JP2013001927A - Discharge device and thin film-forming apparatus - Google Patents

Discharge device and thin film-forming apparatus Download PDF

Info

Publication number
JP2013001927A
JP2013001927A JP2011132500A JP2011132500A JP2013001927A JP 2013001927 A JP2013001927 A JP 2013001927A JP 2011132500 A JP2011132500 A JP 2011132500A JP 2011132500 A JP2011132500 A JP 2011132500A JP 2013001927 A JP2013001927 A JP 2013001927A
Authority
JP
Japan
Prior art keywords
evaporation
container
thin film
heating device
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011132500A
Other languages
Japanese (ja)
Inventor
Itsushin Yo
一新 楊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2011132500A priority Critical patent/JP2013001927A/en
Publication of JP2013001927A publication Critical patent/JP2013001927A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a discharge device, capable of reducing the time required to raise the temperature of a thin film material while securing satisfactory uniformity of film thickness, and to provide a thin film-forming apparatus.SOLUTION: The discharge device includes: a container body 13 formed from a heat conductive material; a plurality of receiving holes formed in the container body 13; an evaporation container 6 disposed within each receiving hole, the evaporation container containing a thin film material 4; and a heating device 7 for heating the evaporation container 6. The heating device 7 is located between the outer circumferential surface of the evaporation container 6 and the inner circumferential surface of the receiving hole and is disposed to surround the outer circumferential surface of the evaporation container 6. When the heating device 7 heats the evaporation container 6 with the thin film material 4 being stored in the evaporation container 6, vapor is generated from the thin film material 4 stored in each evaporation container 6 and released through an opening of each evaporation container 6. Since a plurality of evaporation containers 6 are independently heated, the thin film material 4 can be rapidly heated. The temperature difference among the plurality of evaporation containers 6 is minimized due to the heat conduction of the container body 13, and the amount of the vapor being released is uniformed.

Description

本発明は真空雰囲気中で薄膜材料の蒸気を生成する放出装置と薄膜形成装置に関し、特に蒸発温度の高い無機材料の蒸気を生成するための装置に関する。   The present invention relates to a discharge apparatus and a thin film forming apparatus for generating a vapor of a thin film material in a vacuum atmosphere, and more particularly to an apparatus for generating a vapor of an inorganic material having a high evaporation temperature.

有機ELディスプレイ、有機EL照明デバイス、有機デバイス等に用いられる有機薄膜や無機薄膜の成膜は、従来より、有機材料又は無機材料を加熱して蒸気を生成し、その蒸気を成膜対象物に到達させることで行われている。   Conventionally, film formation of organic thin films and inorganic thin films used in organic EL displays, organic EL lighting devices, organic devices, etc., generates a vapor by heating an organic material or an inorganic material, and uses the vapor as a film formation target. It is done by making it reach.

図12の符号101は、従来技術の薄膜形成装置を示している。
この薄膜形成装置101は、真空槽108と、真空槽108内部の底壁側に配置されたリニア蒸発源103と、真空槽108内部の天井側に配置された基板ホルダ150とを有している。
The code | symbol 101 of FIG. 12 has shown the thin film formation apparatus of the prior art.
The thin film forming apparatus 101 includes a vacuum chamber 108, a linear evaporation source 103 disposed on the bottom wall inside the vacuum chamber 108, and a substrate holder 150 disposed on the ceiling side inside the vacuum chamber 108. .

リニア蒸発源103は、直方体形状の容器153を有しており、容器153は真空槽108の内部の底壁上に配置されている。容器153の内部には薄膜材料104が収容されており、容器153は、容器153を加熱する加熱ヒーター105によって取り囲まれている。   The linear evaporation source 103 has a rectangular parallelepiped container 153, and the container 153 is disposed on the bottom wall inside the vacuum chamber 108. A thin film material 104 is accommodated in the container 153, and the container 153 is surrounded by a heater 105 that heats the container 153.

真空槽108に接続された真空排気系109を起動して、真空槽108内部を真空雰囲気に保った状態で、加熱ヒーター105に接続された電源156を起動して加熱ヒーター105を発熱させると、容器153が加熱されて昇温され、熱伝導によって、容器153内部の薄膜材料104が昇温し、容器153内部に薄膜材料104の蒸気が生成され、容器153内部に蒸気が充満する。   When the evacuation system 109 connected to the vacuum chamber 108 is activated and the inside of the vacuum chamber 108 is maintained in a vacuum atmosphere, the power source 156 connected to the heater 105 is activated to cause the heater 105 to generate heat. The container 153 is heated to increase the temperature, the thin film material 104 inside the container 153 is heated by heat conduction, the vapor of the thin film material 104 is generated inside the container 153, and the vapor is filled inside the container 153.

容器153の天井側の面には、図12に示されるように噴出口117が設けられており、容器153内部に充満した蒸気は、容器153の鉛直上方に向けられた面に設けられた噴出口117から容器153の外部に放出される。   As shown in FIG. 12, a spout 117 is provided on the surface of the container 153 on the ceiling side, and the steam filled in the container 153 is a jet provided on a surface directed vertically upward of the container 153. It is discharged from the outlet 117 to the outside of the container 153.

容器153の噴出口117の上方には、成膜対象物である基板110が、成膜すべき面が下方に向けられた状態で、基板ホルダ150に保持されており、蒸気が基板110に到達すると、基板110に薄膜が形成される。基板ホルダ150と共に基板110を水平方向に移動させて、噴出口117と基板110との相対位置を変え、基板110の成膜すべき面全体に薄膜を形成する。   Above the spout 117 of the container 153, the substrate 110, which is a film formation target, is held by the substrate holder 150 with the surface to be deposited facing downward, and the vapor reaches the substrate 110. Then, a thin film is formed on the substrate 110. The substrate 110 is moved together with the substrate holder 150 in the horizontal direction to change the relative position between the jet port 117 and the substrate 110, and a thin film is formed on the entire surface of the substrate 110 on which the film is to be formed.

上記の加熱ヒーター105で容器153を加熱して薄膜材料104を昇温させる場合、薄膜材料104の蒸気を生成するのに必要な熱量に比べて、加熱ヒーター105が単位時間当たりに供給する熱量は小さく、薄膜材料104を昇温させるのに時間がかかり、蒸気を生成するのに必要な温度に昇温させることが困難であるという問題があった。また、加熱ヒーター105の温度を、薄膜材料104が蒸気を生成する温度に比べて高い温度に維持する必要があるため、加熱ヒーター105の寿命が短いという問題があった。さらに、容器153の中央付近の薄膜材料104の温度は、容器153の内面付近の薄膜材料104の温度に比べて低く、薄膜材料104の温度が不均一になってしまい、容器153の中央付近の薄膜材料104の蒸気生成量が、容器153の内面付近の薄膜材料104の蒸気生成量より少ないという問題もあった。薄膜材料104が無機材料の場合には、特にこの問題が顕著であった。薄膜材料104が有機材料の場合には、温度不均一により薄膜材料104の分解が起きるおそれがあった。   When the container 153 is heated by the heater 105 to raise the temperature of the thin film material 104, the amount of heat supplied by the heater 105 per unit time is larger than the amount of heat necessary to generate the vapor of the thin film material 104. There is a problem that it is small and it takes time to raise the temperature of the thin film material 104, and it is difficult to raise the temperature to a temperature necessary for generating steam. Moreover, since it is necessary to maintain the temperature of the heater 105 at a temperature higher than the temperature at which the thin film material 104 generates steam, there is a problem that the life of the heater 105 is short. Furthermore, the temperature of the thin film material 104 near the center of the container 153 is lower than the temperature of the thin film material 104 near the inner surface of the container 153, and the temperature of the thin film material 104 becomes non-uniform. There was also a problem that the amount of vapor generated by the thin film material 104 was less than the amount of vapor generated by the thin film material 104 near the inner surface of the container 153. This problem is particularly noticeable when the thin film material 104 is an inorganic material. When the thin film material 104 is an organic material, the thin film material 104 may be decomposed due to uneven temperature.

図14には、従来より用いられているポイント蒸発源113を備えた薄膜形成装置111が示されている。真空槽108の内部の底壁に配置されたポイント蒸発源113は、蒸発容器106を有しており、蒸発容器106の内部には薄膜材料104が収容され、蒸発容器106の外周側面には、蒸発容器106を加熱する加熱ヒーター105が取り付けられている。   FIG. 14 shows a thin film forming apparatus 111 having a point evaporation source 113 that has been conventionally used. The point evaporation source 113 disposed on the bottom wall inside the vacuum chamber 108 has an evaporation container 106, the thin film material 104 is accommodated inside the evaporation container 106, and the outer peripheral side surface of the evaporation container 106 is A heater 105 for heating the evaporation container 106 is attached.

加熱ヒーター105に接続された電源156を起動すると、加熱ヒーター105によって蒸発容器106が加熱されて昇温され、熱伝導によって蒸発容器106の内部に収容された薄膜材料104が昇温され、蒸発容器106の内部に薄膜材料104の蒸気が生成され、蒸気は蒸発容器106の開口から放出され、蒸発容器106の開口の上方に位置する基板110に到達し、薄膜が形成される。蒸発容器106の開口と基板110との相対位置を変えながら、薄膜の形成をおこなう。   When the power source 156 connected to the heater 105 is activated, the evaporation container 106 is heated and heated by the heater 105, and the thin film material 104 accommodated in the evaporation container 106 is heated by heat conduction, and the evaporation container 106 is heated. The vapor of the thin film material 104 is generated inside the vapor 106, the vapor is discharged from the opening of the evaporation container 106, reaches the substrate 110 located above the opening of the evaporation container 106, and a thin film is formed. A thin film is formed while changing the relative position between the opening of the evaporation container 106 and the substrate 110.

このポイント蒸発源113では、前述のリニア蒸発源103に比べて、薄膜材料104の蒸気の量が少なく、薄膜を形成する効率が悪く、生産効率が悪かった。また、基板110の面積が大きくなるにつれて、膜厚の均一性が悪くなるという問題があった。膜厚を均一にするために、基板110を回転させる機構を設けると、コストがかかってしまうという不都合があった。   In this point evaporation source 113, the amount of vapor of the thin film material 104 is small compared to the linear evaporation source 103 described above, the efficiency of forming a thin film is poor, and the production efficiency is poor. In addition, as the area of the substrate 110 increases, there is a problem that the uniformity of the film thickness deteriorates. If a mechanism for rotating the substrate 110 is provided in order to make the film thickness uniform, there is a disadvantage that costs increase.

特開2005−050747号公報JP 2005-050747 A 特開2005−060757号公報JP-A-2005-060757

本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、薄膜材料を昇温させるのにかかる時間を短縮でき、かつ膜厚の均一性がよい放出装置と薄膜形成装置を提供することにある。   The present invention was created in order to solve the above-mentioned disadvantages of the prior art, and an object of the present invention is to provide a discharge device and a thin film that can shorten the time taken to raise the temperature of the thin film material and have good film thickness uniformity. It is to provide a forming apparatus.

上記課題を解決するために本発明は、熱伝導性の材料からなる容器本体と、前記容器本体に形成された複数の収容孔と、各前記収容孔の内部にそれぞれ配置され、薄膜材料が収容される蒸発容器と、前記蒸発容器を加熱する加熱装置と、を有し、前記加熱装置は、前記蒸発容器の外周側面と前記収容孔の内周側面との間に位置し、前記蒸発容器の外周側面を取り囲んで配置され、前記蒸発容器に前記薄膜材料が収容された状態で、前記加熱装置が前記蒸発容器を加熱すると、各前記蒸発容器に収容された前記薄膜材料から蒸気が発生し、各前記蒸発容器の開口から放出される放出装置である。
本発明は放出装置であって、前記加熱装置はヒーターであり、前記蒸発容器の外周側面と前記収容孔の内周側面との両方に接触して配置され、前記加熱装置が昇温すると、前記蒸発容器と前記容器本体とは熱伝導によって加熱される放出装置である。
本発明は放出装置であって、前記容器本体には、前記容器本体と接触し、熱伝導によって前記容器本体を加熱する容器本体用補助加熱装置が前記容器本体と密着して前記容器本体の側面を取り囲んで設けられた放出装置である。
本発明は放出装置であって、前記蒸気が通過する蒸発口が複数設けられた蓋部材を有する放出装置である。
本発明は放出装置であって、前記蓋部材によって囲まれた空間内に、各前記蒸発容器の開口から前記蒸気が放出される放出装置である。
本発明は放出装置であって、各前記蒸発容器の開口には、前記蓋部材がそれぞれ設けられ、前記蓋部材の前記蒸発口を通過した前記蒸気が放出される放出装置である。
本発明は、真空槽と、前記放出装置とを有し、前記放出装置は、前記真空槽内に配置された薄膜形成装置である。
本発明は薄膜形成装置であって、前記真空槽内には前記放出装置が一の基準方向に沿って複数個並んで配置され、各前記放出装置は、各前記放出装置が有する蒸発容器の温度を、放出装置毎に別々に制御できるように構成された薄膜形成装置である。
本発明は薄膜形成装置であって、隣り合う二つの前記放出装置は、前記基準方向と平行な二本の直線のうち互いに異なる前記直線上に配置され、隣り合う二つの前記放出装置の端部の前記蒸発口も含めて、隣り合う二つの前記蒸発口の中心間の前記基準方向の距離は同一にされた薄膜形成装置である。
In order to solve the above-described problems, the present invention provides a container body made of a heat conductive material, a plurality of receiving holes formed in the container body, and disposed inside each of the receiving holes. And a heating device for heating the evaporation container, the heating device being located between the outer peripheral side surface of the evaporation container and the inner peripheral side surface of the receiving hole, When the heating apparatus heats the evaporation container in a state where the outer peripheral side surface is disposed and the thin film material is stored in the evaporation container, steam is generated from the thin film material stored in each of the evaporation containers, It is the discharge | release apparatus discharged | emitted from the opening of each said evaporation container.
The present invention is a discharge device, the heating device is a heater, arranged in contact with both the outer peripheral side surface of the evaporation container and the inner peripheral side surface of the containing hole, when the heating device is heated, The evaporation container and the container body are discharge devices that are heated by heat conduction.
The present invention is a discharge device, wherein an auxiliary heating device for a container main body that contacts the container main body and heats the container main body by heat conduction is in close contact with the container main body and contacts the side surface of the container main body. Is a discharge device provided around
The present invention is a discharge device having a lid member provided with a plurality of evaporation ports through which the vapor passes.
The present invention is a discharge device, wherein the vapor is discharged from an opening of each evaporation container in a space surrounded by the lid member.
The present invention is a discharge device, in which the lid member is provided at each opening of the evaporation container, and the vapor that has passed through the evaporation port of the cover member is discharged.
The present invention includes a vacuum chamber and the discharge device, and the discharge device is a thin film forming device disposed in the vacuum chamber.
The present invention is a thin film forming apparatus, wherein a plurality of the discharge devices are arranged in the vacuum chamber along one reference direction, and each of the discharge devices has a temperature of an evaporation container included in each of the discharge devices. Is a thin film forming apparatus configured to be controlled separately for each discharge apparatus.
The present invention is a thin film forming apparatus, wherein two adjacent discharge devices are arranged on different straight lines among two straight lines parallel to the reference direction, and end portions of two adjacent discharge devices In the thin film forming apparatus, the distance in the reference direction between the centers of the two adjacent evaporation ports including the evaporation port is the same.

本発明の放出装置によれば、薄膜材料が収容された複数の蒸発容器を個別に加熱するので、薄膜材料を速やかに昇温することができる。容器本体の熱伝導により、複数の蒸発容器の温度差は小さくなり、放出される蒸気の量が均一になり、膜厚の均一な薄膜を形成することができる。   According to the discharge device of the present invention, the plurality of evaporation containers containing the thin film material are individually heated, so that the temperature of the thin film material can be quickly raised. Due to the heat conduction of the container body, the temperature difference between the plurality of evaporation containers is reduced, the amount of vapor released is uniform, and a thin film with a uniform film thickness can be formed.

(a)本発明の第一例の薄膜形成装置の内部側面図、(b)第一例の放出装置の蒸発源の内部拡大側面図、(c)第一例の放出装置の補助加熱装置の側面の拡大断面図(A) Internal side view of the thin film forming apparatus of the first example of the present invention, (b) Internal enlarged side view of the evaporation source of the discharge apparatus of the first example, (c) of the auxiliary heating device of the discharge apparatus of the first example Expanded side view of the side 第一例の放出装置のA−A切断線断面図AA cut line sectional view of the discharge device of the first example 第一例の放出装置の平面図Plan view of the discharge device of the first example 第一例の放出装置の各構成部分の電気的接続関係を示す模式図Schematic diagram showing the electrical connection relationship of each component of the discharge device of the first example (a)本発明の第二例の薄膜形成装置の内部側面図、(b)第二例の放出装置の蒸発源の内部拡大側面図、(c)第二例の放出装置の容器本体用補助加熱装置の側面の拡大断面図(A) Internal side view of thin film forming apparatus of second example of the present invention, (b) Internal enlarged side view of evaporation source of second example of discharge apparatus, (c) Container body auxiliary of second example of discharge apparatus Enlarged sectional view of the side of the heating device 第二例の放出装置の平面図Plan view of the second example discharge device 本発明の第三例の薄膜形成装置の内部側面図The internal side view of the thin film formation apparatus of the 3rd example of this invention 第三例の放出装置の平面図Plan view of the discharge device of the third example 本発明の第四例の薄膜形成装置の内部側面図The internal side view of the thin film formation apparatus of the 4th example of this invention 本発明の第四例の薄膜形成装置の内部平面図The internal top view of the thin film formation apparatus of the 4th example of this invention 第四例の薄膜形成装置の各構成部分の電気的接続関係を示す模式図The schematic diagram which shows the electrical connection relation of each component of the thin film formation apparatus of a 4th example 従来のリニア蒸発源を備えた薄膜形成装置の内部側面図Internal side view of a thin film forming apparatus equipped with a conventional linear evaporation source 従来のリニア蒸発源の平面図Plan view of a conventional linear evaporation source 従来のポイント蒸発源を備えた薄膜形成装置の内部側面図Internal side view of a thin film forming apparatus with a conventional point evaporation source

<第一例の薄膜形成装置の構造>
以下で図面を参照し、本発明の実施形態について説明する。図1(a)の符号1aは本発明の第一例の薄膜形成装置を示している。
第一例の薄膜形成装置1aは、真空槽8と、真空槽8内部の底壁側に配置された放出装置3aと、真空槽8内部の天井側に配置された基板ホルダ50とを有している。
<Structure of thin film forming apparatus of first example>
Embodiments of the present invention will be described below with reference to the drawings. The code | symbol 1a of Fig.1 (a) has shown the thin film formation apparatus of the 1st example of this invention.
The thin film forming apparatus 1a of the first example includes a vacuum chamber 8, a discharge device 3a disposed on the bottom wall side inside the vacuum chamber 8, and a substrate holder 50 disposed on the ceiling side inside the vacuum chamber 8. ing.

放出装置3aは、熱伝導性の材料からなる一体の容器本体13と、複数の蒸発源24a1〜24anと、蓋部材53aとを有している。
容器本体13は、金属、グラファイト等の熱伝導性の材料からなり、ここでは直方体形状に成形されている。
Emitting device 3a includes an integral container body 13 made of a thermally conductive material has a plurality of evaporation sources 24a 1 ~24a n, and a lid member 53a.
The container body 13 is made of a heat conductive material such as metal or graphite, and is formed in a rectangular parallelepiped shape here.

真空槽8内部の底壁上には、放熱補助板25が配置されており、放熱補助板25上には、容器本体13を支える柱35が設けられ、容器本体13は、一面が鉛直上方に向けられた状態で、柱35の上端に配置されている。放熱補助板25は、ここでは断熱性の材料からなり、容器本体13の下方を向いた面と対面され、容器本体13が加熱されたときに、容器本体13の下方を向いた面の熱放射を吸収して、容器本体13の熱量を吸収するようになっている。放熱補助板25は、断熱性の材料からなる構成に限定されず、冷却されたものでもよい。   A heat radiation auxiliary plate 25 is disposed on the bottom wall inside the vacuum chamber 8, and a column 35 that supports the container main body 13 is provided on the heat radiation auxiliary plate 25, and the container main body 13 has one surface vertically upward. In an oriented state, it is arranged at the upper end of the column 35. Here, the heat radiation auxiliary plate 25 is made of a heat insulating material, faces the surface facing downward of the container body 13, and heat radiation of the surface facing downward of the container body 13 when the container body 13 is heated. The amount of heat of the container body 13 is absorbed. The heat radiation auxiliary plate 25 is not limited to a configuration made of a heat insulating material, and may be cooled.

容器本体13の外側には、補助加熱装置64が配置されている。補助加熱装置64は、筒状の筒部と、筒部の一端を蓋する板部とを有し、筒部の内周側面が容器本体13の外周側面を取り囲み、板部表面が容器本体13の天井面と離間して対面する位置に配置され、不図示の支持部材に支持されている。   An auxiliary heating device 64 is disposed outside the container body 13. The auxiliary heating device 64 has a cylindrical tube portion and a plate portion that covers one end of the tube portion, the inner peripheral side surface of the tube portion surrounds the outer peripheral side surface of the container main body 13, and the plate portion surface is the container main body 13. It arrange | positions in the position which faces and separates from the ceiling surface of, and is supported by the support member not shown.

図1(c)は補助加熱装置64の側面の拡大断面図である。補助加熱装置64は、絶縁性の材料からなる補助充填物642と、補助充填物642の内部に配置された補助抵抗発熱体641とから構成されている。補助抵抗発熱体641に電力が供給されて発熱すると、熱伝導により補助充填物642が昇温するようになっている。 FIG. 1C is an enlarged cross-sectional view of the side surface of the auxiliary heating device 64. The auxiliary heating device 64 includes an auxiliary filler 64 2 made of an insulating material, and an auxiliary resistance heating element 64 1 arranged inside the auxiliary filler 64 2 . When power is supplied to the auxiliary resistance heating element 64 1 to generate heat, the auxiliary filler 64 2 is heated by heat conduction.

容器本体13の外周側面は補助加熱装置64の筒部の内周側面に密着されていおり、補助加熱装置64が発熱すると、熱伝導により容器本体13が加熱される。補助加熱装置64のうち、容器本体13の外周側面に密着している部分は容器本体13を加熱する容器本体用補助加熱装置5aであり、他の部分は蓋補助加熱装置63である。容器本体13の天井面の上方は蓋補助加熱装置63によって覆われている。   The outer peripheral side surface of the container main body 13 is in close contact with the inner peripheral side surface of the cylindrical portion of the auxiliary heating device 64. When the auxiliary heating device 64 generates heat, the container main body 13 is heated by heat conduction. Of the auxiliary heating device 64, the portion that is in close contact with the outer peripheral side surface of the container body 13 is the container body auxiliary heating device 5 a that heats the container body 13, and the other portion is the lid auxiliary heating device 63. The upper part of the ceiling surface of the container body 13 is covered with a lid auxiliary heating device 63.

蓋部材53aは、筒状の筒部と、筒部の一端を蓋する板部とを有している。蓋部材53aは、筒部の内周側面が補助加熱装置64の筒部の外周側面を取り囲み、板部表面が補助加熱装置64の板部裏面と対面する位置に配置され、不図示の支持部材に支持されている。蓋部材53aの内側表面は補助加熱装置64の外側表面に密着されており、補助加熱装置64の蓋補助加熱装置63が発熱すると、熱伝導により蓋部材53aが加熱されるようになっている。   The lid member 53a has a cylindrical tube portion and a plate portion that covers one end of the tube portion. The lid member 53a is disposed at a position where the inner peripheral side surface of the cylindrical portion surrounds the outer peripheral side surface of the cylindrical portion of the auxiliary heating device 64 and the plate portion surface faces the rear surface of the plate portion of the auxiliary heating device 64. It is supported by. The inner surface of the lid member 53a is in close contact with the outer surface of the auxiliary heating device 64. When the lid auxiliary heating device 63 of the auxiliary heating device 64 generates heat, the lid member 53a is heated by heat conduction.

蓋部材53aの外側には、セラミックス等の断熱性の材料から成る放熱防止体23が、蓋部材53aの外側表面を取り囲んで配置されている。蓋部材53aが昇温しても、放熱防止体23により、放出装置3aの外側の部材、たとえば真空槽8や基板ホルダ50には蓋部材53aの熱が伝わらないようになっている。   On the outside of the lid member 53a, a heat radiation prevention body 23 made of a heat insulating material such as ceramics is disposed so as to surround the outer surface of the lid member 53a. Even if the temperature of the lid member 53a rises, the heat dissipation preventive body 23 prevents the heat of the lid member 53a from being transmitted to members outside the discharge device 3a, for example, the vacuum chamber 8 and the substrate holder 50.

図1(a)を参照し、各蒸発源24a1〜24anの構造は互いに同じであり、符号24a1の蒸発源で代表して説明する。
図1(b)は蒸発源24a1の内部拡大側面図である。
Figure 1 (a), the structure of each evaporation source 24a 1 ~24a n is the same as each other, it will be described as a representative in the evaporation source code 24a 1.
FIG. 1B is an enlarged side view of the inside of the evaporation source 24a 1 .

蒸発源24a1は、容器本体13の天井面に設けられた収容孔14と、薄膜材料が収容される蒸発容器6と、蒸発容器6を加熱する加熱装置7とを有している。
蒸発容器6は、収容孔14の内部に配置されており、加熱装置7は、蒸発容器6の外周側面と収容孔14の内周側面との間に配置され、蒸発容器6の外周側面を取り囲んでいる。
The evaporation source 24a 1 includes an accommodation hole 14 provided in the ceiling surface of the container body 13, an evaporation container 6 in which a thin film material is accommodated, and a heating device 7 that heats the evaporation container 6.
The evaporation container 6 is disposed inside the accommodation hole 14, and the heating device 7 is disposed between the outer peripheral side surface of the evaporation container 6 and the inner peripheral side surface of the accommodation hole 14, and surrounds the outer peripheral side surface of the evaporation container 6. It is out.

ここでは加熱装置7はヒーターであり、蒸発容器6の外周側面と収容孔14の内周側面との両方に接触している。
加熱装置7は、絶縁性の材料からなる充填物72と、充填物72の内部に配置された抵抗発熱体71とから構成されており、抵抗発熱体71に電力が供給されて発熱すると、熱伝導により充填物72が昇温するようになっている。
Here, the heating device 7 is a heater and is in contact with both the outer peripheral side surface of the evaporation container 6 and the inner peripheral side surface of the accommodation hole 14.
The heating device 7 includes a filling 7 2 made of an insulating material and a resistance heating element 7 1 disposed inside the filling 7 2 , and power is supplied to the resistance heating element 7 1. When heating, fillers 7 2 by thermal conduction is adapted to heating.

図2は放出装置3aのA−A線切断断面図である。
収容孔14は容器本体13の天井面に複数設けられている。ここでは、収容孔14は容器本体13の天井面の長手方向91に平行な二本の直線上に並んでおり、各直線上で収容孔14は等間隔に配置され、互いに異なる直線上に設けられた二つの隣接する収容孔14の間の距離は等しくなっている。各収容孔14の内部に位置する蒸発容器6は、容器本体13の天井面の長手方向91に沿って、蒸発容器6の密度が一定になるように配置されている。
FIG. 2 is a cross-sectional view taken along line AA of the discharge device 3a.
A plurality of receiving holes 14 are provided on the ceiling surface of the container body 13. Here, the accommodation holes 14 are arranged on two straight lines parallel to the longitudinal direction 91 of the ceiling surface of the container body 13, and the accommodation holes 14 are arranged at equal intervals on each straight line and are provided on different straight lines. The distance between two adjacent receiving holes 14 is equal. The evaporating containers 6 positioned inside the respective housing holes 14 are arranged so that the density of the evaporating containers 6 is constant along the longitudinal direction 91 of the ceiling surface of the container main body 13.

図1(a)を参照し、真空槽8外部には電源56が設けられており、各蒸発源24a1〜24anの加熱装置7と、容器本体用補助加熱装置5aとは、それぞれ、真空槽8外部に設けられたコントローラー20を介して、電源56と電気的に接続されている。電源56から電力が供給されると、各蒸発源24a1〜24anの加熱装置7と容器本体用補助加熱装置5aはそれぞれ発熱するようになっている。 Figure 1 (a), the the vacuum chamber 8 external and power source 56 are provided, with each evaporation source 24a 1 ~24a n heating device 7, the container body for the auxiliary heating device 5a, respectively, vacuum It is electrically connected to a power source 56 via a controller 20 provided outside the tank 8. When power from the power source 56 is supplied, the evaporation sources 24a 1 ~24a n heating device 7 and the container body for the auxiliary heating device 5a of the is adapted to heat generation, respectively.

また、蓋補助加熱装置63は、容器本体用補助加熱装置5aとコントローラー20の両方を介して電源56と電気的に接続されており、容器本体用補助加熱装置5aが発熱すると、容器本体用補助加熱装置5aと共に蓋補助加熱装置63も発熱するようになっている。   The lid auxiliary heating device 63 is electrically connected to the power source 56 via both the container main body auxiliary heating device 5a and the controller 20, and when the container main body auxiliary heating device 5a generates heat, the container main body auxiliary heating device 63a. The lid auxiliary heating device 63 also generates heat together with the heating device 5a.

電源56からの電力の供給量はコントローラー20で増加または減少できるようになっている。各蒸発源24a1〜24anの加熱装置7と容器本体用補助加熱装置5aとのそれぞれに供給する電力を増加または減少させると、それぞれの発熱量が増加または減少する。 The amount of power supplied from the power source 56 can be increased or decreased by the controller 20. When increasing or decreasing the power supplied to each of the respective evaporation sources 24a 1 ~24a n heating device 7 and the container body for the auxiliary heating device 5a of the respective heat generation amount increases or decreases.

各蒸発源24a1〜24anでは、加熱装置7は蒸発容器6毎に設けられており、各加熱装置7が発熱すると、各加熱装置7に接触する蒸発容器6は熱伝導によって加熱され、昇温される。各蒸発源24a1〜24anの蒸発容器6は接触する加熱装置7により個別に加熱されるため、従来のリニア蒸発源103(図12参照)に比べて速やかに昇温され、かつ高い温度に昇温される。 Each evaporation source 24a 1 ~24a n, the heating device 7 is provided for each evaporation container 6, when the heating device 7 generates heat, the evaporation container 6 in contact with the heating device 7 is heated by heat conduction, the temperature Be warmed. Since the evaporation container 6 of the evaporation source 24a 1 ~24a n is individually heated by the heating device 7 in contact, is rapidly heated as compared with conventional linear evaporation source 103 (see FIG. 12), and a high temperature The temperature is raised.

また、各蒸発源24a1〜24anの加熱装置7は収容孔14の内周側面にも接触しており、各蒸発源24a1〜24anの加熱装置7によって蒸発容器6を加熱すると、加熱装置7と接触する容器本体13も共に加熱され、容器本体13の熱伝導によって容器本体13と接触する他の加熱装置7が加熱され、複数の蒸発源24a1〜24anの蒸発容器6の温度差が小さくなる。 Each evaporation source 24a 1 ~24a n heating device 7 is in contact also with the inner peripheral side surface of the receiving hole 14, heating the vaporization container 6 by the respective evaporation sources 24a 1 ~24a n heating device 7, the heating container body 13 in contact with the device 7 is also heated together, other heating device 7 in contact with the container body 13 by heat conduction of the container body 13 is heated, the temperature of the evaporation container 6 of a plurality of evaporation sources 24a 1 ~24a n The difference becomes smaller.

また、容器本体用補助加熱装置5aが発熱すると、熱伝導によって、容器本体13が加熱され、次に、容器本体13に接触する各蒸発源24a1〜24anの加熱装置7が熱伝導によって加熱され、加熱装置7と接触する蒸発容器6は、容器本体用補助加熱装置5aが発熱していない場合に比べて高い温度に昇温される。 The heating, the container body for the auxiliary heating device 5a generates heat, by thermal conduction, the container body 13 is heated, then the evaporation source 24a 1 ~24a n heating device 7 in contact with the container body 13 by heat conduction Then, the evaporation container 6 in contact with the heating device 7 is heated to a temperature higher than that in the case where the container body auxiliary heating device 5a does not generate heat.

図1(a)、(b)と図2の符号4は、薄膜の材料である薄膜材料を示している。薄膜材料4は各蒸発容器6の内部に収容されている。
図1(a)を参照し、薄膜材料4が各蒸発源24a1〜24anの蒸発容器6内に収容された状態で、各蒸発容器6が加熱され、昇温されると、熱伝導によって、薄膜材料4が昇温し、蒸発容器6の内部で薄膜材料4の蒸気が生成され、蒸気は蒸発容器6の開口から放出され、放出された蒸気は容器本体13の上方の蓋補助加熱装置63で覆われた空間に充満する。
Reference numerals 4 in FIGS. 1A and 1B and FIG. 2 denote thin film materials which are thin film materials. The thin film material 4 is accommodated in each evaporation container 6.
Figure 1 (a), the state in which the thin film material 4 is accommodated in the evaporation container 6 of the evaporation source 24a 1 ~24a n, each evaporation container 6 is heated, when heated, by heat conduction Then, the temperature of the thin film material 4 rises, and the vapor of the thin film material 4 is generated inside the evaporation container 6, the vapor is released from the opening of the evaporation container 6, and the discharged vapor is a lid auxiliary heating device above the container body 13. Fill the space covered with 63.

蓋補助加熱装置63で覆われた空間に蒸気が充満している状態で、蓋補助加熱装置63が発熱すると、充満した蒸気が蓋補助加熱装置63と接触して加熱され、昇温され、蒸気の速度が増し、蒸気と蓋補助加熱装置63との衝突回数が増え、蓋補助加熱装置63に覆われた空間に充満した蒸気の密度が均一になる。   When the lid auxiliary heating device 63 generates heat in a state where the space covered with the lid auxiliary heating device 63 is filled with steam, the filled vapor comes into contact with the lid auxiliary heating device 63 and is heated, heated up, and steamed. , The number of collisions between the steam and the auxiliary lid heating device 63 increases, and the density of the vapor filled in the space covered by the auxiliary lid heating device 63 becomes uniform.

蓋部材53aの板部には、板部を厚み方向に貫通する蒸発口17が複数形成されており、蓋補助加熱装置63と放熱防止体23とには、それぞれ、蒸発口17を塞がないように穴が設けられており、蓋補助加熱装置63で覆われた空間に充満した蒸気は、蒸発口17から放出されるようになっている。蒸発口17は鉛直上方を向いており、蒸気は、蒸発口17から放出されると、鉛直上方に向かうようになっている。   A plurality of evaporation ports 17 penetrating the plate portion in the thickness direction are formed in the plate portion of the lid member 53a, and the lid auxiliary heating device 63 and the heat radiation preventing body 23 do not block the evaporation ports 17, respectively. In this way, a hole is provided, and the vapor filled in the space covered with the lid auxiliary heating device 63 is discharged from the evaporation port 17. The evaporation port 17 is directed vertically upward, and when the vapor is discharged from the evaporation port 17, the evaporation port 17 is directed vertically upward.

図3は放出装置3aの平面図である。
蒸発口17は、ここでは、容器本体13の天井面の長手方向91に平行に並んで配置されている。長手方向91の一端と他端付近に位置する蒸発口17の開口面積は、長手方向91の中央付近に位置する蒸発口17の開口面積よりも大きくされており、一端と他端付近の蒸発口17から、放出される蒸気の量が、中央付近の蒸発口17から放出される蒸気の量よりも多くなるようになっている。
なお、蒸発口17の密度を、長手方向91の中央付近よりも一端と他端付近で大きくして、一端と他端付近の蒸発口17から放出される蒸気の量を中央付近に比べて多くなるようにしてもよい。
FIG. 3 is a plan view of the discharge device 3a.
Here, the evaporation ports 17 are arranged in parallel to the longitudinal direction 91 of the ceiling surface of the container body 13. The opening area of the evaporation port 17 located near one end and the other end in the longitudinal direction 91 is larger than the opening area of the evaporation port 17 located near the center in the longitudinal direction 91, and the evaporation ports near the one end and the other end. From FIG. 17, the amount of vapor released is larger than the amount of vapor released from the evaporation port 17 near the center.
The density of the evaporation port 17 is made larger near one end and the other end than near the center in the longitudinal direction 91, and the amount of vapor released from the evaporation port 17 near one end and the other end is larger than that near the center. It may be made to become.

図1(a)を参照し、基板ホルダ50には成膜対象物である基板10が保持されている。基板ホルダ50は、水平方向で、蒸発口17の並びに対して直角な移動方向(ここでは容器本体13の天井面の長手方向91に対して直角な方向)に移動可能になっており、基板ホルダ50が基板10を保持した状態で移動すると、基板10と放出装置3aとは、基板10と放出装置3aとが一定の距離を保ちながら、移動方向に相対移動するようになっている。   Referring to FIG. 1A, a substrate holder 50 holds a substrate 10 that is a film formation target. The substrate holder 50 is movable in a horizontal direction perpendicular to the arrangement of the evaporation ports 17 (here, a direction perpendicular to the longitudinal direction 91 of the ceiling surface of the container body 13). When 50 moves while holding the substrate 10, the substrate 10 and the discharge device 3a move relative to each other in the moving direction while maintaining a constant distance between the substrate 10 and the discharge device 3a.

基板ホルダ50が移動方向の始点から終点まで移動すると、基板10は、蒸発口17の真上にはいない開始位置から移動を開始し、蒸発口17の真上を通過し、蒸発口17の真上にはいない終了位置で移動を終了するようになっている。
基板10の蒸発口17の並びに平行な方向の長さは、蒸発口17の並びの一端と他端の蒸発口17の中心間距離よりも短くなっており、基板10は、一端の蒸発口17と他端の蒸発口17との間の真上位置を通過するようになっている。
When the substrate holder 50 moves from the start point to the end point in the movement direction, the substrate 10 starts moving from a start position that is not directly above the evaporation port 17, passes directly above the evaporation port 17, and is The movement ends at an end position that is not above.
The length of the evaporation ports 17 of the substrate 10 in the parallel direction is shorter than the distance between the centers of the evaporation ports 17 at one end and the other end of the evaporation ports 17. And a position directly above the evaporation port 17 at the other end.

なお、ここでは、放出装置3aを静止させた状態で基板10を移動方向に移動させて基板10と放出装置3aとが相対移動するように構成されているが、基板10を静止させた状態で放出装置3aを移動方向に移動させて基板10と放出装置3aとが相対移動するように構成されていてもよい。   Here, the substrate 10 is moved in the moving direction while the discharge device 3a is stationary, and the substrate 10 and the discharge device 3a are relatively moved. However, the substrate 10 is stationary. The discharge device 3a may be moved in the moving direction so that the substrate 10 and the discharge device 3a move relative to each other.

蓋部材53aは、薄膜材料4が蒸発する面と基板10との間に位置しており、蒸発容器6の内部で生成された蒸気は、蓋部材53aに設けられた蒸発口17から放出され、基板10が蒸発口17の真上に位置するときに、基板10に到達して、薄膜が形成される。   The lid member 53a is located between the surface on which the thin film material 4 evaporates and the substrate 10, and the vapor generated inside the evaporation container 6 is released from the evaporation port 17 provided in the lid member 53a. When the substrate 10 is positioned directly above the evaporation port 17, it reaches the substrate 10 and a thin film is formed.

長手方向91の一端又は他端付近に位置する蒸発口17から蒸気が放出されると、蒸気は基板10のうち長手方向91の一端又は他端付近に到達し、長手方向91の中央付近に位置する蒸発口17から蒸気が放出されると、基板10のうち長手方向91の中央付近に到達するようになっている。基板10のうち長手方向91の一端と他端に蒸気を到達できる蒸発口17の数は、中央付近に到達できる蒸発口17の数に比べて少ないが、中央付近の蒸発口17に比べて一端と他端の蒸発口17から多くの蒸気が放出されると、薄膜の膜厚の均一性が良くなる。   When the vapor is released from the evaporation port 17 located near one end or the other end in the longitudinal direction 91, the vapor reaches near one end or the other end in the longitudinal direction 91 of the substrate 10 and is located near the center of the longitudinal direction 91. When the vapor is released from the evaporation port 17, the substrate 10 reaches the vicinity of the center in the longitudinal direction 91. The number of evaporation ports 17 that can reach the vapor at one end and the other end in the longitudinal direction 91 of the substrate 10 is smaller than the number of evaporation ports 17 that can reach near the center, but one end compared to the evaporation ports 17 near the center. When a large amount of vapor is released from the evaporation port 17 at the other end, the uniformity of the film thickness is improved.

蒸発口17から蒸気が放出されている状態で、基板10が開始位置から終端位置まで移動すると、基板10の全面が蒸発口17の真上を通過し、基板10の全面に蒸気が到達し、基板10の全面に薄膜が形成される。基板10を所定の速度で移動させると、移動方向に対して均一な膜厚の薄膜が形成される。   When the substrate 10 moves from the start position to the end position while the vapor is released from the evaporation port 17, the entire surface of the substrate 10 passes right above the evaporation port 17, and the vapor reaches the entire surface of the substrate 10. A thin film is formed on the entire surface of the substrate 10. When the substrate 10 is moved at a predetermined speed, a thin film having a uniform film thickness is formed in the moving direction.

蒸発口17の並びのうち一端に位置する蒸発口17の上方には、膜厚センサー51が、蒸気が基板10に到達することを妨げないように設けられている。膜厚センサー51はコントローラー20に接続されており、膜厚センサー51に単位時間当たりに堆積する蒸気の量はコントローラー20で測定され、記録されるようになっている。   A film thickness sensor 51 is provided above the evaporation port 17 located at one end of the arrangement of the evaporation ports 17 so as not to prevent vapor from reaching the substrate 10. The film thickness sensor 51 is connected to the controller 20, and the amount of vapor deposited on the film thickness sensor 51 per unit time is measured by the controller 20 and recorded.

また、一の蒸発源24a1の蒸発容器6には、蒸発容器6の温度を測定する温度測定センサー38が接続されている。温度測定センサー38はコントローラー20に接続され、蒸発容器6の温度はコントローラー20で測定され、記録されるようになっている。 Further, a temperature measuring sensor 38 for measuring the temperature of the evaporation container 6 is connected to the evaporation container 6 of one evaporation source 24a 1 . The temperature measurement sensor 38 is connected to the controller 20, and the temperature of the evaporation container 6 is measured by the controller 20 and recorded.

図4は放出装置3aの各構成部分の電気的接続関係を示す模式図である。
コントローラー20は、膜厚センサー51の測定結果又は温度測定センサー38の測定結果に基づいて、各蒸発源24a1〜24anの加熱装置7に供給される電力の量を増加または減少させ、各蒸発源24a1〜24anの蒸発容器6を所望の温度にし、放出される蒸気の量を所望の値にできるように構成されている。
FIG. 4 is a schematic diagram showing an electrical connection relationship of each component of the discharge device 3a.
The controller 20, based on the measurement result of the measurement results or the temperature measurement sensor 38 of the film thickness sensor 51 increases or decreases the amount of power supplied to the heating device 7 of the evaporation source 24a 1 ~24a n, each evaporation the evaporation container 6 sources 24a 1 ~24a n to the desired temperature, the amount of vapor released is configured to be a desired value.

なお、各蒸発源24a1〜24anの蒸発容器6にそれぞれ温度測定センサー38が接続され、コントローラー20は、各温度測定センサー38の測定結果に基づいて、複数の蒸発源24a1〜24anの加熱装置7の発熱量をそれぞれ個別に制御するように構成してもよい。各蒸発源24a1〜24anの蒸発容器6をより短時間で所望の温度にすることができる。 Incidentally, each of the temperature measuring sensor 38 in the evaporation container 6 of the evaporation source 24a 1 ~24a n is connected, the controller 20, based on the measurement results of the respective temperature measurement sensor 38, a plurality of evaporation sources 24a 1 ~24a n You may comprise so that the emitted-heat amount of the heating apparatus 7 may be controlled separately, respectively. It can be set to a desired temperature more quickly evaporating vessel 6 of the evaporation source 24a 1 ~24a n.

本発明では、図1(a)を参照し、容器本体13の熱量が放熱補助板25によって吸収され、放熱補助板25が設けられていない場合に比べて、容器本体13が降温しやすくなっている。そのため、各蒸発源24a1〜24anの蒸発容器6の温度を所望の値にしやすくなり、放出される蒸気の量を所望の値にしやすくなっている。 In this invention, with reference to Fig.1 (a), the heat | fever amount of the container main body 13 is absorbed by the radiation auxiliary plate 25, and the container main body 13 becomes easy to cool compared with the case where the heat radiation auxiliary plate 25 is not provided. Yes. Therefore, the temperature of the evaporation container 6 of the evaporation source 24a 1 ~24a n tends to a desired value, which is the amount of vapor released easily to a desired value.

また、各蒸発源24a1〜24anの蒸発容器6は、加熱装置7から着脱可能になっており、薄膜の形成後、使用済みの蒸発容器6を、薄膜材料4が収容された新しい蒸発容器6と交換でき、薄膜材料4を充填する時間が短縮され、生産性が高められている。 Further, the evaporation container 6 of the evaporation source 24a 1 ~24a n is detachably attached from the heating device 7, after formation of the thin film, a new evaporation vessel the spent evaporation container 6, the thin film material 4 is accommodated 6, the time for filling the thin film material 4 is shortened, and the productivity is improved.

上述の説明では各蒸発源24a1〜24anの加熱装置7はヒーターであったが、インダクション加熱装置であってもよい。ヒーターを用いるとローコストであり、インダクション加熱装置を用いると高い応答性がある(加熱効率がよい)。 Although in the above description the heating device 7 of the evaporation source 24a 1 ~24a n was heater, it may be induction heating device. When a heater is used, the cost is low, and when an induction heating device is used, there is high responsiveness (heating efficiency is good).

図1(a)を参照し、真空槽8には真空排気系9が接続されている。真空排気系9を起動すると、真空槽8内部が真空排気され、所定の真空雰囲気の中で薄膜を形成できるようになっている。   Referring to FIG. 1A, a vacuum exhaust system 9 is connected to the vacuum chamber 8. When the evacuation system 9 is activated, the inside of the vacuum chamber 8 is evacuated, and a thin film can be formed in a predetermined vacuum atmosphere.

<第一例の薄膜形成装置の使用方法>
次に、この薄膜形成装置1aを用いて薄膜を形成する工程について説明する。
先ず、真空排気系9を起動して、真空槽8内部を真空排気し、真空槽8内部に真空雰囲気を形成する。以後、真空排気系9による真空排気を継続して、真空槽8内の真空雰囲気を維持する。
<How to use the thin film forming apparatus of the first example>
Next, the process of forming a thin film using this thin film forming apparatus 1a will be described.
First, the evacuation system 9 is activated to evacuate the vacuum chamber 8 to form a vacuum atmosphere in the vacuum chamber 8. Thereafter, evacuation by the evacuation system 9 is continued, and the vacuum atmosphere in the vacuum chamber 8 is maintained.

真空槽8内の真空雰囲気を維持しながら、成膜対象物である基板10を真空槽8内部に搬入し、成膜すべき面を下方に向けた状態で基板ホルダ50に保持させ、基板ホルダ50を移動方向の始点に配置する。   While maintaining the vacuum atmosphere in the vacuum chamber 8, the substrate 10 as a film formation target is carried into the vacuum chamber 8, and held on the substrate holder 50 with the surface to be deposited facing downward, 50 is placed at the starting point of the moving direction.

各蒸発源24a1〜24anの加熱装置7と容器本体用補助加熱装置5aに電源56から電力を供給し、各蒸発源24a1〜24anの加熱装置7と容器本体用補助加熱装置5aとを発熱させ、容器本体用補助加熱装置5aと共に蓋補助加熱装置63も発熱させる。 Each evaporation source 24a 1 power is supplied from power source 56 to ~24A n heating device 7 and the container body for the auxiliary heating device 5a of the respective evaporation sources 24a 1 ~24a n heating device 7 and the container body for auxiliary heater 5a The lid auxiliary heating device 63 also generates heat together with the container body auxiliary heating device 5a.

各蒸発源24a1〜24anの加熱装置7により蒸発容器6が加熱され、昇温すると、熱伝導によって蒸発容器6の内部に収容された薄膜材料4が昇温され、蒸発容器6の内部に薄膜材料4の蒸気である蒸気が発生し、蒸気は蒸発容器6の開口から放出される。 Evaporating vessel 6 is heated by the heating device 7 of the evaporation source 24a 1 ~24a n, when the temperature is raised, the thin-film material 4 housed inside the evaporation container 6 by heat conduction are heated, the inside of the evaporation container 6 Vapor that is vapor of the thin film material 4 is generated, and the vapor is released from the opening of the evaporation container 6.

本発明では、各蒸発源24a1〜24anの蒸発容器6を、各蒸発容器6に接触する加熱装置7によって個別に加熱しており、蒸発容器6の内部に収容された薄膜材料4は、従来のリニア蒸発源103(図12を参照)に比べて速やかに昇温され、しかも、従来のリニア蒸発源103に比べて高い温度に昇温される。 In the present invention, the evaporation container 6 of the evaporation source 24a 1 ~24a n, are heated separately by the heating device 7 in contact with each evaporation container 6, a thin film material 4 housed inside the evaporation container 6, The temperature is quickly raised as compared to the conventional linear evaporation source 103 (see FIG. 12), and the temperature is raised to a temperature higher than that of the conventional linear evaporation source 103.

また、加熱装置7が発熱すると、加熱装置7に接触する容器本体13も加熱され、一体の容器本体13の熱伝導により他の加熱装置7も加熱され、複数の蒸発源24a1〜24anの蒸発容器6内に収容された薄膜材料4の温度差は小さくなり、蒸気の放出量が均一になる。 Further, the heating device 7 is heated, the container body 13 in contact with the heating device 7 is also heated, other heating device 7 is also heated by thermal conduction integral of the container body 13, a plurality of evaporation sources 24a 1 ~24a n The temperature difference of the thin film material 4 accommodated in the evaporation container 6 becomes small, and the amount of vapor released becomes uniform.

蒸発容器6の開口から放出された蒸気は、蓋補助加熱装置63で覆われた空間に充満し、蒸発口17から放出される。
蓋補助加熱装置63は発熱しており、蓋補助加熱装置63で覆われた空間に充満した蒸気は、蓋補助加熱装置63と接触することにより、加熱されて、昇温され、蒸気の速度が増し、蒸気と蓋補助加熱装置63との衝突回数が増え、蓋補助加熱装置63に覆われた空間に充満した蒸気の密度が均一になり、蒸発口17から放出される蒸気の量が安定する。
The vapor discharged from the opening of the evaporation container 6 fills the space covered with the lid auxiliary heating device 63 and is discharged from the evaporation port 17.
The lid auxiliary heating device 63 generates heat, and the vapor filled in the space covered with the lid auxiliary heating device 63 is heated by being brought into contact with the lid auxiliary heating device 63, and the steam speed is increased. The number of collisions between the steam and the lid auxiliary heating device 63 increases, the density of the vapor filled in the space covered by the lid auxiliary heating device 63 becomes uniform, and the amount of steam released from the evaporation port 17 is stabilized. .

各蒸発源24a1〜24anの蒸発容器6が所定の温度に維持され、膜厚センサー51に単位時間当たりに堆積する蒸気の量が安定したところで、基板10と共に基板ホルダ50の移動を開始し、基板10を蒸発口17の真上位置を移動方向に通過させながら、基板10表面に蒸気を到達させて薄膜を形成する。 Evaporation container 6 of the evaporation source 24a 1 ~24a n is maintained at a predetermined temperature, where the amount of steam to be deposited per unit time in the film thickness sensor 51 is stabilized, and start moving the substrate holder 50 together with the substrate 10 The thin film is formed by allowing the vapor to reach the surface of the substrate 10 while passing the substrate 10 directly above the evaporation port 17 in the moving direction.

基板10が蒸発口17の真上位置を通過し、基板ホルダ50が移動方向の終点に到達して、薄膜の形成が終了した後、真空槽8内の真空雰囲気を維持しながら薄膜が形成された基板10を真空槽8の外側に搬出する。次いで、薄膜の形成されていない新たな基板10を真空槽8内部に搬入し、基板ホルダ50に保持させる。基板ホルダ50を蒸発口17の真上位置を横切らない経路を通って移動方向の始点に移動させ、上述の成膜工程を繰り返す。   After the substrate 10 passes the position directly above the evaporation port 17 and the substrate holder 50 reaches the end point in the moving direction and the formation of the thin film is completed, the thin film is formed while maintaining the vacuum atmosphere in the vacuum chamber 8. The substrate 10 is carried out of the vacuum chamber 8. Next, a new substrate 10 on which no thin film is formed is carried into the vacuum chamber 8 and held by the substrate holder 50. The substrate holder 50 is moved to the starting point in the moving direction through a path that does not cross the position directly above the evaporation port 17, and the above-described film forming process is repeated.

<第二例の薄膜形成装置の構造>
以上は、ひとつの蓋部材53aによって容器本体13の天井面の上方が覆われ、複数の蒸発源24a1〜24anの蒸発容器6が同一の蓋部材53aによって覆われた放出装置3a(以下、第一例の蒸発源と呼ぶ)を備えた第一例の薄膜形成装置1aについて説明したが、本発明はこれに限るものではない。
<Structure of thin film forming apparatus of second example>
Above, the upper ceiling surface of the container body 13 is covered by one of the lid member 53a, a plurality of evaporation sources 24a 1 ~24a n of evaporation container 6 release device 3a covered by the same lid member 53a (hereinafter, Although the thin film forming apparatus 1a of the first example provided with the first evaporation source is described, the present invention is not limited to this.

図5(a)の符号1bは、本発明の第二例の放出装置3bを備えた第二例の薄膜形成装置を示している。第二例の薄膜形成装置1bの構成のうち、第一例の薄膜形成装置1aの構成と同じ部分には同じ符号を付して、説明を省略する。   Reference numeral 1b in FIG. 5 (a) represents a second example of the thin film forming apparatus including the second example of the discharge device 3b of the present invention. Of the configuration of the thin film forming apparatus 1b of the second example, the same parts as those of the thin film forming apparatus 1a of the first example are denoted by the same reference numerals and description thereof is omitted.

第二例の放出装置3bは、第一例の放出装置3aの蒸発源24a1〜24anと蓋部材53aの代わりに、複数の蒸発源24b1〜24bnと複数の蓋部材53b1〜53bnとを有している。
各蒸発源24b1〜24bnの構造は互いに同じであり、符号24b1の蒸発源で代表して説明する。
Emitting device 3b of the second example, instead of the first example evaporation source 24a 1 ~24a n and the lid member 53a of the release device 3a and a plurality of evaporation sources 24b 1 ~24b n and a plurality of cover members 53b 1 ~53b n .
The structures of the respective evaporation sources 24b 1 to 24b n are the same as each other, and will be described with reference to the evaporation source 24b 1 .

図5(b)は蒸発源24b1の拡大内部側面図である。蒸発源24b1の構造は、第一例の薄膜形成装置1aの蒸発源24a1の構造と同様であり、説明を省略する。蓋部材53b1は、蒸発容器6の開口に取り付けられている。 FIG. 5B is an enlarged internal side view of the evaporation source 24b 1 . The structure of the evaporation source 24b 1 is the same as the structure of the evaporation source 24a 1 of the thin film forming apparatus 1a of the first example, and a description thereof will be omitted. The lid member 53b 1 is attached to the opening of the evaporation container 6.

図6は第二例の放出装置3bの平面図である。
ここでは、各蓋部材53b1〜53bnの蒸発口17の平面形状は矩形であり、全ての蒸発口17の大きさは互いに等しくなっている。
蓋部材53b1〜53bnには、長手方向91に平行な蒸発容器6の並びの、一端と他端の蒸発容器6に取り付けられた第二の蓋部材53b1、53b11、53bn、53b1nと、他の蒸発容器6に取り付けられた第一の蓋部材53b2〜53b1n-1とが含まれる。
FIG. 6 is a plan view of the discharge device 3b of the second example.
Here, the planar shape of the evaporation ports 17 of the lid members 53b 1 to 53b n is rectangular, and the sizes of all the evaporation ports 17 are equal to each other.
The lid members 53b 1 to 53b n include second lid members 53b 1 , 53b 11 , 53b n , and 53b that are attached to the evaporation containers 6 at one end and the other end in a row of the evaporation containers 6 parallel to the longitudinal direction 91. 1n and first lid members 53b 2 to 53b 1n-1 attached to the other evaporation containers 6 are included.

各蓋部材53b1〜53bnにはそれぞれ、蒸発口17が容器本体13の天井面の長手方向91に沿って等間隔に設けられており、長手方向91に対する蒸発口17の面積密度が一定になるようになっている。そのため、蒸気は、長手方向91に対して一定の密度で放出されるようになっている。 In each of the lid members 53b 1 to 53b n , the evaporation ports 17 are provided at equal intervals along the longitudinal direction 91 of the ceiling surface of the container body 13, and the area density of the evaporation ports 17 with respect to the longitudinal direction 91 is constant. It is supposed to be. Therefore, the vapor is released at a constant density with respect to the longitudinal direction 91.

ここでは、第一の蓋部材53b2〜53b1n-1には、蒸発口17が3つ設けられており、第二の蓋部材53b1、53b11、53bn、53b1nには、蒸発口17が6つ設けられている。第二の蓋部材53b1、53b11、53bn、53b1nは、第一の蓋部材53b2〜53b1n-1に比べて蒸発口17の数が多く、蒸発口17の総開口面積が大きくなっており、多くの蒸気が放出されるようになっている。 Here, three evaporation ports 17 are provided in the first lid members 53b 2 to 53b 1n-1 , and the evaporation ports are provided in the second lid members 53b 1 , 53b 11 , 53b n and 53b 1n. Six 17 are provided. The second lid members 53b 1 , 53b 11 , 53b n , 53b 1n have a larger number of evaporation ports 17 than the first lid members 53b 2 to 53b 1n-1, and the total opening area of the evaporation ports 17 is large. A lot of steam is released.

図5(a)を参照し、第二例の放出装置3bにおいても、第一例の放出装置3aと同様に、蓋部材53b1〜53bnは、薄膜材料4が蒸発する面と基板10との間に位置しており、蒸発容器6の内部で生成された蒸気は、蓋部材53b1〜53bnに設けられた蒸発口17から放出されて基板10に到達するようになっている。 Referring to FIG. 5 (a), in the second example of the discharge device 3b as well, the lid members 53b 1 to 53b n are formed on the surface on which the thin film material 4 evaporates, the substrate 10, and the discharge device 3a of the first example. The vapor generated inside the evaporation container 6 is discharged from the evaporation port 17 provided in the lid members 53b 1 to 53b n and reaches the substrate 10.

基板10のうち容器本体13の天井面の長手方向91の長さは、長手方向91の一端の第二の蓋部材53b1と他端の第二の蓋部材53b1nとの中心間距離よりも短く、基板10が第二例の放出装置3bの上方位置を移動方向に通過するとき、基板10は、長手方向91の一端の第二の蓋部材53b1と他端の第二の蓋部材53b1nとの間の上方位置を通過する。 The length in the longitudinal direction 91 of the ceiling surface of the container body 13 in the substrate 10 is longer than the distance between the centers of the second lid member 53b 1 at one end and the second lid member 53b 1n at the other end in the longitudinal direction 91. When the substrate 10 is short and passes the upper position of the discharge device 3b of the second example in the moving direction, the substrate 10 has a second lid member 53b1 at one end in the longitudinal direction 91 and a second lid member 53b at the other end. Pass the upper position between 1n .

基板10は第一の蓋部材53b2〜531n-1の鉛直上方位置を通過するが、第二の蓋部材53b1、53b11、53bn、53b1nの鉛直上方位置は通過しないようになっており、蒸気が第一の蓋部材53b2〜531n-1の蒸発口17から放出されると基板10の移動方向に対して直角な方向(長手方向91)の中央付近に到達し、蒸気が第二の蓋部材53b1、53b11、53bn、53b1nの蒸発口17から放出されると基板10の移動方向に対して直角な方向(長手方向91)の一端と他端付近に到達する。 The substrate 10 passes through the vertical upper positions of the first lid members 53b 2 to 53 1n-1 , but does not pass through the vertical upper positions of the second lid members 53b 1 , 53b 11 , 53b n , 53b 1n. When the vapor is discharged from the evaporation ports 17 of the first lid members 53b 2 to 53 1n−1 , the vapor reaches near the center in the direction perpendicular to the moving direction of the substrate 10 (longitudinal direction 91). Is released from the evaporation port 17 of the second lid member 53b 1 , 53b 11 , 53b n , 53b 1n , it reaches one end in the direction perpendicular to the moving direction of the substrate 10 (longitudinal direction 91) and the vicinity of the other end. To do.

蒸気が、第二の蓋部材53b1、53b11、53bn、53b1nの蒸発口17から、第一の蓋部材53b2〜531n-1に比べて多く放出されると、形成される膜の厚さは長手方向91に対して均一になる。 Film vapor, from the second cover member 53b 1, 53b 11, 53b n , 53b 1n the evaporation port 17, when it is often released in comparison with the first cover member 53b 2 ~53 1n-1, which is formed Is uniform with respect to the longitudinal direction 91.

なお、ここでは、蒸発口17は矩形であったが、これに限定されるものではなく、例えば円形でも良い。また、ここでは、蒸発口17の大きさは、全て等しく、第二の蓋部材53b1、53b11、53bn、53b1nに、第一の蓋部材53b2〜531n-1よりも多くの蒸発口17を設けて、総開口面積を大きくしたが、第一の蓋部材53b2〜531n-1に比べて、第二の蓋部材53b1、53b11、53bn、53b1nの蒸発口17の大きさを大きくして、総開口面積が大きくなるようにし、多くの蒸気が放出されるようにしてもよい。 Here, the evaporation port 17 is rectangular, but is not limited thereto, and may be circular, for example. Here, the sizes of the evaporation ports 17 are all the same, and the second lid members 53b 1 , 53b 11 , 53b n , and 53b 1n are larger than the first lid members 53b 2 to 53 1n−1 . Although the evaporation port 17 is provided to increase the total opening area, the evaporation ports of the second lid members 53b 1 , 53b 11 , 53b n , and 53b 1n are larger than the first lid members 53b 2 to 53 1n-1. The size of 17 may be increased so that the total opening area is increased, and a large amount of vapor may be released.

図5(a)を参照し、第二例の放出装置3bは、第一例の放出装置3aの補助加熱装置64の代わりに、筒状の容器本体用補助加熱装置5bを有している。
容器本体用補助加熱装置5bは、内側に容器本体13が位置するように、内周側面が容器本体13の外周側面を取り囲む位置に配置され、不図示の支持部材に支持されており、容器本体13の外周側面と容器本体用補助加熱装置5bの内周側面とは密着している。
With reference to Fig.5 (a), the discharge | emission apparatus 3b of a 2nd example has the auxiliary | assistant heating apparatus 5b for cylindrical container main bodies instead of the auxiliary | assistant heating apparatus 64 of the discharge | release apparatus 3a of a 1st example.
The container body auxiliary heating device 5b is disposed at a position where the inner peripheral surface surrounds the outer peripheral side surface of the container main body 13 so that the container main body 13 is located inside, and is supported by a support member (not shown). The outer peripheral side surface of 13 and the inner peripheral side surface of the container body auxiliary heating device 5b are in close contact with each other.

図5(c)は容器本体用補助加熱装置5bの側面の拡大断面図である。ここでは、容器本体用補助加熱装置5bは、絶縁性の材料からなる補助充填物5b2と、補助充填物5b2の内部に配置された補助抵抗発熱体5b1とから構成されている。補助抵抗発熱体5b1に電力が供給されて発熱すると、熱伝導により補助充填物5b2が昇温して、容器本体13を加熱するようになっている。 FIG.5 (c) is an expanded sectional view of the side surface of the auxiliary heating apparatus 5b for container main bodies. Here, the auxiliary heating device 5b for the container body is composed of an auxiliary filling 5b 2 made of an insulating material and an auxiliary resistance heating element 5b 1 disposed inside the auxiliary filling 5b 2 . When electric power is supplied to the auxiliary resistance heating element 5b 1 to generate heat, the auxiliary filling 5b 2 is heated by heat conduction, and the container body 13 is heated.

図5(a)、(b)を参照し、第二例の放出装置3bでは、放熱防止体23は、容器本体用補助加熱装置5bの外側表面を取り囲み、かつ容器本体13の天井面の収容孔14以外の部分をも取り囲むように設けられており、容器本体13が加熱されたとき、熱が放熱防止体23を伝導することが防止され、熱輻射によって基板10や真空槽8が加熱されることが防止されている。   Referring to FIGS. 5A and 5B, in the discharge device 3 b of the second example, the heat dissipation preventive body 23 surrounds the outer surface of the container body auxiliary heating device 5 b and accommodates the ceiling surface of the container body 13. It is provided so as to surround portions other than the holes 14, and when the container body 13 is heated, heat is prevented from being conducted through the heat radiation prevention body 23, and the substrate 10 and the vacuum chamber 8 are heated by heat radiation. Is prevented.

<第三例の薄膜形成装置の構造>
図7の符号1cは本発明の第三例の放出装置3cを備えた第三例の薄膜形成装置を示している。第三例の薄膜形成装置1cの構成のうち、第二例の薄膜形成装置1bの構成と同じ部分には同じ符号を付して、説明を省略する。
<Structure of thin film forming apparatus of third example>
The code | symbol 1c of FIG. 7 has shown the thin film formation apparatus of the 3rd example provided with the discharge | release apparatus 3c of the 3rd example of this invention. Of the configuration of the thin film forming apparatus 1c of the third example, the same parts as those of the thin film forming apparatus 1b of the second example are denoted by the same reference numerals, and description thereof is omitted.

第三例の放出装置3cは、第一例、第二例の放出装置3a、3bの蒸発源24a1〜24an、24b1〜24bnの代わりに、複数の蒸発源24c1〜24cnを有しており、蓋部材53a、53b1〜53bnは設けられておらず、蒸気は、各蒸発源24c1〜24cnの蒸発容器6の開口から放出され、基板10に到達するようになっている。 Release device 3c of the third example, the first embodiment, release device 3a of the second example, the evaporation sources 24a 1 ~24a n of 3b, instead of 24b 1 ~24b n, a plurality of evaporation sources 24c 1 ~24c n has a lid member 53a, 53b 1 ~53b n is not provided, steam is released from the opening of the evaporation container 6 of the evaporation source 24c 1 ~24c n, so as to reach the substrate 10 ing.

図8は第三例の放出装置3cの平面図である。
蒸発単位部24c1〜24cnには、長手方向91の一端と他端の第二の蒸発源24c1、24c11、24cn、24c1nと、中央付近の第一の蒸発源24c2〜24c1n-1とが含まれる。
FIG. 8 is a plan view of the discharge device 3c of the third example.
The evaporation unit portion 24c 1 ~24C n has one end and the second evaporation source 24c on the other end 1 in the longitudinal direction 91, 24c 11, 24c n, and 24c 1n, first evaporation source 24c 2 ~24C near the center 1n-1 is included.

図7を参照し、基板10のうち容器本体13の天井面の長手方向91の長さは、一端と他端の第二の蒸発源24c1、24c1nの蒸発容器6の中心間距離よりも短く、基板10が放出装置3cの上方を移動方向に通過するとき、基板10は、一端の第二の蒸発源24c1の蒸発容器6と他端の第二の蒸発源24c1nの蒸発容器6との間の上方位置を通過するようになっており、第一の蒸発源24c2〜24c1n-1の蒸発容器6の鉛直上方位置を通過するが、第二の蒸発源24c1、24c11、24cn、24c1nの蒸発容器6の鉛直上方位置は通過しないようになっている。 7, the length in the longitudinal direction 91 of the ceiling surface of the container body 13 in the substrate 10 is longer than the distance between the centers of the evaporation containers 6 of the second evaporation sources 24c 1 and 24c 1n at one end and the other end. When the substrate 10 is short and passes above the discharge device 3c in the moving direction, the substrate 10 has the evaporation container 6 of the second evaporation source 24c 1 at one end and the evaporation container 6 of the second evaporation source 24c 1n at the other end. It is adapted to pass over the position between, but passes through the vertical position above the first evaporation source 24c 2 ~24c 1n-1 of the evaporation container 6, a second evaporation source 24c 1, 24c 11 , 24c n and 24c 1n are not allowed to pass vertically above the evaporation container 6.

第一の蒸発源24c2〜24c1n-1の蒸発容器6は開口が鉛直上方に向けられた状態で配置され、第二の蒸発源24c1、24c11、24cn、24c1nの蒸発容器6は開口が鉛直上方に対して所定角度をなす向きに向けられた状態で配置され、すなわち各蒸発源24c1〜24cnの蒸発容器6の開口はそれぞれ基板10に向けられている。 The evaporation containers 6 of the first evaporation sources 24c 2 to 24c 1n-1 are arranged with their openings directed vertically upward, and the evaporation containers 6 of the second evaporation sources 24c 1 , 24c 11 , 24c n and 24c 1n. the opening is directed vertically arranged while being directed in a direction that forms a predetermined angle relative to the upper, i.e. each aperture substrate 10 of the evaporation container 6 of the evaporation source 24c 1 ~24c n.

第一の蒸発源24c2〜24c1n-1の蒸発容器6の開口から蒸気が放出されると、蒸気は基板10のうち移動方向に対して直角な方向(長手方向91)の中央付近に到達し、第二の蒸発源24c1、24c11、24cn、24c1nの蒸発容器6の開口から蒸気が放出されると、蒸気は基板10のうち移動方向に対して直角な方向(長手方向91)の一端と他端付近に到達する。 When the vapor is released from the opening of the evaporation container 6 of the first evaporation sources 24c 2 to 24c 1n−1 , the vapor reaches near the center of the substrate 10 in the direction perpendicular to the moving direction (longitudinal direction 91). When the vapor is released from the opening of the evaporation container 6 of the second evaporation sources 24c 1 , 24c 11 , 24c n , 24c 1n , the vapor is in a direction perpendicular to the moving direction (longitudinal direction 91) of the substrate 10. ) Near one end and the other end.

第二の蒸発源24c1、24c11、24cn、24c1nの蒸発容器6は、開口が基板10に向けられた状態で配置されており、開口が基板10に向けられていない場合に比べて多くの蒸気が基板10に到達し、薄膜の膜厚の均一性が良くなり、薄膜材料の利用効率も高くなる。 The evaporation containers 6 of the second evaporation sources 24c 1 , 24c 11 , 24c n , 24c 1n are arranged with the opening directed toward the substrate 10, as compared with the case where the opening is not directed toward the substrate 10. A lot of vapor reaches the substrate 10, the uniformity of the thickness of the thin film is improved, and the utilization efficiency of the thin film material is increased.

<第四例の薄膜形成装置の構造>
上述の第一例〜第三例の薄膜形成装置1a〜1cは、それぞれ第一〜第三の放出装置3a〜3cを一つ有していたが、第一〜第三の放出装置3a〜3cを複数個有している構成も本発明に含まれる。
<Structure of thin film forming apparatus of fourth example>
The thin film forming apparatuses 1a to 1c of the first to third examples described above have one first to third discharging apparatuses 3a to 3c, respectively, but the first to third discharging apparatuses 3a to 3c are included. A configuration having a plurality of these is also included in the present invention.

図9は、第一例の放出装置3aを三個有する第四例の薄膜形成装置1dの内部側面図、図10は同内部平面図である。第四例の薄膜形成装置1dの構成のうち、第一例の薄膜形成装置1aの構成と同じ部分には、同じ符号を付して説明を省略する。
第四例の薄膜形成装置1dは、第一〜第三の放出装置3a1〜3a3を有している。第一〜第三の放出装置3a1〜3a3の構造はそれぞれ第一例の放出装置3aの構造と同様であり、説明を省略する。
FIG. 9 is an internal side view of a fourth example thin film forming apparatus 1d having three first example discharge devices 3a, and FIG. 10 is an internal plan view thereof. In the configuration of the thin film forming apparatus 1d of the fourth example, the same parts as those of the thin film forming apparatus 1a of the first example are denoted by the same reference numerals and description thereof is omitted.
The thin film forming apparatus 1d of the fourth example has first to third release apparatuses 3a 1 to 3a 3 . The structures of the first to third discharge devices 3a 1 to 3a 3 are the same as the structure of the discharge device 3a of the first example, and the description thereof is omitted.

図10を参照し、第一〜第三の放出装置3a1〜3a3は真空槽8内で一の水平な直線(基準方向)に沿ってこの順に並んで配置されており、それぞれの容器本体13の天井面の長手方向91は前記一の直線と平行な向きに向けられている。 Referring to FIG. 10, the first to third discharge devices 3 a 1 to 3 a 3 are arranged in this order along one horizontal straight line (reference direction) in the vacuum chamber 8. The longitudinal direction 91 of the 13 ceiling surfaces is oriented in a direction parallel to the one straight line.

一の放出装置3a1〜3a3の蓋部材53aに設けられた蒸発口17の中心間距離を蒸発口間隔Dと呼ぶと、放出装置3a1〜3a3の長手方向91の長さは、蒸発口間隔Dに蒸発口17の個数を積算した長さより長く形成されており、各放出装置3a1〜3a3を長手方向91と平行な同一の直線上に一列に並んで配置すると、隣り合う二つの放出装置3a1〜3a3の端部に位置する蒸発口17は、中心間の長手方向91の距離が蒸発口間隔Dよりも大きい距離で、互いに離間してしまう。 When the distance between the centers of the evaporation ports 17 provided in the lid member 53a of one discharge device 3a 1 to 3a 3 is called an evaporation port interval D, the length in the longitudinal direction 91 of the discharge devices 3a 1 to 3a 3 is the evaporation. If the discharge devices 3a 1 to 3a 3 are arranged in a line on the same straight line parallel to the longitudinal direction 91, they are formed longer than the length obtained by adding the number of the evaporation ports 17 to the mouth interval D. The evaporation ports 17 located at the ends of the two discharge devices 3a 1 to 3a 3 are separated from each other by a distance in which the distance in the longitudinal direction 91 between the centers is larger than the evaporation port interval D.

本発明では、隣り合う二つの放出装置3a1〜3a3は長手方向91と平行な二本の直線のうち互いに異なる直線上に配置され(すなわち各放出装置3a1〜3a3は長手方向91に沿って千鳥配列され)、隣り合う二つの放出装置3a1〜3a3の長手方向91に占める範囲は一部重なって、隣り合う二つの放出装置3a1〜3a3の端部の蒸発口17の中心間の長手方向91の距離は蒸発口間隔Dと等しくされ、隣り合う二つの放出装置3a1〜3a3の端部の蒸発口17を含めて、隣り合う二つの蒸発口17の中心間の長手方向91の距離は同一にされている。そのため、隣り合う二つの放出装置3a1〜3a3の間も含めて、長手方向91に対して均一な放出量で蒸気が放出されるようになっている。 In the present invention, two adjacent discharge devices 3a 1 to 3a 3 are arranged on mutually different straight lines out of two straight lines parallel to the longitudinal direction 91 (that is, each discharge device 3a 1 to 3a 3 is arranged in the longitudinal direction 91. along the zigzag arranged), the two release apparatus 3a 1 to 3 a 3 adjacent range occupied longitudinally 91 partially overlap, the ends of the two release apparatus 3a 1 to 3 a 3 adjacent the evaporation port 17 The distance in the longitudinal direction 91 between the centers is equal to the evaporation port interval D, and includes the evaporation ports 17 at the ends of the two adjacent discharge devices 3a 1 to 3a 3 , between the centers of the two adjacent evaporation ports 17. The distances in the longitudinal direction 91 are the same. Therefore, the vapor is discharged in a uniform discharge amount with respect to the longitudinal direction 91 including between the two adjacent discharge devices 3a 1 to 3a 3 .

各放出装置3a1、3a2、3a3には、放出装置毎に、それぞれ異なるコントローラー201、202、203と、電源561、562、563と、温度測定センサー381、382、383と、膜厚センサー511、512、513とが設けられている。 Each discharge device 3a 1 , 3a 2 , 3a 3 includes a controller 20 1 , 20 2 , 20 3 , a power source 56 1 , 56 2 , 56 3, and a temperature measurement sensor 38 1 , 38 for each discharge device. 2, 38 3, are provided and the film thickness sensor 51 1, 51 2, 51 3.

すなわち、第一の放出装置3a1には、第一のコントローラー201と第一の電源561と第一の温度測定センサー381と第一の膜厚センサー511とが設けられ、第二の放出装置3a2には、第二のコントローラー202と第二の電源562と第二の温度測定センサー382と第二の膜厚センサー512とが設けられ、第三の放出装置3a3には、第三のコントローラー203と第三の電源563と第三の温度測定センサー383と第三の膜厚センサー513とが設けられている。 That is, the first release apparatus 3a 1, the first controller 20 1 and the first power source 56 1 and the first temperature measuring sensor 38 1 and 1 first thickness sensor 51 is provided, the second The discharge device 3a 2 is provided with a second controller 20 2 , a second power source 56 2 , a second temperature measurement sensor 38 2, and a second film thickness sensor 51 2, and the third discharge device 3 a. 3 includes a third controller 20 3 and the third power source 56 3 and the third temperature measuring sensor 38 3 and the third film thickness sensor 51 3 is provided.

図10を参照し、第一〜第三の膜厚センサー511〜513は、それぞれ第一〜第三の放出装置3a1〜3a3から放出された蒸気が基板10に到達するのを妨げないように、第一〜第三の放出装置3a1〜3a3の蒸発口17の上方に配置されており、第一〜第三の放出装置3a1〜3a3から放出される蒸気の量の割合をそれぞれ測定することができるようになっている。 Referring to FIG. 10, first to third film thickness sensors 51 1 to 51 3 prevent vapors emitted from the first to third release devices 3a 1 to 3a 3 from reaching the substrate 10, respectively. as no is disposed above the first to third discharge device 3a 1 to 3 a 3 of the evaporation port 17, the amount of vapor released from the first to third discharge device 3a 1 to 3 a 3 Each ratio can be measured.

ここでは第一〜第三の放出装置3a1〜3a3の周囲を取り囲んで筒状の防着板99が設けられており、第一〜第三の膜厚センサー511〜513は防着板99の端部に取り付けられて支持されている。 Here, a cylindrical deposition plate 99 is provided so as to surround the first to third release devices 3a 1 to 3a 3 , and the first to third film thickness sensors 51 1 to 51 3 are deposited. It is attached to and supported by the end of the plate 99.

図11は第四例の薄膜形成装置1dの各構成部分の電気的接続関係を示す模式図である。ここでは、第一の放出装置3a1は符号24a11〜24a1Lの蒸発源と符号5a1の容器本体用補助加熱装置を有し、第二の放出装置3a2は符号24a21〜24a2Mの蒸発源と符号5a2の容器本体用補助加熱装置を有し、第三の放出装置3a3は符号24a31〜24a3Nの蒸発源と符号5a3の容器本体用補助加熱装置を有している。 FIG. 11 is a schematic diagram showing the electrical connection relationship of each component of the fourth example thin film forming apparatus 1d. Here, the first release apparatus 3a 1 has evaporation source and container body auxiliary heater numerals 5a 1 of the code 24a 11 ~24a 1L, second emission device 3a 2 are code 24a 21 ~24a 2M An evaporation source and a container body auxiliary heating device 5a 2 are included, and the third discharge device 3a 3 has an evaporation source 24a 31 to 24a 3N and a container body auxiliary heating device 5a 3 . .

第一のコントローラー201は、第一の膜厚センサー511の測定結果又は第一の温度測定センサー381の測定結果に基づいて、第一の放出装置3a1の各蒸発源24a11〜24a1Lの加熱装置7と容器本体用補助加熱装置5a1に供給される電力の量を増加または減少させ、各蒸発源24a11〜24a1Lの蒸発容器6を所望の温度にし、放出される蒸気の量を所望の値にできるように構成されている。 The first controller 20 1 is based on the first thickness sensor 51 first measurement result or the first temperature measuring sensor 38 1 measurements, first the evaporation source emitting device 3a 1 24a 11 ~24a The amount of electric power supplied to the 1 L heating device 7 and the container body auxiliary heating device 5a 1 is increased or decreased, the evaporation sources 6 of the evaporation sources 24a 11 to 24a 1L are set to desired temperatures, The amount is configured to be a desired value.

第二、第三のコントローラー202、203も、第一のコントローラー201と同様にして、第二、第三の放出装置3a2、3a3の各蒸発源24a21〜24a2M、24a31〜24a3Nの蒸発容器6をそれぞれ所望の温度にし、放出される蒸気の量をそれぞれ所望の値にできる。 Second and third controllers 20 2, 20 3 as well, in the same manner as the first controller 20 1, the second, third emission device 3a 2, each evaporation source 24a 21 of 3a 3 ~24a 2M, 24a 31 Each of the ˜24a 3N evaporation containers 6 can be brought to a desired temperature, and the amount of vapor released can be brought to a desired value.

すなわち、第一〜第三の放出装置3a1〜3a3の蒸発容器6は、放出装置毎に異なるコントローラーによって個別に温度制御され、放出される蒸気の量を放出装置毎に所望の値に調整できるので、基板10に薄膜を形成すると、膜厚の均一性をより向上できる。 That is, the temperature of the evaporation containers 6 of the first to third discharge devices 3a 1 to 3a 3 is individually controlled by different controllers for each discharge device, and the amount of vapor released is adjusted to a desired value for each discharge device. Therefore, when a thin film is formed on the substrate 10, the uniformity of the film thickness can be further improved.

上述の説明では、第四例の薄膜形成装置1dは3つの放出装置3a1〜3a3を有していたが、放出装置の数は3個に限定されず、二個以上であればよい。また、第一例の放出装置3aを複数個有する構成に限定されず、第二例の放出装置3bを複数個有する構成も本発明に含まれる。 In the above description, the thin film forming apparatus 1d of the fourth example has the three discharge devices 3a 1 to 3a 3 , but the number of the discharge devices is not limited to three and may be two or more. Further, the present invention is not limited to the configuration having a plurality of discharge devices 3a of the first example, and the configuration having a plurality of discharge devices 3b of the second example is also included in the present invention.

1a、1b、1c、1d……薄膜形成装置
3a、3b、3c、3a1〜3a3……放出装置
4……薄膜材料
5a、5b、5a1〜5a3……容器本体用補助加熱装置
6……蒸発容器
7……加熱装置
8……真空槽
13……容器本体
14……収容孔
17……蒸発口
53a、53b1〜53bn……蓋部材
1a, 1b, 1c, 1d ...... thin film forming apparatus 3a, 3b, 3c, 3a 1 ~3a 3 ...... emitting device 4 ...... thin film materials 5a, 5b, 5a 1 ~5a 3 for ...... container body auxiliary heater 6 …… Evaporation container 7 …… Heating device 8 …… Vacuum tank 13 …… Container body 14 …… Housing hole 17 …… Evaporation port 53a, 53b 1 to 53b n …… Cover member

Claims (9)

熱伝導性の材料からなる容器本体と、
前記容器本体に形成された複数の収容孔と、
各前記収容孔の内部にそれぞれ配置され、薄膜材料が収容される蒸発容器と、
前記蒸発容器を加熱する加熱装置と、
を有し、
前記加熱装置は、前記蒸発容器の外周側面と前記収容孔の内周側面との間に位置し、前記蒸発容器の外周側面を取り囲んで配置され、
前記蒸発容器に前記薄膜材料が収容された状態で、前記加熱装置が前記蒸発容器を加熱すると、各前記蒸発容器に収容された前記薄膜材料から蒸気が発生し、各前記蒸発容器の開口から放出される放出装置。
A container body made of a thermally conductive material;
A plurality of receiving holes formed in the container body;
An evaporation container that is disposed inside each of the storage holes and stores a thin film material;
A heating device for heating the evaporation container;
Have
The heating device is located between the outer peripheral side surface of the evaporation container and the inner peripheral side surface of the accommodation hole, and is disposed so as to surround the outer peripheral side surface of the evaporation container,
When the heating device heats the evaporation container in a state where the thin film material is accommodated in the evaporation container, vapor is generated from the thin film material accommodated in each evaporation container and is released from the opening of each evaporation container. Extrusion device.
前記加熱装置はヒーターであり、前記蒸発容器の外周側面と前記収容孔の内周側面との両方に接触して配置され、前記加熱装置が昇温すると、前記蒸発容器と前記容器本体とは熱伝導によって加熱される請求項1記載の放出装置。   The heating device is a heater and is disposed in contact with both the outer peripheral side surface of the evaporation container and the inner peripheral side surface of the accommodation hole. When the heating device is heated, the evaporation container and the container main body are heated. The discharge device according to claim 1, which is heated by conduction. 前記容器本体には、前記容器本体と接触し、熱伝導によって前記容器本体を加熱する容器本体用補助加熱装置が前記容器本体と密着して前記容器本体の側面を取り囲んで設けられた請求項1又は請求項2のいずれか1項記載の放出装置。   The container main body is provided with an auxiliary heating device for a container main body that contacts the container main body and heats the container main body by heat conduction so as to be in close contact with the container main body and surround the side surface of the container main body. Or the discharge | release apparatus of any one of Claim 2. 前記蒸気が通過する蒸発口が複数設けられた蓋部材を有する請求項1乃至請求項3のいずれか1項記載の放出装置。   The discharge device according to any one of claims 1 to 3, further comprising a lid member provided with a plurality of evaporation ports through which the vapor passes. 前記蓋部材によって囲まれた空間内に、各前記蒸発容器の開口から前記蒸気が放出される請求項4記載の放出装置。   The discharge device according to claim 4, wherein the vapor is discharged from an opening of each evaporation container in a space surrounded by the lid member. 各前記蒸発容器の開口には、前記蓋部材がそれぞれ設けられ、前記蓋部材の前記蒸発口を通過した前記蒸気が放出される請求項4記載の放出装置。   The discharge device according to claim 4, wherein the lid member is provided in each opening of the evaporation container, and the vapor that has passed through the evaporation port of the lid member is discharged. 真空槽と、請求項4乃至請求項6のいずれか1項記載の放出装置とを有し、
前記放出装置は、前記真空槽内に配置された薄膜形成装置。
A vacuum chamber and the discharge device according to any one of claims 4 to 6,
The discharge device is a thin film forming device disposed in the vacuum chamber.
前記真空槽内には前記放出装置が一の基準方向に沿って複数個並んで配置され、各前記放出装置は、各前記放出装置が有する蒸発容器の温度を、前記放出装置毎に別々に制御できるように構成された請求項7記載の薄膜形成装置。   In the vacuum chamber, a plurality of the discharge devices are arranged side by side along one reference direction, and each discharge device controls the temperature of the evaporation container of each discharge device separately for each discharge device. The thin film forming apparatus according to claim 7 configured to be able to perform. 隣り合う二つの前記放出装置は、前記基準方向と平行な二本の直線のうち互いに異なる前記直線上に配置され、
隣り合う二つの前記放出装置の端部の前記蒸発口も含めて、隣り合う二つの前記蒸発口の中心間の前記基準方向の距離は同一にされた請求項8記載の薄膜形成装置。
Two adjacent discharge devices are arranged on the different straight lines among the two straight lines parallel to the reference direction,
The thin film forming apparatus according to claim 8, wherein the distance in the reference direction between the centers of the two adjacent evaporation ports including the evaporation ports at the ends of the two adjacent discharge devices is the same.
JP2011132500A 2011-06-14 2011-06-14 Discharge device and thin film-forming apparatus Pending JP2013001927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011132500A JP2013001927A (en) 2011-06-14 2011-06-14 Discharge device and thin film-forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011132500A JP2013001927A (en) 2011-06-14 2011-06-14 Discharge device and thin film-forming apparatus

Publications (1)

Publication Number Publication Date
JP2013001927A true JP2013001927A (en) 2013-01-07

Family

ID=47670814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011132500A Pending JP2013001927A (en) 2011-06-14 2011-06-14 Discharge device and thin film-forming apparatus

Country Status (1)

Country Link
JP (1) JP2013001927A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104762600A (en) * 2015-04-20 2015-07-08 京东方科技集团股份有限公司 Evaporated crucible and evaporation device
WO2024116668A1 (en) * 2022-12-01 2024-06-06 キヤノントッキ株式会社 Evaporation source unit, film forming device, and film forming method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137583A (en) * 2002-10-21 2004-05-13 Tohoku Pioneer Corp Vacuum deposition device
JP2004146369A (en) * 2002-09-20 2004-05-20 Semiconductor Energy Lab Co Ltd Manufacturing method of manufacturing device and light emitting device
JP2005050747A (en) * 2003-07-31 2005-02-24 Ulvac Japan Ltd Vapor deposition source, film forming device and film forming method
JP2005060757A (en) * 2003-08-11 2005-03-10 Ulvac Japan Ltd Film deposition apparatus and film deposition method
JP2007262478A (en) * 2006-03-28 2007-10-11 Fujifilm Corp Heating evaporation apparatus, and multi-component vapor deposition method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146369A (en) * 2002-09-20 2004-05-20 Semiconductor Energy Lab Co Ltd Manufacturing method of manufacturing device and light emitting device
JP2004137583A (en) * 2002-10-21 2004-05-13 Tohoku Pioneer Corp Vacuum deposition device
JP2005050747A (en) * 2003-07-31 2005-02-24 Ulvac Japan Ltd Vapor deposition source, film forming device and film forming method
JP2005060757A (en) * 2003-08-11 2005-03-10 Ulvac Japan Ltd Film deposition apparatus and film deposition method
JP2007262478A (en) * 2006-03-28 2007-10-11 Fujifilm Corp Heating evaporation apparatus, and multi-component vapor deposition method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104762600A (en) * 2015-04-20 2015-07-08 京东方科技集团股份有限公司 Evaporated crucible and evaporation device
US10260144B2 (en) 2015-04-20 2019-04-16 Boe Technology Group Co., Ltd. Evaporation crucible and evaporation device
WO2024116668A1 (en) * 2022-12-01 2024-06-06 キヤノントッキ株式会社 Evaporation source unit, film forming device, and film forming method

Similar Documents

Publication Publication Date Title
JP2008518094A (en) Vapor deposition source having a plurality of openings
JP4996430B2 (en) Vapor generation apparatus, vapor deposition apparatus, and film formation method
JP5282038B2 (en) Vapor deposition equipment
TWI394854B (en) Vapor deposition source with minimized condensation effects
JP4444906B2 (en) Heating container and vapor deposition apparatus equipped with the same
JP2008274322A (en) Vapor deposition apparatus
JP2007063663A (en) Fan-shaped evaporation source
TW200904998A (en) Deposition source, deposition apparatus, and forming method of organic film
JPWO2018199184A1 (en) Evaporation source and film forming apparatus
TWI447246B (en) Vacuum evaporation device
KR101938219B1 (en) Crucible for linear evaporation source and Linear evaporation source having the same
JP4342868B2 (en) Deposition equipment
JP2005336527A (en) Vapor deposition apparatus
TWI408242B (en) Evaporator and vacuum deposition apparatus having the same
JP2013001927A (en) Discharge device and thin film-forming apparatus
KR101362585B1 (en) Top-down type high temperature evaporation source for deposition of metal-like film on substrate
KR20160133589A (en) Linear Evaporation Deposition Apparatus
KR101754802B1 (en) Evaporation Apparatus And Evaporation Deposition Apparatus
KR102080764B1 (en) Linear source, and substrate processing apparatus
WO2012086230A1 (en) Vacuum deposition equipment and vacuum deposition method
KR100461283B1 (en) Organic source boat structure for organic electro-luminescent display fabricating apparatus
JP4002769B2 (en) Evaporation container and film forming apparatus having the evaporation container
JP2014181387A (en) Evaporation source, and vacuum vapor deposition apparatus using the evaporation source
KR20150011788A (en) Effusion Cell for Antipollution of Inner Part
KR100829738B1 (en) Heating crucible of organic thin film forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150407