (microorganisms, viruses, etc.) adhering to the object P to be sterilized can be inactivated. In the sterilization device 30, since ultraviolet rays useful for sterilization treatment can be efficiently transmitted, the object P to be sterilized can be sterilized with ultraviolet rays efficiently. For example, in ultraviolet sterilization, ultraviolet rays can be applied to the DNA in the cells of microorganisms such as bacteria to selectively inactivate the microorganisms, or viruses can be selectively inactivated by the application of ultraviolet rays. . Therefore, the object to be treated is preferably a microorganism or virus, more preferably a microorganism. That is, the sterilization device 30 is preferably used for inactivating microorganisms or viruses to be treated, and more preferably used for inactivating microorganisms to be treated.
 本実施形態の殺菌装置30は、光学フィルタ1を備えているので、殺菌処理に有用な紫外線を効率よく透過させつつ、人体に有害な紫外線の透過を抑制することができ、しかも光源32からの放出光の有効照射面積を大きくすることができる。この点については、以下のように説明することができる。 Since the sterilization device 30 of the present embodiment includes the optical filter 1, it is possible to efficiently transmit ultraviolet rays useful for sterilization while suppressing transmission of ultraviolet rays harmful to the human body. The effective irradiation area of emitted light can be increased. This point can be explained as follows.
 図5は、従来の殺菌装置を説明するための模式的断面図である。図5に示すように、従来の殺菌装置100では、光学フィルタ101が筐体104上に平らな状態で載置されている。従って、光源102の上方に位置する光学フィルタ101の中央付近では、入射角の小さい放出光が入射される。一方で、光源102の斜め上方に位置し、光学フィルタ101の中央から離れた部分では、入射角が大きい放出光が入射される。この際、入射角が大きな放出光を入射させると、処理対象物の細胞を選択的に不活化させる波長190nm~230nmの紫外線透過率が低下し、一方で人体に有害な波長240nm~280nmの紫外線透過率が高くなるという問題があった。なお、入射角は、図5に示すように、光学フィルタ101の主面101aに対して垂直な方向を法線方向としたときに、該法線方向に対して傾斜した角度θを意味するものとする。従って、法線方向に沿う方向が、入射角0°となる。 FIG. 5 is a schematic cross-sectional view for explaining a conventional sterilization device. As shown in FIG. 5, in the conventional sterilizer 100, an optical filter 101 is placed flat on a housing 104. As shown in FIG. Therefore, near the center of the optical filter 101 located above the light source 102, emitted light with a small incident angle is incident. On the other hand, emitted light with a large incident angle is incident on a portion located obliquely above the light source 102 and away from the center of the optical filter 101 . At this time, when emitted light with a large incident angle is incident, the transmittance of ultraviolet rays with a wavelength of 190 nm to 230 nm that selectively inactivates the cells of the object to be treated is reduced, while ultraviolet rays with a wavelength of 240 nm to 280 nm that are harmful to the human body are reduced. There is a problem of high transmittance. As shown in FIG. 5, the angle of incidence means an angle θ inclined with respect to the direction perpendicular to the main surface 101a of the optical filter 101 as the normal direction. and Therefore, the direction along the normal direction has an incident angle of 0°.
 これに対して、本実施形態の殺菌装置30では、光学フィルタ1が、湾曲した状態で備えられている。そのため、光源32の上方に位置する光学フィルタ1の中央付近だけでなく、光源32の斜め上方に位置し、光学フィルタ1の中央から離れた部分においても、入射角θが小さい放射光を入射させることができる。従って、殺菌装置30によれば、光源32からの放出光の有効照射面積を大きくした場合においても、殺菌処理に有用な紫外線を効率よく透過させつつ、人体に有害な紫外線の透過を抑制することができる。なお、本実施形態のように、光学フィルタ1が湾曲した状態で備えられている場合、入射角θは、光学フィルタ1が筐体34上に平らな状態で載置されていると仮定したときに、主面1aに対して垂直な方向を法線方向とし、該法線方向に対して傾斜した角度を意味するものとする。例えば、図4では、筐体34や保持部35の上面(水平面)に対して垂直な方向が法線方向となる。 On the other hand, in the sterilization device 30 of this embodiment, the optical filter 1 is provided in a curved state. Therefore, the radiant light with a small incident angle θ is made incident not only near the center of the optical filter 1 located above the light source 32, but also at a portion located obliquely above the light source 32 and away from the center of the optical filter 1. be able to. Therefore, according to the sterilization device 30, even when the effective irradiation area of the emitted light from the light source 32 is increased, it is possible to efficiently transmit ultraviolet rays useful for sterilization while suppressing the transmission of ultraviolet rays harmful to the human body. can be done. When the optical filter 1 is provided in a curved state as in this embodiment, the incident angle .theta. In addition, the direction perpendicular to the main surface 1a is taken as the normal direction, and the angle is inclined with respect to the normal direction. For example, in FIG. 4, the direction perpendicular to the upper surfaces (horizontal planes) of the housing 34 and the holding portion 35 is the normal direction.
 本実施形態の殺菌装置30では、図4に示すように、光学フィルタ1が、厚み方向に沿う断面視において、光源32を中心として同心円状に配置されていることが好ましい。この場合、殺菌処理に有用な紫外線をより一層効率よく透過させつつ、人体に有害な紫外線の透過をより一層抑制することができ、しかも光源32からの放出光の有効照射面積を大きくすることができる。 In the sterilization device 30 of the present embodiment, as shown in FIG. 4, the optical filters 1 are preferably arranged concentrically around the light source 32 in a cross-sectional view along the thickness direction. In this case, it is possible to more efficiently transmit ultraviolet rays useful for sterilization, while further suppressing the transmission of ultraviolet rays harmful to the human body. can.
 また、光学フィルタ1は、曲率半径が100mm以下となるように湾曲された状態で用いられることが好ましい。この場合、殺菌処理に有用な紫外線をより一層効率よく透過させつつ、人体に有害な紫外線の透過をより一層抑制することができ、しかも光源32からの放出光の有効照射面積を大きくすることができる。 Also, the optical filter 1 is preferably used in a curved state with a radius of curvature of 100 mm or less. In this case, it is possible to more efficiently transmit ultraviolet rays useful for sterilization, while further suppressing the transmission of ultraviolet rays harmful to the human body. can.
 光学フィルタ1は、曲率半径が好ましくは100mm以下、より好ましくは10mm以下となるように湾曲された状態で用いられることが好ましい。 The optical filter 1 is preferably used in a curved state with a radius of curvature of preferably 100 mm or less, more preferably 10 mm or less.
 また、誘電体多層膜3の透明基材2からの剥離をより一層生じ難くする観点から、光学フィルタ1は、曲率半径が好ましくは1mm以上、より好ましくは5mm以上となるように湾曲された状態で用いられることが好ましい。 In addition, from the viewpoint of making it more difficult for the dielectric multilayer film 3 to separate from the transparent base material 2, the optical filter 1 is curved so that the radius of curvature is preferably 1 mm or more, more preferably 5 mm or more. It is preferably used in
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。 Hereinafter, the present invention will be described in more detail based on specific examples. The present invention is by no means limited to the following examples, and can be modified as appropriate without changing the gist of the invention.
 (実施例1)
 まず、透明基材として、厚み0.1mmのホウケイ酸ガラス基板(日本電気硝子社製、品番「BU-41」、寸法:70mm×52mm×0.1mm)を用意した。次に、用意した透明基材の一方側主面上に、スパッタリングにより誘電体多層膜を成膜した。具体的には、まず、キャリアガスとしてアルゴンガスと酸素ガスとを用い、ハフニウムのターゲットをスパッタリングし、透明基材の一方側主面上に酸化ハフニウム膜(HfO膜)を成膜した。なお、この際、アルゴンガス及び酸素ガスの流量をそれぞれ100sccmとし、ターゲット印加電力(成膜電力)を4kWとした。次に、キャリアガスとしてアルゴンガスと酸素ガスとを用い、シリコンのターゲットをスパッタリングし、HfO膜の上に酸化ケイ素膜(SiO膜)を成膜した。なお、この際、アルゴンガス及び酸素ガスの流量を100sccmとし、ターゲット印加電力(成膜電力)を4kWとした。この操作を繰り返すことにより、透明基材の一方側主面上に、HfO膜とSiO膜とが、1層ずつ交互に積層された、合計38層の膜を有する誘電体多層膜を形成し、膜付き透明基材を得た。なお、成膜の間、基板温度は、室温(20℃)とした。次に、膜付き透明基材を、大気雰囲気下、500℃の温度で60分間加熱処理することにより、光学フィルタを得た。
(Example 1)
First, a 0.1 mm-thick borosilicate glass substrate (manufactured by Nippon Electric Glass Co., Ltd., product number “BU-41”, dimensions: 70 mm×52 mm×0.1 mm) was prepared as a transparent substrate. Next, a dielectric multilayer film was formed by sputtering on one main surface of the prepared transparent substrate. Specifically, first, using argon gas and oxygen gas as carrier gases, a hafnium target was sputtered to form a hafnium oxide film (HfO 2 film) on one main surface of the transparent substrate. At this time, the flow rates of argon gas and oxygen gas were each set to 100 sccm, and the power applied to the target (film formation power) was set to 4 kW. Next, using argon gas and oxygen gas as carrier gases, a silicon target was sputtered to form a silicon oxide film (SiO 2 film) on the HfO 2 film. At this time, the flow rates of argon gas and oxygen gas were set to 100 sccm, and the power applied to the target (film formation power) was set to 4 kW. By repeating this operation, a dielectric multilayer film having a total of 38 layers, in which HfO 2 films and SiO 2 films are alternately laminated one by one, is formed on one main surface of the transparent substrate. to obtain a film-coated transparent substrate. The substrate temperature was set at room temperature (20° C.) during film formation. Next, an optical filter was obtained by heat-treating the film-coated transparent substrate at a temperature of 500° C. for 60 minutes in an air atmosphere.
 なお、誘電体多層膜における各層の厚みは、下記の表1に示す通りである。 The thickness of each layer in the dielectric multilayer film is as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (比較例1)
 透明基材として、厚み1mmの石英ガラス板(USTRON社製、品番「FLH311」、寸法:70mm×52mm×1mm)を用いたこと以外は、実施例1と同様にして光学フィルタを得た。
(Comparative example 1)
An optical filter was obtained in the same manner as in Example 1, except that a 1 mm-thick quartz glass plate (manufactured by USTRON, product number "FLH311", dimensions: 70 mm x 52 mm x 1 mm) was used as the transparent substrate.
 [評価]
 (分光透過率)
 実施例1及び比較例1の光学フィルタについて、分光透過率計(日立ハイテクサイエンス社製、品番「UH4150」)を用いて、分光透過率を測定した。なお、分光透過率の測定に際し、実施例1では、光学フィルタを曲率半径が24mmとなるように湾曲させてフォルダに設置した。また、比較例1では、光学フィルタを湾曲させずに平らな状態でフォルダに設置した。
[evaluation]
(spectral transmittance)
The spectral transmittance of the optical filters of Example 1 and Comparative Example 1 was measured using a spectral transmittance meter (manufactured by Hitachi High-Tech Science, product number "UH4150"). In addition, in the measurement of the spectral transmittance, in Example 1, the optical filter was bent so as to have a radius of curvature of 24 mm and was placed in the folder. Also, in Comparative Example 1, the optical filter was placed in the folder in a flat state without being curved.
 具体的には、入射角(AOI)を0°又は40°とし、測定波長を200nm~320nmとした。なお、入射角は、サンプルを設置したフォルダを回転させることにより調整した。 Specifically, the angle of incidence (AOI) was set to 0° or 40°, and the measurement wavelength was set to 200 nm to 320 nm. The incident angle was adjusted by rotating the folder in which the sample was placed.
 図6は、比較例1で得られた光学フィルタの各入射角における透過スペクトルを示す図である。また、図7は、図6の透過スペクトルにおいて、透過率が10%以下の部分を拡大した透過スペクトルを示す図である。 FIG. 6 is a diagram showing the transmission spectrum of the optical filter obtained in Comparative Example 1 at each incident angle. 7 is a diagram showing a transmission spectrum obtained by enlarging a portion of the transmission spectrum shown in FIG. 6 where the transmittance is 10% or less.
 図6及び図7に示すように、比較例1では、入射角を40°とした場合に、波長220nm~225nmにおける分光透過率の最小値が低下していることがわかる。また、比較例1では、入射角を40°とした場合に、波長240nm~320nmにおける分光透過率の最大値が高くなっていることがわかる。 As shown in FIGS. 6 and 7, in Comparative Example 1, when the incident angle is 40°, the minimum spectral transmittance at wavelengths of 220 nm to 225 nm is reduced. Also, in Comparative Example 1, when the incident angle is 40°, the maximum value of the spectral transmittance at wavelengths of 240 nm to 320 nm is high.
 同様にして、実施例1の光学フィルタについても、波長220nm~225nmにおける分光透過率の最小値及び波長240nm~320nmにおける分光透過率の最大値を測定した。 Similarly, for the optical filter of Example 1, the minimum value of spectral transmittance at wavelengths of 220 nm to 225 nm and the maximum value of spectral transmittance at wavelengths of 240 nm to 320 nm were measured.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、実施例1の光学フィルタでは、比較例1と比較して、入射角を大きくした場合においても、波長220nm~225nmにおける分光透過率の最小値を大きくすることができ、波長240nm~320nmにおける分光透過率の最大値を小さくできていることがわかる。 As is clear from Table 2, in the optical filter of Example 1, compared with Comparative Example 1, even when the incident angle is increased, the minimum value of the spectral transmittance at wavelengths of 220 nm to 225 nm can be increased. , the maximum value of the spectral transmittance at wavelengths of 240 nm to 320 nm can be reduced.
 よって、実施例1の光学フィルタでは、殺菌処理に有用な紫外線を効率よく透過させつつ、人体に有害な紫外線の透過を抑制することができ、しかも光源からの放出光の有効照射面積を大きくすることができることが確認できた。 Therefore, in the optical filter of Example 1, it is possible to efficiently transmit ultraviolet rays useful for sterilization while suppressing the transmission of ultraviolet rays harmful to the human body, and increase the effective irradiation area of the emitted light from the light source. I have confirmed that it is possible.
1,21…光学フィルタ
1a…主面
2…透明基材
2a…第1の主面
2b…第2の主面
3,23…誘電体多層膜
4…高屈折率膜
5…低屈折率膜
26…最外層
30…殺菌装置
31…光学フィルタ部品
32…光源
33…リフレクター
34…筐体
35…保持部
P…殺菌対象物
Reference Signs List 1, 21 Optical filter 1a Main surface 2 Transparent substrate 2a First main surface 2b Second main surface 3, 23 Dielectric multilayer film 4 High refractive index film 5 Low refractive index film 26 ... Outermost layer 30 ... Sterilization device 31 ... Optical filter component 32 ... Light source 33 ... Reflector 34 ... Housing 35 ... Holding part P ... Object to be sterilized

Claims (7)

  1.  ガラスにより構成されており、厚みが0.2mm以下である、透明基材と、
     前記透明基材上に設けられており、酸化ハフニウムを含む、誘電体多層膜と、
    を備え、
     波長220nm~225nmにおける分光透過率の最小値が、50%以上であり、
     波長240nm~320nmにおける分光透過率の最大値が、5%以下である、光学フィルタ。
    a transparent substrate made of glass and having a thickness of 0.2 mm or less;
    a dielectric multilayer film provided on the transparent substrate and containing hafnium oxide;
    with
    The minimum spectral transmittance at a wavelength of 220 nm to 225 nm is 50% or more,
    An optical filter having a maximum spectral transmittance of 5% or less at a wavelength of 240 nm to 320 nm.
  2.  前記光学フィルタは、前記光学フィルタが湾曲されていない平らな状態と、前記光学フィルタが湾曲された状態との間で相互に変形可能であり、
     湾曲された状態で用いられる、請求項1に記載の光学フィルタ。
    the optical filter is mutually deformable between a flat state in which the optical filter is not curved and a state in which the optical filter is curved;
    2. The optical filter of claim 1, used in a curved state.
  3.  前記光学フィルタは、曲率半径が100mm以下となるように湾曲された状態で用いられる、請求項2に記載の光学フィルタ。 The optical filter according to claim 2, wherein the optical filter is used in a curved state with a radius of curvature of 100 mm or less.
  4.  請求項1~3のいずれか1項に記載の光学フィルタと、
     前記光学フィルタを湾曲させた状態で保持するための保持部と、
    を備える、光学フィルタ部品。
    an optical filter according to any one of claims 1 to 3;
    a holding part for holding the optical filter in a curved state;
    An optical filter component, comprising:
  5.  処理対象微生物を不活化処理するための殺菌装置であって、
     放出光の波長が、190nm~230nmの波長域に存在する光源と、
     請求項1~3のいずれか1項に記載の光学フィルタと、
     前記光学フィルタを湾曲させた状態で保持するための保持部と、
    を備え、
     前記光源からの放出光を、前記光学フィルタを介して照射することにより、前記処理対象微生物が不活化処理されるように、前記光源及び前記光学フィルタが配置されている、殺菌装置。
    A sterilization device for inactivating microorganisms to be treated,
    a light source whose emitted light has a wavelength in the wavelength range of 190 nm to 230 nm;
    an optical filter according to any one of claims 1 to 3;
    a holding part for holding the optical filter in a curved state;
    with
    The sterilization device, wherein the light source and the optical filter are arranged so that the microorganisms to be treated are inactivated by irradiating the light emitted from the light source through the optical filter.
  6.  前記光学フィルタが、厚み方向に沿う断面視において、前記光源を中心として同心円状に配置されている、請求項5に記載の殺菌装置。 The sterilization device according to claim 5, wherein the optical filters are arranged concentrically around the light source in a cross-sectional view along the thickness direction.
  7.  請求項1~3のいずれか1項に記載の光学フィルタの製造方法であって、
     ガラスにより構成されており、厚みが0.2mm以下である、透明基材を平らな状態で配置する工程と、
     前記透明基材における少なくとも一方側の主面上に、前記誘電体多層膜を成膜する工程と、
    を備える、光学フィルタの製造方法。
    A method for manufacturing an optical filter according to any one of claims 1 to 3,
    Placing a transparent base material made of glass and having a thickness of 0.2 mm or less in a flat state;
    forming the dielectric multilayer film on at least one main surface of the transparent substrate;
    A method of manufacturing an optical filter, comprising:
PCT/JP2022/033090 2021-09-14 2022-09-02 Optical filter, optical filter component, sterilizer, and optical filter production method WO2023042682A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021149556A JP2023042316A (en) 2021-09-14 2021-09-14 Optical filter, optical filter component, sterilization device and manufacturing method for optical filter
JP2021-149556 2021-09-14

Publications (1)

Publication Number Publication Date
WO2023042682A1 true WO2023042682A1 (en) 2023-03-23

Family

ID=85602803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033090 WO2023042682A1 (en) 2021-09-14 2022-09-02 Optical filter, optical filter component, sterilizer, and optical filter production method

Country Status (2)

Country Link
JP (1) JP2023042316A (en)
WO (1) WO2023042682A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4245360A1 (en) * 2022-03-16 2023-09-20 Ushio Denki Kabushiki Kaisha Ultraviolet light irradiation device
RU222214U1 (en) * 2023-11-08 2023-12-15 Федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов имени Патриса Лумумбы" (РУДН) Narrowband interference filter for wide-angle lens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018010275A (en) * 2016-06-30 2018-01-18 旭硝子株式会社 Uv transmitting filter
WO2018100991A1 (en) * 2016-11-30 2018-06-07 旭硝子株式会社 Ultraviolet ray transmission filter
JP2019115525A (en) * 2017-12-27 2019-07-18 ウシオ電機株式会社 Inactivation processing device of microorganism and cell activation processing device, as well as inactivation processing method of microorganism and cell activation processing method
JP2021523412A (en) * 2018-05-11 2021-09-02 コーニング インコーポレイテッド Curved film and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018010275A (en) * 2016-06-30 2018-01-18 旭硝子株式会社 Uv transmitting filter
WO2018100991A1 (en) * 2016-11-30 2018-06-07 旭硝子株式会社 Ultraviolet ray transmission filter
JP2019115525A (en) * 2017-12-27 2019-07-18 ウシオ電機株式会社 Inactivation processing device of microorganism and cell activation processing device, as well as inactivation processing method of microorganism and cell activation processing method
JP2021523412A (en) * 2018-05-11 2021-09-02 コーニング インコーポレイテッド Curved film and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4245360A1 (en) * 2022-03-16 2023-09-20 Ushio Denki Kabushiki Kaisha Ultraviolet light irradiation device
RU222214U1 (en) * 2023-11-08 2023-12-15 Федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов имени Патриса Лумумбы" (РУДН) Narrowband interference filter for wide-angle lens

Also Published As

Publication number Publication date
JP2023042316A (en) 2023-03-27

Similar Documents

Publication Publication Date Title
US6844976B1 (en) Heat-absorbing filter and method for making same
TWI363745B (en) Uv-absorbing borosilicate glass for a gas discharge lamp, process for manufacturing same and gas discharge lamp made with same
WO2023042682A1 (en) Optical filter, optical filter component, sterilizer, and optical filter production method
EP1637225A1 (en) Photocatalyst member
US20070031681A1 (en) Member having photocatalytic activity and multilayered glass
TW201634418A (en) Low CTE glass with high UV-transmittance and solarization resistance
WO2018100991A1 (en) Ultraviolet ray transmission filter
CN113050272A (en) Deep ultraviolet filter and design method thereof
WO2022039216A1 (en) Optical filter, method for producing same and sterilization device
KR102263939B1 (en) Method for obtaining a photocatalytic material
TW201802050A (en) UV-transmitting glass, UV irradiation device, and UV sterilization device
WO2023042683A1 (en) Optical filter and sterilization device
EA032821B1 (en) Transparent substrate comprising a functional layer made from silver, crystallised on a nickel oxide layer
WO2023112940A1 (en) Optical filter and sterilization device
WO2024135592A1 (en) Optical filter, sterilizing device, and uv ray detecting device
JP2023025521A (en) Optical filter and sterilizing device
TWI236460B (en) Fused silica containing aluminum
EP0881995A1 (en) Strong uv absorbing glass
CN113802093A (en) Preparation method of high-transmittance deep ultraviolet filter
JPH0940499A (en) Excimer laser annealing treatment device
JP4022657B2 (en) Method for manufacturing dielectric optical thin film
US20170137320A1 (en) Method for obtaining a material comprising a functional layer made from silver resistant to a high-temperature treatment
JPH06100333A (en) Surface-modified glass containing metallic ion implanted thereinto
WO2023176084A1 (en) Ultraviolet light irradiation device
WO2023120442A1 (en) Cover member and solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE