WO2024116668A1 - Evaporation source unit, film forming device, and film forming method - Google Patents
Evaporation source unit, film forming device, and film forming method Download PDFInfo
- Publication number
- WO2024116668A1 WO2024116668A1 PCT/JP2023/038674 JP2023038674W WO2024116668A1 WO 2024116668 A1 WO2024116668 A1 WO 2024116668A1 JP 2023038674 W JP2023038674 W JP 2023038674W WO 2024116668 A1 WO2024116668 A1 WO 2024116668A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- evaporation source
- evaporation
- film formation
- sources
- substrate
- Prior art date
Links
- 238000001704 evaporation Methods 0.000 title claims abstract description 436
- 230000008020 evaporation Effects 0.000 title claims abstract description 435
- 238000000034 method Methods 0.000 title claims description 22
- 239000000758 substrate Substances 0.000 claims abstract description 103
- 238000010438 heat treatment Methods 0.000 claims abstract description 18
- 230000008021 deposition Effects 0.000 claims description 101
- 230000015572 biosynthetic process Effects 0.000 claims description 80
- 239000000463 material Substances 0.000 claims description 78
- 238000012544 monitoring process Methods 0.000 claims description 17
- 238000007740 vapor deposition Methods 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract 2
- 239000010408 film Substances 0.000 description 122
- 238000012806 monitoring device Methods 0.000 description 34
- 230000008569 process Effects 0.000 description 14
- 230000007246 mechanism Effects 0.000 description 13
- 230000032258 transport Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000010453 quartz Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000005485 electric heating Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/16—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
Definitions
- the present invention relates to an evaporation source unit, a film forming apparatus, and a film forming method.
- Patent Document 1 discloses that multiple evaporation sources are used to form a film while the substrate is rotated.
- the evaporation source unit is an evaporation source unit that forms a film on a substrate that moves relatively in a moving direction, and includes a plurality of evaporation sources each independently including a container for containing an evaporation material to be attached to the substrate and a heating means for heating the evaporation material contained in the container, and a control means for controlling each of the plurality of evaporation sources, the plurality of evaporation sources including a first evaporation source, a second evaporation source, and a third evaporation source that are arranged in sequence from the center of a layout area of the plurality of evaporation sources along a cross direction that crosses the moving direction, and the control means controls each of the first evaporation source, the second evaporation source, and the third evaporation source so that the film formation rate of the second evaporation source is smaller than the film formation rate of the first evaporation source and the film formation rate of the third evaporation
- the present invention can provide a technology that is advantageous for, for example, making the thickness of a film formed on a substrate uniform.
- FIG. 1 is a plan view showing a schematic configuration of a film formation system having a film formation apparatus according to one aspect of the present invention.
- 1 is a front view showing a schematic configuration of a film forming apparatus according to one aspect of the present invention;
- 3A and 3B are diagrams for explaining the configuration of an evaporation source unit.
- 3A and 3B are diagrams for explaining the configuration of an evaporation source unit.
- FIG. 2 is a cross-sectional view illustrating a schematic configuration of an evaporation source.
- FIG. 1 is a diagram showing a first embodiment.
- FIG. 11 is a diagram showing Example 2.
- FIG. 1 is a plan view showing a schematic configuration of a film formation system SY having a film formation apparatus 1 according to one aspect of the present invention.
- the film formation system SY is a system that performs a film formation process on a substrate that is brought in and then removes the substrate after the film formation process.
- a manufacturing line for electronic devices is formed by arranging multiple film formation systems SY side by side.
- An example of an electronic device is a display panel of an organic EL display device for a smartphone.
- the film formation system SY includes a film formation apparatus 1, a loading chamber 60, a substrate transport chamber 62, an unloading chamber 64, and a mask stock chamber 66.
- the configuration of the film formation apparatus 1 will be described in detail later.
- the substrate 100 to be subjected to the film formation process in the film formation apparatus 1 is carried into the loading chamber 60 from outside the film formation apparatus 1.
- the substrate transport chamber 62 is provided with a transport robot 620 for transporting the substrate 100.
- the transport robot 620 transports the substrate 100 carried into the loading chamber 60 to the film formation apparatus 1.
- the transport robot 620 also transports the substrate 100 to the unloading chamber 64 after the film formation process in the film formation apparatus 1.
- the substrate 100 transported to the unloading chamber 64 by the transport robot 620 is unloaded from the unloading chamber 64 to the outside of the film formation system SY.
- the unloading chamber 64 of the upstream film formation system SY may also serve as the substrate transport chamber 62 of the downstream film formation system SY.
- the mask stock chamber 66 the mask 101 used for the film formation process in the film formation apparatus 1 is stocked.
- the mask 101 stored in the mask stock chamber 66 is transported to the film forming apparatus 1 by the transport robot 620.
- the inside of the deposition apparatus 1 and each chamber that constitutes the deposition system SY is maintained in a vacuum state by an exhaust mechanism such as a vacuum pump.
- the "vacuum state” means a state filled with gas at a pressure lower than atmospheric pressure, i.e., a reduced pressure state.
- FIG. 2 is a front view showing a schematic configuration of a film forming apparatus 1 according to one aspect of the present invention.
- arrows X and Y indicate horizontal directions that are perpendicular to each other, and arrow Z indicates the vertical direction.
- the film forming apparatus 1 is an apparatus for performing a film forming process to form a film (thin film) on a substrate by adhering (evaporating) an evaporation material released from an evaporation source onto the substrate while moving the evaporation source relative to the substrate.
- the film forming apparatus 1 is used, for example, as a manufacturing apparatus for display panels of organic EL display devices for smartphones, and as described above, a manufacturing line is formed by arranging a plurality of the apparatuses.
- the material of the substrate on which the film forming process is performed in the film forming apparatus 1 can be appropriately selected from glass, resin, metal, etc., and in particular, a substrate on which a resin layer such as polyimide is formed on glass is suitable.
- the film forming apparatus 1 is not limited to the manufacture of display panels of organic EL display devices, and can also be used as a manufacturing apparatus for electronic devices such as display devices (flat panel displays), thin-film solar cells, and organic photoelectric conversion elements (organic thin-film imaging elements), and optical components.
- the film forming apparatus 1 performs film forming processing on a G8H size glass substrate (1100 mm x 2500 mm, 1250 mm x 2200 mm), but the size of the substrate on which the film forming apparatus 1 performs film forming processing can be set appropriately.
- the film forming apparatus 1 has an evaporation source unit 10 and multiple film forming stages 30A and 30B.
- the evaporation source unit 10 and the film forming stages 30A and 30B are arranged inside a chamber 45 that is maintained in a vacuum state during film forming processing (when in use).
- the multiple film forming stages 30A and 30B are provided spaced apart in the X direction at the top inside the chamber 45, and the evaporation source unit 10 is provided below them.
- the chamber 45 also has multiple loading/unloading ports (not shown) for loading and unloading the substrate 100.
- the film forming apparatus 1 further includes a power supply 41 that supplies power to the evaporation source unit 10, and an electrical connection section 42 that electrically connects the evaporation source unit 10 and the power supply 41.
- the electrical connection section 42 includes electrical wiring built into an arm that is movable in the horizontal direction, and is configured to be able to supply power from the power supply 41 to the evaporation source unit 10 that is movable in the X direction.
- the film forming apparatus 1 further includes a control unit 43 that controls each component (operation) of the film forming apparatus 1.
- the control unit 43 is composed of a computer (information processing device) including, for example, a processor such as a CPU, memories such as RAM and ROM, and various interfaces.
- the control unit 43 realizes various operations and processes in the film forming apparatus 1 by reading a program stored in the ROM into the RAM and executing it. Note that instead of the control unit 43, it is also possible to directly control each component of the film forming apparatus 1 using a host computer that comprehensively controls the film forming system SY.
- the film-forming stage 30A is a stage for performing a film-forming process on the substrate 100A.
- the film-forming stage 30A supports the substrate 100A and the mask 101A, and adjusts the relative positions of the substrate 100A and the mask 101A.
- the film-forming stage 30A includes a substrate support portion 32A, a mask support portion 34A, a support column 35A, and an alignment mechanism 36A.
- the substrate support section 32A supports the substrate 100A.
- the substrate support section 32A supports the substrate 100A so that the short side of the substrate 100A is aligned along the X direction and the long side of the substrate 100A is aligned along the Y direction.
- the substrate support section 32A supports the edge of the substrate 100A from the underside of the substrate 100A.
- the substrate support section 32A may support the substrate 100A by clamping the edge of the substrate 100A, or may support the substrate 100A by adsorbing the substrate 100A with an electrostatic chuck or an adhesive chuck.
- the substrate support section 32A receives the substrate 100A that has been transported into the film formation system SY via a transport robot 620 provided in the substrate transport chamber 62.
- the substrate support 32A is provided with a lifting mechanism (not shown) that allows the substrate support 32A to be raised and lowered, and the substrate 100A received from the transfer robot 620 can be superimposed on the mask 101A supported by the mask support 34A.
- a lifting mechanism a ball screw mechanism or other technology well known in the industry can be applied.
- the mask support portion 34A supports the mask 101A.
- an opening (not shown) is provided in the mask support portion 34A, and the deposition material adheres (scatters) through this opening to the deposition surface (surface on which a film is formed) of the substrate 100A superimposed on the mask 101A.
- the mask support portion 34A is supported by the chamber 45 via the support pillars 35A.
- the alignment mechanism 36A performs alignment to adjust the relative positions of the substrate 100A and the mask 101A.
- the alignment mechanism 36A adjusts the relative positions of the substrate support part 32A and the mask support part 34A in the horizontal direction to align the substrate 100A supported by the substrate support part 32A and the mask 101A supported by the mask support part 34A.
- the alignment mechanism 36A first detects alignment marks formed on the substrate 100A and the mask 101A with a camera (not shown).
- the alignment mechanism 36A adjusts the positional relationship between the substrate 100A and the mask 101A so that the relationship between the position of the substrate 100A and the position of the mask 101A obtained by detecting these marks satisfies a predetermined condition. Specifically, the mark formed on the substrate 100A and the mark formed on the mask 101A are overlapped, the amount of misalignment between these marks is detected by a camera, and the position of the substrate 100A is adjusted so that the specified conditions are met (within the tolerance range).
- the substrate support 32A overlays the substrate 100A it is supporting on the mask 101A. With the substrate 100A and the mask 101A overlaid, a film formation process is performed on the substrate 100A by the evaporation source unit 10.
- the deposition stage 30B includes a configuration similar to that of the deposition stage 30A.
- the deposition stage 30B includes a substrate support 32B, a mask support 34B, a support 35B, and an alignment mechanism 36B.
- the substrate support 32B, the mask support 34B, the support 35B, and the alignment mechanism 36B correspond to the substrate support 32A, the mask support 34A, the support 35A, and the alignment mechanism 36A, respectively.
- the film forming apparatus 1 has multiple film forming stages 30A and 30B, and is embodied as a so-called dual-stage film forming apparatus. Therefore, while a film forming process (such as vapor deposition) is being performed on the substrate 100A in the film forming stage 30A, alignment between the substrate 100B and the mask 101B can be performed in the film forming stage 30B, and the film forming process can be performed efficiently.
- a film forming process such as vapor deposition
- Figure 3 is a diagram for explaining the configuration of the evaporation source unit 10, and is a diagram showing the evaporation source unit 10 from a lateral direction (Y direction).
- Figure 4 is a diagram for explaining the configuration of the evaporation source unit 10, and is a diagram showing the evaporation source unit 10 from above (Z direction).
- the evaporation source unit 10 is a unit that performs a film formation process on the substrate 100 by emitting a deposition material while moving in the X direction.
- the evaporation source unit 10 includes a plurality of evaporation sources 11a to 11r, a plurality of monitoring devices 12a to 12r, shutters 161 to 163, and a moving unit 20.
- FIG. 5 is a cross-sectional view showing a schematic configuration of the evaporation sources 11a to 11r.
- Each of the evaporation sources 11a to 11r emits a deposition material.
- each of the evaporation sources 11a to 11r includes a material container 111 and a heating unit 112.
- the material container 111 is a crucible that contains a deposition material to be attached to the substrate 100.
- a release section 1111 is provided at the top of the material container 111 to release the deposition material evaporated inside the material container 111 to the outside of the material container 111.
- the release section 1111 is configured as an opening (release port) formed on the top surface of the material container 111, but is not limited to this.
- the function of the release section 1111 may be realized by configuring the material container 111 from a cylindrical member or the like.
- the top surface of the material container 111 may be provided with multiple openings as the release section 1111.
- the heating unit 112 heats and evaporates the deposition material contained in the material container 111.
- the heating unit 112 is preferably provided so as to cover the entire material container 111.
- the heating unit 112 is embodied as a sheathed heater using an electric heating wire, and FIG. 5 shows a cross section of the sheathed heater when the electric heating wire is wrapped around the material container 111.
- each of the multiple evaporation sources 11a to 11r independently includes a material container 111 and a heating unit 112. Therefore, the control unit 43 can independently control the heating (evaporation) of the deposition material by each of the multiple evaporation sources 11a to 11r.
- the multiple evaporation sources 11a to 11r are roughly divided into three evaporation source groups 17A to 17C spaced apart from one another along the movement direction (X direction) of the evaporation source unit 10.
- Evaporation source group 17A includes multiple evaporation sources 11a to 11f arranged along a cross direction (Y direction) that intersects with the movement direction of the evaporation source unit 10.
- Evaporation source group 17B includes multiple evaporation sources 11g to 11l arranged along a cross direction that intersects with the movement direction of the evaporation source unit 10.
- Evaporation source group 17C includes multiple evaporation sources 11m to 11r arranged along a cross direction that intersects with the movement direction of the evaporation source unit 10.
- the three evaporation source groups 17A to 17C are arranged in the movement direction of the evaporation source unit 10 in the order of evaporation source group 17A, evaporation source group 17B, and evaporation source group 17C. Therefore, when focusing on the evaporation sources included in each of the evaporation source groups 17A to 17C, for example, evaporation source 11d, evaporation source 11j, and evaporation source 11p are arranged in this order along the movement direction of the evaporation source unit 10.
- the three evaporation source groups 17A to 17C can emit different deposition materials.
- evaporation source group 17A emits magnesium (Mg)
- evaporation source group 17B emits silver (Ag)
- evaporation source group 17C emits ytterbium (Yb) (or lithium fluoride (LiF)).
- the control unit 43 controls the operation of the shutters 161 to 163, and a layer of lithium fluoride (first layer) and a layer of silver magnesium (AgMg) (second layer) are deposited on the substrate 100.
- these deposition materials are merely examples and are not limiting.
- the multiple monitoring devices 12a to 12r are provided corresponding to the multiple evaporation sources 11a to 11r.
- Each of the multiple monitoring devices 12a to 12r monitors the state (emission state) of the deposition material emitted from each of the multiple evaporation sources 11a to 11r, for example, the rate of the deposition material (evaporation rate (film formation rate)).
- the monitoring devices 12a to 12r include a case 121 and a quartz oscillator 123 provided inside the case 121 as a film thickness sensor. The deposition material emitted from the evaporation source 11 and introduced into the case 121 through an introduction part 122 provided in the case 121 adheres to the quartz oscillator 123.
- the frequency of the quartz oscillator 123 varies depending on the amount (adhesion amount) of the deposition material adhering to the quartz oscillator 123. Therefore, the control unit 43 can calculate the film thickness of the deposition material adhered (deposited) on the substrate 100 based on the frequency of the quartz oscillator 123.
- the amount of deposition material adhering to the quartz crystal oscillator 123 per unit time correlates with the amount of deposition material released from the evaporation source 11, so the monitoring devices 12a to 12r can monitor the state of the deposition material released from the multiple evaporation sources 11.
- each of the monitoring devices 12a to 12r independently monitors the state of the deposition material released from the evaporation sources 11a to 11r. Furthermore, the control unit 43 independently controls the evaporation sources 11a to 11r (the output of each heating unit) based on the monitoring results of the monitoring devices 12a to 12r. In other words, the control unit 43 controls the film formation rate of each of the evaporation sources 11a to 11r based on the rate of the deposition material monitored by each of the monitoring devices 12a to 12r.
- the limiting section 14 limits the release range of the deposition material released from the multiple evaporation sources 11a to 11r.
- the limiting section 14 includes multiple plate members 141 to 144.
- the plate members 141 and 142 limit the release range in the X direction of the deposition material released from the multiple evaporation sources 11a to 11f.
- the plate members 142 and 143 limit the release range in the X direction of the deposition material released from the multiple evaporation sources 11g to 11l.
- the plate members 143 and 144 limit the release range in the X direction of the deposition material released from the multiple evaporation sources 11g to 11r.
- the plate member 141 is provided with cylindrical members 141a-141l through which the deposition material introduced (scattered) to the monitoring devices 12a-12l passes.
- the plate member 142 is provided with cylindrical members 142g-142l through which the deposition material introduced to the monitoring devices 12g-12l passes.
- the plate member 144 is provided with cylindrical members 144m-144l through which the deposition material introduced to the monitoring devices 12m-12r passes.
- the cylindrical members 141a-141l, 142g-142l, and 144m-144l contribute to preventing a decrease in the monitoring accuracy of the monitoring devices caused by deposition material emitted from an adjacent evaporation source entering a monitoring device that is not being monitored (so-called crosstalk).
- the shutters 161-163 control the scattering of the deposition material emitted from the evaporation source groups 17A-17C onto the substrate 100.
- the shutters 161-163 are provided so as to be displaceable between a blocking position that blocks the scattering of the deposition material emitted from the evaporation source groups 17A-17C onto the substrate 100, and an allowable position that allows the scattering of the deposition material onto the substrate 100.
- the shutter 161 is provided so as to be displaceable between a blocking position that blocks the scattering of the deposition material emitted from the evaporation sources 11a-11f included in the evaporation source group 17A onto the substrate 100, and an allowable position that allows the scattering of the deposition material onto the substrate 100.
- the shutters 162 and 163 are also provided so as to be displaceable between a blocking position and an allowable position, similar to the shutter 161.
- the shutter 161 includes a rotating shaft 1611 whose axial direction is a cross direction (Y direction) that intersects with the movement direction of the evaporation source unit 10, and a shielding member 1612 provided on the rotating shaft 1611.
- the shutter 161 is displaced between a blocking position and an allowable position as the shielding member 1612 rotates about the rotating shaft 1611 to perform an opening and closing operation.
- the shutter 162 includes a rotating shaft 1621 and a shielding member 1622
- the shutter 163 includes a rotating shaft 1631 and a shielding member 1632.
- the rotation axis 1611 of the shutter 161 is positioned offset in the movement direction (X direction) of the evaporation source unit 10 with respect to the emission parts 1111 of the evaporation sources 11a to 11f.
- the rotation axis 1621 of the shutter 162 is positioned offset in the movement direction of the evaporation source unit 10 with respect to the emission parts 1111 of the evaporation sources 11g to 11l.
- the rotation axis 1631 of the shutter 163 is positioned offset in the movement direction of the evaporation source unit 10 with respect to the emission parts 1111 of the evaporation sources 11p to 11r. This makes it possible to suppress interference between the shutters 161 to 163 and the emission ranges of the evaporation sources 11a to 11r when the shutters 161 to 163 are positioned in the permissible positions.
- the height of the pivot shaft 1611 of the shutter 161 is different from the height of the pivot shaft 1621 of the shutter 162. This makes it possible to suppress interference between the shutters 161 and 162 when the shutters 161 and 162 are opened and closed simultaneously, and to arrange the shutters 161 and 162 compactly in the X direction.
- the rotation axis 1621 of the shutter 162 covering the top of the evaporation source group 17B arranged on the +X side of the evaporation source group 17A is shifted to the +X side with respect to the emission parts 1111 of the evaporation sources 11g to 11l.
- the rotation axis 1611 of the shutter 161 covering the top of the evaporation source group 17A arranged on the -X side of the evaporation source group 17B is shifted to the -X side with respect to the emission parts 1111 of the evaporation sources 11a to 11f. Therefore, the shutters 161 and 162 are configured like double-hinged doors.
- the moving unit 20 moves the evaporation source unit 10, specifically the multiple evaporation sources 11a-11r and the multiple monitoring devices 12a-12r, in the moving direction (X direction).
- the moving unit 20 moves the evaporation source unit 10 relative to the substrate 100, while the evaporation material emitted from the evaporation source unit 10 is deposited (deposited) on the substrate 100 to form a film (layer) of the evaporation material on the substrate 100.
- the moving part 20 includes, as components provided in the evaporation source unit 10, a motor (not shown), a pinion 202 provided on a shaft member that rotates when driven by the motor, and a guide member 203.
- the moving part 20 further includes a rack (not shown) that engages with the pinion 202, and a guide rail 206 along which the guide member 203 slides.
- the evaporation source unit 10 moves in the X direction along the guide rail 206 as the pinion 202, which rotates when driven by the motor, engages with the rack.
- the control unit 43 independently controls the amount of deposition material discharged from each of the multiple evaporation sources 11a to 11r and adhering to the substrate 100, i.e., the deposition rate of each evaporation source 11a to 11r.
- the inventors have found that it is advantageous to make the deposition rates of the multiple evaporation sources 11a to 11r different, rather than making them the same, in order to make the thickness of the film of the deposition material formed on the substrate 100 uniform.
- each evaporation source 11a to 11r performed by the control unit 43 in the film formation process (film formation method) of this embodiment.
- attention is focused on the evaporation sources 11a, 11b, and 11c included in the evaporation source group 17A.
- the evaporation sources 11a, 11b, and 11c are arranged along a cross direction (Y direction) that crosses the movement direction (X direction) of the evaporation source unit 10.
- the evaporation source 11c is the evaporation source (first evaporation source) that is arranged at a position closest to the center CT of the layout area of the multiple evaporation sources 11a to 11f.
- the evaporation source 11b is the evaporation source (second evaporation source) that is arranged at a position next closest to the evaporation source 11c from the center CT of the layout area of the multiple evaporation sources 11a to 11f.
- the evaporation source 11a is the evaporation source (third evaporation source) that is arranged at a position farthest from the center CT of the layout area of the multiple evaporation sources 11a to 11f. In this way, the evaporation sources 11a, 11b, and 11c are arranged in the order of evaporation source 11c, evaporation source 11b, evaporation source 11c from the center CT of the layout area of the multiple evaporation sources 11a to 11f.
- the control unit 43 controls each of the evaporation sources 11a, 11b, and 11c (the output of each heating unit) so that the film formation rates of the multiple evaporation sources 11a, 11b, and 11c include two different film formation rates.
- the film formation rate of the evaporation source 11b is different from the film formation rate of the evaporation source 11c and the film formation rate of the evaporation source 11a, and more specifically, the film formation rate of the evaporation source 11b is smaller than the film formation rate of the evaporation source 11c and the film formation rate of the evaporation source 11a.
- the film formation rate of the evaporation source 11a and the film formation rate of the evaporation source 11c are equal.
- the thickness of the film of the deposition material formed on the substrate 100 can be made more uniform than when the deposition rates of each of the evaporation sources 11a to 11r are the same.
- control unit 43 may control each of the evaporation sources 11a, 11b, and 11c (the output of each heating unit) so that the film formation rates of the evaporation sources 11a, 11b, and 11c include three different film formation rates. Specifically, the film formation rate of the evaporation source 11b is smaller than the film formation rate of the evaporation source 11c and the film formation rate of the evaporation source 11a, and the film formation rate of the evaporation source 11a is larger than the film formation rate of the evaporation source 11c.
- each evaporation source 11a to 11c may be controlled so that the film formation rate of the evaporation source 11a > the film formation rate of the evaporation source 11c > the film formation rate of the evaporation source 11b.
- the thickness of the film of the deposition material formed on the substrate 100 can be made uniform compared to the case where the film formation rates of the evaporation sources 11a to 11r are the same.
- the film formation rate may be controlled in the same manner for the evaporation sources 11d, 11e, and 11f.
- the film formation rate may be controlled in the same manner as for the evaporation source 11c.
- the film formation rate may be controlled in the same manner as for the evaporation source 11b.
- the film formation rate may be controlled in the same manner as for the evaporation source 11a.
- the deposition rate may be controlled according to the distance from the center of the layout area of the multiple evaporation sources 11g to 11l.
- the deposition rate may be controlled according to the distance from the center of the layout area of the multiple evaporation sources 11m to 11r.
- the distance (spacing) between two adjacent evaporation sources in a cross direction (Y direction) that intersects with the movement direction (X direction) of the evaporation source unit 10 is related to the uniformity of the film thickness of the deposition material formed on the substrate 100. For example, by making the distance between two adjacent evaporation sources in a cross direction that intersects with the movement direction of the evaporation source unit 10 shorter on the outside of the layout area of the multiple evaporation sources than on the center side, this can contribute to the uniformity of the film thickness of the deposition material formed on the substrate 100.
- the distance L3 between evaporation source 11b and evaporation source 11a is made shorter than the distance L2 between evaporation source 11c and evaporation source 11b.
- the distance twice the distance L1 between evaporation source 11c and the center CT of the layout area of the multiple evaporation sources 11a to 11f is made longer than the distance L2 between evaporation source 11c and evaporation source 11b.
- the distance between two evaporation sources adjacent to each other in the intersecting direction intersecting with the movement direction of the evaporation source unit 10 among the multiple evaporation sources 11a to 11f is made shorter the further away from the center CT of the layout area of the multiple evaporation sources 11a to 11f.
- the distance (between evaporation source 11c and evaporation source 11d) twice the distance L1 between evaporation source 11c and the center CT of the layout area of the multiple evaporation sources 11a to 11f does not necessarily have to be longer than the distance L2 between evaporation source 11c and evaporation source 11b.
- the distance L2 between evaporation source 11c and evaporation source 11b may be shorter than the distance L1 twice the distance between evaporation source 11c and the center CT of the layout area of the multiple evaporation sources 11a to 11f.
- the distance L2 twice the distance L1 between evaporation source 11c and the center CT of the layout area of the multiple evaporation sources 11a to 11f needs to be longer than the distance L3 between evaporation source 11b and evaporation source 11c.
- the deposition material emitted from the evaporation sources 11a to 11f is silver (Ag), and the results of forming a film having a thickness of 150 ⁇ on the substrate 100 are shown in Figures 6A, 6B, and 6C as Example 1, Example 2, and Comparative Example.
- Figures 6A, 6B, and 6C only show numerical examples related to evaporation sources 11a, 11b, and 11c out of evaporation sources 11a to 11f. This is because evaporation sources 11a, 11b, and 11c, and evaporation sources 11f, 11e, and 11d are arranged symmetrically with respect to the center CT of the layout area of evaporation sources 11a to 11f.
- the deposition rates of the multiple evaporation sources 11a to 11c include two different deposition rates. Specifically, as shown in FIG. 6A, the deposition rate of the evaporation source 11b (11e) is smaller than the deposition rate of the evaporation source 11a (11f) and the deposition rate of the evaporation source 11c (11d), and the deposition rate of the evaporation source 11a is equal to the deposition rate of the evaporation source 11c.
- the ratio of the deposition rate of the evaporation source 11c to the deposition rate of the evaporation source 11b to the deposition rate of the evaporation source 11a is set to 1.00:0.58:1.00.
- the deposition rate of the multiple evaporation sources 11a to 11f from the center CT of the layout area is 316 mm
- the deposition rate of the evaporation source 11b is set to 863 mm
- the deposition rate of the evaporation source 11a is set to 1200 mm.
- twice the distance L1 between evaporation source 11c and the center CT of the layout area of the multiple evaporation sources 11a to 11f is 632 mm
- the distance L2 between evaporation source 11c and evaporation source 11b is 547 mm
- the distance L3 between evaporation source 11b and evaporation source 11c is 337 mm.
- the deposition rates of the multiple evaporation sources 11a to 11c are different from each other and include three different deposition rates. Specifically, as shown in FIG. 6B, the deposition rate of the evaporation source 11b (11e) is smaller than the deposition rate of the evaporation source 11a (11f) and the deposition rate of the evaporation source 11c (11d), and the deposition rate of the evaporation source 11a is larger than the deposition rate of the evaporation source 11c.
- the ratio of the deposition rate of the evaporation source 11c to the deposition rate of the evaporation source 11b to the deposition rate of the evaporation source 11a is set to 1.00:0.85:1.41.
- the deposition rate of the multiple evaporation sources 11a to 11f from the center CT of the layout area is 240 mm
- the deposition rate of the evaporation source 11b is set to 730 mm
- the deposition rate of the evaporation source 11a is set to 1200 mm.
- twice the distance L1 between evaporation source 11c and the center CT of the layout area of the multiple evaporation sources 11a to 11f is 480 mm
- the distance L2 between evaporation source 11c and evaporation source 11b is 490 mm
- the distance L3 between evaporation source 11b and evaporation source 11c is 470 mm.
- the deposition rates of the multiple evaporation sources 11a to 11c were set to the same. Therefore, the ratio of the deposition rate of the evaporation source 11c to the deposition rate of the evaporation source 11b to the deposition rate of the evaporation source 11a was 1.00:1.00:1.00.
- the evaporation source 11c was placed at a position where the distance from the center CT of the layout area of the multiple evaporation sources 11a to 11f was 226 mm, the evaporation source 11b was placed at a position where the distance was 840 mm, and the evaporation source 11a was placed at a position where the distance was 1200 mm.
- twice the distance L1 between the evaporation source 11c and the center CT of the layout area of the multiple evaporation sources 11a to 11f is 452 mm
- the distance L2 between the evaporation source 11c and the evaporation source 11b is 617 mm
- the distance L3 between the evaporation source 11b and the evaporation source 11c is 357 mm.
- Example 1 Comparing Example 1 (FIG. 6A) with Comparative Example (FIG. 6C), it can be seen that the deposition rates of the evaporation sources 11a to 11c include two different deposition rates, and thus the uniformity of the film thickness distribution of the film formed on the substrate 100 is improved from ⁇ 3.6% to ⁇ 1.6%. Also, comparing Example 2 (FIG. 6B) with Comparative Example (FIG. 6C), it can be seen that the deposition rates of the evaporation sources 11a to 11c include three different deposition rates, and thus the uniformity of the film thickness distribution of the film formed on the substrate 100 is improved from ⁇ 3.6% to ⁇ 1.5%. Comparing Example 1 with Example 2, the uniformity of the film thickness distribution of the film formed on the substrate 100 is about the same. In terms of the amount of deposition material consumed, it can be seen that the consumption increases in the order of Comparative Example, Example 1, and Example 2.
- the distance between two adjacent evaporation sources in the intersecting direction (Y direction) that intersects with the movement direction (X direction) of the evaporation source unit 10 is not constant, and there are portions where the distance between the two adjacent evaporation sources is wide.
- the monitoring devices 12a to 12f are arranged so that the line connecting each of the monitoring devices 12a to 12f and the corresponding evaporation source among the multiple evaporation sources 11a to 11f included in the evaporation source group 17A is parallel to the movement direction (X direction) of the evaporation source unit 10.
- the monitoring devices 12g to 12l are arranged so that the line connecting each of the monitoring devices 12g to 12l and the corresponding evaporation source among the multiple evaporation sources 11g to 11l included in the evaporation source group 17B intersects with the movement direction of the evaporation source unit 10.
- the monitoring devices 12a to 12f and the monitoring devices 12g to 12l are arranged on one side of the movement direction (X direction) of the evaporation source unit 10, which in this embodiment is the side of the evaporation source group 17A. Therefore, the state of the deposition material released from the evaporation sources 11a to 11f included in the evaporation source group 17A close to the area where the monitoring devices 12a to 12l are arranged is monitored by the monitoring devices 12a to 12f at the shortest distance. In addition, the state of the deposition material emitted from the evaporation sources 11g to 11l included in the evaporation source group 17B is monitored from an oblique direction by the monitoring devices 12g to 12l. This suppresses crosstalk between the monitoring devices 12a to 12f and the monitoring devices 12g to 12l, and prevents a decrease in the monitoring accuracy of the monitoring devices 12a to 12l.
- the monitoring devices 12m-12r are arranged so that the line connecting each monitoring device 12m-12r to the corresponding evaporation source among the multiple evaporation sources 11m-11r included in the evaporation source group 17C is parallel to the movement direction of the evaporation source unit 10.
- the monitoring devices 12m-12r are also arranged on the other side of the movement direction of the evaporation source unit 10, which in this embodiment is the side of the evaporation source group 17C. Therefore, the state of the deposition material emitted from the evaporation sources 11m-11r included in the evaporation source group 17C close to the area where the monitoring devices 12m-12r are arranged is monitored by the monitoring devices 12m-12r at the shortest distance. This suppresses crosstalk in the monitoring devices 12m-12r, and prevents a decrease in the monitoring accuracy of the monitoring devices 12m-12r.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electroluminescent Light Sources (AREA)
- Physical Vapour Deposition (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Provided is an evaporation source unit that performs film forming on a substrate moving relatively in a movement direction, said unit being characterized by including: a plurality of evaporation sources that each independently include a container that accommodates a vapor deposition substance to be deposited on the substrate and a heating means that heats the vapor deposition substance accommodated in the container; and a control means that controls each of the plurality of evaporation sources. The unit is also characterized in that: the plurality of evaporation sources include a first evaporation source, a second evaporation source, and a third evaporation source arranged in order from the center of a layout region of the plurality of evaporation sources, along a crossing direction that crosses the movement direction; and the control means controls each of the first evaporation source, the second evaporation source, and the third evaporation source so that a film forming rate of the second evaporation source is smaller than that of the first evaporation source and that of the third evaporation source.
Description
本発明は、蒸発源ユニット、成膜装置及び成膜方法に関する。
The present invention relates to an evaporation source unit, a film forming apparatus, and a film forming method.
有機ELディスプレイなどの製造においては、蒸発源から放出された蒸着物質が基板に付着することで基板に膜(薄膜)が形成される。特許文献1には、複数の蒸発源を用いて、基板を回転させながら成膜を行うことが開示されている。
In the manufacture of organic electroluminescence displays and the like, deposition materials emitted from evaporation sources are deposited on the substrate to form a film (thin film). Patent Document 1 discloses that multiple evaporation sources are used to form a film while the substrate is rotated.
しかしながら、近年では基板が大型化してきているため、成膜を行う際に基板を回転させることが困難となり、基板に形成される膜の膜厚の均一性を低下させる虞がある。
However, in recent years, substrates have become larger, making it difficult to rotate the substrate during film formation, which may reduce the uniformity of the film thickness formed on the substrate.
本発明は、基板に形成される膜の膜厚の均一化に有利な技術を提供する。
The present invention provides a technology that is advantageous for making the thickness of a film formed on a substrate uniform.
本発明の一側面としての蒸発源ユニットは、移動方向に相対的に移動する基板に対して成膜を行う蒸発源ユニットであって、前記基板に付着させる蒸着物質を収容する容器と、前記容器に収容された前記蒸着物質を加熱する加熱手段とを、それぞれが独立して含む複数の蒸発源と、前記複数の蒸発源のそれぞれを制御する制御手段と、を有し、前記複数の蒸発源は、前記移動方向に交差する交差方向に沿って、前記複数の蒸発源のレイアウト領域の中心から順に並んで配置された第1蒸発源、第2蒸発源及び第3蒸発源を含み、前記制御手段は、前記第2蒸発源の成膜レートが前記第1蒸発源の成膜レート及び前記第3蒸発源の成膜レートよりも小さくなるように、前記第1蒸発源、前記第2蒸発源及び前記第3蒸発源のそれぞれを制御する、ことを特徴とする。
The evaporation source unit according to one aspect of the present invention is an evaporation source unit that forms a film on a substrate that moves relatively in a moving direction, and includes a plurality of evaporation sources each independently including a container for containing an evaporation material to be attached to the substrate and a heating means for heating the evaporation material contained in the container, and a control means for controlling each of the plurality of evaporation sources, the plurality of evaporation sources including a first evaporation source, a second evaporation source, and a third evaporation source that are arranged in sequence from the center of a layout area of the plurality of evaporation sources along a cross direction that crosses the moving direction, and the control means controls each of the first evaporation source, the second evaporation source, and the third evaporation source so that the film formation rate of the second evaporation source is smaller than the film formation rate of the first evaporation source and the film formation rate of the third evaporation source.
本発明によれば、例えば、基板に形成される膜の膜厚の均一化に有利な技術を提供することができる。
The present invention can provide a technology that is advantageous for, for example, making the thickness of a film formed on a substrate uniform.
本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
Other features and advantages of the present invention will become apparent from the following description taken in conjunction with the accompanying drawings, in which the same or similar components are designated by the same reference numerals.
添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本発明の一側面としての成膜装置を有する成膜システムの構成を模式的に示す平面図である。
本発明の一側面としての成膜装置の構成を模式的に示す正面図である。
蒸発源ユニットの構成を説明するための図である。
蒸発源ユニットの構成を説明するための図である。
蒸発源の構成を模式的に示す断面図である。
実施例1を示す図である。
実施例2を示す図である。
比較例を示す図である。
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
1 is a plan view showing a schematic configuration of a film formation system having a film formation apparatus according to one aspect of the present invention. 1 is a front view showing a schematic configuration of a film forming apparatus according to one aspect of the present invention; 3A and 3B are diagrams for explaining the configuration of an evaporation source unit. 3A and 3B are diagrams for explaining the configuration of an evaporation source unit. FIG. 2 is a cross-sectional view illustrating a schematic configuration of an evaporation source. FIG. 1 is a diagram showing a first embodiment. FIG. 11 is a diagram showing Example 2. FIG.
以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴のうち二つ以上の特徴は任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。
The following embodiments are described in detail with reference to the attached drawings. Note that the following embodiments do not limit the invention as claimed, and not all combinations of features described in the embodiments are necessarily essential to the invention. Two or more of the features described in the embodiments may be combined in any desired manner. In addition, the same reference numbers are used for identical or similar configurations, and duplicate descriptions will be omitted.
図1は、本発明の一側面としての成膜装置1を有する成膜システムSYの構成を模式的に示す平面図である。成膜システムSYは、搬入される基板に対して成膜処理を行い、成膜処理が行われた基板を搬出するシステムである。例えば、複数の成膜システムSYを並べて設置することで、電子デバイスの製造ラインが構成される。電子デバイスとしては、例えば、スマートフォン用の有機EL表示装置の表示パネルが挙げられる。
FIG. 1 is a plan view showing a schematic configuration of a film formation system SY having a film formation apparatus 1 according to one aspect of the present invention. The film formation system SY is a system that performs a film formation process on a substrate that is brought in and then removes the substrate after the film formation process. For example, a manufacturing line for electronic devices is formed by arranging multiple film formation systems SY side by side. An example of an electronic device is a display panel of an organic EL display device for a smartphone.
成膜システムSYは、図1に示すように、成膜装置1と、搬入室60と、基板搬送室62と、搬出室64と、マスクストック室66と、を有する。なお、成膜装置1の構成については、後で詳細に説明する。
As shown in FIG. 1, the film formation system SY includes a film formation apparatus 1, a loading chamber 60, a substrate transport chamber 62, an unloading chamber 64, and a mask stock chamber 66. The configuration of the film formation apparatus 1 will be described in detail later.
搬入室60には、成膜装置1において成膜処理が行われる基板100が成膜装置1の外部から搬入される。基板搬送室62には、基板100を搬送する搬送ロボット620が設けられる。搬送ロボット620は、搬入室60に搬入された基板100を成膜装置1に搬送する。また、搬送ロボット620は、成膜装置1において成膜処理が行われた基板100を搬出室64に搬送する。搬送ロボット620によって搬出室64に搬送された基板100は、搬出室64から成膜システムSYの外部に搬出される。なお、複数の成膜システムSYが並べて設置されている場合には、上流側の成膜システムSYの搬出室64が下流側の成膜システムSYの基板搬送室62を兼ねていてもよい。マスクストック室66には、成膜装置1における成膜処理に用いられるマスク101がストックされる。マスクストック室66にストックされているマスク101は、搬送ロボット620によって成膜装置1に搬送される。
The substrate 100 to be subjected to the film formation process in the film formation apparatus 1 is carried into the loading chamber 60 from outside the film formation apparatus 1. The substrate transport chamber 62 is provided with a transport robot 620 for transporting the substrate 100. The transport robot 620 transports the substrate 100 carried into the loading chamber 60 to the film formation apparatus 1. The transport robot 620 also transports the substrate 100 to the unloading chamber 64 after the film formation process in the film formation apparatus 1. The substrate 100 transported to the unloading chamber 64 by the transport robot 620 is unloaded from the unloading chamber 64 to the outside of the film formation system SY. When multiple film formation systems SY are installed side by side, the unloading chamber 64 of the upstream film formation system SY may also serve as the substrate transport chamber 62 of the downstream film formation system SY. In the mask stock chamber 66, the mask 101 used for the film formation process in the film formation apparatus 1 is stocked. The mask 101 stored in the mask stock chamber 66 is transported to the film forming apparatus 1 by the transport robot 620.
成膜システムSYを構成する成膜装置1及び各室の内部は、真空ポンプなどの排気機構によって真空状態に維持される。なお、本実施形態において、「真空状態」とは、大気圧よりも低い圧力の気体で満たされた状態、即ち、減圧状態を意味する。
The inside of the deposition apparatus 1 and each chamber that constitutes the deposition system SY is maintained in a vacuum state by an exhaust mechanism such as a vacuum pump. In this embodiment, the "vacuum state" means a state filled with gas at a pressure lower than atmospheric pressure, i.e., a reduced pressure state.
図2は、本発明の一側面としての成膜装置1の構成を模式的に示す正面図である。なお、以下の図において、矢印X及びYは、互いに直交する水平方向を示し、矢印Zは、垂直方向(鉛直方向)を示す。
FIG. 2 is a front view showing a schematic configuration of a film forming apparatus 1 according to one aspect of the present invention. In the following figures, arrows X and Y indicate horizontal directions that are perpendicular to each other, and arrow Z indicates the vertical direction.
成膜装置1は、基板に対して蒸発源を移動させながら、基板に蒸発源から放出された蒸着物質を付着(蒸着)させることで、基板に膜(薄膜)を形成する成膜処理を行う装置である。成膜装置1は、例えば、スマートフォン用の有機EL表示装置の表示パネルの製造装置として用いられ、上述したように、複数台を並べて設置することで、その製造ラインを構成する。成膜装置1で成膜処理が行われる基板の材質としては、ガラス、樹脂、金属などを適宜選択可能であり、特に、ガラス上にポリイミドなどの樹脂層が形成されたものが好適である。蒸着物質としては、有機材料や無機材料(例えば、金属、金属酸化物)などが用いられる。なお、成膜装置1は、有機EL表示装置の表示パネルの製造に限定されず、表示装置(フラットパネルディスプレイ)や薄膜太陽電池、有機光電変換素子(有機薄膜撮像素子)などの電子デバイス、光学部材などの製造装置としても適用可能である。また、本実施形態において、成膜装置1は、G8Hサイズのガラス基板(1100mm×2500mm、1250mm×2200mm)に対して成膜処理を行うが、成膜装置1が成膜処理を行う基板のサイズは適宜設定可能である。
The film forming apparatus 1 is an apparatus for performing a film forming process to form a film (thin film) on a substrate by adhering (evaporating) an evaporation material released from an evaporation source onto the substrate while moving the evaporation source relative to the substrate. The film forming apparatus 1 is used, for example, as a manufacturing apparatus for display panels of organic EL display devices for smartphones, and as described above, a manufacturing line is formed by arranging a plurality of the apparatuses. The material of the substrate on which the film forming process is performed in the film forming apparatus 1 can be appropriately selected from glass, resin, metal, etc., and in particular, a substrate on which a resin layer such as polyimide is formed on glass is suitable. As the evaporation material, organic materials and inorganic materials (e.g., metals, metal oxides), etc. are used. The film forming apparatus 1 is not limited to the manufacture of display panels of organic EL display devices, and can also be used as a manufacturing apparatus for electronic devices such as display devices (flat panel displays), thin-film solar cells, and organic photoelectric conversion elements (organic thin-film imaging elements), and optical components. In addition, in this embodiment, the film forming apparatus 1 performs film forming processing on a G8H size glass substrate (1100 mm x 2500 mm, 1250 mm x 2200 mm), but the size of the substrate on which the film forming apparatus 1 performs film forming processing can be set appropriately.
成膜装置1は、図2に示すように、蒸発源ユニット10と、複数の成膜ステージ30A及び30Bと、を有する。蒸発源ユニット10及び成膜ステージ30A及び30Bは、成膜処理時(使用時)に真空状態に維持されるチャンバ45の内部に配置される。本実施形態では、複数の成膜ステージ30A及び30Bは、チャンバ45の内部の上部においてX方向に離間して設けられ、その下方には、蒸発源ユニット10が設けられている。また、チャンバ45には、基板100を搬入及び搬出するための複数の搬入出口(不図示)が設けられている。
As shown in FIG. 2, the film forming apparatus 1 has an evaporation source unit 10 and multiple film forming stages 30A and 30B. The evaporation source unit 10 and the film forming stages 30A and 30B are arranged inside a chamber 45 that is maintained in a vacuum state during film forming processing (when in use). In this embodiment, the multiple film forming stages 30A and 30B are provided spaced apart in the X direction at the top inside the chamber 45, and the evaporation source unit 10 is provided below them. The chamber 45 also has multiple loading/unloading ports (not shown) for loading and unloading the substrate 100.
成膜装置1は、蒸発源ユニット10に電力を供給する電源41と、蒸発源ユニット10及び電源41を電気的に接続する電気接続部42と、を更に有する。電気接続部42は、水平方向に移動可能なアームに内蔵された電気配線を含み、X方向に移動可能な蒸発源ユニット10に対して電源41からの電力を供給することができるように構成されている。
The film forming apparatus 1 further includes a power supply 41 that supplies power to the evaporation source unit 10, and an electrical connection section 42 that electrically connects the evaporation source unit 10 and the power supply 41. The electrical connection section 42 includes electrical wiring built into an arm that is movable in the horizontal direction, and is configured to be able to supply power from the power supply 41 to the evaporation source unit 10 that is movable in the X direction.
成膜装置1は、成膜装置1の各構成要素(の動作)を制御する制御部43を更に有する。制御部43は、例えば、CPUに代表されるプロセッサ、RAM、ROMなどのメモリ及び各種インタフェースを含むコンピュータ(情報処理装置)で構成される。制御部43は、ROMに記憶されたプログラムをRAMに読み出して実行することで、成膜装置1における各種の動作や処理を実現する。なお、制御部43に代えて、成膜システムSYを統括的に制御するホストコンピュータなどで成膜装置1の各構成要素を直接制御することも可能である。
The film forming apparatus 1 further includes a control unit 43 that controls each component (operation) of the film forming apparatus 1. The control unit 43 is composed of a computer (information processing device) including, for example, a processor such as a CPU, memories such as RAM and ROM, and various interfaces. The control unit 43 realizes various operations and processes in the film forming apparatus 1 by reading a program stored in the ROM into the RAM and executing it. Note that instead of the control unit 43, it is also possible to directly control each component of the film forming apparatus 1 using a host computer that comprehensively controls the film forming system SY.
成膜ステージ30Aは、基板100Aに対して成膜処理を行うためのステージである。成膜ステージ30Aは、基板100A及びマスク101Aを支持するとともに、基板100Aとマスク101Aとの相対的な位置を調整する。成膜ステージ30Aは、基板支持部32Aと、マスク支持部34Aと、支柱35Aと、アライメント機構36Aと、を含む。
The film-forming stage 30A is a stage for performing a film-forming process on the substrate 100A. The film-forming stage 30A supports the substrate 100A and the mask 101A, and adjusts the relative positions of the substrate 100A and the mask 101A. The film-forming stage 30A includes a substrate support portion 32A, a mask support portion 34A, a support column 35A, and an alignment mechanism 36A.
基板支持部32Aは、基板100Aを支持する。基板支持部32Aは、本実施形態では、基板100Aの短辺がX方向に沿い、基板100Aの長辺がY方向に沿うように、基板100Aを支持する。基板支持部32Aは、基板100Aの縁を、基板100Aの下側から支持する。但し、基板支持部32Aは、基板100Aの縁を挟持することで基板100Aを支持してもよいし、静電チャック又は粘着チャックなどで基板100Aを吸着することで基板100Aを支持してもよい。基板支持部32Aは、基板搬送室62に設けられた搬送ロボット620を介して、成膜システムSYに搬入された基板100Aを受け取る。また、基板支持部32Aには、基板支持部32Aを昇降可能にする昇降機構(不図示)が設けられ、搬送ロボット620から受け取った基板100Aをマスク支持部34Aに支持されたマスク101Aの上に重ね合わせることができる。かかる昇降機構には、ボールねじ機構などの当業界で周知の技術を適用することが可能である。
The substrate support section 32A supports the substrate 100A. In this embodiment, the substrate support section 32A supports the substrate 100A so that the short side of the substrate 100A is aligned along the X direction and the long side of the substrate 100A is aligned along the Y direction. The substrate support section 32A supports the edge of the substrate 100A from the underside of the substrate 100A. However, the substrate support section 32A may support the substrate 100A by clamping the edge of the substrate 100A, or may support the substrate 100A by adsorbing the substrate 100A with an electrostatic chuck or an adhesive chuck. The substrate support section 32A receives the substrate 100A that has been transported into the film formation system SY via a transport robot 620 provided in the substrate transport chamber 62. The substrate support 32A is provided with a lifting mechanism (not shown) that allows the substrate support 32A to be raised and lowered, and the substrate 100A received from the transfer robot 620 can be superimposed on the mask 101A supported by the mask support 34A. For such a lifting mechanism, a ball screw mechanism or other technology well known in the industry can be applied.
マスク支持部34Aは、マスク101Aを支持する。本実施形態では、マスク支持部34Aには、開口(不図示)が設けられ、かかる開口を介して、マスク101Aと重ね合わされた基板100Aの成膜面(膜を形成する面)に対して蒸着物質が付着(飛散)する。マスク支持部34Aは、支柱35Aを介して、チャンバ45に支持される。
The mask support portion 34A supports the mask 101A. In this embodiment, an opening (not shown) is provided in the mask support portion 34A, and the deposition material adheres (scatters) through this opening to the deposition surface (surface on which a film is formed) of the substrate 100A superimposed on the mask 101A. The mask support portion 34A is supported by the chamber 45 via the support pillars 35A.
アライメント機構36Aは、基板100Aとマスク101Aとの相対的な位置を調整するアライメント(位置合わせ)を行う。アライメント機構36Aは、基板支持部32Aとマスク支持部34Aとの水平方向における相対位置を調整することで、基板支持部32Aに支持された基板100Aとマスク支持部34Aに支持されたマスク101Aとのアライメントを行う。基板100Aとマスク101Aとのアライメントには、当業界で周知の技術を適用することが可能である。例えば、まず、アライメント機構36Aは、基板100A及びマスク101Aのそれぞれに形成されたアライメント用のマークをカメラ(不図示)で検知する。そして、アライメント機構36Aは、これらのマークを検知することで得られる基板100Aの位置とマスク101Aの位置との関係が、所定の条件を満たすように、基板100Aとマスク101Aとの位置関係を調整する。具体的には、基板100Aに形成されたマークと、マスク101Aに形成されたマークとを重ね合わせ、それらのマークのずれ量をカメラで検知し、所定の条件を満たすように(許容範囲に収まるように)、基板100Aの位置を調整する。
The alignment mechanism 36A performs alignment to adjust the relative positions of the substrate 100A and the mask 101A. The alignment mechanism 36A adjusts the relative positions of the substrate support part 32A and the mask support part 34A in the horizontal direction to align the substrate 100A supported by the substrate support part 32A and the mask 101A supported by the mask support part 34A. For the alignment of the substrate 100A and the mask 101A, techniques well known in the industry can be applied. For example, the alignment mechanism 36A first detects alignment marks formed on the substrate 100A and the mask 101A with a camera (not shown). Then, the alignment mechanism 36A adjusts the positional relationship between the substrate 100A and the mask 101A so that the relationship between the position of the substrate 100A and the position of the mask 101A obtained by detecting these marks satisfies a predetermined condition. Specifically, the mark formed on the substrate 100A and the mark formed on the mask 101A are overlapped, the amount of misalignment between these marks is detected by a camera, and the position of the substrate 100A is adjusted so that the specified conditions are met (within the tolerance range).
アライメント機構36Aによって基板100Aとマスク101Aとのアライメントが行われると、基板支持部32Aは、支持している基板100Aをマスク101Aの上に重ね合わせる。基板100Aとマスク101Aとが重ね合わせられた状態において、基板100Aに対して、蒸発源ユニット10による成膜処理が行われる。
Once the alignment mechanism 36A has aligned the substrate 100A and the mask 101A, the substrate support 32A overlays the substrate 100A it is supporting on the mask 101A. With the substrate 100A and the mask 101A overlaid, a film formation process is performed on the substrate 100A by the evaporation source unit 10.
成膜ステージ30Bは、成膜ステージ30Aと同様な構成を含む。成膜ステージ30Bは、基板支持部32Bと、マスク支持部34Bと、支柱35Bと、アライメント機構36Bと、を含む。基板支持部32B、マスク支持部34B、支柱35B及びアライメント機構36Bは、それぞれ、基板支持部32A、マスク支持部34A、支柱35A及びアライメント機構36Aに対応する。
The deposition stage 30B includes a configuration similar to that of the deposition stage 30A. The deposition stage 30B includes a substrate support 32B, a mask support 34B, a support 35B, and an alignment mechanism 36B. The substrate support 32B, the mask support 34B, the support 35B, and the alignment mechanism 36B correspond to the substrate support 32A, the mask support 34A, the support 35A, and the alignment mechanism 36A, respectively.
本実施形態において、成膜装置1は、複数の成膜ステージ30A及び30Bを有し、所謂、デュアルステージの成膜装置として具現化されている。従って、成膜ステージ30Aにおいて、基板100Aに対する成膜処理(蒸着など)が行われる間に、成膜ステージ30Bにおいて、基板100Bとマスク101Bとのアライメントを行うことが可能であり、成膜処理を効率的に行うことができる。
In this embodiment, the film forming apparatus 1 has multiple film forming stages 30A and 30B, and is embodied as a so-called dual-stage film forming apparatus. Therefore, while a film forming process (such as vapor deposition) is being performed on the substrate 100A in the film forming stage 30A, alignment between the substrate 100B and the mask 101B can be performed in the film forming stage 30B, and the film forming process can be performed efficiently.
次いで、図3及び図4を参照して、蒸発源ユニット10について説明する。ここでは、蒸発源ユニット10を構成する各要素の概要を説明し、蒸発源ユニット10の配置構成や動作例については後で詳細に説明する。図3は、蒸発源ユニット10の構成を説明するための図であって、蒸発源ユニット10を横方向(Y方向)から模式的に示す図である。図4は、蒸発源ユニット10の構成を説明するための図であって、蒸発源ユニット10を上方向(Z方向)から模式的に示す図である。
Next, the evaporation source unit 10 will be described with reference to Figures 3 and 4. Here, an overview of each element constituting the evaporation source unit 10 will be described, and the arrangement and operation of the evaporation source unit 10 will be described in detail later. Figure 3 is a diagram for explaining the configuration of the evaporation source unit 10, and is a diagram showing the evaporation source unit 10 from a lateral direction (Y direction). Figure 4 is a diagram for explaining the configuration of the evaporation source unit 10, and is a diagram showing the evaporation source unit 10 from above (Z direction).
蒸発源ユニット10は、本実施形態では、X方向に移動しながら蒸着物質を放出することで、基板100に対して成膜処理を行うためのユニットである。蒸発源ユニット10は、複数の蒸発源11a~11rと、複数の監視装置12a~12rと、シャッタ161~163と、移動部20と、を含む。
In this embodiment, the evaporation source unit 10 is a unit that performs a film formation process on the substrate 100 by emitting a deposition material while moving in the X direction. The evaporation source unit 10 includes a plurality of evaporation sources 11a to 11r, a plurality of monitoring devices 12a to 12r, shutters 161 to 163, and a moving unit 20.
図5は、蒸発源11a~11rの構成を模式的に示す断面図である。複数の蒸発源11a~11rは、それぞれ、蒸着物質を放出する。複数の蒸発源11a~11rのそれぞれは、図5に示すように、材料容器111と、加熱部112と、を含む。
FIG. 5 is a cross-sectional view showing a schematic configuration of the evaporation sources 11a to 11r. Each of the evaporation sources 11a to 11r emits a deposition material. As shown in FIG. 5, each of the evaporation sources 11a to 11r includes a material container 111 and a heating unit 112.
材料容器111は、その内部に、基板100に付着させる蒸着物質を収容するるつぼである。材料容器111の上部には、材料容器111の内部で蒸発した蒸着物質を、材料容器111の外部に放出するための放出部1111が設けられている。放出部1111は、本実施形態では、材料容器111の上面に形成された開口(放出口)として構成されているが、これに限定されるものではない。例えば、材料容器111を筒状の部材などで構成することで、放出部1111の機能を実現してもよい。また、材料容器111の上面には、放出部1111として、複数の開口が設けられていてもよい。
The material container 111 is a crucible that contains a deposition material to be attached to the substrate 100. A release section 1111 is provided at the top of the material container 111 to release the deposition material evaporated inside the material container 111 to the outside of the material container 111. In this embodiment, the release section 1111 is configured as an opening (release port) formed on the top surface of the material container 111, but is not limited to this. For example, the function of the release section 1111 may be realized by configuring the material container 111 from a cylindrical member or the like. In addition, the top surface of the material container 111 may be provided with multiple openings as the release section 1111.
加熱部112は、材料容器111に収容された蒸着物質を加熱して蒸発させる。加熱部112は、例えば、材料容器111の全体を覆うように設けられることが好ましい。加熱部112は、本実施形態では、電熱線を用いたシーズヒータとして具現化され、図5には、シーズヒータの電熱線を材料容器111の周囲に巻き付けたときの断面が示されている。
The heating unit 112 heats and evaporates the deposition material contained in the material container 111. For example, the heating unit 112 is preferably provided so as to cover the entire material container 111. In this embodiment, the heating unit 112 is embodied as a sheathed heater using an electric heating wire, and FIG. 5 shows a cross section of the sheathed heater when the electric heating wire is wrapped around the material container 111.
加熱部112による蒸着物質の加熱は、制御部43によって制御される。本実施形態において、複数の蒸発源11a~11rは、それぞれが独立して、材料容器111及び加熱部112を含んでいる。従って、制御部43は、複数の蒸発源11a~11rによる蒸着物質の加熱(蒸発)を、それぞれ独立に制御することが可能である。
The heating of the deposition material by the heating unit 112 is controlled by the control unit 43. In this embodiment, each of the multiple evaporation sources 11a to 11r independently includes a material container 111 and a heating unit 112. Therefore, the control unit 43 can independently control the heating (evaporation) of the deposition material by each of the multiple evaporation sources 11a to 11r.
図3及び図4に戻って、複数の蒸発源11a~11rは、蒸発源ユニット10の移動方向(X方向)に沿って互いに離間した3つの蒸発源群17A~17Cに大別される。蒸発源群17Aは、蒸発源ユニット10の移動方向に交差する交差方向(Y方向)に沿って配置された複数の蒸発源11a~11fを含む。蒸発源群17Bは、蒸発源ユニット10の移動方向に交差する交差方向に沿って配置された複数の蒸発源11g~11lを含む。蒸発源群17Cは、蒸発源ユニット10の移動方向に交差する交差方向に沿って配置された複数の蒸発源11m~11rを含む。
Returning to Figures 3 and 4, the multiple evaporation sources 11a to 11r are roughly divided into three evaporation source groups 17A to 17C spaced apart from one another along the movement direction (X direction) of the evaporation source unit 10. Evaporation source group 17A includes multiple evaporation sources 11a to 11f arranged along a cross direction (Y direction) that intersects with the movement direction of the evaporation source unit 10. Evaporation source group 17B includes multiple evaporation sources 11g to 11l arranged along a cross direction that intersects with the movement direction of the evaporation source unit 10. Evaporation source group 17C includes multiple evaporation sources 11m to 11r arranged along a cross direction that intersects with the movement direction of the evaporation source unit 10.
3つの蒸発源群17A~17Cは、本実施形態では、蒸発源ユニット10の移動方向において、蒸発源群17A、蒸発源群17B、蒸発源群17Cの順に並んで配置されている。従って、蒸発源群17A~17Cのそれぞれに含まれる蒸発源に着目すると、例えば、蒸発源11d、蒸発源11j、蒸発源11pは、蒸発源ユニット10の移動方向に沿って、この順に並んで配置されている。
In this embodiment, the three evaporation source groups 17A to 17C are arranged in the movement direction of the evaporation source unit 10 in the order of evaporation source group 17A, evaporation source group 17B, and evaporation source group 17C. Therefore, when focusing on the evaporation sources included in each of the evaporation source groups 17A to 17C, for example, evaporation source 11d, evaporation source 11j, and evaporation source 11p are arranged in this order along the movement direction of the evaporation source unit 10.
3つの蒸発源群17A~17Cは、互いに異なる蒸着物質を放出することが可能である。例えば、蒸発源群17Aは、マグネシウム(Mg)を放出し、蒸発源群17Bは、銀(Ag)を放出し、蒸発源群17Cは、イッテルビウム(Yb)(又はフッ化リチウム(LiF))を放出する。この場合、蒸発源ユニット10では、制御部43によってシャッタ161~163の動作が制御され、フッ化リチウムの層(第1層)と、銀マグネシウム(AgMg)の層(第2層)とを基板100に成膜する。なお、これらの蒸着物質(成膜材料)は、例示であって、限定されるものではない。
The three evaporation source groups 17A to 17C can emit different deposition materials. For example, evaporation source group 17A emits magnesium (Mg), evaporation source group 17B emits silver (Ag), and evaporation source group 17C emits ytterbium (Yb) (or lithium fluoride (LiF)). In this case, in the evaporation source unit 10, the control unit 43 controls the operation of the shutters 161 to 163, and a layer of lithium fluoride (first layer) and a layer of silver magnesium (AgMg) (second layer) are deposited on the substrate 100. Note that these deposition materials (deposition materials) are merely examples and are not limiting.
複数の監視装置12a~12rは、複数の蒸発源11a~11rに対応して設けられている。複数の監視装置12a~12rのそれぞれは、複数の蒸発源11a~11rのそれぞれから放出される蒸着物質の状態(放出状態)、例えば、蒸着物質のレート(蒸発レート(成膜レート))を監視する。監視装置12a~12rは、図3に示すように、ケース121と、ケース121の内部に膜厚センサとして設けられた水晶振動子123と、を含む。水晶振動子123には、蒸発源11から放出され、ケース121に設けられた導入部122を介してケース121の内部に導入された蒸着物質が付着する。水晶振動子123の振動数は、水晶振動子123に付着する蒸着物質の量(付着量)に応じて変動する。従って、制御部43は、水晶振動子123の振動数に基づいて、基板100に付着(蒸着)した蒸着物質の膜厚を算出することができる。水晶振動子123に付着する蒸着物質の単位時間あたりの量は、蒸発源11から放出される蒸着物質の量と相関を有するため、監視装置12a~12rは、結果的に、複数の蒸発源11から放出される蒸着物質の状態を監視することができる。
The multiple monitoring devices 12a to 12r are provided corresponding to the multiple evaporation sources 11a to 11r. Each of the multiple monitoring devices 12a to 12r monitors the state (emission state) of the deposition material emitted from each of the multiple evaporation sources 11a to 11r, for example, the rate of the deposition material (evaporation rate (film formation rate)). As shown in FIG. 3, the monitoring devices 12a to 12r include a case 121 and a quartz oscillator 123 provided inside the case 121 as a film thickness sensor. The deposition material emitted from the evaporation source 11 and introduced into the case 121 through an introduction part 122 provided in the case 121 adheres to the quartz oscillator 123. The frequency of the quartz oscillator 123 varies depending on the amount (adhesion amount) of the deposition material adhering to the quartz oscillator 123. Therefore, the control unit 43 can calculate the film thickness of the deposition material adhered (deposited) on the substrate 100 based on the frequency of the quartz oscillator 123. The amount of deposition material adhering to the quartz crystal oscillator 123 per unit time correlates with the amount of deposition material released from the evaporation source 11, so the monitoring devices 12a to 12r can monitor the state of the deposition material released from the multiple evaporation sources 11.
本実施形態では、監視装置12a~12rのそれぞれは、蒸発源11a~11rから放出される蒸着物質の状態を独立に監視する。また、制御部43は、監視装置12a~12rの監視結果に基づいて、蒸発源11a~11r(の各加熱部の出力)を独立に制御する。換言すれば、制御部43は、監視装置12a~12rのそれぞれで監視される蒸着物質のレートに基づいて、蒸発源11a~11rのそれぞれの成膜レートを制御する。
In this embodiment, each of the monitoring devices 12a to 12r independently monitors the state of the deposition material released from the evaporation sources 11a to 11r. Furthermore, the control unit 43 independently controls the evaporation sources 11a to 11r (the output of each heating unit) based on the monitoring results of the monitoring devices 12a to 12r. In other words, the control unit 43 controls the film formation rate of each of the evaporation sources 11a to 11r based on the rate of the deposition material monitored by each of the monitoring devices 12a to 12r.
制限部14は、複数の蒸発源11a~11rから放出される蒸着物質の放出範囲を制限する。制限部14は、本実施形態では、複数の板部材141~144を含む。板部材141及び142は、複数の蒸発源11a~11fから放出される蒸着物質のX方向における放出範囲を制限する。板部材142及び143は、複数の蒸発源11g~11lから放出される蒸着物質のX方向における放出範囲を制限する。板部材143及び144は、複数の蒸発源11g~11rから放出される蒸着物質のX方向における放出範囲を制限する。
The limiting section 14 limits the release range of the deposition material released from the multiple evaporation sources 11a to 11r. In this embodiment, the limiting section 14 includes multiple plate members 141 to 144. The plate members 141 and 142 limit the release range in the X direction of the deposition material released from the multiple evaporation sources 11a to 11f. The plate members 142 and 143 limit the release range in the X direction of the deposition material released from the multiple evaporation sources 11g to 11l. The plate members 143 and 144 limit the release range in the X direction of the deposition material released from the multiple evaporation sources 11g to 11r.
板部材141には、監視装置12a~12lに導入される(飛散する)蒸着物質が通過する筒状部材141a~141lが設けられる。板部材142には、監視装置12g~12lに導入される蒸着物質が通過する筒状部材142g~142lが設けられる。板部材144には、監視装置12m~12rに導入される蒸着物質が通過する筒状部材144m~144lが設けられる。筒状部材141a~141l、142g~142l、144m~144lは、隣接する蒸発源から放出される蒸着物質が監視対象外の監視装置に入り込むこと(所謂、クロストーク)による監視装置の監視精度の低下の抑制に寄与する。
The plate member 141 is provided with cylindrical members 141a-141l through which the deposition material introduced (scattered) to the monitoring devices 12a-12l passes. The plate member 142 is provided with cylindrical members 142g-142l through which the deposition material introduced to the monitoring devices 12g-12l passes. The plate member 144 is provided with cylindrical members 144m-144l through which the deposition material introduced to the monitoring devices 12m-12r passes. The cylindrical members 141a-141l, 142g-142l, and 144m-144l contribute to preventing a decrease in the monitoring accuracy of the monitoring devices caused by deposition material emitted from an adjacent evaporation source entering a monitoring device that is not being monitored (so-called crosstalk).
シャッタ161~163は、蒸発源群17A~17Cから放出される蒸着物質の基板100への飛散を制御する。シャッタ161~163は、蒸発源群17A~17Cから放出される蒸着物質の基板100への飛散を遮断する遮断位置と、かかる蒸着物質の基板100への飛散を許容する許容位置との間で変位可能に設けられている。例えば、シャッタ161は、蒸発源群17Aに含まれる蒸発源11a~11fから放出される蒸着物質の基板100への飛散を遮断する遮断位置と、かかる蒸着物質の基板100への飛散を許容する許容位置との間で変位可能に設けられている。シャッタ162及び163についても、シャッタ161と同様に、遮断位置と許容位置との間で変位可能に設けられている。
The shutters 161-163 control the scattering of the deposition material emitted from the evaporation source groups 17A-17C onto the substrate 100. The shutters 161-163 are provided so as to be displaceable between a blocking position that blocks the scattering of the deposition material emitted from the evaporation source groups 17A-17C onto the substrate 100, and an allowable position that allows the scattering of the deposition material onto the substrate 100. For example, the shutter 161 is provided so as to be displaceable between a blocking position that blocks the scattering of the deposition material emitted from the evaporation sources 11a-11f included in the evaporation source group 17A onto the substrate 100, and an allowable position that allows the scattering of the deposition material onto the substrate 100. The shutters 162 and 163 are also provided so as to be displaceable between a blocking position and an allowable position, similar to the shutter 161.
シャッタ161は、蒸発源ユニット10の移動方向に交差する交差方向(Y方向)を軸方向とする回動軸1611と、回動軸1611に設けられた遮蔽部材1612と、を含む。シャッタ161は、遮蔽部材1612が回動軸1611を中心として回動して開閉動作を行うことで、遮断位置と許容位置との間で変位する。同様に、シャッタ162は、回動軸1621と、遮蔽部材1622と、を含み、シャッタ163は、回動軸1631と、遮蔽部材1632と、を含む。
The shutter 161 includes a rotating shaft 1611 whose axial direction is a cross direction (Y direction) that intersects with the movement direction of the evaporation source unit 10, and a shielding member 1612 provided on the rotating shaft 1611. The shutter 161 is displaced between a blocking position and an allowable position as the shielding member 1612 rotates about the rotating shaft 1611 to perform an opening and closing operation. Similarly, the shutter 162 includes a rotating shaft 1621 and a shielding member 1622, and the shutter 163 includes a rotating shaft 1631 and a shielding member 1632.
シャッタ161の回動軸1611は、蒸発源11a~11fの放出部1111に対して、蒸発源ユニット10の移動方向(X方向)にずれて配置される。同様に、シャッタ162の回動軸1621は、蒸発源11g~11lの放出部1111に対して蒸発源ユニット10の移動方向にずれて配置される。また、シャッタ163の回動軸1631は、蒸発源11p~11rの放出部1111に対して蒸発源ユニット10の移動方向にずれて配置される。これにより、シャッタ161~163が許容位置に位置したときに、シャッタ161~163と蒸発源11a~11rの放出範囲との干渉を抑制することができる。
The rotation axis 1611 of the shutter 161 is positioned offset in the movement direction (X direction) of the evaporation source unit 10 with respect to the emission parts 1111 of the evaporation sources 11a to 11f. Similarly, the rotation axis 1621 of the shutter 162 is positioned offset in the movement direction of the evaporation source unit 10 with respect to the emission parts 1111 of the evaporation sources 11g to 11l. Furthermore, the rotation axis 1631 of the shutter 163 is positioned offset in the movement direction of the evaporation source unit 10 with respect to the emission parts 1111 of the evaporation sources 11p to 11r. This makes it possible to suppress interference between the shutters 161 to 163 and the emission ranges of the evaporation sources 11a to 11r when the shutters 161 to 163 are positioned in the permissible positions.
また、本実施形態では、シャッタ161の回動軸1611の高さとシャッタ162の回動軸1621の高さとが異なる。これにより、シャッタ161、162を同時に開閉させる際に、シャッタ161とシャッタ162との干渉を抑制するとともに、シャッタ161、162をX方向にコンパクトに配置することができる。
In addition, in this embodiment, the height of the pivot shaft 1611 of the shutter 161 is different from the height of the pivot shaft 1621 of the shutter 162. This makes it possible to suppress interference between the shutters 161 and 162 when the shutters 161 and 162 are opened and closed simultaneously, and to arrange the shutters 161 and 162 compactly in the X direction.
また、本実施形態では、蒸発源群17AよりもX方向+側に配置される蒸発源群17Bの上方を覆うシャッタ162の回動軸1621が蒸発源11g~11lの放出部1111に対してX方向+側にずれて配置される。一方、蒸発源群17BよりもX方向-側に配置される蒸発源群17Aの上方を覆うシャッタ161の回動軸1611が蒸発源11a~11fの放出部1111に対してX方向-側にずれて配置されている。従って、シャッタ161とシャッタ162とは、両開きの扉のような構成となる。これにより、蒸発源群17Aと蒸発源群17Bとで共蒸着を行う場合に、シャッタ161が蒸発源群17Bの放出範囲と干渉したり、シャッタ162が蒸発源群17Aの放出範囲と干渉したりすることを抑制することができる。
In addition, in this embodiment, the rotation axis 1621 of the shutter 162 covering the top of the evaporation source group 17B arranged on the +X side of the evaporation source group 17A is shifted to the +X side with respect to the emission parts 1111 of the evaporation sources 11g to 11l. On the other hand, the rotation axis 1611 of the shutter 161 covering the top of the evaporation source group 17A arranged on the -X side of the evaporation source group 17B is shifted to the -X side with respect to the emission parts 1111 of the evaporation sources 11a to 11f. Therefore, the shutters 161 and 162 are configured like double-hinged doors. This makes it possible to prevent the shutter 161 from interfering with the emission range of the evaporation source group 17B and the shutter 162 from interfering with the emission range of the evaporation source group 17A when co-evaporation is performed with the evaporation source group 17A and the evaporation source group 17B.
移動部20は、蒸発源ユニット10、具体的には、複数の蒸発源11a~11r及び複数の監視装置12a~12rを移動方向(X方向)に移動させる。本実施形態では、移動部20によって、蒸発源ユニット10を基板100に対して移動させながら、蒸発源ユニット10から放出される蒸着物質を基板100に付着(蒸着)させることで基板100に蒸着物質の膜(層)を形成する成膜処理を行う。
The moving unit 20 moves the evaporation source unit 10, specifically the multiple evaporation sources 11a-11r and the multiple monitoring devices 12a-12r, in the moving direction (X direction). In this embodiment, the moving unit 20 moves the evaporation source unit 10 relative to the substrate 100, while the evaporation material emitted from the evaporation source unit 10 is deposited (deposited) on the substrate 100 to form a film (layer) of the evaporation material on the substrate 100.
移動部20は、蒸発源ユニット10に設けられる構成要素として、モータ(不図示)と、モータの駆動により回転する軸部材に設けられたピニオン202と、ガイド部材203と、を含む。また、移動部20は、ピニオン202に係合するラック(不図示)と、ガイド部材203が摺動するガイドレール206と、を更に含む。蒸発源ユニット10は、モータの駆動により回転するピニオン202がラックと係合することで、ガイドレール206に沿ってX方向に移動する。
The moving part 20 includes, as components provided in the evaporation source unit 10, a motor (not shown), a pinion 202 provided on a shaft member that rotates when driven by the motor, and a guide member 203. The moving part 20 further includes a rack (not shown) that engages with the pinion 202, and a guide rail 206 along which the guide member 203 slides. The evaporation source unit 10 moves in the X direction along the guide rail 206 as the pinion 202, which rotates when driven by the motor, engages with the rack.
このように構成された成膜装置1において、基板100に形成される蒸着物質の膜の膜厚の均一性を向上させるためには、蒸発源ユニット10から放出されて基板100に付着する蒸着物質の付着量を高精度に制御する必要がある。そこで、本実施形態では、制御部43において、複数の蒸発源11a~11rのそれぞれから放出されて基板100に付着する蒸着物質の付着量、即ち、各蒸発源11a~11rの成膜レートを独立して制御する。その際、本発明者らは、複数の蒸発源11a~11rのそれぞれの成膜レートを同一の成膜レートにするのではなく、異なる成膜レートにすることが、基板100に形成される蒸着物質の膜の膜厚を均一化するのに有利であることを見出した。
In the film forming apparatus 1 configured in this manner, in order to improve the uniformity of the thickness of the film of the deposition material formed on the substrate 100, it is necessary to control with high precision the amount of deposition material discharged from the evaporation source unit 10 and adhering to the substrate 100. Therefore, in this embodiment, the control unit 43 independently controls the amount of deposition material discharged from each of the multiple evaporation sources 11a to 11r and adhering to the substrate 100, i.e., the deposition rate of each evaporation source 11a to 11r. In this case, the inventors have found that it is advantageous to make the deposition rates of the multiple evaporation sources 11a to 11r different, rather than making them the same, in order to make the thickness of the film of the deposition material formed on the substrate 100 uniform.
以下、本実施形態の成膜処理(成膜方法)において、制御部43で行われる各蒸発源11a~11rの成膜レートの制御について説明する。ここでは、蒸発源群17Aに含まれる蒸発源11a、11b及び11cに着目する。蒸発源11a、11b及び11cは、図4に示すように、蒸発源ユニット10の移動方向(X方向)に交差する交差方向(Y方向)に沿って配置されている。蒸発源11cは、複数の蒸発源11a~11fのレイアウト領域の中心CTから最も近い位置に配置されている蒸発源(第1蒸発源)である。蒸発源11bは、複数の蒸発源11a~11fのレイアウト領域の中心CTから、蒸発源11cに次いで近い位置に配置されている蒸発源(第2蒸発源)である。蒸発源11aは、複数の蒸発源11a~11fのレイアウト領域の中心CTから最も遠い位置に配置されている蒸発源(第3蒸発源)である。このように、蒸発源11a、11b及び11cは、複数の蒸発源11a~11fのレイアウト領域の中心CTから蒸発源11c、蒸発源11b、蒸発源11cの順に並んで配置されている。
Hereinafter, the control of the film formation rate of each evaporation source 11a to 11r performed by the control unit 43 in the film formation process (film formation method) of this embodiment will be described. Here, attention is focused on the evaporation sources 11a, 11b, and 11c included in the evaporation source group 17A. As shown in FIG. 4, the evaporation sources 11a, 11b, and 11c are arranged along a cross direction (Y direction) that crosses the movement direction (X direction) of the evaporation source unit 10. The evaporation source 11c is the evaporation source (first evaporation source) that is arranged at a position closest to the center CT of the layout area of the multiple evaporation sources 11a to 11f. The evaporation source 11b is the evaporation source (second evaporation source) that is arranged at a position next closest to the evaporation source 11c from the center CT of the layout area of the multiple evaporation sources 11a to 11f. The evaporation source 11a is the evaporation source (third evaporation source) that is arranged at a position farthest from the center CT of the layout area of the multiple evaporation sources 11a to 11f. In this way, the evaporation sources 11a, 11b, and 11c are arranged in the order of evaporation source 11c, evaporation source 11b, evaporation source 11c from the center CT of the layout area of the multiple evaporation sources 11a to 11f.
本実施形態において、制御部43は、複数の蒸発源11a、11b及び11cの成膜レートが互いに異なる2種類の成膜レートを含むように、蒸発源11a、11b及び11cのそれぞれ(の各加熱部の出力)を制御する。具体的には、蒸発源11bの成膜レートと、蒸発源11cの成膜レート及び蒸発源11aの成膜レートとが異なるように、詳細には、蒸発源11bの成膜レートが蒸発源11cの成膜レート及び蒸発源11aの成膜レートよりも小さくなるようにする。更に、蒸発源11aの成膜レートと蒸発源11cの成膜レートとが等しくなるようにする。このように、本実施形態では、蒸発源11cの成膜レート=蒸発源11aの成膜レート>蒸発源11bの成膜レートとなるように、各蒸発源11a~11cを制御する。これにより、以下の実施例で数値的に示すように、蒸発源11a~11rのそれぞれの成膜レートを同一の成膜レートにする場合と比較して、基板100に形成される蒸着物質の膜の膜厚を均一化することができる。
In this embodiment, the control unit 43 controls each of the evaporation sources 11a, 11b, and 11c (the output of each heating unit) so that the film formation rates of the multiple evaporation sources 11a, 11b, and 11c include two different film formation rates. Specifically, the film formation rate of the evaporation source 11b is different from the film formation rate of the evaporation source 11c and the film formation rate of the evaporation source 11a, and more specifically, the film formation rate of the evaporation source 11b is smaller than the film formation rate of the evaporation source 11c and the film formation rate of the evaporation source 11a. Furthermore, the film formation rate of the evaporation source 11a and the film formation rate of the evaporation source 11c are equal. Thus, in this embodiment, each evaporation source 11a to 11c is controlled so that the film formation rate of the evaporation source 11c = the film formation rate of the evaporation source 11a > the film formation rate of the evaporation source 11b. As a result, as shown numerically in the following examples, the thickness of the film of the deposition material formed on the substrate 100 can be made more uniform than when the deposition rates of each of the evaporation sources 11a to 11r are the same.
また、本実施形態において、制御部43は、複数の蒸発源11a、11b及び11cの成膜レートが互いに異なる3種類の成膜レートを含むように、蒸発源11a、11b及び11cのそれぞれ(の各加熱部の出力)を制御してもよい。具体的には、蒸発源11bの成膜レートが蒸発源11cの成膜レート及び蒸発源11aの成膜レートよりも小さく、且つ、蒸発源11aの成膜レートが蒸発源11cの成膜レートよりも大きくなるようにする。このように、本実施形態では、蒸発源11aの成膜レート>蒸発源11cの成膜レート>蒸発源11bの成膜レートとなるように、各蒸発源11a~11cを制御してもよい。これにより、以下の実施例で数値的に示すように、蒸発源11a~11rのそれぞれの成膜レートを同一の成膜レートにする場合と比較して、基板100に形成される蒸着物質の膜の膜厚を均一化することができる。
In addition, in this embodiment, the control unit 43 may control each of the evaporation sources 11a, 11b, and 11c (the output of each heating unit) so that the film formation rates of the evaporation sources 11a, 11b, and 11c include three different film formation rates. Specifically, the film formation rate of the evaporation source 11b is smaller than the film formation rate of the evaporation source 11c and the film formation rate of the evaporation source 11a, and the film formation rate of the evaporation source 11a is larger than the film formation rate of the evaporation source 11c. In this way, in this embodiment, each evaporation source 11a to 11c may be controlled so that the film formation rate of the evaporation source 11a > the film formation rate of the evaporation source 11c > the film formation rate of the evaporation source 11b. As a result, as shown numerically in the following example, the thickness of the film of the deposition material formed on the substrate 100 can be made uniform compared to the case where the film formation rates of the evaporation sources 11a to 11r are the same.
また、本実施形態では、蒸発源群17Aに含まれる蒸発源11a、11b及び11cに着目したが、蒸発源11d、11e及び11fについても同様に成膜レートを制御すればよい。例えば、複数の蒸発源11a~11fのレイアウト領域の中心CTから最も近い位置に配置されている蒸発源11dについては、蒸発源11cと同様に成膜レートを制御すればよい。複数の蒸発源11a~11fのレイアウト領域の中心CTから、蒸発源11dに次いで近い位置に配置されている蒸発源11eについては、蒸発源11bと同様に成膜レートを制御すればよい。複数の蒸発源11a~11fのレイアウト領域の中心CTから最も遠い位置に配置されている蒸発源11fについては、蒸発源11aと同様に成膜レートを制御すればよい。
In addition, in this embodiment, attention is focused on the evaporation sources 11a, 11b, and 11c included in the evaporation source group 17A, but the film formation rate may be controlled in the same manner for the evaporation sources 11d, 11e, and 11f. For example, for the evaporation source 11d, which is located closest to the center CT of the layout area of the multiple evaporation sources 11a to 11f, the film formation rate may be controlled in the same manner as for the evaporation source 11c. For the evaporation source 11e, which is located next closest to the center CT of the layout area of the multiple evaporation sources 11a to 11f, the film formation rate may be controlled in the same manner as for the evaporation source 11b. For the evaporation source 11f, which is located farthest from the center CT of the layout area of the multiple evaporation sources 11a to 11f, the film formation rate may be controlled in the same manner as for the evaporation source 11a.
また、蒸発源群17Bに含まれる蒸発源11g~11lについても、蒸発源群17Aに含まれる蒸発源11a~11fと同様に、複数の蒸発源11g~11lのレイアウト領域の中心からの距離に応じて成膜レートを制御すればよい。更に、蒸発源群17Cに含まれる蒸発源11m~11rについても、蒸発源群17Aに含まれる蒸発源11a~11fと同様に、複数の蒸発源11m~11rのレイアウト領域の中心からの距離に応じて成膜レートを制御すればよい。
Furthermore, for the evaporation sources 11g to 11l included in the evaporation source group 17B, similar to the evaporation sources 11a to 11f included in the evaporation source group 17A, the deposition rate may be controlled according to the distance from the center of the layout area of the multiple evaporation sources 11g to 11l.Furthermore, for the evaporation sources 11m to 11r included in the evaporation source group 17C, similar to the evaporation sources 11a to 11f included in the evaporation source group 17A, the deposition rate may be controlled according to the distance from the center of the layout area of the multiple evaporation sources 11m to 11r.
また、本発明者らは、蒸発源ユニット10の移動方向(X方向)に交差する交差方向(Y方向)に隣接する2つの蒸発源の間の距離(間隔)が、基板100に形成される蒸着物質の膜厚の均一性に関連していることも見出した。例えば、蒸発源ユニット10の移動方向に交差する交差方向に隣接する2つの蒸発源の間の距離について、複数の蒸発源のレイアウト領域の外側を中心側よりも短くすることで、基板100に形成される蒸着物質の膜の膜厚の均一化に寄与することができる。
The inventors also discovered that the distance (spacing) between two adjacent evaporation sources in a cross direction (Y direction) that intersects with the movement direction (X direction) of the evaporation source unit 10 is related to the uniformity of the film thickness of the deposition material formed on the substrate 100. For example, by making the distance between two adjacent evaporation sources in a cross direction that intersects with the movement direction of the evaporation source unit 10 shorter on the outside of the layout area of the multiple evaporation sources than on the center side, this can contribute to the uniformity of the film thickness of the deposition material formed on the substrate 100.
具体的には、蒸発源群17Aに含まれる蒸発源11a、11b及び11cに着目すると、蒸発源11bと蒸発源11aとの間の距離L3を、蒸発源11cと蒸発源11bとの間の距離L2よりも短くする。また、蒸発源11cと複数の蒸発源11a~11fのレイアウト領域の中心CTとの間の距離L1の2倍の距離(蒸発源11cと蒸発源11dとの間の距離)を、蒸発源11cと蒸発源11bとの間の距離L2よりも長くする。このように、複数の蒸発源11a~11fのうち、蒸発源ユニット10の移動方向に交差する交差方向に隣接する2つの蒸発源の間の距離を、複数の蒸発源11a~11fのレイアウト領域の中心CTから離れるほど短くする。
Specifically, when focusing on evaporation sources 11a, 11b, and 11c included in the evaporation source group 17A, the distance L3 between evaporation source 11b and evaporation source 11a is made shorter than the distance L2 between evaporation source 11c and evaporation source 11b. Also, the distance twice the distance L1 between evaporation source 11c and the center CT of the layout area of the multiple evaporation sources 11a to 11f (the distance between evaporation source 11c and evaporation source 11d) is made longer than the distance L2 between evaporation source 11c and evaporation source 11b. In this way, the distance between two evaporation sources adjacent to each other in the intersecting direction intersecting with the movement direction of the evaporation source unit 10 among the multiple evaporation sources 11a to 11f is made shorter the further away from the center CT of the layout area of the multiple evaporation sources 11a to 11f.
なお、蒸発源11cと複数の蒸発源11a~11fのレイアウト領域の中心CTとの間の距離L1の2倍の距離(蒸発源11cと蒸発源11dとの間の距離)については、必ずしも、蒸発源11cと蒸発源11bとの間の距離L2よりも長くなくてもよい。換言すれば、蒸発源11cと複数の蒸発源11a~11fのレイアウト領域の中心CTとの間の距離L1の2倍の距離を、蒸発源11cと蒸発源11bとの間の距離L2を短くてもよい。但し、この場合には、蒸発源11cと複数の蒸発源11a~11fのレイアウト領域の中心CTとの間の距離L1の2倍の距離を、蒸発源11bと蒸発源11cとの間の距離L3よりも長くする必要がある。これにより、蒸発源ユニット10の移動方向に交差する交差方向に隣接する2つの蒸発源の間の距離について、複数の蒸発源のレイアウト領域の外側を中心側よりも短くするという要件が満たされる。従って、基板100に形成される蒸着物質の膜の膜厚の均一化に寄与する。
Note that the distance (between evaporation source 11c and evaporation source 11d) twice the distance L1 between evaporation source 11c and the center CT of the layout area of the multiple evaporation sources 11a to 11f does not necessarily have to be longer than the distance L2 between evaporation source 11c and evaporation source 11b. In other words, the distance L2 between evaporation source 11c and evaporation source 11b may be shorter than the distance L1 twice the distance between evaporation source 11c and the center CT of the layout area of the multiple evaporation sources 11a to 11f. However, in this case, the distance L2 twice the distance L1 between evaporation source 11c and the center CT of the layout area of the multiple evaporation sources 11a to 11f needs to be longer than the distance L3 between evaporation source 11b and evaporation source 11c. This satisfies the requirement that the distance between two adjacent evaporation sources in the intersecting direction intersecting the movement direction of the evaporation source unit 10 be shorter on the outside of the layout area of the multiple evaporation sources than on the center side. This contributes to the uniformity of the thickness of the film of deposition material formed on the substrate 100.
ここで、蒸発源11a~11fから放出する蒸着物質を銀(Ag)とし、150Åの膜厚を有する膜を基板100に形成した結果を、実施例1、実施例2及び比較例として、図6A、図6B及び図6Cに示す。但し、図6A、図6B及び図6Cには、蒸発源11a~11fのうち、蒸発源11a、11b及び11cに関する数値例のみを示す。これは、蒸発源11a、11b及び11cと、蒸発源11f、11e及び11dとは、蒸発源11a~11fのレイアウト領域の中心CT対して、互いに対称に配置されるためである。
Here, the deposition material emitted from the evaporation sources 11a to 11f is silver (Ag), and the results of forming a film having a thickness of 150 Å on the substrate 100 are shown in Figures 6A, 6B, and 6C as Example 1, Example 2, and Comparative Example. However, Figures 6A, 6B, and 6C only show numerical examples related to evaporation sources 11a, 11b, and 11c out of evaporation sources 11a to 11f. This is because evaporation sources 11a, 11b, and 11c, and evaporation sources 11f, 11e, and 11d are arranged symmetrically with respect to the center CT of the layout area of evaporation sources 11a to 11f.
実施例1では、複数の蒸発源11a~11cの成膜レートが互いに異なる2種類の成膜レートを含む。具体的には、図6Aに示すように、蒸発源11b(11e)の成膜レートを、蒸発源11a(11f)の成膜レート及び蒸発源11c(11d)の成膜レートよりも小さく、且つ、蒸発源11aの成膜レートと蒸発源11cの成膜レートとを等しくした。各蒸発源間の成膜レートの比率に関しては、蒸発源11cの成膜レートと、蒸発源11bの成膜レートと、蒸発源11aの成膜レートとの比率を、1.00:0.58:1.00とした。複数の蒸発源11a~11fのレイアウト領域の中心CTからの距離が、316mmとなる位置に蒸発源11cを配置し、863mmとなる位置に蒸発源11bを配置し、1200mmとなる位置に蒸発源11aを配置した。従って、蒸発源11cと複数の蒸発源11a~11fのレイアウト領域の中心CTとの間の距離L1の2倍は632mm、蒸発源11cと蒸発源11bとの間の距離L2は547mm、蒸発源11bと蒸発源11cとの間の距離L3は337mmである。
In Example 1, the deposition rates of the multiple evaporation sources 11a to 11c include two different deposition rates. Specifically, as shown in FIG. 6A, the deposition rate of the evaporation source 11b (11e) is smaller than the deposition rate of the evaporation source 11a (11f) and the deposition rate of the evaporation source 11c (11d), and the deposition rate of the evaporation source 11a is equal to the deposition rate of the evaporation source 11c. Regarding the ratio of the deposition rates between the evaporation sources, the ratio of the deposition rate of the evaporation source 11c to the deposition rate of the evaporation source 11b to the deposition rate of the evaporation source 11a is set to 1.00:0.58:1.00. The deposition rate of the multiple evaporation sources 11a to 11f from the center CT of the layout area is 316 mm, the deposition rate of the evaporation source 11b is set to 863 mm, and the deposition rate of the evaporation source 11a is set to 1200 mm. Therefore, twice the distance L1 between evaporation source 11c and the center CT of the layout area of the multiple evaporation sources 11a to 11f is 632 mm, the distance L2 between evaporation source 11c and evaporation source 11b is 547 mm, and the distance L3 between evaporation source 11b and evaporation source 11c is 337 mm.
実施例2では、複数の蒸発源11a~11cの成膜レートが互いに異なる3種類の成膜レートを含む。具体的には、図6Bに示すように、蒸発源11b(11e)の成膜レートを、蒸発源11a(11f)の成膜レート及び蒸発源11c(11d)の成膜レートよりも小さく、且つ、蒸発源11aの成膜レートを蒸発源11cの成膜レートよりも大きくした。各蒸発源間の成膜レートの比率に関しては、蒸発源11cの成膜レートと、蒸発源11bの成膜レートと、蒸発源11aの成膜レートとの比率を、1.00:0.85:1.41とした。複数の蒸発源11a~11fのレイアウト領域の中心CTからの距離が、240mmとなる位置に蒸発源11cを配置し、730mmとなる位置に蒸発源11bを配置し、1200mmとなる位置に蒸発源11aを配置した。従って、蒸発源11cと複数の蒸発源11a~11fのレイアウト領域の中心CTとの間の距離L1の2倍は480mm、蒸発源11cと蒸発源11bとの間の距離L2は490mm、蒸発源11bと蒸発源11cとの間の距離L3は470mmである。
In Example 2, the deposition rates of the multiple evaporation sources 11a to 11c are different from each other and include three different deposition rates. Specifically, as shown in FIG. 6B, the deposition rate of the evaporation source 11b (11e) is smaller than the deposition rate of the evaporation source 11a (11f) and the deposition rate of the evaporation source 11c (11d), and the deposition rate of the evaporation source 11a is larger than the deposition rate of the evaporation source 11c. Regarding the ratio of the deposition rates between the evaporation sources, the ratio of the deposition rate of the evaporation source 11c to the deposition rate of the evaporation source 11b to the deposition rate of the evaporation source 11a is set to 1.00:0.85:1.41. The deposition rate of the multiple evaporation sources 11a to 11f from the center CT of the layout area is 240 mm, the deposition rate of the evaporation source 11b is set to 730 mm, and the deposition rate of the evaporation source 11a is set to 1200 mm. Therefore, twice the distance L1 between evaporation source 11c and the center CT of the layout area of the multiple evaporation sources 11a to 11f is 480 mm, the distance L2 between evaporation source 11c and evaporation source 11b is 490 mm, and the distance L3 between evaporation source 11b and evaporation source 11c is 470 mm.
比較例では、複数の蒸発源11a~11cの成膜レートを同一の成膜レートとした。従って、蒸発源11cの成膜レートと、蒸発源11bの成膜レートと、蒸発源11aの成膜レートとの比率は、1.00:1.00:1.00である。複数の蒸発源11a~11fのレイアウト領域の中心CTからの距離が、226mmとなる位置に蒸発源11cを配置し、840mmとなる位置に蒸発源11bを配置し、1200mmとなる位置に蒸発源11aを配置した。従って、蒸発源11cと複数の蒸発源11a~11fのレイアウト領域の中心CTとの間の距離L1の2倍は452mm、蒸発源11cと蒸発源11bとの間の距離L2は617mm、蒸発源11bと蒸発源11cとの間の距離L3は357mmである。
In the comparative example, the deposition rates of the multiple evaporation sources 11a to 11c were set to the same. Therefore, the ratio of the deposition rate of the evaporation source 11c to the deposition rate of the evaporation source 11b to the deposition rate of the evaporation source 11a was 1.00:1.00:1.00. The evaporation source 11c was placed at a position where the distance from the center CT of the layout area of the multiple evaporation sources 11a to 11f was 226 mm, the evaporation source 11b was placed at a position where the distance was 840 mm, and the evaporation source 11a was placed at a position where the distance was 1200 mm. Therefore, twice the distance L1 between the evaporation source 11c and the center CT of the layout area of the multiple evaporation sources 11a to 11f is 452 mm, the distance L2 between the evaporation source 11c and the evaporation source 11b is 617 mm, and the distance L3 between the evaporation source 11b and the evaporation source 11c is 357 mm.
実施例1(図6A)と比較例(図6C)とを比較するに、蒸発源11a~11cの成膜レートが互いに異なる2種類の成膜レートを含むことで、基板100に形成される膜の膜厚分布の均一性が±3.6%から±1.6%に改善されていることがわかる。また、実施例2(図6B)と比較例(図6C)とを比較するに、蒸発源11a~11cの成膜レートが互いに異なる3種類の成膜レートを含むことで、基板100に形成される膜の膜厚分布の均一性が±3.6%から±1.5%に改善されていることがわかる。なお、実施例1と実施例2とを比較するに、基板100に形成される膜の膜厚分布の均一性は同程度である。蒸着材料の消費量の観点では、比較例、実施例1、実施例2の順で増加していることがわかる。
Comparing Example 1 (FIG. 6A) with Comparative Example (FIG. 6C), it can be seen that the deposition rates of the evaporation sources 11a to 11c include two different deposition rates, and thus the uniformity of the film thickness distribution of the film formed on the substrate 100 is improved from ±3.6% to ±1.6%. Also, comparing Example 2 (FIG. 6B) with Comparative Example (FIG. 6C), it can be seen that the deposition rates of the evaporation sources 11a to 11c include three different deposition rates, and thus the uniformity of the film thickness distribution of the film formed on the substrate 100 is improved from ±3.6% to ±1.5%. Comparing Example 1 with Example 2, the uniformity of the film thickness distribution of the film formed on the substrate 100 is about the same. In terms of the amount of deposition material consumed, it can be seen that the consumption increases in the order of Comparative Example, Example 1, and Example 2.
また、上述したように、本実施形態では、蒸発源ユニット10の移動方向(X方向)に交差する交差方向(Y方向)に隣接する2つの蒸発源の間の距離が一定ではなく、隣接する2つの蒸発源の間隔が広くなる部分がある。このような場合、複数の監視装置12a~12rの配置に関して、図4に示すように、クロストークの抑制効果が高い配置を採用することが可能となる。
Furthermore, as described above, in this embodiment, the distance between two adjacent evaporation sources in the intersecting direction (Y direction) that intersects with the movement direction (X direction) of the evaporation source unit 10 is not constant, and there are portions where the distance between the two adjacent evaporation sources is wide. In such a case, it is possible to adopt an arrangement of the multiple monitoring devices 12a to 12r that has a high crosstalk suppression effect, as shown in Figure 4.
具体的には、監視装置12a~12fについては、各監視装置12a~12fと、蒸発源群17Aに含まれる複数の蒸発源11a~11fのうちの対応する蒸発源とを結ぶ線が蒸発源ユニット10の移動方向(X方向)に平行となるように配置する。また、監視装置12g~12lについては、各監視装置12g~12lと、蒸発源群17Bに含まれる複数の蒸発源11g~11lのうちの対応する蒸発源とを結ぶ線が蒸発源ユニット10の移動方向に交差するように配置する。また、監視装置12a~12f、及び、監視装置12g~12lは、蒸発源ユニット10の移動方向(X方向)の一方の側、本実施形態では、蒸発源群17Aの側に配置される。従って、監視装置12a~12lが配置される領域に近い蒸発源群17Aに含まれる蒸発源11a~11fから放出される蒸着物質の状態については、監視装置12a~12fによって最短距離で監視することになる。また、蒸発源群17Bに含まれる蒸発源11g~11lから放出される蒸着物質の状態については、監視装置12g~12lによって斜め方向から監視することになる。これにより、監視装置12a~12fや監視装置12g~12lでのクロストークが抑制され、監視装置12a~12lの監視精度の低下を抑えることができる。
Specifically, the monitoring devices 12a to 12f are arranged so that the line connecting each of the monitoring devices 12a to 12f and the corresponding evaporation source among the multiple evaporation sources 11a to 11f included in the evaporation source group 17A is parallel to the movement direction (X direction) of the evaporation source unit 10. Also, the monitoring devices 12g to 12l are arranged so that the line connecting each of the monitoring devices 12g to 12l and the corresponding evaporation source among the multiple evaporation sources 11g to 11l included in the evaporation source group 17B intersects with the movement direction of the evaporation source unit 10. Also, the monitoring devices 12a to 12f and the monitoring devices 12g to 12l are arranged on one side of the movement direction (X direction) of the evaporation source unit 10, which in this embodiment is the side of the evaporation source group 17A. Therefore, the state of the deposition material released from the evaporation sources 11a to 11f included in the evaporation source group 17A close to the area where the monitoring devices 12a to 12l are arranged is monitored by the monitoring devices 12a to 12f at the shortest distance. In addition, the state of the deposition material emitted from the evaporation sources 11g to 11l included in the evaporation source group 17B is monitored from an oblique direction by the monitoring devices 12g to 12l. This suppresses crosstalk between the monitoring devices 12a to 12f and the monitoring devices 12g to 12l, and prevents a decrease in the monitoring accuracy of the monitoring devices 12a to 12l.
一方、監視装置12m~12rについては、各監視装置12m~12rと、蒸発源群17Cに含まれる複数の蒸発源11m~11rのうちの対応する蒸発源とを結ぶ線が蒸発源ユニット10の移動方向に平行となるように配置する。また、監視装置12m~12rは、蒸発源ユニット10の移動方向の他方の側、本実施形態では、蒸発源群17Cの側に配置される。従って、監視装置12m~12rが配置される領域に近い蒸発源群17Cに含まれる蒸発源11m~11rから放出される蒸着物質の状態については、監視装置12m~12rによって最短距離で監視することになる。これにより、監視装置12m~12rでのクロストークが抑制され、監視装置12m~12rの監視精度の低下を抑えることができる。
On the other hand, the monitoring devices 12m-12r are arranged so that the line connecting each monitoring device 12m-12r to the corresponding evaporation source among the multiple evaporation sources 11m-11r included in the evaporation source group 17C is parallel to the movement direction of the evaporation source unit 10. The monitoring devices 12m-12r are also arranged on the other side of the movement direction of the evaporation source unit 10, which in this embodiment is the side of the evaporation source group 17C. Therefore, the state of the deposition material emitted from the evaporation sources 11m-11r included in the evaporation source group 17C close to the area where the monitoring devices 12m-12r are arranged is monitored by the monitoring devices 12m-12r at the shortest distance. This suppresses crosstalk in the monitoring devices 12m-12r, and prevents a decrease in the monitoring accuracy of the monitoring devices 12m-12r.
発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。
The invention is not limited to the above-described embodiment, and various modifications and variations are possible without departing from the spirit and scope of the invention. Therefore, the following claims are attached to publicly disclose the scope of the invention.
本願は、2022年12月1日提出の日本国特許出願特願2022-193003を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。
This application claims priority based on Japanese Patent Application No. 2022-193003, filed on December 1, 2022, the entire contents of which are incorporated herein by reference.
Claims (14)
- 移動方向に相対的に移動する基板に対して成膜を行う蒸発源ユニットであって、
前記基板に付着させる蒸着物質を収容する容器と、前記容器に収容された前記蒸着物質を加熱する加熱手段とを、それぞれが独立して含む複数の蒸発源と、
前記複数の蒸発源のそれぞれを制御する制御手段と、
を有し、
前記複数の蒸発源は、前記移動方向に交差する交差方向に沿って、前記複数の蒸発源のレイアウト領域の中心から順に並んで配置された第1蒸発源、第2蒸発源及び第3蒸発源を含み、
前記制御手段は、前記第2蒸発源の成膜レートが前記第1蒸発源の成膜レート及び前記第3蒸発源の成膜レートよりも小さくなるように、前記第1蒸発源、前記第2蒸発源及び前記第3蒸発源のそれぞれを制御する、
ことを特徴とする蒸発源ユニット。 An evaporation source unit that forms a film on a substrate that moves relatively in a moving direction,
A plurality of evaporation sources each independently including a container for containing an evaporation material to be attached to the substrate and a heating means for heating the evaporation material contained in the container;
A control means for controlling each of the plurality of evaporation sources;
having
the plurality of evaporation sources include a first evaporation source, a second evaporation source, and a third evaporation source that are arranged in sequence from a center of a layout region of the plurality of evaporation sources along a cross direction that crosses the moving direction,
the control means controls each of the first evaporation source, the second evaporation source, and the third evaporation source such that a film formation rate of the second evaporation source is smaller than a film formation rate of the first evaporation source and a film formation rate of the third evaporation source.
The evaporation source unit is characterized by: - 前記制御手段は、前記第3蒸発源の成膜レートが前記第1蒸発源の成膜レートよりも大きくなるように、前記第1蒸発源及び前記第3蒸発源のそれぞれを制御する、ことを特徴とする請求項1に記載の蒸発源ユニット。 The evaporation source unit according to claim 1, characterized in that the control means controls each of the first evaporation source and the third evaporation source so that the film formation rate of the third evaporation source is greater than the film formation rate of the first evaporation source.
- 前記制御手段は、前記第1蒸発源の成膜レートと、前記第2蒸発源の成膜レートと、前記第3蒸発源の成膜レートとの比率が、1.00:0.85:1.41となるように、前記第1蒸発源、前記第2蒸発源及び前記第3蒸発源のそれぞれを制御する、ことを特徴とする請求項2に記載の蒸発源ユニット。 The evaporation source unit according to claim 2, characterized in that the control means controls each of the first evaporation source, the second evaporation source, and the third evaporation source so that the ratio of the film formation rate of the first evaporation source, the film formation rate of the second evaporation source, and the film formation rate of the third evaporation source is 1.00:0.85:1.41.
- 前記制御手段は、前記第3蒸発源の成膜レートと前記第1蒸発源の成膜レートとが等しくなるように、前記第1蒸発源及び前記第3蒸発源のそれぞれを制御する、ことを特徴とする請求項1に記載の蒸発源ユニット。 The evaporation source unit according to claim 1, characterized in that the control means controls each of the first evaporation source and the third evaporation source so that the film formation rate of the third evaporation source is equal to the film formation rate of the first evaporation source.
- 前記制御手段は、前記第1蒸発源の成膜レートと、前記第2蒸発源の成膜レートと、前記第3蒸発源の成膜レートとの比率が、1.00:0.58:1.00となるように、前記第1蒸発源、前記第2蒸発源及び前記第3蒸発源のそれぞれを制御する、ことを特徴とする請求項4に記載の蒸発源ユニット。 The evaporation source unit according to claim 4, characterized in that the control means controls each of the first evaporation source, the second evaporation source, and the third evaporation source so that the ratio of the film formation rate of the first evaporation source, the film formation rate of the second evaporation source, and the film formation rate of the third evaporation source is 1.00:0.58:1.00.
- 前記第2蒸発源と前記第3蒸発源との間の距離は、前記第1蒸発源と前記第2蒸発源との間の距離よりも短い、ことを特徴とする請求項1に記載の蒸発源ユニット。 The evaporation source unit according to claim 1, characterized in that the distance between the second evaporation source and the third evaporation source is shorter than the distance between the first evaporation source and the second evaporation source.
- 前記第1蒸発源と前記レイアウト領域の中心との間の距離の2倍の距離は、前記第1蒸発源と前記第2蒸発源との間の距離よりも長い、ことを特徴とする請求項6に記載の蒸発源ユニット。 The evaporation source unit of claim 6, characterized in that the distance twice the distance between the first evaporation source and the center of the layout area is longer than the distance between the first evaporation source and the second evaporation source.
- 前記第1蒸発源と前記レイアウト領域の中心との間の距離の2倍の距離は、前記第1蒸発源と前記第2蒸発源との間の距離よりも短く、且つ、前記第2蒸発源と前記第3蒸発源との間の距離よりも長い、ことを特徴とする請求項6に記載の蒸発源ユニット。 The evaporation source unit of claim 6, characterized in that the distance twice the distance between the first evaporation source and the center of the layout area is shorter than the distance between the first evaporation source and the second evaporation source, and longer than the distance between the second evaporation source and the third evaporation source.
- 前記複数の蒸発源のうち前記交差方向に隣接する2つの蒸発源の間の距離は、前記レイアウト領域の中心から離れるほど短くなる、ことを特徴とする請求項1に記載の蒸発源ユニット。 The evaporation source unit according to claim 1, characterized in that the distance between two of the plurality of evaporation sources adjacent in the intersecting direction becomes shorter the farther away from the center of the layout area.
- 前記複数の蒸発源のうちの対応する蒸発源から放出される前記蒸着物質の状態をそれぞれ監視する複数の監視手段を更に有し、
前記複数の蒸発源は、前記移動方向に沿って、前記移動方向の一方の側から順に並んで配置された、前記交差方向に沿って並んで配置された複数の蒸発源を含む第1蒸発源群、及び、前記交差方向に沿って並んで配置された複数の蒸発源を含む第2蒸発源群を含み、
前記複数の監視手段のうち、前記第1蒸発源群に含まれる各蒸発源から放出される前記蒸着物質の状態を監視する第1監視手段は、当該第1監視手段と、前記第1蒸発源群に含まれる複数の蒸発源のうちの対応する蒸発源とを結ぶ線が前記移動方向に平行となるように配置され、
前記複数の監視手段のうち、前記第2蒸発源群に含まれる各蒸発源から放出される前記蒸着物質の状態を監視する第2監視手段は、当該第2監視手段と、前記第2蒸発源群に含まれる複数の蒸発源のうちの対応する蒸発源とを結ぶ線が前記移動方向に交差するように配置され、
前記第1監視手段及び前記第2監視手段は、前記移動方向の一方の側に配置される、ことを特徴とする請求項1に記載の蒸発源ユニット。 The method further includes a plurality of monitoring means for monitoring a state of the deposition material emitted from a corresponding one of the plurality of evaporation sources,
The plurality of evaporation sources include a first evaporation source group including a plurality of evaporation sources arranged in line along the moving direction in order from one side of the moving direction, the first evaporation source group including a plurality of evaporation sources arranged in line along the intersecting direction, and a second evaporation source group including a plurality of evaporation sources arranged in line along the intersecting direction,
Among the plurality of monitoring means, a first monitoring means for monitoring a state of the deposition material emitted from each evaporation source included in the first evaporation source group is disposed such that a line connecting the first monitoring means and a corresponding evaporation source among the plurality of evaporation sources included in the first evaporation source group is parallel to the movement direction;
Among the plurality of monitoring means, a second monitoring means for monitoring a state of the deposition material emitted from each evaporation source included in the second evaporation source group is disposed such that a line connecting the second monitoring means and a corresponding evaporation source among the plurality of evaporation sources included in the second evaporation source group intersects with the movement direction;
2. The evaporation source unit according to claim 1, wherein the first monitoring means and the second monitoring means are disposed on one side in the moving direction. - 前記蒸着物質の状態は、前記蒸発源から放出される前記蒸着物質のレートを含む、ことを特徴とする請求項10に記載の蒸発源ユニット。 The evaporation source unit of claim 10, wherein the state of the evaporation material includes the rate at which the evaporation material is released from the evaporation source.
- 前記制御手段は、前記複数の監視手段のそれぞれで監視される前記蒸着物質のレートに基づいて、前記複数の蒸発源のそれぞれの成膜レートを制御する、ことを特徴とする請求項11に記載の蒸発源ユニット。 The evaporation source unit according to claim 11, characterized in that the control means controls the deposition rate of each of the plurality of evaporation sources based on the deposition rate of the evaporation material monitored by each of the plurality of monitoring means.
- 請求項1に記載の蒸発源ユニットを有する成膜装置。 A film forming apparatus having the evaporation source unit according to claim 1.
- 移動方向に相対的に移動する基板に対して成膜を行う成膜方法であって、
前記基板に付着させる蒸着物質を収容する容器と、前記容器に収容された前記蒸着物質を加熱する加熱手段とを、それぞれが独立して含む複数の蒸発源のそれぞれを制御する工程を有し、
前記複数の蒸発源は、前記移動方向に交差する交差方向に沿って、前記複数の蒸発源のレイアウト領域の中心から順に並んで配置された第1蒸発源、第2蒸発源及び第3蒸発源を含み、
前記工程では、前記第2蒸発源の成膜レートが前記第1蒸発源の成膜レート及び前記第3蒸発源の成膜レートよりも小さくなるように、前記第1蒸発源、前記第2蒸発源及び前記第3蒸発源のそれぞれを制御する、
ことを特徴とする成膜方法。 A film formation method for forming a film on a substrate moving relatively in a moving direction, comprising the steps of:
The method includes a step of controlling each of a plurality of evaporation sources, each of which independently includes a container for containing an evaporation material to be attached to the substrate and a heating means for heating the evaporation material contained in the container;
the plurality of evaporation sources include a first evaporation source, a second evaporation source, and a third evaporation source that are arranged in sequence from a center of a layout region of the plurality of evaporation sources along a cross direction that crosses the moving direction,
In the step, the first evaporation source, the second evaporation source, and the third evaporation source are controlled so that a film formation rate of the second evaporation source is smaller than a film formation rate of the first evaporation source and a film formation rate of the third evaporation source.
A film forming method comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-193003 | 2022-12-01 | ||
JP2022193003A JP2024080102A (en) | 2022-12-01 | 2022-12-01 | Evaporation source unit, film deposition apparatus and film deposition method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024116668A1 true WO2024116668A1 (en) | 2024-06-06 |
Family
ID=91323699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/038674 WO2024116668A1 (en) | 2022-12-01 | 2023-10-26 | Evaporation source unit, film forming device, and film forming method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024080102A (en) |
WO (1) | WO2024116668A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013001927A (en) * | 2011-06-14 | 2013-01-07 | Ulvac Japan Ltd | Discharge device and thin film-forming apparatus |
JP2013185252A (en) * | 2012-03-12 | 2013-09-19 | Hitachi High-Technologies Corp | Evaporation source apparatus, vacuum deposition apparatus, and method for producing organic el display device |
JP2013216955A (en) * | 2012-04-11 | 2013-10-24 | Hitachi High-Technologies Corp | Vacuum vapor deposition apparatus |
-
2022
- 2022-12-01 JP JP2022193003A patent/JP2024080102A/en active Pending
-
2023
- 2023-10-26 WO PCT/JP2023/038674 patent/WO2024116668A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013001927A (en) * | 2011-06-14 | 2013-01-07 | Ulvac Japan Ltd | Discharge device and thin film-forming apparatus |
JP2013185252A (en) * | 2012-03-12 | 2013-09-19 | Hitachi High-Technologies Corp | Evaporation source apparatus, vacuum deposition apparatus, and method for producing organic el display device |
JP2013216955A (en) * | 2012-04-11 | 2013-10-24 | Hitachi High-Technologies Corp | Vacuum vapor deposition apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2024080102A (en) | 2024-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7220060B2 (en) | Substrate inspection system, electronic device manufacturing apparatus, substrate inspection method, and electronic device manufacturing method | |
US20100275842A1 (en) | Evaporating apparatus | |
JP2019218623A (en) | Film deposition apparatus, film deposition method and method of manufacturing electronic device | |
JP6811760B2 (en) | Film formation equipment and film formation method | |
CN109306453B (en) | Display manufacturing apparatus and display manufacturing method using the same | |
JP7450372B2 (en) | Film deposition apparatus, film deposition method, and electronic device manufacturing method | |
CN113106387B (en) | Film forming apparatus and method for manufacturing electronic device | |
JP7017619B2 (en) | Film forming equipment, electronic device manufacturing equipment, film forming method, and electronic device manufacturing method | |
KR102550586B1 (en) | Adsorption and alignment method, adsorption system, film forming method, film forming apparatus, and manufacturing method of electronic device | |
CN111293067A (en) | Electrostatic chuck, electrostatic chuck system, film forming apparatus and method, adsorption method, and method for manufacturing electronic device | |
WO2024116668A1 (en) | Evaporation source unit, film forming device, and film forming method | |
CN112442660B (en) | Baffle device, film forming method, and method for manufacturing electronic device | |
JP2021098885A (en) | Film deposition device | |
WO2024116669A1 (en) | Evaporation source unit, film formation device, and film formation method | |
JP7509809B2 (en) | Evaporation source unit, film forming apparatus and film forming method | |
KR20230059770A (en) | Film forming apparatus, film forming method and manufacturing method of electronic device | |
KR20200049379A (en) | Alignment apparatus, film forming apparatus, alignment method, film forming method, and manufacturing method of electronic device | |
JP7314209B2 (en) | Film forming apparatus, film forming method, and evaporation source unit | |
CN113025985B (en) | Rotation driving device, film forming device, and method for manufacturing electronic device | |
WO2024070473A1 (en) | Film formation device and film formation method | |
WO2024185728A1 (en) | Film formation device, film formation method, and production method | |
JP2020070488A (en) | Electrostatic chuck system, film deposition device, adsorption method, film deposition method, and electronic device manufacturing method | |
WO2024101167A1 (en) | Film forming apparatus, film forming method and method for producing electronic device | |
JP7462690B2 (en) | Film forming apparatus and film forming method | |
JP2023035655A (en) | Film deposition apparatus, film deposition method and method for manufacturing electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23897324 Country of ref document: EP Kind code of ref document: A1 |