WO2024116669A1 - Evaporation source unit, film formation device, and film formation method - Google Patents
Evaporation source unit, film formation device, and film formation method Download PDFInfo
- Publication number
- WO2024116669A1 WO2024116669A1 PCT/JP2023/038675 JP2023038675W WO2024116669A1 WO 2024116669 A1 WO2024116669 A1 WO 2024116669A1 JP 2023038675 W JP2023038675 W JP 2023038675W WO 2024116669 A1 WO2024116669 A1 WO 2024116669A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- evaporation source
- evaporation
- substrate
- crystal monitor
- source unit
- Prior art date
Links
- 238000001704 evaporation Methods 0.000 title claims abstract description 375
- 230000008020 evaporation Effects 0.000 title claims abstract description 374
- 230000015572 biosynthetic process Effects 0.000 title claims description 54
- 238000000034 method Methods 0.000 title claims description 18
- 239000000758 substrate Substances 0.000 claims abstract description 101
- 239000010453 quartz Substances 0.000 claims abstract description 43
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 43
- 239000000463 material Substances 0.000 claims description 125
- 230000008021 deposition Effects 0.000 claims description 84
- 239000013078 crystal Substances 0.000 claims description 35
- 238000012544 monitoring process Methods 0.000 claims description 18
- 239000000126 substance Substances 0.000 abstract description 13
- 238000007740 vapor deposition Methods 0.000 abstract description 7
- 239000010408 film Substances 0.000 description 113
- 238000012806 monitoring device Methods 0.000 description 68
- 239000011777 magnesium Substances 0.000 description 24
- 229910052749 magnesium Inorganic materials 0.000 description 13
- 230000007246 mechanism Effects 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 229910052709 silver Inorganic materials 0.000 description 13
- 230000032258 transport Effects 0.000 description 12
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 239000004332 silver Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000012937 correction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 238000010549 co-Evaporation Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000005485 electric heating Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/16—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
Definitions
- the present invention relates to an evaporation source unit, a film forming apparatus, and a film forming method.
- Patent Document 1 discloses a sensor (film formation rate monitor) that monitors the state of the deposition material evaporated from the evaporation source, such as the evaporation rate and film formation rate, when a film is formed using multiple evaporation sources.
- a monitoring device including a film formation rate monitor is basically provided for each evaporation source, but the monitoring accuracy of the monitoring device may decrease depending on the positional relationship between the monitoring device and the evaporation source being monitored. In such cases, it becomes difficult to control the film formation rate, and there is a risk of reducing the uniformity of the film thickness formed on the substrate.
- the present invention provides a technology that is advantageous for making the thickness of a film formed on a substrate uniform.
- the evaporation source unit is an evaporation source unit that forms a film on a substrate moving relatively in a moving direction, and includes a first evaporation source group including a plurality of first evaporation sources arranged in a line along a cross direction intersecting the moving direction, each emitting a first evaporation material to be deposited on the substrate, a second evaporation source group including a plurality of second evaporation sources arranged in a line along the cross direction, each emitting a second evaporation material to be deposited on the substrate, and disposed outside the first evaporation source group in the moving direction, a first crystal monitor that monitors the state of the first evaporation material emitted from the first evaporation source, and a second crystal monitor that monitors the state of the second evaporation material emitted from the second evaporation source, and is characterized in that the amount of the second evaporation material discharged from the second evaporation source and
- the present invention can provide a technology that is advantageous for, for example, making the thickness of a film formed on a substrate uniform.
- FIG. 1 is a plan view showing a schematic configuration of a film formation system having a film formation apparatus according to one aspect of the present invention.
- 1 is a front view showing a schematic configuration of a film forming apparatus according to one aspect of the present invention;
- 3A and 3B are diagrams for explaining the configuration of an evaporation source unit.
- 3A and 3B are diagrams for explaining the configuration of an evaporation source unit.
- FIG. 2 is a cross-sectional view illustrating a schematic configuration of an evaporation source.
- FIG. 1 is a plan view showing a schematic configuration of a film formation system SY having a film formation apparatus 1 according to one aspect of the present invention.
- the film formation system SY is a system that performs a film formation process on a substrate that is brought in and then removes the substrate after the film formation process.
- a manufacturing line for electronic devices is formed by arranging multiple film formation systems SY side by side.
- An example of an electronic device is a display panel of an organic EL display device for a smartphone.
- the film formation system SY includes a film formation apparatus 1, a loading chamber 60, a substrate transport chamber 62, an unloading chamber 64, and a mask stock chamber 66.
- the configuration of the film formation apparatus 1 will be described in detail later.
- the substrate 100 to be subjected to the film formation process in the film formation apparatus 1 is carried into the loading chamber 60 from outside the film formation apparatus 1.
- the substrate transport chamber 62 is provided with a transport robot 620 for transporting the substrate 100.
- the transport robot 620 transports the substrate 100 carried into the loading chamber 60 to the film formation apparatus 1.
- the transport robot 620 also transports the substrate 100 to the unloading chamber 64 after the film formation process in the film formation apparatus 1.
- the substrate 100 transported to the unloading chamber 64 by the transport robot 620 is unloaded from the unloading chamber 64 to the outside of the film formation system SY.
- the unloading chamber 64 of the upstream film formation system SY may also serve as the substrate transport chamber 62 of the downstream film formation system SY.
- the mask stock chamber 66 the mask 101 used for the film formation process in the film formation apparatus 1 is stocked.
- the mask 101 stored in the mask stock chamber 66 is transported to the film forming apparatus 1 by the transport robot 620.
- the inside of the deposition apparatus 1 and each chamber that constitutes the deposition system SY is maintained in a vacuum state by an exhaust mechanism such as a vacuum pump.
- the "vacuum state” means a state filled with gas at a pressure lower than atmospheric pressure, i.e., a reduced pressure state.
- FIG. 2 is a front view showing a schematic configuration of a film forming apparatus 1 according to one aspect of the present invention.
- arrows X and Y indicate horizontal directions that are perpendicular to each other, and arrow Z indicates the vertical direction.
- the film forming apparatus 1 is an apparatus for performing a film forming process to form a film (thin film) on a substrate by adhering (evaporating) an evaporation material released from an evaporation source onto the substrate while moving the evaporation source relative to the substrate.
- the film forming apparatus 1 is used, for example, as a manufacturing apparatus for display panels of organic EL display devices for smartphones, and as described above, a manufacturing line is formed by arranging a plurality of the apparatuses.
- the material of the substrate on which the film forming process is performed in the film forming apparatus 1 can be appropriately selected from glass, resin, metal, etc., and in particular, a substrate on which a resin layer such as polyimide is formed on glass is suitable.
- the evaporation material can be an organic material or an inorganic material (e.g., metal, metal oxide), etc.
- the film forming apparatus 1 is not limited to the manufacture of display panels of organic EL display devices, and can also be used as a manufacturing apparatus for electronic devices such as display devices (flat panel displays), thin-film solar cells, and organic photoelectric conversion elements (organic thin-film imaging elements), and optical components.
- the film forming apparatus 1 performs film forming processing on a G8H size glass substrate (1100 mm x 2500 mm, 1250 mm x 2200 mm), but the size of the substrate on which the film forming apparatus 1 performs film forming processing can be set appropriately.
- the film forming apparatus 1 has an evaporation source unit 10 and multiple film forming stages 30A and 30B.
- the evaporation source unit 10 and the film forming stages 30A and 30B are arranged inside a chamber 45 that is maintained in a vacuum state during film forming processing (when in use).
- the multiple film forming stages 30A and 30B are provided spaced apart in the X direction at the top inside the chamber 45, and the evaporation source unit 10 is provided below them.
- the chamber 45 also has multiple loading/unloading ports (not shown) for loading and unloading the substrate 100.
- the film forming apparatus 1 further includes a power supply 41 that supplies power to the evaporation source unit 10, and an electrical connection section 42 that electrically connects the evaporation source unit 10 and the power supply 41.
- the electrical connection section 42 includes electrical wiring built into an arm that is movable in the horizontal direction, and is configured to be able to supply power from the power supply 41 to the evaporation source unit 10 that is movable in the X direction.
- the film forming apparatus 1 further includes a control unit 43 that controls each component (operation) of the film forming apparatus 1.
- the control unit 43 is composed of a computer (information processing device) including, for example, a processor such as a CPU, memories such as RAM and ROM, and various interfaces.
- the control unit 43 realizes various operations and processes in the film forming apparatus 1 by reading a program stored in the ROM into the RAM and executing it. Note that instead of the control unit 43, it is also possible to directly control each component of the film forming apparatus 1 using a host computer that comprehensively controls the film forming system SY.
- the film-forming stage 30A is a stage for performing a film-forming process on the substrate 100A.
- the film-forming stage 30A supports the substrate 100A and the mask 101A, and adjusts the relative positions of the substrate 100A and the mask 101A.
- the film-forming stage 30A includes a substrate support portion 32A, a mask support portion 34A, a support column 35A, and an alignment mechanism 36A.
- the substrate support section 32A supports the substrate 100A.
- the substrate support section 32A supports the substrate 100A so that the short side of the substrate 100A is aligned along the X direction and the long side of the substrate 100A is aligned along the Y direction.
- the substrate support section 32A supports the edge of the substrate 100A from the underside of the substrate 100A.
- the substrate support section 32A may support the substrate 100A by clamping the edge of the substrate 100A, or may support the substrate 100A by adsorbing the substrate 100A with an electrostatic chuck or an adhesive chuck.
- the substrate support section 32A receives the substrate 100A that has been transported into the film formation system SY via a transport robot 620 provided in the substrate transport chamber 62.
- the substrate support 32A is provided with a lifting mechanism (not shown) that allows the substrate support 32A to be raised and lowered, and the substrate 100A received from the transfer robot 620 can be superimposed on the mask 101A supported by the mask support 34A.
- a lifting mechanism a ball screw mechanism or other technology well known in the industry can be applied.
- the mask support portion 34A supports the mask 101A.
- an opening (not shown) is provided in the mask support portion 34A, and the deposition material adheres (scatters) through this opening to the deposition surface (surface on which a film is formed) of the substrate 100A superimposed on the mask 101A.
- the mask support portion 34A is supported by the chamber 45 via the support pillars 35A.
- the alignment mechanism 36A performs alignment to adjust the relative positions of the substrate 100A and the mask 101A.
- the alignment mechanism 36A adjusts the relative positions of the substrate support part 32A and the mask support part 34A in the horizontal direction to align the substrate 100A supported by the substrate support part 32A and the mask 101A supported by the mask support part 34A.
- the alignment mechanism 36A first detects alignment marks formed on the substrate 100A and the mask 101A with a camera (not shown).
- the alignment mechanism 36A adjusts the positional relationship between the substrate 100A and the mask 101A so that the relationship between the position of the substrate 100A and the position of the mask 101A obtained by detecting these marks satisfies a predetermined condition. Specifically, the mark formed on the substrate 100A and the mark formed on the mask 101A are overlapped, the amount of misalignment between these marks is detected by a camera, and the position of the substrate 100A is adjusted so that the specified conditions are met (within the tolerance range).
- the deposition stage 30B includes a configuration similar to that of the deposition stage 30A.
- the deposition stage 30B includes a substrate support 32B, a mask support 34B, a support 35B, and an alignment mechanism 36B.
- the substrate support 32B, the mask support 34B, the support 35B, and the alignment mechanism 36B correspond to the substrate support 32A, the mask support 34A, the support 35A, and the alignment mechanism 36A, respectively.
- the film forming apparatus 1 has multiple film forming stages 30A and 30B, and is embodied as a so-called dual-stage film forming apparatus. Therefore, while a film forming process (such as vapor deposition) is being performed on the substrate 100A in the film forming stage 30A, alignment between the substrate 100B and the mask 101B can be performed in the film forming stage 30B, and the film forming process can be performed efficiently.
- a film forming process such as vapor deposition
- Figure 3 is a diagram for explaining the configuration of the evaporation source unit 10, and is a diagram showing the evaporation source unit 10 from a lateral direction (Y direction).
- Figure 4 is a diagram for explaining the configuration of the evaporation source unit 10, and is a diagram showing the evaporation source unit 10 from above (Z direction).
- FIG. 5 is a cross-sectional view showing a schematic configuration of the evaporation sources 11a to 11r.
- Each of the evaporation sources 11a to 11r emits a deposition material.
- each of the evaporation sources 11a to 11r includes a material container 111 and a heating unit 112.
- the material container 111 is a crucible that contains a deposition material to be attached to the substrate 100.
- a release section 1111 is provided at the top of the material container 111 to release the deposition material evaporated inside the material container 111 to the outside of the material container 111.
- the release section 1111 is configured as an opening (release port) formed on the top surface of the material container 111, but is not limited to this.
- the function of the release section 1111 may be realized by configuring the material container 111 from a cylindrical member or the like.
- the top surface of the material container 111 may be provided with multiple openings as the release section 1111.
- the heating unit 112 heats and evaporates the deposition material contained in the material container 111.
- the heating unit 112 is preferably provided so as to cover the entire material container 111.
- the heating unit 112 is embodied as a sheathed heater using an electric heating wire, and FIG. 5 shows a cross section of the sheathed heater when the electric heating wire is wrapped around the material container 111.
- each of the multiple evaporation sources 11a to 11r independently includes a material container 111 and a heating unit 112. Therefore, the control unit 43 can independently control the heating (evaporation) of the deposition material by each of the multiple evaporation sources 11a to 11r.
- the multiple evaporation sources 11a to 11r are roughly divided into three evaporation source groups 17A to 17C spaced apart from one another along the movement direction (X direction) of the evaporation source unit 10.
- Evaporation source group 17A includes multiple evaporation sources 11a to 11f arranged along a cross direction (Y direction) that intersects with the movement direction of the evaporation source unit 10.
- Evaporation source group 17B includes multiple evaporation sources 11g to 11l arranged along a cross direction that intersects with the movement direction of the evaporation source unit 10.
- Evaporation source group 17C includes multiple evaporation sources 11m to 11r arranged along a cross direction that intersects with the movement direction of the evaporation source unit 10.
- the three evaporation source groups 17A to 17C are arranged in the movement direction of the evaporation source unit 10 in the order of evaporation source group 17A, evaporation source group 17B, and evaporation source group 17C. Therefore, when focusing on the evaporation sources included in each of the evaporation source groups 17A to 17C, for example, evaporation source 11d, evaporation source 11j, and evaporation source 11p are arranged in this order along the movement direction of the evaporation source unit 10. Furthermore, the three evaporation source groups 17A to 17C are capable of emitting different deposition materials from each other.
- the multiple monitoring devices 12a to 12r are provided corresponding to the multiple evaporation sources 11a to 11r.
- Each of the multiple monitoring devices 12a to 12r monitors the state (emission state) of the deposition material emitted from each of the multiple evaporation sources 11a to 11r, for example, the rate of the deposition material (evaporation rate (film formation rate)).
- the monitoring devices 12a to 12r include a case 121 and a quartz oscillator 123 (quartz monitor) provided inside the case 121 as a thick film sensor.
- the deposition material emitted from the evaporation source 11 and introduced into the case 121 through an introduction part 122 provided in the case 121 adheres to the quartz oscillator 123.
- the frequency of the quartz oscillator 123 varies depending on the amount (adhesion amount) of the deposition material adhering to the quartz oscillator 123. Therefore, the control unit 43 can calculate the film thickness of the deposition material adhered (deposited) on the substrate 100 based on the frequency of the quartz oscillator 123.
- the amount of deposition material adhering to the quartz crystal oscillator 123 per unit time correlates with the amount of deposition material released from the evaporation source 11, so the monitoring devices 12a to 12r can monitor the state of the deposition material released from the multiple evaporation sources 11.
- each of the monitoring devices 12a to 12r independently monitors the state of the deposition material released from the evaporation sources 11a to 11r. Furthermore, the control unit 43 independently controls the evaporation sources 11a to 11r (the output of each heating unit) based on the monitoring results of the monitoring devices 12a to 12r. In other words, the control unit 43 controls the film formation rate of each of the evaporation sources 11a to 11r based on the rate of the deposition material monitored by each of the monitoring devices 12a to 12r.
- the limiting section 14 limits the release range of the deposition material released from the multiple evaporation sources 11a to 11r.
- the limiting section 14 includes multiple plate members 141 to 144.
- the plate members 141 and 142 limit the release range in the X direction of the deposition material released from the multiple evaporation sources 11a to 11f.
- the plate members 142 and 143 limit the release range in the X direction of the deposition material released from the multiple evaporation sources 11g to 11l.
- the plate members 143 and 144 limit the release range in the X direction of the deposition material released from the multiple evaporation sources 11g to 11r.
- the plate member 141 is provided with cylindrical members 141a-141l through which the deposition material introduced (scattered) to the monitoring devices 12a-12l passes.
- the plate member 142 is provided with cylindrical members 142g-142l through which the deposition material introduced to the monitoring devices 12g-12l passes.
- the plate member 144 is provided with cylindrical members 144m-144l through which the deposition material introduced to the monitoring devices 12m-12r passes.
- the cylindrical members 141a-141l, 142g-142l, and 144m-144l contribute to preventing a decrease in the monitoring accuracy of the monitoring devices caused by deposition material emitted from an adjacent evaporation source entering a monitoring device that is not being monitored (so-called crosstalk).
- the shutters 161-163 control the scattering of the deposition material emitted from the evaporation source groups 17A-17C onto the substrate 100.
- the shutters 161-163 are provided so as to be displaceable between a blocking position that blocks the scattering of the deposition material emitted from the evaporation source groups 17A-17C onto the substrate 100, and an allowable position that allows the scattering of the deposition material onto the substrate 100.
- the shutter 161 is provided so as to be displaceable between a blocking position that blocks the scattering of the deposition material emitted from the evaporation sources 11a-11f included in the evaporation source group 17A onto the substrate 100, and an allowable position that allows the scattering of the deposition material onto the substrate 100.
- the shutters 162 and 163 are also provided so as to be displaceable between a blocking position and an allowable position, similar to the shutter 161.
- the shutter 161 includes a rotating shaft 1611 whose axial direction is a cross direction (Y direction) that intersects with the movement direction of the evaporation source unit 10, and a shielding member 1612 provided on the rotating shaft 1611.
- the shutter 161 is displaced between a blocking position and an allowable position as the shielding member 1612 rotates about the rotating shaft 1611 to perform an opening and closing operation.
- the shutter 162 includes a rotating shaft 1621 and a shielding member 1622
- the shutter 163 includes a rotating shaft 1631 and a shielding member 1632.
- the rotation axis 1611 of the shutter 161 is positioned offset in the movement direction (X direction) of the evaporation source unit 10 with respect to the emission parts 1111 of the evaporation sources 11a to 11f.
- the rotation axis 1621 of the shutter 162 is positioned offset in the movement direction of the evaporation source unit 10 with respect to the emission parts 1111 of the evaporation sources 11g to 11l.
- the rotation axis 1631 of the shutter 163 is positioned offset in the movement direction of the evaporation source unit 10 with respect to the emission parts 1111 of the evaporation sources 11p to 11r. This makes it possible to suppress interference between the shutters 161 to 163 and the emission ranges of the evaporation sources 11a to 11r when the shutters 161 to 163 are positioned in the permissible positions.
- the height of the pivot shaft 1611 of the shutter 161 is different from the height of the pivot shaft 1621 of the shutter 162. This makes it possible to suppress interference between the shutters 161 and 162 when the shutters 161 and 162 are opened and closed simultaneously, and to arrange the shutters 161 and 162 compactly in the X direction.
- the rotation axis 1621 of the shutter 162 covering the top of the evaporation source group 17B arranged on the +X side of the evaporation source group 17A is shifted to the +X side with respect to the emission parts 1111 of the evaporation sources 11g to 11l.
- the rotation axis 1611 of the shutter 161 covering the top of the evaporation source group 17A arranged on the -X side of the evaporation source group 17B is shifted to the -X side with respect to the emission parts 1111 of the evaporation sources 11a to 11f. Therefore, the shutters 161 and 162 are configured like double-hinged doors.
- the moving unit 20 moves the evaporation source unit 10, specifically the multiple evaporation sources 11a-11r and the multiple monitoring devices 12a-12r, in the moving direction (X direction).
- the moving unit 20 moves the evaporation source unit 10 relative to the substrate 100, while the evaporation material emitted from the evaporation source unit 10 is deposited (deposited) on the substrate 100 to form a film (layer) of the evaporation material on the substrate 100.
- the moving part 20 includes, as components provided in the evaporation source unit 10, a motor (not shown), a pinion 202 provided on a shaft member that rotates when driven by the motor, and a guide member 203.
- the moving part 20 further includes a rack (not shown) that engages with the pinion 202, and a guide rail 206 along which the guide member 203 slides.
- the evaporation source unit 10 moves in the X direction along the guide rail 206 as the pinion 202, which rotates when driven by the motor, engages with the rack.
- each of the evaporation source group 17A evaporation sources 11a to 11f
- evaporation source group 17B evaporation sources 11g to 11l
- evaporation source group 17C evaporation sources 11m to 11r
- each of the evaporation source groups 17A to 17C contains any deposition material.
- evaporation source group 17B which is located between evaporation source group 17A and evaporation source group 17C (the central row) contains a deposition material that adheres in small amounts (weight) to the quartz oscillator included in the monitoring device, it becomes difficult to control the rate of deposition material released from evaporation source group 17B with high precision. There are two main reasons for this, as explained below.
- the first reason is that the control (precision) of the rate of deposition material released from the evaporation source group (evaporation source) depends on the amount of deposition material that adheres to the quartz oscillator.
- the physical distance between the central row of evaporation source group 17B and monitoring devices 12g-12l is longer than the physical distance between evaporation source group 17A and monitoring devices 12a-12f and the physical distance between evaporation source group 17C and monitoring devices 12m-12r. If such evaporation source group 17B contains deposition material that adheres only in small amounts to the quartz oscillator, the amount of deposition material that adheres to the quartz oscillator 123 contained in monitoring devices 12g-12l will be significantly reduced, and the monitoring precision of monitoring devices 12g-12l will decrease.
- the second reason is that the deposition material emitted from the evaporation source group 17A and the evaporation source group 17C adjacent to the evaporation source group 17B enters the monitoring devices 12g to 12l that are not monitored (crosstalk), reducing the monitoring accuracy of the monitoring devices 12g to 12l.
- the deposition material discharged (contained) by each of the deposition source groups 17A to 17C is specified in consideration of the relative positions of the deposition source groups 17A to 17C, thereby suppressing a decrease in the monitoring accuracy of the monitoring device for deposition material that adheres in small amounts to the quartz oscillator.
- the evaporation source group 17B first evaporation source group
- the evaporation source group 17A second evaporation source group
- the evaporation source group 17A evaporation sources 11a to 11f
- the evaporation source group 17B evaporation sources 11g to 11l
- the amount of the first evaporation substance released from the evaporation source and adhered to the quartz oscillator is the first adhesion amount
- the amount of the second evaporation substance released from the evaporation source and adhered to the quartz oscillator is the second adhesion amount that is smaller than the first adhesion amount.
- the second evaporation substance is an evaporation substance that adheres to the quartz oscillator in a smaller amount than the first evaporation substance.
- the first evaporation material is contained in the evaporation sources 11g to 11l (first evaporation source) included in the evaporation source group 17B arranged in the central row
- the second evaporation material is contained in the evaporation sources 11a to 11f (second evaporation source) included in the evaporation source group 17A arranged in the outer row. Therefore, the amount of the second evaporation material adhering to the quartz oscillator 123 of the monitoring devices 12a to 12f is smaller than the amount of the first evaporation material adhering to the quartz oscillator 123 of the monitoring devices 12g to 12l.
- the evaporation source group 17A including the evaporation sources 11a to 11f that accommodate the second evaporation material that adheres less to the quartz oscillator 123 is arranged in the outer row.
- the evaporation source group 17A is arranged closer to the monitoring devices 12a to 12l than the evaporation source group 17B so that the amount of deposition material adhering to the quartz oscillators of the monitoring devices 12a to 12f is smaller than the amount of deposition material adhering to the quartz oscillators of the monitoring devices 12g to 12l.
- the monitoring devices 12a to 12f and the monitoring devices 12g to 12l are arranged side by side along a cross direction (Y direction) that crosses the movement direction (X direction) of the evaporation source unit 10.
- the monitoring devices 12a to 12f and the monitoring devices 12g to 12l are also arranged outside the evaporation source group 17A in the movement direction of the evaporation source unit 10.
- the deposition material emitted (contained) by each of the evaporation source groups 17A and 17B in consideration of the relative positions of the evaporation source groups 17A and 17B, it is possible to control the rate of the second deposition material emitted from the evaporation source group 17A with high precision. This is because the physical distance between the evaporation source group 17A, which contains the deposition material that adheres less to the quartz oscillator, and the monitoring devices 12a to 12f is short, which prevents the deposition amount of the deposition material adhering to the quartz oscillator from decreasing significantly. In addition, the deposition material emitted from the evaporation source group 17B adjacent to the evaporation source group 17A is also prevented from entering the monitoring devices 12g to 12l that are not monitored (crosstalk).
- the evaporation source group 17A and the evaporation source group 17B contain either one of the evaporation materials, magnesium (Mg) or silver (Ag), and attention is paid to the evaporation source 11d included in the evaporation source group 17A and the evaporation source 11j included in the evaporation source group 17B.
- Magnesium (Mg) is an evaporation material that adheres to the quartz crystal oscillator in a smaller amount than silver (Ag).
- the adhesion amount of the evaporation material to the quartz crystal oscillator is defined as the product of the film formation rate [ ⁇ /s] and the film density [g/cm 3 ], and the film density of magnesium (Mg) is 1.7 [g/cm 3 ] and the film density of silver (Ag) is 10.4 [g/cm 3 ].
- the film formation rates displayed by the monitor devices 12d and 12j each include a correction value (so-called tooling factor) for the actual film formation rate of the evaporation material.
- the physical distance between the evaporation source 11d and the monitor 12d is set to 1 [L]
- the physical distance between the evaporation source 11j and the monitor 12j is set to 2 [L].
- silver (Ag) is stored in the evaporation source 11d
- magnesium (Mg) is stored in the evaporation source 11j
- Ag and Mg are simultaneously deposited on the substrate to form a mixed film of Ag and Mg (silver magnesium (AgMg)) at a film formation rate of 1.0 [ ⁇ /s] (co-evaporation).
- the actual film formation rate of magnesium (Mg) is 1.00 [ ⁇ /s]
- the actual film formation rate of silver (Ag) is 0.01 [ ⁇ /s].
- magnesium (Mg) is stored in the evaporation source 11d
- silver (Ag) is stored in the evaporation source 11j
- Ag and Mg are simultaneously deposited on the substrate to form a mixed film of Ag and Mg (silver magnesium (AgMg)) at a film formation rate of 1.0 [ ⁇ /s] (co-evaporation).
- the actual film formation rate of magnesium (Mg) is 1.00 [ ⁇ /s]
- the actual film formation rate of silver (Ag) is 0.01 [ ⁇ /s].
- the effect of crosstalk (amount of crosstalk components adhering) in monitoring device 12j is significantly reduced compared to the comparative example. Therefore, in monitoring device 12j, a decrease in monitoring accuracy due to intrusion of deposition material from evaporation source 11d adjacent to evaporation source 11j (crosstalk) is suppressed. Note that while the embodiment has been described with respect to monitoring device 12j, it is clear that a decrease in monitoring accuracy due to intrusion of deposition material from evaporation sources 11a-c, 11e, and 11f is similarly suppressed for monitoring devices 12g-12i, 12k, and 12l.
- the amount of crosstalk components adhering to the monitoring devices 12g to 12l is largely dependent on the film formation rate and film density. Therefore, it is preferable that the film formation rate of the evaporation source group 17A (evaporation sources 11a to 11f) is lower than that of the evaporation source group 17B (evaporation sources 11g to 11l). Therefore, it is preferable to arrange the evaporation source group 17A including the evaporation sources 11a to 11f that accommodate the evaporation material with a low film formation rate in the outer row, that is, outside the evaporation source group 17B including the evaporation sources 11g to 11l that accommodate the evaporation material with a high film formation rate.
- the film density of the evaporation material discharged from the evaporation source group 17A (evaporation sources 11a to 11f) and adhering to the quartz crystal oscillator is lower than the film density of the evaporation material discharged from the evaporation source group 17B (evaporation sources 11g to 11l) and adhering to the quartz crystal oscillator. Therefore, it is advisable to arrange the evaporation source group 17A, which includes evaporation sources 11a to 11f that contain evaporation materials with low film density, in the outer row, that is, outside the evaporation source group 17B, which includes evaporation sources 11g to 11l that contain evaporation materials with high film density.
- evaporation source group 17A evaporation sources 11a to 11f
- evaporation source group 17B evaporation sources 11g to 11l
- silver Ag
- evaporation source group 17C evaporation sources 11m to 11r
- Evaporation source group 17C is arranged outside evaporation source group 17B and opposite evaporation source group 17A in the movement direction (X direction) of the evaporation source unit 10.
- Yb emitted from evaporation source group 17C is deposited on the substrate independently of Ag emitted from evaporation source group 17B and Mg emitted from evaporation source group 17A to form a Yb film (single deposition).
- the control unit 43 controls the operation of the shutters 161 to 163, and a Yb film (first layer) and a silver magnesium (AgMg) film (second layer) are deposited on the substrate.
- these deposition materials are merely examples and are not limiting.
- the uniformity of the thickness of the film of the deposition material formed on the substrate 100 is also related to the distance (spacing) between two adjacent evaporation sources in a cross direction (Y direction) that intersects with the movement direction (X direction) of the evaporation source unit 10. For example, making the distance between two adjacent evaporation sources in a cross direction that intersects with the movement direction of the evaporation source unit 10 shorter on the outside of the layout area of the multiple evaporation sources than on the center side can contribute to the uniformity of the thickness of the film of the deposition material formed on the substrate 100.
- the distance L3 between the evaporation source 11b and the evaporation source 11a is made shorter than the distance L2 between the evaporation source 11c and the evaporation source 11b.
- the distance between two adjacent evaporation sources in the intersecting direction intersecting with the movement direction of the evaporation source unit 10 is made different from each other.
- the distance between two adjacent evaporation sources in the intersecting direction (Y direction) that intersects with the movement direction (X direction) of the evaporation source unit 10 is not constant, and there are portions where the distance between the two adjacent evaporation sources is wide.
- the monitoring devices 12a to 12f are arranged so that the line connecting each of the monitoring devices 12a to 12f and the corresponding evaporation source among the multiple evaporation sources 11a to 11f included in the evaporation source group 17A is parallel to the movement direction (X direction) of the evaporation source unit 10.
- the monitoring devices 12g to 12l are arranged so that the line connecting each of the monitoring devices 12g to 12l and the corresponding evaporation source among the multiple evaporation sources 11g to 11l included in the evaporation source group 17B intersects with the movement direction of the evaporation source unit 10.
- the monitoring devices 12a to 12f and the monitoring devices 12g to 12l are arranged on one side of the movement direction (X direction) of the evaporation source unit 10, which in this embodiment is the side of the evaporation source group 17A. Therefore, the state of the deposition material released from the evaporation sources 11a to 11f included in the evaporation source group 17A close to the area where the monitoring devices 12a to 12l are arranged is monitored by the monitoring devices 12a to 12f at the shortest distance. In addition, the state of the deposition material emitted from the evaporation sources 11g-11l included in the evaporation source group 17B is monitored from an oblique direction by the monitoring devices 12g-12l. This suppresses crosstalk between the monitoring devices 12a-12f (evaporation sources 11a-11f) and the monitoring devices 12g-12l, and prevents a decrease in the monitoring accuracy of the monitoring devices 12a-12l.
- the monitoring devices 12m-12r are arranged so that the line connecting each monitoring device 12m-12r and the corresponding evaporation source among the multiple evaporation sources 11m-11r included in the evaporation source group 17C (third evaporation source group) is parallel to the movement direction of the evaporation source unit 10.
- the monitoring devices 12m-12r are also arranged on the other side of the movement direction of the evaporation source unit 10, which in this embodiment is the side of the evaporation source group 17C.
- the state of the deposition material emitted from the evaporation sources 11m-11r included in the evaporation source group 17C close to the area where the monitoring devices 12m-12r are arranged is monitored by the monitoring devices 12m-12r at the shortest distance. This suppresses crosstalk in the monitoring devices 12m-12r, and prevents a decrease in the monitoring accuracy of the monitoring devices 12m-12r.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Electroluminescent Light Sources (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Provided is an evaporation source unit that forms a film on a substrate that moves relative to a movement direction, and is characterized by comprising: a first evaporation source group that includes a plurality of first evaporation sources which are arranged along an intersecting direction intersecting the movement direction and which each release a first vapor deposition substance to be attached to the substrate; a second evaporation source group that is disposed further outward than the first evaporation source group in the movement direction and that includes a plurality of second evaporation sources which are disposed along the intersecting direction and which each release a second vapor deposition substance to be attached to the substrate; a first quartz monitor that monitors the state of the first vapor deposition substance released from the first evaporation sources; and a second quartz monitor that monitors the state of the second vapor deposition substance released from the second evaporation sources. The evaporation source unit is characterized in that the amount of the second vapor deposition substance released from the second evaporation sources and attached to the second quartz monitor is smaller than the amount of the first vapor deposition substance released from the first evaporation sources and attached to the first quartz monitor.
Description
本発明は、蒸発源ユニット、成膜装置及び成膜方法に関する。
The present invention relates to an evaporation source unit, a film forming apparatus, and a film forming method.
有機ELディスプレイなどの製造においては、蒸発源から放出された蒸着物質が基板に付着することで基板に膜(薄膜)が形成される。特許文献1には、複数の蒸着源を用いて成膜を行う際に、蒸発源から蒸発される蒸着材料の状態、例えば、蒸発レートや成膜レートをモニタ(監視)するセンサ(成膜レートモニタ)が開示されている。
In the manufacture of organic EL displays and the like, deposition material emitted from an evaporation source adheres to the substrate to form a film (thin film) on the substrate. Patent Document 1 discloses a sensor (film formation rate monitor) that monitors the state of the deposition material evaporated from the evaporation source, such as the evaporation rate and film formation rate, when a film is formed using multiple evaporation sources.
しかしながら、複数の蒸発源を用いて成膜を行う場合、基本的には、各蒸発源に対して成膜レートモニタなどを含む監視装置がそれぞれ設けられるが、監視装置と監視対象の蒸発源との位置関係によって、監視装置の監視精度が低下する可能性がある。このような場合、成膜レートの制御が困難となり、基板に形成される膜の膜厚の均一性を低下させる虞がある。
However, when forming a film using multiple evaporation sources, a monitoring device including a film formation rate monitor is basically provided for each evaporation source, but the monitoring accuracy of the monitoring device may decrease depending on the positional relationship between the monitoring device and the evaporation source being monitored. In such cases, it becomes difficult to control the film formation rate, and there is a risk of reducing the uniformity of the film thickness formed on the substrate.
本発明は、基板に形成される膜の膜厚の均一化に有利な技術を提供する。
The present invention provides a technology that is advantageous for making the thickness of a film formed on a substrate uniform.
本発明の一側面としての蒸発源ユニットは、移動方向に相対的に移動する基板に対して成膜を行う蒸発源ユニットであって、前記移動方向に交差する交差方向に沿って並んで配置され、前記基板に付着させる第1蒸着物質をそれぞれが放出する複数の第1蒸発源を含む第1蒸発源群と、前記交差方向に沿って並んで配置され、前記基板に付着させる第2蒸着物質をそれぞれが放出する複数の第2蒸発源を含み、前記移動方向において前記第1蒸発源群よりも外側に配置された第2蒸発源群と、前記第1蒸発源から放出される前記第1蒸着物質の状態を監視する第1水晶モニタと、前記第2蒸発源から放出される前記第2蒸着物質の状態を監視する第2水晶モニタと、を有し、前記第2蒸発源から放出されて前記第2水晶モニタに付着する前記第2蒸着物質の付着量は、前記第1蒸発源から放出されて前記第1水晶モニタに付着する前記第1蒸着物質の付着量よりも小さい、ことを特徴とする。
The evaporation source unit according to one aspect of the present invention is an evaporation source unit that forms a film on a substrate moving relatively in a moving direction, and includes a first evaporation source group including a plurality of first evaporation sources arranged in a line along a cross direction intersecting the moving direction, each emitting a first evaporation material to be deposited on the substrate, a second evaporation source group including a plurality of second evaporation sources arranged in a line along the cross direction, each emitting a second evaporation material to be deposited on the substrate, and disposed outside the first evaporation source group in the moving direction, a first crystal monitor that monitors the state of the first evaporation material emitted from the first evaporation source, and a second crystal monitor that monitors the state of the second evaporation material emitted from the second evaporation source, and is characterized in that the amount of the second evaporation material discharged from the second evaporation source and deposited on the second crystal monitor is smaller than the amount of the first evaporation material discharged from the first evaporation source and deposited on the first crystal monitor.
本発明によれば、例えば、基板に形成される膜の膜厚の均一化に有利な技術を提供することができる。
The present invention can provide a technology that is advantageous for, for example, making the thickness of a film formed on a substrate uniform.
本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
Other features and advantages of the present invention will become apparent from the following description taken in conjunction with the accompanying drawings, in which the same or similar components are designated by the same reference numerals.
添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本発明の一側面としての成膜装置を有する成膜システムの構成を模式的に示す平面図である。
本発明の一側面としての成膜装置の構成を模式的に示す正面図である。
蒸発源ユニットの構成を説明するための図である。
蒸発源ユニットの構成を説明するための図である。
蒸発源の構成を模式的に示す断面図である。
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
1 is a plan view showing a schematic configuration of a film formation system having a film formation apparatus according to one aspect of the present invention. 1 is a front view showing a schematic configuration of a film forming apparatus according to one aspect of the present invention; 3A and 3B are diagrams for explaining the configuration of an evaporation source unit. 3A and 3B are diagrams for explaining the configuration of an evaporation source unit. FIG. 2 is a cross-sectional view illustrating a schematic configuration of an evaporation source.
以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴のうち二つ以上の特徴は任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。
The following embodiments are described in detail with reference to the attached drawings. Note that the following embodiments do not limit the invention as claimed, and not all combinations of features described in the embodiments are necessarily essential to the invention. Two or more of the features described in the embodiments may be combined in any desired manner. In addition, the same reference numbers are used for identical or similar configurations, and duplicate descriptions will be omitted.
図1は、本発明の一側面としての成膜装置1を有する成膜システムSYの構成を模式的に示す平面図である。成膜システムSYは、搬入される基板に対して成膜処理を行い、成膜処理が行われた基板を搬出するシステムである。例えば、複数の成膜システムSYを並べて設置することで、電子デバイスの製造ラインが構成される。電子デバイスとしては、例えば、スマートフォン用の有機EL表示装置の表示パネルが挙げられる。
FIG. 1 is a plan view showing a schematic configuration of a film formation system SY having a film formation apparatus 1 according to one aspect of the present invention. The film formation system SY is a system that performs a film formation process on a substrate that is brought in and then removes the substrate after the film formation process. For example, a manufacturing line for electronic devices is formed by arranging multiple film formation systems SY side by side. An example of an electronic device is a display panel of an organic EL display device for a smartphone.
成膜システムSYは、図1に示すように、成膜装置1と、搬入室60と、基板搬送室62と、搬出室64と、マスクストック室66と、を有する。なお、成膜装置1の構成については、後で詳細に説明する。
As shown in FIG. 1, the film formation system SY includes a film formation apparatus 1, a loading chamber 60, a substrate transport chamber 62, an unloading chamber 64, and a mask stock chamber 66. The configuration of the film formation apparatus 1 will be described in detail later.
搬入室60には、成膜装置1において成膜処理が行われる基板100が成膜装置1の外部から搬入される。基板搬送室62には、基板100を搬送する搬送ロボット620が設けられる。搬送ロボット620は、搬入室60に搬入された基板100を成膜装置1に搬送する。また、搬送ロボット620は、成膜装置1において成膜処理が行われた基板100を搬出室64に搬送する。搬送ロボット620によって搬出室64に搬送された基板100は、搬出室64から成膜システムSYの外部に搬出される。なお、複数の成膜システムSYが並べて設置されている場合には、上流側の成膜システムSYの搬出室64が下流側の成膜システムSYの基板搬送室62を兼ねていてもよい。マスクストック室66には、成膜装置1における成膜処理に用いられるマスク101がストックされる。マスクストック室66にストックされているマスク101は、搬送ロボット620によって成膜装置1に搬送される。
The substrate 100 to be subjected to the film formation process in the film formation apparatus 1 is carried into the loading chamber 60 from outside the film formation apparatus 1. The substrate transport chamber 62 is provided with a transport robot 620 for transporting the substrate 100. The transport robot 620 transports the substrate 100 carried into the loading chamber 60 to the film formation apparatus 1. The transport robot 620 also transports the substrate 100 to the unloading chamber 64 after the film formation process in the film formation apparatus 1. The substrate 100 transported to the unloading chamber 64 by the transport robot 620 is unloaded from the unloading chamber 64 to the outside of the film formation system SY. When multiple film formation systems SY are installed side by side, the unloading chamber 64 of the upstream film formation system SY may also serve as the substrate transport chamber 62 of the downstream film formation system SY. In the mask stock chamber 66, the mask 101 used for the film formation process in the film formation apparatus 1 is stocked. The mask 101 stored in the mask stock chamber 66 is transported to the film forming apparatus 1 by the transport robot 620.
成膜システムSYを構成する成膜装置1及び各室の内部は、真空ポンプなどの排気機構によって真空状態に維持される。なお、本実施形態において、「真空状態」とは、大気圧よりも低い圧力の気体で満たされた状態、即ち、減圧状態を意味する。
The inside of the deposition apparatus 1 and each chamber that constitutes the deposition system SY is maintained in a vacuum state by an exhaust mechanism such as a vacuum pump. In this embodiment, the "vacuum state" means a state filled with gas at a pressure lower than atmospheric pressure, i.e., a reduced pressure state.
図2は、本発明の一側面としての成膜装置1の構成を模式的に示す正面図である。なお、以下の図において、矢印X及びYは、互いに直交する水平方向を示し、矢印Zは、垂直方向(鉛直方向)を示す。
FIG. 2 is a front view showing a schematic configuration of a film forming apparatus 1 according to one aspect of the present invention. In the following figures, arrows X and Y indicate horizontal directions that are perpendicular to each other, and arrow Z indicates the vertical direction.
成膜装置1は、基板に対して蒸発源を移動させながら、基板に蒸発源から放出された蒸着物質を付着(蒸着)させることで、基板に膜(薄膜)を形成する成膜処理を行う装置である。成膜装置1は、例えば、スマートフォン用の有機EL表示装置の表示パネルの製造装置として用いられ、上述したように、複数台を並べて設置することで、その製造ラインを構成する。成膜装置1で成膜処理が行われる基板の材質としては、ガラス、樹脂、金属などを適宜選択可能であり、特に、ガラス上にポリイミドなどの樹脂層が形成されたものが好適である。蒸着物質としては、有機材料や無機材料(例えば、金属、金属酸化物)などが用いられる。なお、成膜装置1は、有機EL表示装置の表示パネルの製造に限定されず、表示装置(フラットパネルディスプレイ)や薄膜太陽電池、有機光電変換素子(有機薄膜撮像素子)などの電子デバイス、光学部材などの製造装置としても適用可能である。また、本実施形態において、成膜装置1は、G8Hサイズのガラス基板(1100mm×2500mm、1250mm×2200mm)に対して成膜処理を行うが、成膜装置1が成膜処理を行う基板のサイズは適宜設定可能である。
The film forming apparatus 1 is an apparatus for performing a film forming process to form a film (thin film) on a substrate by adhering (evaporating) an evaporation material released from an evaporation source onto the substrate while moving the evaporation source relative to the substrate. The film forming apparatus 1 is used, for example, as a manufacturing apparatus for display panels of organic EL display devices for smartphones, and as described above, a manufacturing line is formed by arranging a plurality of the apparatuses. The material of the substrate on which the film forming process is performed in the film forming apparatus 1 can be appropriately selected from glass, resin, metal, etc., and in particular, a substrate on which a resin layer such as polyimide is formed on glass is suitable. The evaporation material can be an organic material or an inorganic material (e.g., metal, metal oxide), etc. Note that the film forming apparatus 1 is not limited to the manufacture of display panels of organic EL display devices, and can also be used as a manufacturing apparatus for electronic devices such as display devices (flat panel displays), thin-film solar cells, and organic photoelectric conversion elements (organic thin-film imaging elements), and optical components. In addition, in this embodiment, the film forming apparatus 1 performs film forming processing on a G8H size glass substrate (1100 mm x 2500 mm, 1250 mm x 2200 mm), but the size of the substrate on which the film forming apparatus 1 performs film forming processing can be set appropriately.
成膜装置1は、図2に示すように、蒸発源ユニット10と、複数の成膜ステージ30A及び30Bと、を有する。蒸発源ユニット10及び成膜ステージ30A及び30Bは、成膜処理時(使用時)に真空状態に維持されるチャンバ45の内部に配置される。本実施形態では、複数の成膜ステージ30A及び30Bは、チャンバ45の内部の上部においてX方向に離間して設けられ、その下方には、蒸発源ユニット10が設けられている。また、チャンバ45には、基板100を搬入及び搬出するための複数の搬入出口(不図示)が設けられている。
As shown in FIG. 2, the film forming apparatus 1 has an evaporation source unit 10 and multiple film forming stages 30A and 30B. The evaporation source unit 10 and the film forming stages 30A and 30B are arranged inside a chamber 45 that is maintained in a vacuum state during film forming processing (when in use). In this embodiment, the multiple film forming stages 30A and 30B are provided spaced apart in the X direction at the top inside the chamber 45, and the evaporation source unit 10 is provided below them. The chamber 45 also has multiple loading/unloading ports (not shown) for loading and unloading the substrate 100.
成膜装置1は、蒸発源ユニット10に電力を供給する電源41と、蒸発源ユニット10及び電源41を電気的に接続する電気接続部42と、を更に有する。電気接続部42は、水平方向に移動可能なアームに内蔵された電気配線を含み、X方向に移動可能な蒸発源ユニット10に対して電源41からの電力を供給することができるように構成されている。
The film forming apparatus 1 further includes a power supply 41 that supplies power to the evaporation source unit 10, and an electrical connection section 42 that electrically connects the evaporation source unit 10 and the power supply 41. The electrical connection section 42 includes electrical wiring built into an arm that is movable in the horizontal direction, and is configured to be able to supply power from the power supply 41 to the evaporation source unit 10 that is movable in the X direction.
成膜装置1は、成膜装置1の各構成要素(の動作)を制御する制御部43を更に有する。制御部43は、例えば、CPUに代表されるプロセッサ、RAM、ROMなどのメモリ及び各種インタフェースを含むコンピュータ(情報処理装置)で構成される。制御部43は、ROMに記憶されたプログラムをRAMに読み出して実行することで、成膜装置1における各種の動作や処理を実現する。なお、制御部43に代えて、成膜システムSYを統括的に制御するホストコンピュータなどで成膜装置1の各構成要素を直接制御することも可能である。
The film forming apparatus 1 further includes a control unit 43 that controls each component (operation) of the film forming apparatus 1. The control unit 43 is composed of a computer (information processing device) including, for example, a processor such as a CPU, memories such as RAM and ROM, and various interfaces. The control unit 43 realizes various operations and processes in the film forming apparatus 1 by reading a program stored in the ROM into the RAM and executing it. Note that instead of the control unit 43, it is also possible to directly control each component of the film forming apparatus 1 using a host computer that comprehensively controls the film forming system SY.
成膜ステージ30Aは、基板100Aに対して成膜処理を行うためのステージである。成膜ステージ30Aは、基板100A及びマスク101Aを支持するとともに、基板100Aとマスク101Aとの相対的な位置を調整する。成膜ステージ30Aは、基板支持部32Aと、マスク支持部34Aと、支柱35Aと、アライメント機構36Aと、を含む。
The film-forming stage 30A is a stage for performing a film-forming process on the substrate 100A. The film-forming stage 30A supports the substrate 100A and the mask 101A, and adjusts the relative positions of the substrate 100A and the mask 101A. The film-forming stage 30A includes a substrate support portion 32A, a mask support portion 34A, a support column 35A, and an alignment mechanism 36A.
基板支持部32Aは、基板100Aを支持する。基板支持部32Aは、本実施形態では、基板100Aの短辺がX方向に沿い、基板100Aの長辺がY方向に沿うように、基板100Aを支持する。基板支持部32Aは、基板100Aの縁を、基板100Aの下側から支持する。但し、基板支持部32Aは、基板100Aの縁を挟持することで基板100Aを支持してもよいし、静電チャック又は粘着チャックなどで基板100Aを吸着することで基板100Aを支持してもよい。基板支持部32Aは、基板搬送室62に設けられた搬送ロボット620を介して、成膜システムSYに搬入された基板100Aを受け取る。また、基板支持部32Aには、基板支持部32Aを昇降可能にする昇降機構(不図示)が設けられ、搬送ロボット620から受け取った基板100Aをマスク支持部34Aに支持されたマスク101Aの上に重ね合わせることができる。かかる昇降機構には、ボールねじ機構などの当業界で周知の技術を適用することが可能である。
The substrate support section 32A supports the substrate 100A. In this embodiment, the substrate support section 32A supports the substrate 100A so that the short side of the substrate 100A is aligned along the X direction and the long side of the substrate 100A is aligned along the Y direction. The substrate support section 32A supports the edge of the substrate 100A from the underside of the substrate 100A. However, the substrate support section 32A may support the substrate 100A by clamping the edge of the substrate 100A, or may support the substrate 100A by adsorbing the substrate 100A with an electrostatic chuck or an adhesive chuck. The substrate support section 32A receives the substrate 100A that has been transported into the film formation system SY via a transport robot 620 provided in the substrate transport chamber 62. The substrate support 32A is provided with a lifting mechanism (not shown) that allows the substrate support 32A to be raised and lowered, and the substrate 100A received from the transfer robot 620 can be superimposed on the mask 101A supported by the mask support 34A. For such a lifting mechanism, a ball screw mechanism or other technology well known in the industry can be applied.
マスク支持部34Aは、マスク101Aを支持する。本実施形態では、マスク支持部34Aには、開口(不図示)が設けられ、かかる開口を介して、マスク101Aと重ね合わされた基板100Aの成膜面(膜を形成する面)に対して蒸着物質が付着(飛散)する。マスク支持部34Aは、支柱35Aを介して、チャンバ45に支持される。
The mask support portion 34A supports the mask 101A. In this embodiment, an opening (not shown) is provided in the mask support portion 34A, and the deposition material adheres (scatters) through this opening to the deposition surface (surface on which a film is formed) of the substrate 100A superimposed on the mask 101A. The mask support portion 34A is supported by the chamber 45 via the support pillars 35A.
アライメント機構36Aは、基板100Aとマスク101Aとの相対的な位置を調整するアライメント(位置合わせ)を行う。アライメント機構36Aは、基板支持部32Aとマスク支持部34Aとの水平方向における相対位置を調整することで、基板支持部32Aに支持された基板100Aとマスク支持部34Aに支持されたマスク101Aとのアライメントを行う。基板100Aとマスク101Aとのアライメントには、当業界で周知の技術を適用することが可能である。例えば、まず、アライメント機構36Aは、基板100A及びマスク101Aのそれぞれに形成されたアライメント用のマークをカメラ(不図示)で検知する。そして、アライメント機構36Aは、これらのマークを検知することで得られる基板100Aの位置とマスク101Aの位置との関係が、所定の条件を満たすように、基板100Aとマスク101Aとの位置関係を調整する。具体的には、基板100Aに形成されたマークと、マスク101Aに形成されたマークとを重ね合わせ、それらのマークのずれ量をカメラで検知し、所定の条件を満たすように(許容範囲に収まるように)、基板100Aの位置を調整する。
The alignment mechanism 36A performs alignment to adjust the relative positions of the substrate 100A and the mask 101A. The alignment mechanism 36A adjusts the relative positions of the substrate support part 32A and the mask support part 34A in the horizontal direction to align the substrate 100A supported by the substrate support part 32A and the mask 101A supported by the mask support part 34A. For the alignment of the substrate 100A and the mask 101A, techniques well known in the industry can be applied. For example, the alignment mechanism 36A first detects alignment marks formed on the substrate 100A and the mask 101A with a camera (not shown). Then, the alignment mechanism 36A adjusts the positional relationship between the substrate 100A and the mask 101A so that the relationship between the position of the substrate 100A and the position of the mask 101A obtained by detecting these marks satisfies a predetermined condition. Specifically, the mark formed on the substrate 100A and the mark formed on the mask 101A are overlapped, the amount of misalignment between these marks is detected by a camera, and the position of the substrate 100A is adjusted so that the specified conditions are met (within the tolerance range).
アライメント機構36Aによって基板100Aとマスク101Aとのアライメントが行われると、基板支持部32Aは、支持している基板100Aをマスク101Aの上に重ね合わせる。基板100Aとマスク101Aとが重ね合わせられた状態において、基板100Aに対して、蒸発源ユニット10による成膜処理が行われる。
Once the alignment mechanism 36A has aligned the substrate 100A and the mask 101A, the substrate support 32A overlays the substrate 100A it is supporting on the mask 101A. With the substrate 100A and the mask 101A overlaid, a film formation process is performed on the substrate 100A by the evaporation source unit 10.
成膜ステージ30Bは、成膜ステージ30Aと同様な構成を含む。成膜ステージ30Bは、基板支持部32Bと、マスク支持部34Bと、支柱35Bと、アライメント機構36Bと、を含む。基板支持部32B、マスク支持部34B、支柱35B及びアライメント機構36Bは、それぞれ、基板支持部32A、マスク支持部34A、支柱35A及びアライメント機構36Aに対応する。
The deposition stage 30B includes a configuration similar to that of the deposition stage 30A. The deposition stage 30B includes a substrate support 32B, a mask support 34B, a support 35B, and an alignment mechanism 36B. The substrate support 32B, the mask support 34B, the support 35B, and the alignment mechanism 36B correspond to the substrate support 32A, the mask support 34A, the support 35A, and the alignment mechanism 36A, respectively.
本実施形態において、成膜装置1は、複数の成膜ステージ30A及び30Bを有し、所謂、デュアルステージの成膜装置として具現化されている。従って、成膜ステージ30Aにおいて、基板100Aに対する成膜処理(蒸着など)が行われる間に、成膜ステージ30Bにおいて、基板100Bとマスク101Bとのアライメントを行うことが可能であり、成膜処理を効率的に行うことができる。
In this embodiment, the film forming apparatus 1 has multiple film forming stages 30A and 30B, and is embodied as a so-called dual-stage film forming apparatus. Therefore, while a film forming process (such as vapor deposition) is being performed on the substrate 100A in the film forming stage 30A, alignment between the substrate 100B and the mask 101B can be performed in the film forming stage 30B, and the film forming process can be performed efficiently.
次いで、図3及び図4を参照して、蒸発源ユニット10について説明する。ここでは、蒸発源ユニット10を構成する各要素の概要を説明し、蒸発源ユニット10の配置構成や動作例については後で詳細に説明する。図3は、蒸発源ユニット10の構成を説明するための図であって、蒸発源ユニット10を横方向(Y方向)から模式的に示す図である。図4は、蒸発源ユニット10の構成を説明するための図であって、蒸発源ユニット10を上方向(Z方向)から模式的に示す図である。
Next, the evaporation source unit 10 will be described with reference to Figures 3 and 4. Here, an overview of each element constituting the evaporation source unit 10 will be described, and the arrangement and operation of the evaporation source unit 10 will be described in detail later. Figure 3 is a diagram for explaining the configuration of the evaporation source unit 10, and is a diagram showing the evaporation source unit 10 from a lateral direction (Y direction). Figure 4 is a diagram for explaining the configuration of the evaporation source unit 10, and is a diagram showing the evaporation source unit 10 from above (Z direction).
蒸発源ユニット10は、本実施形態では、X方向に移動しながら蒸着物質を放出することで、基板100に対して成膜処理を行うためのユニットである。蒸発源ユニット10は、複数の蒸発源11a~11rと、複数の監視装置12a~12rと、シャッタ161~163と、移動部20と、を含む。
In this embodiment, the evaporation source unit 10 is a unit that performs a film formation process on the substrate 100 by emitting a deposition material while moving in the X direction. The evaporation source unit 10 includes a plurality of evaporation sources 11a to 11r, a plurality of monitoring devices 12a to 12r, shutters 161 to 163, and a moving unit 20.
図5は、蒸発源11a~11rの構成を模式的に示す断面図である。複数の蒸発源11a~11rは、それぞれ、蒸着物質を放出する。複数の蒸発源11a~11rのそれぞれは、図5に示すように、材料容器111と、加熱部112と、を含む。
FIG. 5 is a cross-sectional view showing a schematic configuration of the evaporation sources 11a to 11r. Each of the evaporation sources 11a to 11r emits a deposition material. As shown in FIG. 5, each of the evaporation sources 11a to 11r includes a material container 111 and a heating unit 112.
材料容器111は、その内部に、基板100に付着させる蒸着物質を収容するるつぼである。材料容器111の上部には、材料容器111の内部で蒸発した蒸着物質を、材料容器111の外部に放出するための放出部1111が設けられている。放出部1111は、本実施形態では、材料容器111の上面に形成された開口(放出口)として構成されているが、これに限定されるものではない。例えば、材料容器111を筒状の部材などで構成することで、放出部1111の機能を実現してもよい。また、材料容器111の上面には、放出部1111として、複数の開口が設けられていてもよい。
The material container 111 is a crucible that contains a deposition material to be attached to the substrate 100. A release section 1111 is provided at the top of the material container 111 to release the deposition material evaporated inside the material container 111 to the outside of the material container 111. In this embodiment, the release section 1111 is configured as an opening (release port) formed on the top surface of the material container 111, but is not limited to this. For example, the function of the release section 1111 may be realized by configuring the material container 111 from a cylindrical member or the like. In addition, the top surface of the material container 111 may be provided with multiple openings as the release section 1111.
加熱部112は、材料容器111に収容された蒸着物質を加熱して蒸発させる。加熱部112は、例えば、材料容器111の全体を覆うように設けられることが好ましい。加熱部112は、本実施形態では、電熱線を用いたシーズヒータとして具現化され、図5には、シーズヒータの電熱線を材料容器111の周囲に巻き付けたときの断面が示されている。
The heating unit 112 heats and evaporates the deposition material contained in the material container 111. For example, the heating unit 112 is preferably provided so as to cover the entire material container 111. In this embodiment, the heating unit 112 is embodied as a sheathed heater using an electric heating wire, and FIG. 5 shows a cross section of the sheathed heater when the electric heating wire is wrapped around the material container 111.
加熱部112による蒸着物質の加熱は、制御部43によって制御される。本実施形態において、複数の蒸発源11a~11rは、それぞれが独立して、材料容器111及び加熱部112を含んでいる。従って、制御部43は、複数の蒸発源11a~11rによる蒸着物質の加熱(蒸発)を、それぞれ独立に制御することが可能である。
The heating of the deposition material by the heating unit 112 is controlled by the control unit 43. In this embodiment, each of the multiple evaporation sources 11a to 11r independently includes a material container 111 and a heating unit 112. Therefore, the control unit 43 can independently control the heating (evaporation) of the deposition material by each of the multiple evaporation sources 11a to 11r.
図3及び図4に戻って、複数の蒸発源11a~11rは、蒸発源ユニット10の移動方向(X方向)に沿って互いに離間した3つの蒸発源群17A~17Cに大別される。蒸発源群17Aは、蒸発源ユニット10の移動方向に交差する交差方向(Y方向)に沿って配置された複数の蒸発源11a~11fを含む。蒸発源群17Bは、蒸発源ユニット10の移動方向に交差する交差方向に沿って配置された複数の蒸発源11g~11lを含む。蒸発源群17Cは、蒸発源ユニット10の移動方向に交差する交差方向に沿って配置された複数の蒸発源11m~11rを含む。
Returning to Figures 3 and 4, the multiple evaporation sources 11a to 11r are roughly divided into three evaporation source groups 17A to 17C spaced apart from one another along the movement direction (X direction) of the evaporation source unit 10. Evaporation source group 17A includes multiple evaporation sources 11a to 11f arranged along a cross direction (Y direction) that intersects with the movement direction of the evaporation source unit 10. Evaporation source group 17B includes multiple evaporation sources 11g to 11l arranged along a cross direction that intersects with the movement direction of the evaporation source unit 10. Evaporation source group 17C includes multiple evaporation sources 11m to 11r arranged along a cross direction that intersects with the movement direction of the evaporation source unit 10.
3つの蒸発源群17A~17Cは、本実施形態では、蒸発源ユニット10の移動方向において、蒸発源群17A、蒸発源群17B、蒸発源群17Cの順に並んで配置されている。従って、蒸発源群17A~17Cのそれぞれに含まれる蒸発源に着目すると、例えば、蒸発源11d、蒸発源11j、蒸発源11pは、蒸発源ユニット10の移動方向に沿って、この順に並んで配置されている。また、3つの蒸発源群17A~17Cは、互いに異なる蒸着物質を放出することが可能である。
In this embodiment, the three evaporation source groups 17A to 17C are arranged in the movement direction of the evaporation source unit 10 in the order of evaporation source group 17A, evaporation source group 17B, and evaporation source group 17C. Therefore, when focusing on the evaporation sources included in each of the evaporation source groups 17A to 17C, for example, evaporation source 11d, evaporation source 11j, and evaporation source 11p are arranged in this order along the movement direction of the evaporation source unit 10. Furthermore, the three evaporation source groups 17A to 17C are capable of emitting different deposition materials from each other.
複数の監視装置12a~12rは、複数の蒸発源11a~11rに対応して設けられている。複数の監視装置12a~12rのそれぞれは、複数の蒸発源11a~11rのそれぞれから放出される蒸着物質の状態(放出状態)、例えば、蒸着物質のレート(蒸発レート(成膜レート))を監視する。監視装置12a~12rは、図3に示すように、ケース121と、ケース121の内部に厚膜センサとして設けられた水晶振動子123(水晶モニタ)と、を含む。水晶振動子123には、蒸発源11から放出され、ケース121に設けられた導入部122を介してケース121の内部に導入された蒸着物質が付着する。水晶振動子123の振動数は、水晶振動子123に付着する蒸着物質の量(付着量)に応じて変動する。従って、制御部43は、水晶振動子123の振動数に基づいて、基板100に付着(蒸着)した蒸着物質の膜厚を算出することができる。水晶振動子123に付着する蒸着物質の単位時間あたりの量は、蒸発源11から放出される蒸着物質の量と相関を有するため、監視装置12a~12rは、結果的に、複数の蒸発源11から放出される蒸着物質の状態を監視することができる。
The multiple monitoring devices 12a to 12r are provided corresponding to the multiple evaporation sources 11a to 11r. Each of the multiple monitoring devices 12a to 12r monitors the state (emission state) of the deposition material emitted from each of the multiple evaporation sources 11a to 11r, for example, the rate of the deposition material (evaporation rate (film formation rate)). As shown in FIG. 3, the monitoring devices 12a to 12r include a case 121 and a quartz oscillator 123 (quartz monitor) provided inside the case 121 as a thick film sensor. The deposition material emitted from the evaporation source 11 and introduced into the case 121 through an introduction part 122 provided in the case 121 adheres to the quartz oscillator 123. The frequency of the quartz oscillator 123 varies depending on the amount (adhesion amount) of the deposition material adhering to the quartz oscillator 123. Therefore, the control unit 43 can calculate the film thickness of the deposition material adhered (deposited) on the substrate 100 based on the frequency of the quartz oscillator 123. The amount of deposition material adhering to the quartz crystal oscillator 123 per unit time correlates with the amount of deposition material released from the evaporation source 11, so the monitoring devices 12a to 12r can monitor the state of the deposition material released from the multiple evaporation sources 11.
本実施形態では、監視装置12a~12rのそれぞれは、蒸発源11a~11rから放出される蒸着物質の状態を独立に監視する。また、制御部43は、監視装置12a~12rの監視結果に基づいて、蒸発源11a~11r(の各加熱部の出力)を独立に制御する。換言すれば、制御部43は、監視装置12a~12rのそれぞれで監視される蒸着物質のレートに基づいて、蒸発源11a~11rのそれぞれの成膜レートを制御する。
In this embodiment, each of the monitoring devices 12a to 12r independently monitors the state of the deposition material released from the evaporation sources 11a to 11r. Furthermore, the control unit 43 independently controls the evaporation sources 11a to 11r (the output of each heating unit) based on the monitoring results of the monitoring devices 12a to 12r. In other words, the control unit 43 controls the film formation rate of each of the evaporation sources 11a to 11r based on the rate of the deposition material monitored by each of the monitoring devices 12a to 12r.
制限部14は、複数の蒸発源11a~11rから放出される蒸着物質の放出範囲を制限する。制限部14は、本実施形態では、複数の板部材141~144を含む。板部材141及び142は、複数の蒸発源11a~11fから放出される蒸着物質のX方向における放出範囲を制限する。板部材142及び143は、複数の蒸発源11g~11lから放出される蒸着物質のX方向における放出範囲を制限する。板部材143及び144は、複数の蒸発源11g~11rから放出される蒸着物質のX方向における放出範囲を制限する。
The limiting section 14 limits the release range of the deposition material released from the multiple evaporation sources 11a to 11r. In this embodiment, the limiting section 14 includes multiple plate members 141 to 144. The plate members 141 and 142 limit the release range in the X direction of the deposition material released from the multiple evaporation sources 11a to 11f. The plate members 142 and 143 limit the release range in the X direction of the deposition material released from the multiple evaporation sources 11g to 11l. The plate members 143 and 144 limit the release range in the X direction of the deposition material released from the multiple evaporation sources 11g to 11r.
板部材141には、監視装置12a~12lに導入される(飛散する)蒸着物質が通過する筒状部材141a~141lが設けられる。板部材142には、監視装置12g~12lに導入される蒸着物質が通過する筒状部材142g~142lが設けられる。板部材144には、監視装置12m~12rに導入される蒸着物質が通過する筒状部材144m~144lが設けられる。筒状部材141a~141l、142g~142l、144m~144lは、隣接する蒸発源から放出される蒸着物質が監視対象外の監視装置に入り込むこと(所謂、クロストーク)による監視装置の監視精度の低下の抑制に寄与する。
The plate member 141 is provided with cylindrical members 141a-141l through which the deposition material introduced (scattered) to the monitoring devices 12a-12l passes. The plate member 142 is provided with cylindrical members 142g-142l through which the deposition material introduced to the monitoring devices 12g-12l passes. The plate member 144 is provided with cylindrical members 144m-144l through which the deposition material introduced to the monitoring devices 12m-12r passes. The cylindrical members 141a-141l, 142g-142l, and 144m-144l contribute to preventing a decrease in the monitoring accuracy of the monitoring devices caused by deposition material emitted from an adjacent evaporation source entering a monitoring device that is not being monitored (so-called crosstalk).
シャッタ161~163は、蒸発源群17A~17Cから放出される蒸着物質の基板100への飛散を制御する。シャッタ161~163は、蒸発源群17A~17Cから放出される蒸着物質の基板100への飛散を遮断する遮断位置と、かかる蒸着物質の基板100への飛散を許容する許容位置との間で変位可能に設けられている。例えば、シャッタ161は、蒸発源群17Aに含まれる蒸発源11a~11fから放出される蒸着物質の基板100への飛散を遮断する遮断位置と、かかる蒸着物質の基板100への飛散を許容する許容位置との間で変位可能に設けられている。シャッタ162及び163についても、シャッタ161と同様に、遮断位置と許容位置との間で変位可能に設けられている。
The shutters 161-163 control the scattering of the deposition material emitted from the evaporation source groups 17A-17C onto the substrate 100. The shutters 161-163 are provided so as to be displaceable between a blocking position that blocks the scattering of the deposition material emitted from the evaporation source groups 17A-17C onto the substrate 100, and an allowable position that allows the scattering of the deposition material onto the substrate 100. For example, the shutter 161 is provided so as to be displaceable between a blocking position that blocks the scattering of the deposition material emitted from the evaporation sources 11a-11f included in the evaporation source group 17A onto the substrate 100, and an allowable position that allows the scattering of the deposition material onto the substrate 100. The shutters 162 and 163 are also provided so as to be displaceable between a blocking position and an allowable position, similar to the shutter 161.
シャッタ161は、蒸発源ユニット10の移動方向に交差する交差方向(Y方向)を軸方向とする回動軸1611と、回動軸1611に設けられた遮蔽部材1612と、を含む。シャッタ161は、遮蔽部材1612が回動軸1611を中心として回動して開閉動作を行うことで、遮断位置と許容位置との間で変位する。同様に、シャッタ162は、回動軸1621と、遮蔽部材1622と、を含み、シャッタ163は、回動軸1631と、遮蔽部材1632と、を含む。
The shutter 161 includes a rotating shaft 1611 whose axial direction is a cross direction (Y direction) that intersects with the movement direction of the evaporation source unit 10, and a shielding member 1612 provided on the rotating shaft 1611. The shutter 161 is displaced between a blocking position and an allowable position as the shielding member 1612 rotates about the rotating shaft 1611 to perform an opening and closing operation. Similarly, the shutter 162 includes a rotating shaft 1621 and a shielding member 1622, and the shutter 163 includes a rotating shaft 1631 and a shielding member 1632.
シャッタ161の回動軸1611は、蒸発源11a~11fの放出部1111に対して、蒸発源ユニット10の移動方向(X方向)にずれて配置される。同様に、シャッタ162の回動軸1621は、蒸発源11g~11lの放出部1111に対して蒸発源ユニット10の移動方向にずれて配置される。また、シャッタ163の回動軸1631は、蒸発源11p~11rの放出部1111に対して蒸発源ユニット10の移動方向にずれて配置される。これにより、シャッタ161~163が許容位置に位置したときに、シャッタ161~163と蒸発源11a~11rの放出範囲との干渉を抑制することができる。
The rotation axis 1611 of the shutter 161 is positioned offset in the movement direction (X direction) of the evaporation source unit 10 with respect to the emission parts 1111 of the evaporation sources 11a to 11f. Similarly, the rotation axis 1621 of the shutter 162 is positioned offset in the movement direction of the evaporation source unit 10 with respect to the emission parts 1111 of the evaporation sources 11g to 11l. Furthermore, the rotation axis 1631 of the shutter 163 is positioned offset in the movement direction of the evaporation source unit 10 with respect to the emission parts 1111 of the evaporation sources 11p to 11r. This makes it possible to suppress interference between the shutters 161 to 163 and the emission ranges of the evaporation sources 11a to 11r when the shutters 161 to 163 are positioned in the permissible positions.
また、本実施形態では、シャッタ161の回動軸1611の高さとシャッタ162の回動軸1621の高さとが異なる。これにより、シャッタ161、162を同時に開閉させる際に、シャッタ161とシャッタ162との干渉を抑制するとともに、シャッタ161、162をX方向にコンパクトに配置することができる。
In addition, in this embodiment, the height of the pivot shaft 1611 of the shutter 161 is different from the height of the pivot shaft 1621 of the shutter 162. This makes it possible to suppress interference between the shutters 161 and 162 when the shutters 161 and 162 are opened and closed simultaneously, and to arrange the shutters 161 and 162 compactly in the X direction.
また、本実施形態では、蒸発源群17AよりもX方向+側に配置される蒸発源群17Bの上方を覆うシャッタ162の回動軸1621が蒸発源11g~11lの放出部1111に対してX方向+側にずれて配置される。一方、蒸発源群17BよりもX方向-側に配置される蒸発源群17Aの上方を覆うシャッタ161の回動軸1611が蒸発源11a~11fの放出部1111に対してX方向-側にずれて配置されている。従って、シャッタ161とシャッタ162とは、両開きの扉のような構成となる。これにより、蒸発源群17Aと蒸発源群17Bとで共蒸着を行う場合に、シャッタ161が蒸発源群17Bの放出範囲と干渉したり、シャッタ162が蒸発源群17Aの放出範囲と干渉したりすることを抑制することができる。
In addition, in this embodiment, the rotation axis 1621 of the shutter 162 covering the top of the evaporation source group 17B arranged on the +X side of the evaporation source group 17A is shifted to the +X side with respect to the emission parts 1111 of the evaporation sources 11g to 11l. On the other hand, the rotation axis 1611 of the shutter 161 covering the top of the evaporation source group 17A arranged on the -X side of the evaporation source group 17B is shifted to the -X side with respect to the emission parts 1111 of the evaporation sources 11a to 11f. Therefore, the shutters 161 and 162 are configured like double-hinged doors. This makes it possible to prevent the shutter 161 from interfering with the emission range of the evaporation source group 17B and the shutter 162 from interfering with the emission range of the evaporation source group 17A when co-evaporation is performed with the evaporation source group 17A and the evaporation source group 17B.
移動部20は、蒸発源ユニット10、具体的には、複数の蒸発源11a~11r及び複数の監視装置12a~12rを移動方向(X方向)に移動させる。本実施形態では、移動部20によって、蒸発源ユニット10を基板100に対して移動させながら、蒸発源ユニット10から放出される蒸着物質を基板100に付着(蒸着)させることで基板100に蒸着物質の膜(層)を形成する成膜処理を行う。
The moving unit 20 moves the evaporation source unit 10, specifically the multiple evaporation sources 11a-11r and the multiple monitoring devices 12a-12r, in the moving direction (X direction). In this embodiment, the moving unit 20 moves the evaporation source unit 10 relative to the substrate 100, while the evaporation material emitted from the evaporation source unit 10 is deposited (deposited) on the substrate 100 to form a film (layer) of the evaporation material on the substrate 100.
移動部20は、蒸発源ユニット10に設けられる構成要素として、モータ(不図示)と、モータの駆動により回転する軸部材に設けられたピニオン202と、ガイド部材203と、を含む。また、移動部20は、ピニオン202に係合するラック(不図示)と、ガイド部材203が摺動するガイドレール206と、を更に含む。蒸発源ユニット10は、モータの駆動により回転するピニオン202がラックと係合することで、ガイドレール206に沿ってX方向に移動する。
The moving part 20 includes, as components provided in the evaporation source unit 10, a motor (not shown), a pinion 202 provided on a shaft member that rotates when driven by the motor, and a guide member 203. The moving part 20 further includes a rack (not shown) that engages with the pinion 202, and a guide rail 206 along which the guide member 203 slides. The evaporation source unit 10 moves in the X direction along the guide rail 206 as the pinion 202, which rotates when driven by the motor, engages with the rack.
このように構成された成膜装置1において、蒸発源群17A(蒸発源11a~11f)、蒸発源群17B(蒸発源11g~11l)及び蒸発源群17C(蒸発源11m~11r)のそれぞれが放出(収容)する蒸着物質について考える。
In the film forming apparatus 1 configured in this manner, let us consider the deposition material emitted (contained) by each of the evaporation source group 17A (evaporation sources 11a to 11f), evaporation source group 17B (evaporation sources 11g to 11l), and evaporation source group 17C (evaporation sources 11m to 11r).
従来技術では、蒸発源群17A~17Cのそれぞれから放出される蒸着物質に特別な規定(制限)はなく、蒸発源群17A~17Cのそれぞれには任意の蒸着物質が収容されている。但し、蒸発源群17Aと蒸発源群17Cとの間(中央列)に配置された蒸発源群17Bに、監視装置が含む水晶振動子への付着量(重量)が少ない蒸着物質を収容すると、蒸発源群17Bから放出される蒸着物質のレートを高精度に制御することが困難となる。これには、以下に説明するように、主に、2つの理由が挙げられる。
In the prior art, there are no special regulations (restrictions) on the deposition material released from each of the evaporation source groups 17A to 17C, and each of the evaporation source groups 17A to 17C contains any deposition material. However, if evaporation source group 17B, which is located between evaporation source group 17A and evaporation source group 17C (the central row), contains a deposition material that adheres in small amounts (weight) to the quartz oscillator included in the monitoring device, it becomes difficult to control the rate of deposition material released from evaporation source group 17B with high precision. There are two main reasons for this, as explained below.
1つ目の理由は、蒸発源群(蒸発源)から放出される蒸着物質のレートの制御(精度)は、水晶振動子に付着する蒸着物質の付着量に依存しているからである。中央列の蒸発源群17Bと監視装置12g~12lとの間の物理的な距離は、蒸発源群17Aと監視装置12a~12fとの間の物理的な距離や蒸発源群17Cと監視装置12m~12rとの間の物理的な距離よりも長くなる。このような蒸発源群17Bに水晶振動子への付着量が少ない蒸着物質が収容されていると、監視装置12g~12lが含む水晶振動子123への蒸着物質の付着量が著しく少なくなり、監視装置12g~12lによる監視精度が低下してしまう。
The first reason is that the control (precision) of the rate of deposition material released from the evaporation source group (evaporation source) depends on the amount of deposition material that adheres to the quartz oscillator. The physical distance between the central row of evaporation source group 17B and monitoring devices 12g-12l is longer than the physical distance between evaporation source group 17A and monitoring devices 12a-12f and the physical distance between evaporation source group 17C and monitoring devices 12m-12r. If such evaporation source group 17B contains deposition material that adheres only in small amounts to the quartz oscillator, the amount of deposition material that adheres to the quartz oscillator 123 contained in monitoring devices 12g-12l will be significantly reduced, and the monitoring precision of monitoring devices 12g-12l will decrease.
2つ目の理由は、蒸発源群17Bに隣接する蒸発源群17Aや蒸発源群17Cから放出される蒸着物質が、監視対象外である監視装置12g~12lに入り込むこと(クロストーク)によって、監視装置12g~12lによる監視精度が低下してしまうからである。
The second reason is that the deposition material emitted from the evaporation source group 17A and the evaporation source group 17C adjacent to the evaporation source group 17B enters the monitoring devices 12g to 12l that are not monitored (crosstalk), reducing the monitoring accuracy of the monitoring devices 12g to 12l.
そこで、本実施形態では、蒸発源群17A~17Cの配置関係を考慮して、蒸発源群17A~17Cのそれぞれが放出(収容)する蒸着物質を規定することで、水晶振動子への付着量が少ない蒸着物質に対する監視装置による監視精度の低下を抑制する。
In this embodiment, the deposition material discharged (contained) by each of the deposition source groups 17A to 17C is specified in consideration of the relative positions of the deposition source groups 17A to 17C, thereby suppressing a decrease in the monitoring accuracy of the monitoring device for deposition material that adheres in small amounts to the quartz oscillator.
例えば、蒸発源ユニット10の移動方向(X方向)において、中央列に配置された蒸発源群17B(第1蒸発源群)、及び、蒸発源群17Bよりも外側の外側列に配置された蒸発源群17A(第2蒸発源群)に着目する。そして、蒸発源群17A(蒸発源11a~11f)、及び、蒸発源群17B(蒸発源11g~11l)のそれぞれに、蒸発源から放出されて水晶振動子に付着する付着量が互いに異なる第1蒸着物質及び第2蒸着物質を収容する場合を考える。なお、蒸発源から放出されて水晶振動子に付着する第1蒸着物質の付着量を第1付着量とすると、蒸発源から放出されて水晶振動子に付着する第2蒸着物質の付着量は、第1付着量よりも小さい第2付着量であるものとする。このように、第2蒸着物質は、第1蒸着物質と比較して、水晶振動子への付着量が少ない蒸着物質である。
For example, in the movement direction (X direction) of the evaporation source unit 10, attention is focused on the evaporation source group 17B (first evaporation source group) arranged in the center row, and the evaporation source group 17A (second evaporation source group) arranged in the outer row outside the evaporation source group 17B. Then, consider a case where the evaporation source group 17A (evaporation sources 11a to 11f) and the evaporation source group 17B (evaporation sources 11g to 11l) each contain a first evaporation substance and a second evaporation substance that are released from the evaporation source and adhere to the quartz oscillator in different amounts. Note that if the amount of the first evaporation substance released from the evaporation source and adhered to the quartz oscillator is the first adhesion amount, the amount of the second evaporation substance released from the evaporation source and adhered to the quartz oscillator is the second adhesion amount that is smaller than the first adhesion amount. In this way, the second evaporation substance is an evaporation substance that adheres to the quartz oscillator in a smaller amount than the first evaporation substance.
この場合、本実施形態では、中央列に配置された蒸発源群17Bに含まれる蒸発源11g~11l(第1蒸発源)に第1蒸着物質を収容し、外側列に配置された蒸発源群17Aに含まれる蒸発源11a~11f(第2蒸発源)に第2蒸着物質を収容する。従って、監視装置12a~12fの水晶振動子123に付着する第2蒸着物質の付着量は、監視装置12g~12lの水晶振動子123に付着する第1蒸着物質の付着量よりも小さくなる。このように、本実施形態では、水晶振動子123への付着量が少ない第2蒸着物質を収容する蒸発源11a~11fを含む蒸発源群17Aを外側列に配置する。換言すれば、監視装置12a~12fの水晶振動子に付着する蒸着物質の付着量が、監視装置12g~12lの水晶振動子に付着する蒸着物質の付着量よりも小さくなるように、蒸発源群17Aを蒸発源群17Bよりも監視装置12a~12lの近くに配置する。なお、図4に示すように、監視装置12a~12fと、監視装置12g~12lとは、蒸発源ユニット10の移動方向(X方向)に交差する交差方向(Y方向)に沿って並んで配置されている。また、監視装置12a~12fと、監視装置12g~12lとは、蒸発源ユニット10の移動方向において、蒸発源群17Aよりも外側に配置されている。
In this case, in this embodiment, the first evaporation material is contained in the evaporation sources 11g to 11l (first evaporation source) included in the evaporation source group 17B arranged in the central row, and the second evaporation material is contained in the evaporation sources 11a to 11f (second evaporation source) included in the evaporation source group 17A arranged in the outer row. Therefore, the amount of the second evaporation material adhering to the quartz oscillator 123 of the monitoring devices 12a to 12f is smaller than the amount of the first evaporation material adhering to the quartz oscillator 123 of the monitoring devices 12g to 12l. Thus, in this embodiment, the evaporation source group 17A including the evaporation sources 11a to 11f that accommodate the second evaporation material that adheres less to the quartz oscillator 123 is arranged in the outer row. In other words, the evaporation source group 17A is arranged closer to the monitoring devices 12a to 12l than the evaporation source group 17B so that the amount of deposition material adhering to the quartz oscillators of the monitoring devices 12a to 12f is smaller than the amount of deposition material adhering to the quartz oscillators of the monitoring devices 12g to 12l. As shown in FIG. 4, the monitoring devices 12a to 12f and the monitoring devices 12g to 12l are arranged side by side along a cross direction (Y direction) that crosses the movement direction (X direction) of the evaporation source unit 10. The monitoring devices 12a to 12f and the monitoring devices 12g to 12l are also arranged outside the evaporation source group 17A in the movement direction of the evaporation source unit 10.
上述したように、蒸発源群17A及び17Bの配置関係を考慮して、蒸発源群17A及び17Bのそれぞれが放出(収容)する蒸着物質を規定することで、蒸発源群17Aから放出される第2蒸着物質のレートを高精度に制御することが可能となる。これは、水晶振動子への付着量が少ない蒸着物質を収容する蒸発源群17Aと監視装置12a~12fとの間の物理的な距離が短く、水晶振動子への蒸着物質の付着量が著しく少なくなることを抑制しているからである。また、蒸発源群17Aに隣接する蒸発源群17Bから放出される蒸着物質が、監視対象外である監視装置12g~12lに入り込むこと(クロストーク)も抑制されるからである。
As described above, by specifying the deposition material emitted (contained) by each of the evaporation source groups 17A and 17B in consideration of the relative positions of the evaporation source groups 17A and 17B, it is possible to control the rate of the second deposition material emitted from the evaporation source group 17A with high precision. This is because the physical distance between the evaporation source group 17A, which contains the deposition material that adheres less to the quartz oscillator, and the monitoring devices 12a to 12f is short, which prevents the deposition amount of the deposition material adhering to the quartz oscillator from decreasing significantly. In addition, the deposition material emitted from the evaporation source group 17B adjacent to the evaporation source group 17A is also prevented from entering the monitoring devices 12g to 12l that are not monitored (crosstalk).
以下、蒸発源群17A及び17Bの配置関係を考慮して、蒸発源群17A及び17Bのそれぞれが放出(収容)する蒸着物質を規定することによる効果、特に、クロストークが抑制される効果について、具体的な数値例を挙げて説明する。
Below, taking into consideration the relative positions of the evaporation source groups 17A and 17B, the effect of defining the deposition material emitted (contained) by each of the evaporation source groups 17A and 17B, in particular the effect of suppressing crosstalk, will be explained using specific numerical examples.
ここでは、蒸発源群17A及び蒸発源群17Bに、マグネシウム(Mg)及び銀(Ag)のいずれかの蒸着材料を収容するものとし、蒸発源群17Aに含まれる蒸発源11d及び蒸発源群17Bに含まれる蒸発源11jに注目する。マグネシウム(Mg)は、銀(Ag)と比較して、水晶振動子への付着量が少ない蒸着物質である。水晶振動子への蒸着物質の付着量は、成膜レート[Å/s]と膜密度[g/cm3]との積で定義し、マグネシウム(Mg)の膜密度は1.7[g/cm3]であり、銀(Ag)の膜密度は10.4[g/cm3]である。なお、監視装置12d及び12jのそれぞれに表示される成膜レートには、実際の蒸着物質の成膜レートに対して、補正値(所謂、ツーリングファクタ)が入る。また、蒸発源11dと監視装置12dとの間の物理的な距離を1[L]とし、蒸発源11jと監視装置12jとの間の物理的な距離を2[L]とする。
Here, the evaporation source group 17A and the evaporation source group 17B contain either one of the evaporation materials, magnesium (Mg) or silver (Ag), and attention is paid to the evaporation source 11d included in the evaporation source group 17A and the evaporation source 11j included in the evaporation source group 17B. Magnesium (Mg) is an evaporation material that adheres to the quartz crystal oscillator in a smaller amount than silver (Ag). The adhesion amount of the evaporation material to the quartz crystal oscillator is defined as the product of the film formation rate [Å/s] and the film density [g/cm 3 ], and the film density of magnesium (Mg) is 1.7 [g/cm 3 ] and the film density of silver (Ag) is 10.4 [g/cm 3 ]. The film formation rates displayed by the monitor devices 12d and 12j each include a correction value (so-called tooling factor) for the actual film formation rate of the evaporation material. The physical distance between the evaporation source 11d and the monitor 12d is set to 1 [L], and the physical distance between the evaporation source 11j and the monitor 12j is set to 2 [L].
まず、比較例(従来技術)として、蒸発源11dに銀(Ag)を、蒸発源11jにマグネシウム(Mg)を収容し、基板にAgとMgを同時に付着させてAgとMgの混合膜(銀マグネシウム(AgMg))を1.0[Å/s]の成膜レートで成膜する(共蒸着)。この際、実際のマグネシウム(Mg)の成膜レートを1.00[Å/s]、実際の銀(Ag)の成膜レートを0.01[Å/s]とする。この場合、監視装置12jでは、実際には、0.01[Å/s]×1/2[L]=0.005[Å/s]のレートであるが、1.0[Å/s]の成膜レートとするために、200(=1.0[Å/s]/0.005[Å/s])の補正値が入る。従って、蒸発源11dから0.01[Å/s]のクロストーク成分(Ag)が監視装置12jに入るものとすると、その影響は、0.01[Å/s]×200(補正値)=2.0[Å/s]となる。そのため、監視装置12jに含まれる水晶振動子に付着するクロストーク成分の付着量は、2.0[Å/s](成膜レート)×10.4[g/cm3](銀(Ag)の膜密度)=20.8となる。
First, as a comparative example (conventional technology), silver (Ag) is stored in the evaporation source 11d, magnesium (Mg) is stored in the evaporation source 11j, and Ag and Mg are simultaneously deposited on the substrate to form a mixed film of Ag and Mg (silver magnesium (AgMg)) at a film formation rate of 1.0 [Å/s] (co-evaporation). In this case, the actual film formation rate of magnesium (Mg) is 1.00 [Å/s], and the actual film formation rate of silver (Ag) is 0.01 [Å/s]. In this case, the actual rate in the monitoring device 12j is 0.01 [Å/s] x 1/2 [L] = 0.005 [Å/s], but a correction value of 200 (= 1.0 [Å/s] / 0.005 [Å/s]) is entered to obtain a film formation rate of 1.0 [Å/s]. Therefore, if a crosstalk component (Ag) of 0.01 [Å/s] enters the monitoring device 12j from the evaporation source 11d, the effect is 0.01 [Å/s] × 200 (correction value) = 2.0 [Å/s]. Therefore, the amount of crosstalk components adhering to the quartz crystal unit included in the monitoring device 12j is 2.0 [Å/s] (film formation rate) × 10.4 [g/ cm3 ] (silver (Ag) film density) = 20.8.
一方、実施例(本発明)として、蒸発源11dにマグネシウム(Mg)を、蒸発源11jに銀(Ag)を収容し、基板にAgとMgを同時に付着させてAgとMgの混合膜(銀マグネシウム(AgMg))を1.0[Å/s]の成膜レートで成膜する(共蒸着)。この際、実際のマグネシウム(Mg)の成膜レートを1.00[Å/s]、実際の銀(Ag)の成膜レートを0.01[Å/s]とする。この場合、監視装置12jでは、実際には、1.0[Å/s]×1/2[L]=0.5[Å/s]のレートであるが、1.0[Å/s]の成膜レートとするために、2(=1.0[Å/s]/0.5[Å/s])の補正値が入る。従って、蒸発源11dから0.01[Å/s]のクロストーク成分(Mg)が監視装置12jに入るものとすると、その影響は、0.01[Å/s]×2(補正値)=0.02[Å/s]となる。そのため、監視装置12jに含まれる水晶振動子に付着するクロストーク成分の付着量は、0.02[Å/s](成膜レート)×1.7[g/cm3](マグネシウム(Mg)の膜密度)=0.034となる。
On the other hand, as an example (present invention), magnesium (Mg) is stored in the evaporation source 11d, and silver (Ag) is stored in the evaporation source 11j, and Ag and Mg are simultaneously deposited on the substrate to form a mixed film of Ag and Mg (silver magnesium (AgMg)) at a film formation rate of 1.0 [Å/s] (co-evaporation). In this case, the actual film formation rate of magnesium (Mg) is 1.00 [Å/s], and the actual film formation rate of silver (Ag) is 0.01 [Å/s]. In this case, the actual rate in the monitoring device 12j is 1.0 [Å/s] x 1/2 [L] = 0.5 [Å/s], but a correction value of 2 (= 1.0 [Å/s] / 0.5 [Å/s]) is inserted to obtain a film formation rate of 1.0 [Å/s]. Therefore, if a crosstalk component (Mg) of 0.01 [Å/s] enters the monitoring device 12j from the evaporation source 11d, the effect is 0.01 [Å/s] × 2 (correction value) = 0.02 [Å/s]. Therefore, the amount of crosstalk components adhering to the quartz crystal unit included in the monitoring device 12j is 0.02 [Å/s] (film formation rate) × 1.7 [g/ cm3 ] (magnesium (Mg) film density) = 0.034.
このように、実施例では、比較例に対して、監視装置12jにおけるクロストークの影響(クロストーク成分の付着量)が大幅に低減されている。従って、監視装置12jにおいて、蒸発源11jに隣接する蒸発源11dからの蒸着物質が入り込むこと(クロストーク)による監視精度の低下が抑制される。なお、実施例では、監視装置12jについて説明したが、監視装置12g~12i、12k、12lについても同様に、蒸発源11a~c、11e、11fからの蒸着物質が入り込むことによる監視精度の低下が抑制されることは明らかである。
In this way, in the embodiment, the effect of crosstalk (amount of crosstalk components adhering) in monitoring device 12j is significantly reduced compared to the comparative example. Therefore, in monitoring device 12j, a decrease in monitoring accuracy due to intrusion of deposition material from evaporation source 11d adjacent to evaporation source 11j (crosstalk) is suppressed. Note that while the embodiment has been described with respect to monitoring device 12j, it is clear that a decrease in monitoring accuracy due to intrusion of deposition material from evaporation sources 11a-c, 11e, and 11f is similarly suppressed for monitoring devices 12g-12i, 12k, and 12l.
また、実施例(及び比較例)に示したように、監視装置12g~12lへのクロストーク成分の付着量は、成膜レートや膜密度に大きく依存している。従って、蒸発源群17A(蒸発源11a~11f)の成膜レートは、蒸発源群17B(蒸発源11g~11l)よりも低いことが好ましい。従って、成膜レートが低い蒸着物質を収容する蒸発源11a~11fを含む蒸発源群17Aを外側列に、即ち、成膜レートが高い蒸着物質を収容する蒸発源11g~11lを含む蒸発源群17Bよりも外側に配置するとよい。また、蒸発源群17A(蒸発源11a~11f)から放出されて水晶振動子に付着する蒸着物質の膜密度は、蒸発源群17B(蒸発源11g~11l)から放出されて水晶振動子に付着する蒸着物質の膜密度よりも低いことが好ましい。従って、膜密度が低い蒸着物質を収容する蒸発源11a~11fを含む蒸発源群17Aを外側列に、即ち、膜密度が高い蒸着物質を収容する蒸発源11g~11lを含む蒸発源群17Bよりも外側に配置するとよい。
Also, as shown in the examples (and comparative examples), the amount of crosstalk components adhering to the monitoring devices 12g to 12l is largely dependent on the film formation rate and film density. Therefore, it is preferable that the film formation rate of the evaporation source group 17A (evaporation sources 11a to 11f) is lower than that of the evaporation source group 17B (evaporation sources 11g to 11l). Therefore, it is preferable to arrange the evaporation source group 17A including the evaporation sources 11a to 11f that accommodate the evaporation material with a low film formation rate in the outer row, that is, outside the evaporation source group 17B including the evaporation sources 11g to 11l that accommodate the evaporation material with a high film formation rate. Also, it is preferable that the film density of the evaporation material discharged from the evaporation source group 17A (evaporation sources 11a to 11f) and adhering to the quartz crystal oscillator is lower than the film density of the evaporation material discharged from the evaporation source group 17B (evaporation sources 11g to 11l) and adhering to the quartz crystal oscillator. Therefore, it is advisable to arrange the evaporation source group 17A, which includes evaporation sources 11a to 11f that contain evaporation materials with low film density, in the outer row, that is, outside the evaporation source group 17B, which includes evaporation sources 11g to 11l that contain evaporation materials with high film density.
また、実施例のように、蒸発源群17A(蒸発源11a~11f)にマグネシウム(Mg)を、蒸発源群17B(蒸発源11g~11l)に銀(Ag)を収容する場合、蒸発源群17C(蒸発源11m~11r)には、例えば、イッテルビウム(Yb)を収容する。蒸発源群17Cは、蒸発源ユニット10の移動方向(X方向)において、蒸発源群17Bよりも外側、且つ、蒸発源群17Aとは反対側に配置されている。この場合、蒸発源群17Cから放出されるYbを、蒸発源群17Bから放出されるAgや蒸発源群17Aから放出されるMgから独立して基板に付着させてYbの膜を形成する(単独蒸着)。この際、蒸発源ユニット10では、制御部43によってシャッタ161~163の動作が制御され、Ybの膜(第1層)と、銀マグネシウム(AgMg)の膜(第2層)とを基板に成膜する。なお、これらの蒸着物質(成膜材料)は、例示であって、限定されるものではない。
Furthermore, in the embodiment, when evaporation source group 17A (evaporation sources 11a to 11f) contains magnesium (Mg) and evaporation source group 17B (evaporation sources 11g to 11l) contains silver (Ag), evaporation source group 17C (evaporation sources 11m to 11r) contains, for example, ytterbium (Yb). Evaporation source group 17C is arranged outside evaporation source group 17B and opposite evaporation source group 17A in the movement direction (X direction) of the evaporation source unit 10. In this case, Yb emitted from evaporation source group 17C is deposited on the substrate independently of Ag emitted from evaporation source group 17B and Mg emitted from evaporation source group 17A to form a Yb film (single deposition). At this time, in the evaporation source unit 10, the control unit 43 controls the operation of the shutters 161 to 163, and a Yb film (first layer) and a silver magnesium (AgMg) film (second layer) are deposited on the substrate. Note that these deposition materials (film deposition materials) are merely examples and are not limiting.
また、基板100に形成される蒸着物質の膜厚の均一性には、蒸発源ユニット10の移動方向(X方向)に交差する交差方向(Y方向)に隣接する2つの蒸発源の間の距離(間隔)も関連している。例えば、蒸発源ユニット10の移動方向に交差する交差方向に隣接する2つの蒸発源の間の距離について、複数の蒸発源のレイアウト領域の外側を中心側よりも短くすることで、基板100に形成される蒸着物質の膜の膜厚の均一化に寄与することができる。
The uniformity of the thickness of the film of the deposition material formed on the substrate 100 is also related to the distance (spacing) between two adjacent evaporation sources in a cross direction (Y direction) that intersects with the movement direction (X direction) of the evaporation source unit 10. For example, making the distance between two adjacent evaporation sources in a cross direction that intersects with the movement direction of the evaporation source unit 10 shorter on the outside of the layout area of the multiple evaporation sources than on the center side can contribute to the uniformity of the thickness of the film of the deposition material formed on the substrate 100.
具体的には、蒸発源群17Aに含まれる蒸発源11a、11b及び11cに着目すると、蒸発源11bと蒸発源11aとの間の距離L3を、蒸発源11cと蒸発源11bとの間の距離L2よりも短くする。このように、複数の蒸発源11a~11fのうち、蒸発源ユニット10の移動方向に交差する交差方向に隣接する2つの蒸発源の間の距離を互いに異ならせる。
Specifically, when focusing on the evaporation sources 11a, 11b, and 11c included in the evaporation source group 17A, the distance L3 between the evaporation source 11b and the evaporation source 11a is made shorter than the distance L2 between the evaporation source 11c and the evaporation source 11b. In this way, among the multiple evaporation sources 11a to 11f, the distance between two adjacent evaporation sources in the intersecting direction intersecting with the movement direction of the evaporation source unit 10 is made different from each other.
また、上述したように、本実施形態では、蒸発源ユニット10の移動方向(X方向)に交差する交差方向(Y方向)に隣接する2つの蒸発源の間の距離が一定ではなく、隣接する2つの蒸発源の間隔が広くなる部分がある。このような場合、複数の監視装置12a~12rの配置に関して、図4に示すように、クロストークの抑制効果が高い配置を採用することが可能となる。
Furthermore, as described above, in this embodiment, the distance between two adjacent evaporation sources in the intersecting direction (Y direction) that intersects with the movement direction (X direction) of the evaporation source unit 10 is not constant, and there are portions where the distance between the two adjacent evaporation sources is wide. In such a case, it is possible to adopt an arrangement of the multiple monitoring devices 12a to 12r that has a high crosstalk suppression effect, as shown in Figure 4.
具体的には、監視装置12a~12fについては、各監視装置12a~12fと、蒸発源群17Aに含まれる複数の蒸発源11a~11fのうちの対応する蒸発源とを結ぶ線が蒸発源ユニット10の移動方向(X方向)に平行となるように配置する。また、監視装置12g~12lについては、各監視装置12g~12lと、蒸発源群17Bに含まれる複数の蒸発源11g~11lのうちの対応する蒸発源とを結ぶ線が蒸発源ユニット10の移動方向に交差するように配置する。また、監視装置12a~12f、及び、監視装置12g~12lは、蒸発源ユニット10の移動方向(X方向)の一方の側、本実施形態では、蒸発源群17Aの側に配置される。従って、監視装置12a~12lが配置される領域に近い蒸発源群17Aに含まれる蒸発源11a~11fから放出される蒸着物質の状態については、監視装置12a~12fによって最短距離で監視することになる。また、蒸発源群17Bに含まれる蒸発源11g~11lから放出される蒸着物質の状態については、監視装置12g~12lによって斜め方向から監視することになる。これにより、監視装置12a~12f(蒸発源11a~11f)や監視装置12g~12lでのクロストークが抑制され、監視装置12a~12lの監視精度の低下を抑えることができる。
Specifically, the monitoring devices 12a to 12f are arranged so that the line connecting each of the monitoring devices 12a to 12f and the corresponding evaporation source among the multiple evaporation sources 11a to 11f included in the evaporation source group 17A is parallel to the movement direction (X direction) of the evaporation source unit 10. Also, the monitoring devices 12g to 12l are arranged so that the line connecting each of the monitoring devices 12g to 12l and the corresponding evaporation source among the multiple evaporation sources 11g to 11l included in the evaporation source group 17B intersects with the movement direction of the evaporation source unit 10. Also, the monitoring devices 12a to 12f and the monitoring devices 12g to 12l are arranged on one side of the movement direction (X direction) of the evaporation source unit 10, which in this embodiment is the side of the evaporation source group 17A. Therefore, the state of the deposition material released from the evaporation sources 11a to 11f included in the evaporation source group 17A close to the area where the monitoring devices 12a to 12l are arranged is monitored by the monitoring devices 12a to 12f at the shortest distance. In addition, the state of the deposition material emitted from the evaporation sources 11g-11l included in the evaporation source group 17B is monitored from an oblique direction by the monitoring devices 12g-12l. This suppresses crosstalk between the monitoring devices 12a-12f (evaporation sources 11a-11f) and the monitoring devices 12g-12l, and prevents a decrease in the monitoring accuracy of the monitoring devices 12a-12l.
一方、監視装置12m~12rについては、各監視装置12m~12rと、蒸発源群17C(第3蒸発源群)に含まれる複数の蒸発源11m~11rのうちの対応する蒸発源とを結ぶ線が蒸発源ユニット10の移動方向に平行となるように配置する。また、監視装置12m~12rは、蒸発源ユニット10の移動方向の他方の側、本実施形態では、蒸発源群17Cの側に配置される。従って、監視装置12m~12rが配置される領域に近い蒸発源群17Cに含まれる蒸発源11m~11rから放出される蒸着物質の状態については、監視装置12m~12rによって最短距離で監視することになる。これにより、監視装置12m~12rでのクロストークが抑制され、監視装置12m~12rの監視精度の低下を抑えることができる。
On the other hand, the monitoring devices 12m-12r are arranged so that the line connecting each monitoring device 12m-12r and the corresponding evaporation source among the multiple evaporation sources 11m-11r included in the evaporation source group 17C (third evaporation source group) is parallel to the movement direction of the evaporation source unit 10. The monitoring devices 12m-12r are also arranged on the other side of the movement direction of the evaporation source unit 10, which in this embodiment is the side of the evaporation source group 17C. Therefore, the state of the deposition material emitted from the evaporation sources 11m-11r included in the evaporation source group 17C close to the area where the monitoring devices 12m-12r are arranged is monitored by the monitoring devices 12m-12r at the shortest distance. This suppresses crosstalk in the monitoring devices 12m-12r, and prevents a decrease in the monitoring accuracy of the monitoring devices 12m-12r.
発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。
The invention is not limited to the above-described embodiment, and various modifications and variations are possible without departing from the spirit and scope of the invention. Therefore, the following claims are attached to publicly disclose the scope of the invention.
本願は、2022年12月1日提出の日本国特許出願特願2022-193009を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。
This application claims priority based on Japanese Patent Application No. 2022-193009, filed on December 1, 2022, the entire contents of which are incorporated herein by reference.
Claims (18)
- 移動方向に相対的に移動する基板に対して成膜を行う蒸発源ユニットであって、
前記移動方向に交差する交差方向に沿って並んで配置され、前記基板に付着させる第1蒸着物質をそれぞれが放出する複数の第1蒸発源を含む第1蒸発源群と、
前記交差方向に沿って並んで配置され、前記基板に付着させる第2蒸着物質をそれぞれが放出する複数の第2蒸発源を含み、前記移動方向において前記第1蒸発源群よりも外側に配置された第2蒸発源群と、
前記第1蒸発源から放出される前記第1蒸着物質の状態を監視する第1水晶モニタと、
前記第2蒸発源から放出される前記第2蒸着物質の状態を監視する第2水晶モニタと、
を有し、
前記第2蒸発源から放出されて前記第2水晶モニタに付着する前記第2蒸着物質の付着量は、前記第1蒸発源から放出されて前記第1水晶モニタに付着する前記第1蒸着物質の付着量よりも小さい、ことを特徴とする蒸発源ユニット。 An evaporation source unit that forms a film on a substrate that moves relatively in a moving direction,
a first evaporation source group including a plurality of first evaporation sources arranged side by side along a cross direction crossing the moving direction, each of which emits a first deposition material to be deposited on the substrate;
a second evaporation source group including a plurality of second evaporation sources arranged side by side along the intersecting direction, each of which emits a second deposition material to be deposited on the substrate, the second evaporation source group being arranged on an outer side than the first evaporation source group in the moving direction;
a first quartz crystal monitor for monitoring a state of the first deposition material emitted from the first evaporation source;
a second quartz crystal monitor for monitoring a state of the second deposition material emitted from the second evaporation source;
having
An evaporation source unit, characterized in that an amount of the second evaporation material released from the second evaporation source and adhering to the second crystal monitor is smaller than an amount of the first evaporation material released from the first evaporation source and adhering to the first crystal monitor. - 前記第2蒸発源の成膜レートは、前記第1蒸発源の成膜レートよりも低い、ことを特徴とする請求項1に記載の蒸発源ユニット。 The evaporation source unit according to claim 1, characterized in that the film formation rate of the second evaporation source is lower than the film formation rate of the first evaporation source.
- 前記第2蒸発源から放出されて前記第2水晶モニタに付着する前記第2蒸着物質の膜密度は、前記第1蒸発源から放出されて前記第1水晶モニタに付着する前記第1蒸着物質の膜密度よりも低い、ことを特徴とする請求項1に記載の蒸発源ユニット。 The evaporation source unit of claim 1, characterized in that the film density of the second evaporation material discharged from the second evaporation source and adhering to the second crystal monitor is lower than the film density of the first evaporation material discharged from the first evaporation source and adhering to the first crystal monitor.
- 前記付着量は、成膜レート[Å/s]と膜密度[g/cm3]との積で定義される、ことを特徴とする請求項1に記載の蒸発源ユニット。 2. The evaporation source unit according to claim 1, wherein the deposition amount is defined as a product of a film formation rate [Å/s] and a film density [g/cm 3 ].
- 前記第1蒸着物質と前記第2蒸着物質とを同時に前記基板に付着させて前記第1蒸着物質と前記第2蒸着物質との混合膜を形成する、ことを特徴とする請求項1に記載の蒸発源ユニット。 The evaporation source unit of claim 1, characterized in that the first evaporation material and the second evaporation material are simultaneously deposited on the substrate to form a mixed film of the first evaporation material and the second evaporation material.
- 前記第1水晶モニタと前記第2水晶モニタとは、前記移動方向に交差する交差方向に沿って並んで配置されている、ことを特徴とする請求項1に記載の蒸発源ユニット。 The evaporation source unit of claim 1, characterized in that the first crystal monitor and the second crystal monitor are arranged side by side along a cross direction that crosses the movement direction.
- 前記第1水晶モニタと前記第2水晶モニタとは、前記移動方向において前記第2蒸発源群よりも外側に配置されている、ことを特徴とする請求項6に記載の蒸発源ユニット。 The evaporation source unit according to claim 6, characterized in that the first crystal monitor and the second crystal monitor are disposed outside the second evaporation source group in the movement direction.
- 前記第1水晶モニタは、当該第1水晶モニタと、前記第1蒸発源とを結ぶ線が前記移動方向に交差するように配置され、
前記第2水晶モニタは、当該第2水晶モニタと、前記第2蒸発源とを結ぶ線が前記移動方向に平行になるように配置されている、ことを特徴とする請求項7に記載の蒸発源ユニット。 the first quartz crystal monitor is disposed such that a line connecting the first quartz crystal monitor and the first evaporation source intersects with the moving direction;
8. The evaporation source unit according to claim 7, wherein the second quartz crystal monitor is arranged so that a line connecting the second quartz crystal monitor and the second evaporation source is parallel to the direction of movement. - 前記移動方向に交差する交差方向に沿って並んで配置され、前記基板に付着させる第3蒸着物質をそれぞれが放出する複数の第3蒸発源を含み、前記移動方向において、前記第1蒸発源群よりも外側、且つ、前記第2蒸発源群とは反対側に配置された第3蒸発源群を更に有し、
前記第3蒸着物質を、前記第1蒸着物質及び前記第2蒸着物質から独立して前記基板に付着させて前記第3蒸着物質の膜を形成する、ことを特徴とする請求項6に記載の蒸発源ユニット。 a third evaporation source group including a plurality of third evaporation sources arranged in a line along a direction intersecting the moving direction, each of which emits a third deposition material to be deposited on the substrate, the third evaporation source group being arranged on an outer side of the first evaporation source group and on an opposite side of the second evaporation source group in the moving direction;
The evaporation source unit according to claim 6 , wherein the third evaporation material is deposited on the substrate independently of the first evaporation material and the second evaporation material to form a film of the third evaporation material. - 前記第3蒸発源から放出される前記第3蒸着物質の状態を監視する第3水晶モニタを更に有し、
前記第3水晶モニタは、前記移動方向において前記第3蒸発源群よりも外側に配置されている、
ことを特徴とする請求項9に記載の蒸発源ユニット。 The method further includes a third quartz crystal monitor for monitoring a state of the third deposition material emitted from the third evaporation source,
the third quartz crystal monitor is disposed on the outer side of the third evaporation source group in the moving direction;
The evaporation source unit according to claim 9 . - 前記第3水晶モニタは、当該第3水晶モニタと、前記第3蒸発源とを結ぶ線が前記移動方向に平行になるように配置されている、ことを特徴とする請求項10に記載の蒸発源ユニット。 The evaporation source unit of claim 10, characterized in that the third quartz crystal monitor is arranged so that a line connecting the third quartz crystal monitor and the third evaporation source is parallel to the direction of movement.
- 前記複数の第1蒸発源及び前記複数の第2蒸発源のそれぞれにおいて、前記交差方向に隣接する2つの蒸発源の間の距離は互いに異なる、ことを特徴とする請求項1に記載の蒸発源ユニット。 The evaporation source unit according to claim 1, characterized in that in each of the plurality of first evaporation sources and the plurality of second evaporation sources, the distance between two adjacent evaporation sources in the cross direction is different from each other.
- 移動方向に相対的に移動する基板に対して成膜を行う蒸発源ユニットであって、
前記移動方向に交差する交差方向に沿って並んで配置され、前記基板に付着させる第1蒸着物質をそれぞれが放出する複数の第1蒸発源を含む第1蒸発源群と、
前記交差方向に沿って並んで配置され、前記基板に付着させる第2蒸着物質をそれぞれが放出する複数の第2蒸発源を含む第2蒸発源群と、
前記第1蒸発源から放出される前記第1蒸着物質の状態を監視する第1水晶モニタと、前記第2蒸発源から放出される前記第2蒸着物質の状態を監視する第2水晶モニタと、を含む監視手段と、
を有し、
前記第2蒸発源から放出されて前記第2水晶モニタに付着する前記第2蒸着物質の付着量が、前記第1蒸発源から放出されて前記第1水晶モニタに付着する前記第1蒸着物質の付着量よりも小さくなるように、前記第2蒸発源群は、前記第1蒸発源群よりも前記監視手段の近くに配置されている、ことを特徴とする蒸発源ユニット。 An evaporation source unit that forms a film on a substrate that moves relatively in a moving direction,
a first evaporation source group including a plurality of first evaporation sources arranged side by side along a cross direction crossing the moving direction, each of which emits a first deposition material to be deposited on the substrate;
a second evaporation source group including a plurality of second evaporation sources arranged side by side along the intersecting direction, each of which emits a second deposition material to be deposited on the substrate;
A monitoring means including a first crystal monitor for monitoring a state of the first deposition material discharged from the first evaporation source, and a second crystal monitor for monitoring a state of the second deposition material discharged from the second evaporation source;
having
an evaporation source unit characterized in that the second evaporation source group is arranged closer to the monitoring means than the first evaporation source group so that an amount of the second evaporation material released from the second evaporation source and adhering to the second crystal monitor is smaller than an amount of the first evaporation material released from the first evaporation source and adhering to the first crystal monitor. - 前記第1水晶モニタと前記第2水晶モニタとは、前記移動方向に交差する交差方向に沿って並んで配置されている、ことを特徴とする請求項13に記載の蒸発源ユニット。 The evaporation source unit of claim 13, characterized in that the first crystal monitor and the second crystal monitor are arranged side by side along a cross direction that crosses the movement direction.
- 前記第2蒸発源群は、前記移動方向において前記第1蒸発源群よりも外側に配置されている、ことを特徴とする請求項13に記載の蒸発源ユニット。 The evaporation source unit according to claim 13, characterized in that the second evaporation source group is disposed outside the first evaporation source group in the movement direction.
- 前記監視手段は、前記移動方向において前記第2蒸発源群よりも外側に配置されている、ことを特徴とする請求項15に記載の蒸発源ユニット。 The evaporation source unit according to claim 15, characterized in that the monitoring means is disposed outside the second evaporation source group in the movement direction.
- 請求項1に記載の蒸発源ユニットを有する成膜装置。 A film forming apparatus having the evaporation source unit according to claim 1.
- 請求項17に記載の成膜装置を用いて基板に成膜する、
ことを特徴とする成膜方法。 A film is formed on a substrate using the film forming apparatus according to claim 17.
A film forming method comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-193009 | 2022-12-01 | ||
JP2022193009A JP2024080105A (en) | 2022-12-01 | 2022-12-01 | Evaporation source unit, film deposition device and film deposition method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024116669A1 true WO2024116669A1 (en) | 2024-06-06 |
Family
ID=91323714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/038675 WO2024116669A1 (en) | 2022-12-01 | 2023-10-26 | Evaporation source unit, film formation device, and film formation method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024080105A (en) |
WO (1) | WO2024116669A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005206896A (en) * | 2004-01-23 | 2005-08-04 | Tokki Corp | Film thickness monitor, and vapor deposition device |
JP2011042868A (en) * | 2009-07-24 | 2011-03-03 | Hitachi High-Technologies Corp | Vacuum deposition method and apparatus for the same |
JP2014129568A (en) * | 2012-12-28 | 2014-07-10 | Canon Tokki Corp | Evaporation source device |
WO2017010512A1 (en) * | 2015-07-15 | 2017-01-19 | シャープ株式会社 | Vapor deposition method and vapor deposition device |
-
2022
- 2022-12-01 JP JP2022193009A patent/JP2024080105A/en active Pending
-
2023
- 2023-10-26 WO PCT/JP2023/038675 patent/WO2024116669A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005206896A (en) * | 2004-01-23 | 2005-08-04 | Tokki Corp | Film thickness monitor, and vapor deposition device |
JP2011042868A (en) * | 2009-07-24 | 2011-03-03 | Hitachi High-Technologies Corp | Vacuum deposition method and apparatus for the same |
JP2014129568A (en) * | 2012-12-28 | 2014-07-10 | Canon Tokki Corp | Evaporation source device |
WO2017010512A1 (en) * | 2015-07-15 | 2017-01-19 | シャープ株式会社 | Vapor deposition method and vapor deposition device |
Also Published As
Publication number | Publication date |
---|---|
JP2024080105A (en) | 2024-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7220060B2 (en) | Substrate inspection system, electronic device manufacturing apparatus, substrate inspection method, and electronic device manufacturing method | |
US9570714B2 (en) | Organic layer deposition assembly, organic layer deposition apparatus, organic light-emitting display apparatus and method of manufacturing the same | |
US8961692B2 (en) | Evaporating apparatus | |
JP6803917B2 (en) | Vacuum processing system and method of performing vacuum processing | |
JP4381909B2 (en) | Substrate processing apparatus and substrate processing method | |
KR101941404B1 (en) | Plate-to-be-treated storage apparatus, plate-to-be-treated storage method and deposition method using the same | |
JP5074429B2 (en) | Deposition equipment | |
CN109306453B (en) | Display manufacturing apparatus and display manufacturing method using the same | |
JP7450372B2 (en) | Film deposition apparatus, film deposition method, and electronic device manufacturing method | |
JP7017619B2 (en) | Film forming equipment, electronic device manufacturing equipment, film forming method, and electronic device manufacturing method | |
JP2020139227A (en) | Film deposition apparatus, film deposition method, and manufacturing method of electronic device | |
JP2021102811A (en) | Film deposition device and method for producing electronic device | |
WO2024116669A1 (en) | Evaporation source unit, film formation device, and film formation method | |
KR102590797B1 (en) | Adsorption system, adsorption method and film forming apparatus using the same, film forming method, and manufacturing method of electronic device | |
CN111293067A (en) | Electrostatic chuck, electrostatic chuck system, film forming apparatus and method, adsorption method, and method for manufacturing electronic device | |
WO2024116668A1 (en) | Evaporation source unit, film forming device, and film forming method | |
JP2021098885A (en) | Film deposition device | |
JP7509809B2 (en) | Evaporation source unit, film forming apparatus and film forming method | |
KR20230059770A (en) | Film forming apparatus, film forming method and manufacturing method of electronic device | |
KR20200049379A (en) | Alignment apparatus, film forming apparatus, alignment method, film forming method, and manufacturing method of electronic device | |
JP2023123096A (en) | Film deposition apparatus | |
WO2024070473A1 (en) | Film formation device and film formation method | |
JP5232112B2 (en) | Deposition equipment | |
WO2024101167A1 (en) | Film forming apparatus, film forming method and method for producing electronic device | |
KR20200049357A (en) | Adsorption and alignment method, adsorption system, film forming method, film forming apparatus, and manufacturing method of electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23897325 Country of ref document: EP Kind code of ref document: A1 |