JP2013216955A - Vacuum vapor deposition apparatus - Google Patents

Vacuum vapor deposition apparatus Download PDF

Info

Publication number
JP2013216955A
JP2013216955A JP2012089839A JP2012089839A JP2013216955A JP 2013216955 A JP2013216955 A JP 2013216955A JP 2012089839 A JP2012089839 A JP 2012089839A JP 2012089839 A JP2012089839 A JP 2012089839A JP 2013216955 A JP2013216955 A JP 2013216955A
Authority
JP
Japan
Prior art keywords
evaporation source
substrate
evaporation
vacuum
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012089839A
Other languages
Japanese (ja)
Inventor
Takeshi Tamakoshi
武司 玉腰
Tatsuya Miyake
竜也 三宅
Hiroyasu Matsuura
宏育 松浦
Hideaki Minekawa
英明 峰川
Toshiaki Kusunoki
敏明 楠
Kenichi Yamamoto
健一 山本
Akio Yazaki
秋夫 矢崎
Tomohiko Ogata
智彦 尾方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2012089839A priority Critical patent/JP2013216955A/en
Priority to TW102112149A priority patent/TW201404906A/en
Priority to KR1020130037250A priority patent/KR20130115139A/en
Priority to CN2013101246413A priority patent/CN103374700A/en
Publication of JP2013216955A publication Critical patent/JP2013216955A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum vapor deposition apparatus in which a plurality of line-shaped evaporation sources are arranged in multiple-stages to the film deposition direction and which allows co-vapor deposition without changing film deposition order in a forward path and a reverse path.SOLUTION: A vacuum vapor deposition apparatus for depositing a film of a vapor deposition material on a substrate 2 has an evaporation source group 3 formed by arranging a plurality of line-shaped evaporation sources 3-A, 3-B so as to be symmetric to the film deposition direction. The evaporation source group 3 performs film deposition while moving in a first direction to the substrate, and thereafter, performs film deposition while moving in a second direction that is reverse to the first direction to the substrate.

Description

本発明は、真空蒸着装置に関する。   The present invention relates to a vacuum deposition apparatus.

近年、有機EL素子が新たな産業分野として注目されている。有機ELディスプレイは液晶ディスプレイやプラズマディスプレイに代わる次世代ディスプレイとして、また有機EL照明はLED照明と並ぶ次世代照明として期待されている。   In recent years, organic EL elements have attracted attention as a new industrial field. Organic EL displays are expected as next-generation displays that replace liquid crystal displays and plasma displays, and organic EL lighting is expected as next-generation lighting along with LED lighting.

有機EL素子は、有機化合物からなる発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層などを積層した多層構造を、陽極と陰極からなる電極対で挟み込んだ構造になっている。電極に電圧を印加することにより陽極側から正孔が、陰極側から電子が発光層に注入され、それらが再結合して生じる励起子(エキシトン)の失活により発光する。   An organic EL device has a structure in which a multilayer structure in which a light emitting layer made of an organic compound, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer and the like are stacked is sandwiched between electrode pairs composed of an anode and a cathode. ing. By applying a voltage to the electrode, holes are injected from the anode side and electrons are injected from the cathode side into the light emitting layer, and light is emitted by deactivation of excitons (excitons) generated by recombination.

発光層を形成する有機材料には高分子材料と低分子材料がある。このうち現在主流である低分子材料は、真空蒸着によって成膜される。その他の層を形成する際にも真空蒸着が用いられる。性能向上のために共蒸着によるドーピングや合金化も行われている(特許文献1)。   The organic material forming the light emitting layer includes a high molecular material and a low molecular material. Among these, low molecular weight materials, which are currently mainstream, are formed by vacuum deposition. Vacuum deposition is also used when forming other layers. In order to improve performance, doping and alloying by co-evaporation are also performed (Patent Document 1).

真空蒸着に用いられる蒸発源は、蒸着材料を封入する坩堝と、蒸着材料を噴出するノズルと、坩堝を加熱するヒーターと、坩堝やノズルおよびヒーターなどを格納するハウジングを有する。ヒーターにより加熱された坩堝から蒸着材料を蒸発あるいは昇華させて、真空チャンバ内に設置した基板上にノズルから気化した蒸着材料を噴射して各層を形成する。カラー表示の有機EL素子を作成するには、基板とメタルマスクをアライメントした状態で、異なる発光をする有機EL材料を画素ごとに塗り分けて成膜する。   An evaporation source used for vacuum deposition includes a crucible that encloses a deposition material, a nozzle that ejects the deposition material, a heater that heats the crucible, and a housing that stores the crucible, the nozzle, the heater, and the like. Each layer is formed by evaporating or sublimating the vapor deposition material from a crucible heated by a heater and spraying the vapor deposition material vaporized from a nozzle onto a substrate placed in a vacuum chamber. In order to produce an organic EL element for color display, an organic EL material that emits different light is applied to each pixel in a state where the substrate and the metal mask are aligned.

有機EL素子は表示デバイスや照明デバイスの大型化とともに、基板サイズ大型化の要求がある。基板サイズは現状の第4.5世代製造ライン(ガラス基板寸法:730mm×920mm)から、基板寸法で2.9倍となる第5.5世代製造ライン(基板寸法は1300mm×1500mm)へ拡大し、さらには第8世代製造ライン(ガラス基板寸法:2200mm×2500mm)にも及ぶ見込みである。   The organic EL element is required to increase the substrate size as the display device and the lighting device increase. Substrate size has expanded from the current 4.5th generation production line (glass substrate dimensions: 730mm x 920mm) to the 5.5th generation production line (substrate dimensions are 1300mm x 1500mm), which is 2.9 times the substrate size. Furthermore, it is expected to extend to the eighth generation production line (glass substrate size: 2200 mm × 2500 mm).

基板サイズの大型化に対応するために、ライン状の蒸発源やプレナー状の蒸発源など、様々の形態の蒸発源が実用化されている。基板サイズに対するスケーラビリティーの観点からは、プレナー状よりライン状の蒸発源がより好ましい。ライン状の蒸発源は、その長手方向と垂直な方向へ基板に沿って相対移動することで基板に均一な薄膜を形成できる。
ライン状の蒸発源には、複数のノズルを有する一体物のリニア蒸発源や、複数のノズルを有する蒸発源ユニットを長手方向へライン状に複数個併設したマルチ蒸発源などの形態がある。
In order to cope with an increase in the substrate size, various types of evaporation sources such as a linear evaporation source and a planar evaporation source have been put into practical use. From the viewpoint of scalability with respect to the substrate size, a linear evaporation source is more preferable than a planar shape. The line-shaped evaporation source can form a uniform thin film on the substrate by relatively moving along the substrate in a direction perpendicular to the longitudinal direction.
Examples of the line-shaped evaporation source include an integrated linear evaporation source having a plurality of nozzles, and a multi-evaporation source in which a plurality of evaporation source units having a plurality of nozzles are arranged in a line in the longitudinal direction.

ライン状の蒸発源は、その長手方向の寸法が概略基板サイズの場合、片道のスキャンで基板全面に成膜することができる。その長手方向の寸法が基板サイズより小さい場合には、往路と復路の間に長手方向へあるピッチで移動することで基板全面に成膜することができる。   When the dimension in the longitudinal direction is approximately the substrate size, the line-shaped evaporation source can be formed on the entire surface of the substrate by one-way scanning. When the dimension in the longitudinal direction is smaller than the substrate size, the film can be formed on the entire surface of the substrate by moving at a certain pitch in the longitudinal direction between the forward path and the backward path.

特許第3741842号公報Japanese Patent No. 3741842

共蒸着では、同じ真空チャンバの中に複数の蒸発源を設け、異なる材料を異なる蒸発源内に配置する。ライン状の蒸発源で共蒸着する場合、例えば、複数のライン状の蒸発源を成膜方向に沿って多段に配置することが考えられる。しかし、このような構成で往復成膜を行うと往路と復路で成膜順序が逆転する。このため往路と復路で異なる基板箇所に成膜すると、基板面内で組成比率が異なってしまう課題がある。これに対して本発明による解決策を以下に述べる。   In co-evaporation, a plurality of evaporation sources are provided in the same vacuum chamber, and different materials are arranged in different evaporation sources. In the case of co-evaporation with a line-shaped evaporation source, for example, a plurality of line-shaped evaporation sources may be arranged in multiple stages along the film forming direction. However, when reciprocal film formation is performed with such a configuration, the film formation order is reversed between the forward path and the return path. For this reason, when film formation is performed on different substrate locations in the forward path and the return path, there is a problem that the composition ratio varies within the substrate surface. On the other hand, the solution by this invention is described below.

上記課題を解決するための本発明の特徴は以下の通りである。基板に蒸着材料を成膜する真空蒸着装置において、複数のライン状の蒸発源を成膜方向に対して対称となるように配置した蒸発源群を有し、前記蒸発源群は、前記基板に対し第1方向に移動しつつ成膜した後、前記基板に対し前記第1方向と逆方向である第2方向に移動しつつ成膜する。   The features of the present invention for solving the above-described problems are as follows. In a vacuum deposition apparatus for depositing a deposition material on a substrate, the evaporation source group includes a plurality of line-shaped evaporation sources arranged so as to be symmetric with respect to a deposition direction, and the evaporation source group is disposed on the substrate. On the other hand, after forming the film while moving in the first direction, the film is formed while moving in the second direction opposite to the first direction with respect to the substrate.

本発明の真空蒸着装置は、蒸着材料の種類に応じて用意した、複数のライン状の蒸発源を成膜方向(およびその逆方向)に対して対称となるように配置し、往路と復路で成膜順序を変えることなく共蒸着膜を形成できる。従って、第1方向に対して往復成膜し、往路と復路の間に略直交する第2方向に基板面に沿って移動することで、往路と復路で異なる基板位置に成膜する場合に組成比率を均一にすることができるので、より大型な基板に膜厚および組成ともに均一な共蒸着膜を成膜することができる。   The vacuum vapor deposition apparatus of the present invention arranges a plurality of line-shaped evaporation sources prepared according to the type of vapor deposition material so as to be symmetric with respect to the film forming direction (and the reverse direction), and in the forward path and the backward path A co-deposited film can be formed without changing the film formation order. Therefore, the composition is formed when the film is reciprocated with respect to the first direction and moved along the substrate surface in the second direction substantially orthogonal between the forward path and the backward path to form films at different substrate positions in the forward path and the backward path. Since the ratio can be made uniform, a co-deposited film having a uniform film thickness and composition can be formed on a larger substrate.

実施例1における真空蒸着装置の真空チャンバ内の構成である。2 is a configuration in a vacuum chamber of a vacuum vapor deposition apparatus in Example 1. FIG. 実施例1における蒸発源の配置および移動経路を示す模式図<1>である。FIG. 2 is a schematic diagram <1> showing the arrangement and movement paths of evaporation sources in Example 1. 実施例1における蒸発源の配置および移動経路を示す模式図<2>である。It is a schematic diagram <2> which shows arrangement | positioning and the movement path | route of an evaporation source in Example 1. FIG. 実施例1における蒸発源の配置および移動経路を示す模式図<3>である。It is a schematic diagram <3> which shows arrangement | positioning and a movement path | route of the evaporation source in Example 1. FIG. 実施例1における蒸発源の配置および移動経路を示す模式図<4>である。It is a schematic diagram <4> which shows arrangement | positioning and the movement path | route of an evaporation source in Example 1. FIG. 実施例2における蒸発源の配置および移動経路を示す模式図である。FIG. 6 is a schematic diagram showing the arrangement and movement paths of evaporation sources in Example 2. 実施例3における真空蒸着装置の真空チャンバ内の構成である。6 is a configuration in a vacuum chamber of a vacuum vapor deposition apparatus in Example 3. 実施例3における蒸発源の配置および移動経路を示す模式図である。FIG. 10 is a schematic diagram showing the arrangement and movement paths of evaporation sources in Example 3. 実施例4における蒸発源の配置および移動経路を示す模式図である。It is a schematic diagram which shows the arrangement | positioning and movement path | route of an evaporation source in Example 4. FIG. 実施例5における蒸発源の配置および移動経路を示す模式図である。It is a schematic diagram which shows the arrangement | positioning and movement path | route of an evaporation source in Example 5. FIG. 実施例6における蒸発源の配置を示す模式図である。FIG. 10 is a schematic diagram showing the arrangement of evaporation sources in Example 6.

以下、図面等を用いて本発明の実施例を説明する。以下では、本発明の真空蒸着装置の一例として、有機ELデバイスの製造に適用した例を説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明だけに限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。例えば、蒸着材料は有機材料に限らず、金属材料、無機材料、その他の材料を用いることができる。共蒸着もドーピング、合金形成などの数々の場合に適用することが可能である。   Embodiments of the present invention will be described below with reference to the drawings. Below, the example applied to manufacture of an organic EL device is demonstrated as an example of the vacuum evaporation system of this invention. The following description shows specific examples of the contents of the present invention, and the present invention is not limited only to these descriptions. Various modifications by those skilled in the art within the scope of the technical idea disclosed in this specification will be described. Changes and modifications are possible. For example, the vapor deposition material is not limited to an organic material, and a metal material, an inorganic material, and other materials can be used. Co-evaporation can also be applied in many cases such as doping and alloy formation.

<蒸発源群を1つ備えた真空蒸着装置>
図1は、実施例1における真空蒸着装置の一部(真空チャンバ内)の構成を示す概略図である。真空に維持された真空チャンバ1内に、垂直に立てられた基板2と、3段からなるライン状の蒸発源群3が配置されている。搬送チャンバ(図示せず)との間に真空を維持するために設けた基板受け渡し部4から搬入された基板2は、基板ホルダ(図示せず)とアライメントを行い、基板2および基板ホルダが略垂直に立てられる。本実施例では、面取りサイズ毎に格子上にパターニングされたメタルマスクを兼ねた基板ホルダの例を示した。また図1に示す実施例では、垂直方向を成膜方向に、水平方向をライン状の蒸発源群3の長手方向に対応づける。順方向と逆方向は必要なければ特に区別しない。
<Vacuum deposition apparatus with one evaporation source group>
FIG. 1 is a schematic diagram illustrating a configuration of a part (in a vacuum chamber) of a vacuum deposition apparatus according to the first embodiment. A vertically standing substrate 2 and a three-stage line-shaped evaporation source group 3 are arranged in a vacuum chamber 1 maintained in a vacuum. The substrate 2 carried in from the substrate delivery section 4 provided to maintain a vacuum with the transfer chamber (not shown) is aligned with the substrate holder (not shown), and the substrate 2 and the substrate holder are substantially omitted. Stands vertically. In this embodiment, an example of a substrate holder that also serves as a metal mask patterned on a lattice for each chamfer size is shown. In the embodiment shown in FIG. 1, the vertical direction corresponds to the film forming direction, and the horizontal direction corresponds to the longitudinal direction of the line-shaped evaporation source group 3. The forward direction and the reverse direction are not particularly distinguished unless necessary.

ライン状の蒸発源群3は、成膜方向に沿って順に、第1材料を格納する蒸発源3−A、第2材料Bを格納する蒸発源3−B、第1材料を格納する蒸発源3−Aの3段から構成される。ここで、第2材料は第1材料とは異なる材料である。蒸発源3−Aおよび蒸発源3−Bは、例えばリニア蒸発源やマルチ蒸発源などが用いられる。ライン状の蒸発源は長手方向を有し、その長さは基板2の水平方向の辺の長さの略半分であることを特徴とする。
好ましくは、基板2の水平方向の辺の長さより短く、その半分の長さよりは長いと良い。
The line-shaped evaporation source group 3 includes an evaporation source 3-A for storing the first material, an evaporation source 3-B for storing the second material B, and an evaporation source for storing the first material in order along the film forming direction. It consists of three stages of 3-A. Here, the second material is a material different from the first material. As the evaporation source 3-A and the evaporation source 3-B, for example, a linear evaporation source or a multi-evaporation source is used. The line-shaped evaporation source has a longitudinal direction, and its length is approximately half the length of the horizontal side of the substrate 2.
Preferably, it is shorter than the length of the side in the horizontal direction of the substrate 2 and longer than half of the length.

図2は実施例1における蒸発源の配置および移動経路を示す模式図<1>である。図2は基板受け渡し部4から基板2を見た図である。なお、後述する図3、図4、図5、図6、図8、図9、図10も同様に、基板受け渡し部4から基板2を見た図である。蒸発源群3は、垂直方向に上下移動しながら基板2に成膜を行い、上移動(上方向への移動をいう)と下移動(下方向への移動をいう)の間に水平方向へ基板2の長さの略半分だけ移動することで基板2の全体を走査する。   FIG. 2 is a schematic diagram <1> showing the arrangement and movement path of the evaporation source in the first embodiment. FIG. 2 is a view of the substrate 2 as viewed from the substrate transfer unit 4. 3, 4, 5, 6, 8, 9, and 10, which will be described later, are similarly views of the substrate 2 as viewed from the substrate transfer unit 4. The evaporation source group 3 forms a film on the substrate 2 while moving up and down in the vertical direction, and in the horizontal direction between upward movement (referred to as upward movement) and downward movement (referred to as downward movement). The entire substrate 2 is scanned by moving about half the length of the substrate 2.

例えば、図2に示すように、蒸発源群3は基板2の下辺より低い待機位置から垂直方向に上移動しながら基板2の略半分(左半分)の成膜を行う(S21)。そして基板2の上辺より蒸発源群3の位置が高くなったところで、水平方向(左右方向)の右へ基板2の長さの略半分だけ移動する(S22)。その後、垂直方向に下移動しながら基板2の残り略半分(右半分)の成膜を行う(S23)。そして基板2の下辺より蒸発源群3の位置が低くなったところで、水平方向(左右方向)の左へ基板2の長さの略半分だけ移動し、基板2成膜前の待機位置まで戻る(S24)。   For example, as shown in FIG. 2, the evaporation source group 3 performs film formation on substantially half (left half) of the substrate 2 while moving vertically upward from a standby position lower than the lower side of the substrate 2 (S21). Then, when the position of the evaporation source group 3 is higher than the upper side of the substrate 2, it moves to the right in the horizontal direction (left-right direction) by approximately half of the length of the substrate 2 (S 22). Thereafter, the remaining half (right half) of the substrate 2 is deposited while moving downward in the vertical direction (S23). Then, when the position of the evaporation source group 3 is lower than the lower side of the substrate 2, it moves to the left in the horizontal direction (left and right direction) by approximately half of the length of the substrate 2 and returns to the standby position before the film formation of the substrate 2 ( S24).

図3は実施例1における蒸発源の配置および移動経路を示す模式図<2>である。蒸発源群3の移動経路6は上記だけに限られるものではない。例えば、図3に示す移動経路6によって、奇数枚目の基板2を処理し、その逆の移動経路6で偶数枚目の基板2を処理しても良い。   FIG. 3 is a schematic diagram <2> showing the arrangement and movement path of the evaporation source in the first embodiment. The movement path 6 of the evaporation source group 3 is not limited to the above. For example, the odd-numbered substrates 2 may be processed by the movement path 6 shown in FIG. 3, and the even-numbered substrates 2 may be processed by the opposite movement path 6.

図4は実施例1における蒸発源の配置および移動経路を示す模式図<3>である。図3と同様に、図4に示す経路によって奇数枚目の基板2を処理し、その逆の経路で偶数枚目の基板2を処理しても良い。図3や図4のように、上移動と下移動で基板の略半分ずつ成膜された膜厚の重ね合わせによって、基板2の全面に均一な成膜ができる。この際、走査速度を一定に保つことで、高い膜厚均一性を得ることができる。   FIG. 4 is a schematic diagram <3> showing the arrangement and movement path of the evaporation source in the first embodiment. Similarly to FIG. 3, the odd-numbered substrates 2 may be processed by the path shown in FIG. 4, and the even-numbered substrates 2 may be processed by the opposite path. As shown in FIGS. 3 and 4, uniform film formation can be performed on the entire surface of the substrate 2 by superimposing the film thicknesses formed by approximately half of the substrate by upward movement and downward movement. At this time, high film thickness uniformity can be obtained by keeping the scanning speed constant.

ライン状の蒸発源群3は、蒸発源3−A、蒸発源3−B、蒸発源3−Aが成膜方向に対して対称的に配置されているため、基板2の略半分を成膜する上移動と、基板2の残り略半分を成膜する下移動で、材料の成膜順序を変えることなく成膜が可能であるので、基板2の全面に均一な組成の共蒸着膜を形成することができる。   In the line-shaped evaporation source group 3, the evaporation source 3-A, the evaporation source 3-B, and the evaporation source 3-A are arranged symmetrically with respect to the film forming direction, so that almost half of the substrate 2 is formed. Therefore, it is possible to form the film without changing the film formation order by forming the upper half of the substrate 2 and moving the lower half of the substrate 2 to form a co-deposited film having a uniform composition on the entire surface of the substrate 2. can do.

以上によって、基板2の全面に膜厚および組成ともに均一な共蒸着膜を成膜することができる。成膜を終えた基板2は、水平に倒され、基板受け渡し部4を介して搬出される。   As described above, a co-deposited film having a uniform film thickness and composition can be formed on the entire surface of the substrate 2. The substrate 2 that has been formed is tilted horizontally and carried out via the substrate transfer unit 4.

蒸発源群3は、基板2サイズより小さなものを用いることができるので、基板2サイズの大型化に対応するのが容易である。また、上移動と下移動どちらも成膜に利用することができるので、片道のみで共蒸着を行う装置に比べてタクト時間を半減させることができる。   Since the evaporation source group 3 can be smaller than the size of the substrate 2, it is easy to cope with an increase in the size of the substrate 2. In addition, since both the upward movement and the downward movement can be used for film formation, the tact time can be halved as compared with an apparatus that performs co-evaporation by only one way.

第1材料、第2材料の具体例としては、第1材料を膜母材、第2材料を添加剤とする例が考えられる。蒸発源3−Aから成膜される第1材料と、蒸発源3−Bから成膜される第2材料の量が同じ場合には、1つの蒸発源群に2つの蒸発源3−Aが備わっているため、1つの蒸発源群からの成膜量について第1材料の量が第2材料の量の2倍になる。この構成を活かして、より多くを必要とする第1材料を膜母材とする。   As specific examples of the first material and the second material, an example in which the first material is a film base material and the second material is an additive can be considered. When the amount of the first material formed from the evaporation source 3-A and the amount of the second material formed from the evaporation source 3-B are the same, two evaporation sources 3-A are included in one evaporation source group. Therefore, the amount of the first material is twice the amount of the second material with respect to the film formation amount from one evaporation source group. Taking advantage of this configuration, the first material that requires more is used as the film base material.

なお、開口部の大きさを変える等して、蒸発源3−Aから成膜される第1材料よりも、蒸発源3−Bから成膜される第2材料の量が非常に多い場合には、第1材料を添加材、第2材料を膜母材としても良い。   When the amount of the second material formed from the evaporation source 3-B is much larger than the first material formed from the evaporation source 3-A, for example, by changing the size of the opening. The first material may be an additive, and the second material may be a film base material.

ここまでは、蒸着材料の種類がAおよびBの2種類の場合について本発明を説明した。
蒸発源群3の構成はこれ以外にも、蒸発源3−A、蒸発源3−B、蒸発源3−B、蒸発源3−A、あるいは蒸発源3−A、蒸発源3−B、蒸発源3−B、蒸発源3−B、蒸発源3−Aなどの構成でも良い。この場合には、蒸発源群3の個数の増加によって蒸着レートを増加することができる。さらに、蒸着材料の種類が3種類以上の場合にも、蒸発源群3の構成および成膜方法は上記に準じたものであれば良い。例えば、蒸着材料の種類が第1材料Aおよび第2材料B、第3材料Cの3種類あれば、蒸発源群3の構成は、蒸発源3−A、蒸発源3−B、蒸発源3−C(図示せず)、蒸発源3−B、蒸発源3−Aの順番で5段を成膜方向に配置すれば良い。
Up to this point, the present invention has been described with respect to the case where there are two types of deposition materials, A and B.
In addition to this, the configuration of the evaporation source group 3 includes the evaporation source 3-A, the evaporation source 3-B, the evaporation source 3-B, the evaporation source 3-A, or the evaporation source 3-A, the evaporation source 3-B, and the evaporation. The configuration of the source 3-B, the evaporation source 3-B, the evaporation source 3-A, and the like may be used. In this case, the deposition rate can be increased by increasing the number of evaporation source groups 3. Further, even when there are three or more kinds of vapor deposition materials, the configuration of the evaporation source group 3 and the film forming method may be the same as those described above. For example, if there are three types of vapor deposition materials, the first material A, the second material B, and the third material C, the configuration of the evaporation source group 3 is the evaporation source 3-A, the evaporation source 3-B, and the evaporation source 3. Five stages may be arranged in the film forming direction in the order of -C (not shown), evaporation source 3-B, and evaporation source 3-A.

一般的に表現すると、第1方向に移動して基板にM種類の材料(第1材料〜第M材料:Mは2以上の自然数)を蒸着する蒸発源群(第1蒸発源〜第N蒸発源:Nは3以上の自然数)であって、第1方向及び第2方向(第1方向と逆方向)に移動しながら成膜することで、基板2の全面に均一な組成の共蒸着膜を成膜することを特徴とする。前述の具体例は、M=2、N=3の場合に対応する。   Generally expressed, an evaporation source group (first evaporation source to Nth evaporation) that moves in the first direction and deposits M kinds of materials (first material to Mth material: M is a natural number of 2 or more) on the substrate. Source: N is a natural number of 3 or more), and is deposited while moving in the first direction and the second direction (the direction opposite to the first direction), so that a co-deposited film having a uniform composition on the entire surface of the substrate 2 It is characterized by forming a film. The above-described specific example corresponds to the case where M = 2 and N = 3.

ここまで、蒸発源群3の長手方向の長さが、基板2水平方向の辺の長さの略半分の場合について説明した。一般的に表現すると、蒸発源群3の長手方向の長さが、基板2の水平方向の辺の長さの略K分の1(Kは2以上の自然数)の場合についても、本発明は同様に適用できる。成膜中の往路と復路で、基板2水平方向の長さの略K分の1だけ水平方向に移動し、かつ合計K回の走査で基板2の全面に均一な膜厚および組成の共蒸着膜を成膜することが可能である。2以上の自然数Kが奇数の場合は、基板2の下側の待機位置から出発した蒸発源群3が、基板2の上側の待機位置で成膜を終える。逆に、基板2の上側の待機位置から出発した蒸発源群3は、基板2下側の待機位置で成膜を終える。   So far, the case where the length in the longitudinal direction of the evaporation source group 3 is substantially half the length of the side in the horizontal direction of the substrate 2 has been described. Generally speaking, the present invention also applies to the case where the length of the evaporation source group 3 in the longitudinal direction is approximately 1 / K of the length of the horizontal side of the substrate 2 (K is a natural number of 2 or more). The same applies. Co-deposition of uniform film thickness and composition on the entire surface of the substrate 2 by moving in the horizontal direction by approximately 1 / K of the horizontal length of the substrate 2 in the forward path and the return path during film formation, and scanning a total of K times. It is possible to form a film. When the natural number K of 2 or more is an odd number, the evaporation source group 3 starting from the standby position below the substrate 2 finishes the film formation at the standby position above the substrate 2. Conversely, the evaporation source group 3 starting from the standby position on the upper side of the substrate 2 finishes the film formation at the standby position on the lower side of the substrate 2.

いずれにせよ、蒸発源群3が成膜方向に対称的に配置されているため、上移動と下移動で材料の成膜順序を変えることなく成膜することができる。とくに、基板2のサイズと比べてより小さな蒸発源群3を用いて基板2の全面を成膜することができるので、基板2の大型化へ対応するのに利点がある。   In any case, since the evaporation source group 3 is symmetrically arranged in the film forming direction, film formation can be performed without changing the film forming order of the material by upward movement and downward movement. In particular, since the entire surface of the substrate 2 can be formed using the evaporation source group 3 that is smaller than the size of the substrate 2, there is an advantage in dealing with an increase in the size of the substrate 2.

図5は実施例1におけるL=4の場合の蒸発源の配置および移動経路を示す模式図である。この場合、蒸発源群3は上方向、右方向、下方向、右方向、上方向、右方向、下方向へ移動しつつ基板2を成膜する。   FIG. 5 is a schematic diagram showing the arrangement and movement path of the evaporation source when L = 4 in the first embodiment. In this case, the evaporation source group 3 forms the substrate 2 while moving upward, rightward, downward, rightward, upward, rightward, and downward.

図1から図5において、蒸発源群3は、一体物のリニア蒸発源やマルチ蒸発源などのライン状の蒸発源から構成される。各蒸発源は、蒸着材料を封入する材料室、蒸気の噴射口であるノズル、から構成される坩堝と、坩堝を周囲から加熱するヒーターと、ヒーター外周に前記坩堝の保温性を向上するための1枚あるいは複数枚の熱遮蔽板と、ヒーターからの熱輻射を外部に漏らさないための冷却ボックス(周辺に水冷水を流す)と、坩堝の開口(ノズル)を開閉するための(図示しない)シャッターなどからなる。また蒸発源は、ノズルから出る蒸気の放射角度を制御する板(角度制御板)を有しても良い。角度制御板は蒸発源のどの部分に取り付けてあっても構わない。   1 to 5, the evaporation source group 3 is composed of linear evaporation sources such as an integral linear evaporation source and a multi-evaporation source. Each evaporation source includes a crucible composed of a material chamber that encloses a vapor deposition material, a nozzle that is an injection port for steam, a heater that heats the crucible from the surroundings, and heat retention of the crucible around the heater. One or a plurality of heat shielding plates, a cooling box for preventing the heat radiation from the heater from leaking outside (flowing water-cooled water around), and opening and closing the crucible opening (nozzle) (not shown) It consists of a shutter. Further, the evaporation source may have a plate (angle control plate) for controlling the radiation angle of the vapor emitted from the nozzle. The angle control plate may be attached to any part of the evaporation source.

なお、図1から図4において、蒸発源群3が上方向に移動しつつ成膜し、下方向に移動しつつ成膜する間に、水平方向に移動する例を説明した。このときは、短時間に効率よく基板2の全体を成膜できる利点がある。一方、[1]蒸発源群3が上方向に移動しつつ成膜し、水平方向に移動しないで、基板2の同じ領域に対し下方向に移動しつつ成膜する制御、[2]蒸発源群3が上方向に移動しつつ成膜し、基板2の同じ領域に対し下方向に移動しつつ成膜した後に、水平方向に移動し、別の領域に対して、蒸発源群3が上方向に移動しつつ成膜し、水平方向に移動するという制御、も可能である。これにより必要に応じて、基板2の同じ領域に対し上下で2回成膜することができる。本発明で重要な特徴は、蒸発源群3の移動方向が異なっていても、材料の成膜順序を変えることなく成膜が可能なことである。   1 to 4, the example in which the evaporation source group 3 moves in the upward direction and forms the film while moving in the downward direction and moves in the horizontal direction has been described. In this case, there is an advantage that the entire substrate 2 can be formed efficiently in a short time. On the other hand, [1] Control is performed in which the evaporation source group 3 is formed while moving upward, and the film is formed while moving downward with respect to the same region of the substrate 2 without moving in the horizontal direction. [2] Evaporation source The film is formed while the group 3 moves upward, and the film is formed while moving downward with respect to the same region of the substrate 2, then moves horizontally, and the evaporation source group 3 moves upward with respect to another region. It is also possible to control film formation while moving in the direction and moving in the horizontal direction. Thereby, it is possible to form a film twice on the same region of the substrate 2 as needed. An important feature of the present invention is that film formation is possible without changing the film formation sequence even if the moving direction of the evaporation source group 3 is different.

また、水平方向の例としては、主に右方向への移動を例に挙げたが、蒸発源群3が左方向に移動しても特に問題はない。   Further, as an example of the horizontal direction, the movement in the right direction is mainly given as an example, but there is no particular problem even if the evaporation source group 3 moves in the left direction.

また、ここまで基板2を立ててから成膜する例を説明したが、基板2を横に寝かせたままで成膜することも可能である。このとき各図を上方向から俯瞰的に見た図と捉えて考えれば良い。   Moreover, although the example which forms a film after standing the board | substrate 2 so far was demonstrated, it is also possible to form a film, with the board | substrate 2 lying down sideways. At this time, each figure may be considered as a figure viewed from above from above.

<蒸発源群を2つ備えた真空蒸着装置>
図6は、実施例2における真空蒸着装置の蒸発源群3の配置および移動経路6を示す模式図である。蒸発源群3の長手方向の長さは、基板2水平距離の略4分の1(3分の1以下、4分の1以上)である。蒸発源群3が成膜方向に沿って対称的に配置され、長手方向に所定の間隔(基板の水平方向の辺の長さの略2分の1)で併設されている。各蒸発源は個々に保持および移動機構を有していても良いし、あるいは1つの保持および移動機構で蒸発源群3を制御しても良い。
<Vacuum deposition apparatus with two evaporation sources>
FIG. 6 is a schematic diagram showing the arrangement of the evaporation source group 3 and the movement path 6 of the vacuum evaporation apparatus in the second embodiment. The length of the evaporation source group 3 in the longitudinal direction is approximately a quarter of the horizontal distance of the substrate 2 (1/3 or less, 1/4 or more). The evaporation source groups 3 are arranged symmetrically along the film forming direction, and are arranged in the longitudinal direction at a predetermined interval (approximately one half of the length of the horizontal side of the substrate). Each evaporation source may individually have a holding and moving mechanism, or the evaporation source group 3 may be controlled by one holding and moving mechanism.

蒸発源群3は、垂直方向に上下へ移動しながら成膜を行い、上移動と下移動の間に水平方向へ基板2の長さの略4分の1のピッチ(3分の1以下、4分の1以上)移動することで、合計2回の走査で基板2の全面を成膜できる。例えば、図6に示すように、蒸発源群3は基板2の下辺より低い待機場所から垂直方向に上へ移動しながら基板2の略半分の成膜を行う。そして基板2の上辺より蒸発源群3の位置が高くなったところで、水平方向に基板2の水平方向の長さの略4分の1(3分の1以下、4分の1以上)を移動し、その後、垂直方向へ下に移動しながら基板2の残り略半分の成膜を行う。そして基板2の下面より蒸発源群3の位置が低くなったところで、水平方向に基板2の水平方向の長さの略4分の1(3分の1以下、4分の1以上)を移動し、基板2成膜前の待機位置まで戻る。   The evaporation source group 3 performs film formation while moving up and down in the vertical direction, and has a pitch (approximately one-third or less of the length of the substrate 2 in the horizontal direction between the upward movement and the downward movement) in the horizontal direction. (Over a quarter), the entire surface of the substrate 2 can be formed by a total of two scans. For example, as shown in FIG. 6, the evaporation source group 3 forms substantially half of the film of the substrate 2 while moving upward in a vertical direction from a standby position lower than the lower side of the substrate 2. Then, when the position of the evaporation source group 3 is higher than the upper side of the substrate 2, the horizontal length of the substrate 2 is moved approximately one-fourth (less than one third or less than one fourth) in the horizontal direction. Then, the remaining half of the substrate 2 is deposited while moving downward in the vertical direction. Then, when the position of the evaporation source group 3 is lower than the lower surface of the substrate 2, the horizontal length of the substrate 2 is moved approximately one-fourth (less than one third or less than one fourth) in the horizontal direction. Then, it returns to the standby position before the substrate 2 is formed.

あるいは、図3に類似した移動経路6で奇数枚目の基板2を処理し、その逆の経路で偶数枚目の基板2を処理しても良い。同様に、図4に類似した経路で奇数枚目の基板2を処理し、その逆の経路で偶数番枚目の基板2を処理しても良い。上移動と下移動で基板の略半分ずつ成膜された膜厚の重ね合わせによって、基板2の全面に均一な膜厚を形成できる。またこの際、走査速度を一定に保つことで、高い膜厚均一性を得ることができる。成膜を終えた基板2は、水平に倒され、基板受け渡し部4を介して搬出される。   Alternatively, the odd-numbered substrates 2 may be processed by the movement path 6 similar to FIG. 3, and the even-numbered substrates 2 may be processed by the reverse path. Similarly, the odd-numbered substrates 2 may be processed by a route similar to FIG. 4, and the even-numbered substrates 2 may be processed by the opposite route. A uniform film thickness can be formed on the entire surface of the substrate 2 by superimposing the film thicknesses formed approximately half of the substrate by the upward movement and the downward movement. At this time, high film thickness uniformity can be obtained by keeping the scanning speed constant. The substrate 2 that has been formed is tilted horizontally and carried out via the substrate transfer unit 4.

また、成膜方向に沿って配置される3段のライン状の蒸発源は、上から順に第1材料Aを格納する蒸発源3−A、第2材料Bを格納する蒸発源3−B、第1材料Aを格納する蒸発源3−Aからなる。成膜方向に対して対称的に配置されている。そのため基板2の略半分を成膜する経路と、基板2の残り略半分を成膜する経路で、材料の成膜順序を変えることがなく、基板2全体に均一な組成の共蒸着膜を形成することができる。   Further, the three-stage line-shaped evaporation source arranged along the film forming direction includes an evaporation source 3-A for storing the first material A, an evaporation source 3-B for storing the second material B, in order from the top. It comprises an evaporation source 3-A that stores the first material A. They are arranged symmetrically with respect to the film forming direction. Therefore, a co-deposited film having a uniform composition is formed on the entire substrate 2 without changing the film formation sequence between the path for depositing approximately half of the substrate 2 and the path for depositing approximately half of the remaining substrate 2. can do.

このようにして本実施例は実施例1と比較して、蒸発源群3の水平移動距離を短くできるので、タクト時間をより短縮させて生産性を向上することができる。   In this way, the present embodiment can shorten the horizontal movement distance of the evaporation source group 3 as compared with the first embodiment, so that the tact time can be further shortened and the productivity can be improved.

以上は、蒸発源群3の長手方向の長さが基板2の水平方向の辺の長さの略4分の1(3分以下、4分の1以上)、および長手方向に所定の間隔(基板の水平方向の辺の長さの略2分の1)で併設されている場合について説明した。同様に、蒸発源群3の長手方向の長さが、基板2の水平方向の辺の長さの略N分の1((N−1)分の1以下、N分の1以上)、長手方向に所定の間隔(基板2の水平方向の辺の長さの略M分の1)で併設されている場合についても、本発明は同様に適用できる。ここで4以上の自然数Nは、2以上の自然数Mの倍数であり、自然数Mは自然数Nの約数である(N/Mは自然数)。垂直方向の成膜を繰り返す際、上移動と下移動の間に、蒸発源群3を所定のピッチ(基板2の水平方向の長さの略N/M分の1)だけ水平方向に移動して成膜する。往復で合計M回(N/Mは自然数)の走査を繰り返すことで、基板2の全面に均一な組成の共蒸着膜を形成することができる。   As described above, the length of the evaporation source group 3 in the longitudinal direction is approximately a quarter (less than or equal to 3 minutes or less than a quarter) of the length of the horizontal side of the substrate 2 and a predetermined interval in the longitudinal direction ( The case where it is provided at approximately one half of the length of the horizontal side of the substrate has been described. Similarly, the length in the longitudinal direction of the evaporation source group 3 is approximately 1 / N (less than (1 / N-1), more than 1 / N) of the length of the side in the horizontal direction of the substrate 2. The present invention can be similarly applied to a case where the predetermined distance is provided in the direction (approximately 1 / M of the length of the horizontal side of the substrate 2). Here, the natural number N of 4 or more is a multiple of the natural number M of 2 or more, and the natural number M is a divisor of the natural number N (N / M is a natural number). When repeating the film formation in the vertical direction, the evaporation source group 3 is moved in the horizontal direction by a predetermined pitch (approximately 1 / N of the horizontal length of the substrate 2) between the upward movement and the downward movement. To form a film. By repeating the scanning a total of M times (N / M is a natural number), a co-deposited film having a uniform composition can be formed on the entire surface of the substrate 2.

また蒸発源群3は3段構成には限定されず、第1実施例と同様に、第1方向に移動して前記基板2に第1〜第M材料を蒸着する複数の又は複数開口を有する第1〜第N蒸発源であって(Mは2以上の自然数、Nは3以上の自然数)、前記第1方向及び第2方向(前記第1方向の逆方向)について対称的に設置され、ともに移動しながら成膜することで、基板2の全面に均一な組成の共蒸着膜を成膜することを特徴とする。   Further, the evaporation source group 3 is not limited to the three-stage configuration, and has a plurality of or plural openings that move in the first direction and deposit the first to M-th materials on the substrate 2 as in the first embodiment. The first to Nth evaporation sources (M is a natural number of 2 or more, N is a natural number of 3 or more), and are symmetrically installed in the first direction and the second direction (the reverse direction of the first direction), By forming the film while moving together, a co-deposited film having a uniform composition is formed on the entire surface of the substrate 2.

<ダブルアライメント方式の真空蒸着装置>
実施例3は、1つの真空チャンバ内で右側Rラインと左側Lラインの2系統を設け、第1基板と第2基板を交互に、真空チャンバ1内へ搬入、アライメント、起立、成膜を行い、タクト時間を半減させることのできる真空蒸着装置に関する。
<Double alignment type vacuum deposition system>
In Example 3, two systems of a right R line and a left L line are provided in one vacuum chamber, and the first substrate and the second substrate are alternately carried into the vacuum chamber 1 to perform alignment, standing up, and film formation. Further, the present invention relates to a vacuum deposition apparatus that can reduce the cycle time by half.

図7は本発明の実施例3を示す模式図である。図7に示す真空蒸着装置は、真空に維持された真空チャンバ1、搬送チャンバ(図示せず)との間に真空を維持するための基板受け渡し部4、2組の基板2−A、基板2−B、3段からなるライン状の蒸発源群3から構成される。蒸発源群3の長手方向の長さは、基板2の水平方向の辺の長さより長い方が好ましい。蒸発源群3は、一体物のリニア蒸発源やマルチ蒸発源などのライン状の蒸発源から構成される。   FIG. 7 is a schematic diagram showing Example 3 of the present invention. The vacuum deposition apparatus shown in FIG. 7 includes a substrate delivery unit 4 for maintaining a vacuum between a vacuum chamber 1 maintained in a vacuum and a transfer chamber (not shown), two sets of substrates 2-A, and a substrate 2. -B It is comprised from the linear evaporation source group 3 which consists of 3 steps | paragraphs. The length in the longitudinal direction of the evaporation source group 3 is preferably longer than the length of the horizontal side of the substrate 2. The evaporation source group 3 includes linear evaporation sources such as an integral linear evaporation source and a multi-evaporation source.

基板受け渡し部4から搬入された第1基板2は、基板ホルダ(図示せず)とアライメントを行い、基板ホルダ(図示せず)とともに略垂直に立てられる。蒸発源群3は、垂直方向に上下移動しながら成膜を行う。第1基板2を蒸着している間に、もう一方の基板受け渡し部4では、前に成膜された基板2が搬出され、第2基板2が真空チャンバ1内に搬入され、基板ホルダとのアライメントを行い、基板ホルダとともに略垂直に立てられる。第1基板2の成膜を終えると、第1基板2の成膜に用いた蒸発源群3は第1基板2から第2基板2へ水平方向に移動し、成膜を開始する。第2基板2を蒸着中に、成膜を終えた第1基板2は、水平に倒され、基板受け渡し部4を介して真空チャンバ1内から搬出される。   The 1st board | substrate 2 carried in from the board | substrate delivery part 4 aligns with a board | substrate holder (not shown), and stands substantially vertically with a board | substrate holder (not shown). The evaporation source group 3 performs film formation while moving up and down in the vertical direction. While the first substrate 2 is being vapor-deposited, the other substrate transfer section 4 carries out the substrate 2 that has been previously formed, carries the second substrate 2 into the vacuum chamber 1, and the substrate holder Alignment is performed and the substrate holder is set up substantially vertically. When film formation of the first substrate 2 is finished, the evaporation source group 3 used for film formation of the first substrate 2 moves in the horizontal direction from the first substrate 2 to the second substrate 2 and starts film formation. During deposition of the second substrate 2, the first substrate 2 that has been formed is tilted horizontally and is carried out of the vacuum chamber 1 via the substrate delivery unit 4.

以上のサイクルを繰り返すことにより、1つの真空チャンバ1内でアライメントと成膜を同時に進行させることが可能となる。1枚ずつアライメントと成膜を処理する装置と比べてタクトタイムを半減させることができる。   By repeating the above cycle, alignment and film formation can proceed simultaneously in one vacuum chamber 1. The tact time can be halved compared to an apparatus that performs alignment and film formation one by one.

図8は実施例3における蒸発源の配置および移動経路を示す模式図である。蒸発源群3は、基板2の下辺より低い待機場所から垂直方向に上移動しながら基板2の成膜を行う。
そして、基板2の上辺より蒸発源群3の位置が高くなったところで、隣接する基板2へ水平方向に移動し、その後、垂直方向に下移動しながら基板2の成膜を行う。そして、基板2の下面より蒸発源群3の位置が低くなったところで、水平方向に移動し隣接する基板2まで、つまり成膜前の待機位置まで戻る。蒸発源群3の長手方向の長さは、水平方向の基板2の辺の長さより長い方が好ましい。これによって、片道スキャンによって基板2の全面に均一な膜厚を形成できる。またこの際、走査速度を一定に保つことで、高い膜厚均一性を得ることができる。
FIG. 8 is a schematic diagram illustrating the arrangement and movement paths of the evaporation sources in the third embodiment. The evaporation source group 3 deposits the substrate 2 while moving vertically upward from a standby place lower than the lower side of the substrate 2.
Then, when the position of the evaporation source group 3 becomes higher than the upper side of the substrate 2, the substrate 2 is moved to the adjacent substrate 2 in the horizontal direction, and then the substrate 2 is formed while moving downward in the vertical direction. When the position of the evaporation source group 3 becomes lower than the lower surface of the substrate 2, it moves in the horizontal direction and returns to the adjacent substrate 2, that is, the standby position before film formation. The length in the longitudinal direction of the evaporation source group 3 is preferably longer than the length of the side of the substrate 2 in the horizontal direction. Thus, a uniform film thickness can be formed on the entire surface of the substrate 2 by one-way scanning. At this time, high film thickness uniformity can be obtained by keeping the scanning speed constant.

このとき、成膜方向に沿って配置されている3段のライン状の蒸発源群3は、上から順に第1材料Aを格納する蒸発源3−A、第2材料Bを格納する蒸発源3−B、第1材料を格納する蒸発源3−Aからなる。これらが成膜方向ついて対称的に配置されている。そのため第1基板2を成膜する経路と、第2基板2を成膜する経路で、材料の成膜順序を変えることがなく、第1基板2および第2基板2ともに同等な組成の共蒸着膜を形成することができる。この場合には、上移動と下移動どちらも成膜に利用することができるので、片道のみで共蒸着を行う装置に比べてタクト時間を半減させることができる。   At this time, the three-stage linear evaporation source group 3 arranged along the film forming direction includes an evaporation source 3-A for storing the first material A and an evaporation source for storing the second material B in order from the top. 3-B, comprising an evaporation source 3-A for storing the first material. These are arranged symmetrically with respect to the film forming direction. Therefore, the first substrate 2 and the second substrate 2 are co-deposited with the same composition without changing the film formation order between the path for forming the first substrate 2 and the path for forming the second substrate 2. A film can be formed. In this case, since both the upward movement and the downward movement can be used for film formation, the tact time can be halved as compared with an apparatus that performs co-evaporation by only one way.

以上では、ライン状の蒸発源群3の長手方向の長さが、概略、基板2の水平方向の辺の長さ場合について説明した。これ以外にも、ライン状の蒸発源群3の長手方向の長さが、基板2水平方向の辺の長さの略N分の1の場合についても、本発明は同様に適用できる。   The case where the length in the longitudinal direction of the line-shaped evaporation source group 3 is roughly the length of the side in the horizontal direction of the substrate 2 has been described above. In addition to this, the present invention can be similarly applied to the case where the length in the longitudinal direction of the line-shaped evaporation source group 3 is approximately 1 / N of the length of the side in the horizontal direction of the substrate 2.

成膜中の上移動と下移動で、基板2水平方向の長さの略N分の1だけ水平方向に移動し、合計N回の走査で基板2全体を成膜することが可能である。2以上の自然数であるNが、奇数の場合には、基板2下側の待機位置から出発した蒸発源群3は、基板2上側の待機位置で成膜を終える。逆に、基板2上側の待機位置から出発した蒸発源群3は、基板2下側の待機位置で成膜を終える。このようにして第1基板2の成膜を終えた後は、隣接する基板2まで移動して、再び第2基板2の成膜を開始する。第2基板2の成膜を終えたら、再び隣接する第1′基板2まで移動する。以上のサイクルを繰り返すことにより、1つの真空チャンバ1内でアライメントと成膜を同時に進行させることが可能となる。1枚ずつアライメントと成膜を処理する装置と比べてタクトタイムを半減させることができる。いずれにせよ、この場合にも、蒸発源群3が成膜方向に対称的に配置されているため、上移動と下移動で材料の成膜順序を変えることなく成膜することができる。とくに、この場合には、基板2サイズと比べて比較的小型の蒸発源群3を用いて基板2の全面を成膜することができるので、基板2大型化への対応が容易である。   By moving up and down during film formation, the substrate 2 moves in the horizontal direction by approximately 1 / N of the horizontal length, and the entire substrate 2 can be formed by a total of N scans. When N, which is a natural number of 2 or more, is an odd number, the evaporation source group 3 starting from the standby position below the substrate 2 finishes the film formation at the standby position above the substrate 2. Conversely, the evaporation source group 3 starting from the standby position on the upper side of the substrate 2 finishes the film formation at the standby position on the lower side of the substrate 2. After the film formation of the first substrate 2 is thus completed, the film is moved to the adjacent substrate 2 and the film formation of the second substrate 2 is started again. When the film formation of the second substrate 2 is completed, the second substrate 2 is moved to the adjacent first 'substrate 2 again. By repeating the above cycle, alignment and film formation can proceed simultaneously in one vacuum chamber 1. The tact time can be halved compared to an apparatus that performs alignment and film formation one by one. In any case, since the evaporation source group 3 is symmetrically arranged in the film forming direction in this case, the film can be formed without changing the film forming order by moving up and down. In particular, in this case, since the entire surface of the substrate 2 can be formed using the evaporation source group 3 that is relatively small compared to the size of the substrate 2, it is easy to cope with an increase in the size of the substrate 2.

以上は、真空チャンバ1内で右側Rラインと左側Lラインの2系統を設け、1枚の基板2をアライメントしている最中にもう1枚の基板2を成膜し、タクト時間を半減させる場合について説明した。同様に、真空チャンバ1内に複数枚の基板2を内在させ、1枚目の基板2を蒸着中に、2枚目の基板2を真空チャンバ1内に搬入し、また蒸着を終えた別の基板2を真空チャンバ1から搬出する場合にも、本発明は適用できる。   As described above, two systems of the right R line and the left L line are provided in the vacuum chamber 1 and another substrate 2 is formed during the alignment of one substrate 2, thereby reducing the cycle time by half. Explained the case. Similarly, a plurality of substrates 2 are included in the vacuum chamber 1, while the first substrate 2 is being deposited, the second substrate 2 is carried into the vacuum chamber 1, and another deposition is completed. The present invention can also be applied when the substrate 2 is unloaded from the vacuum chamber 1.

<ダブルアライメント方式であって、多層成膜の真空蒸着装置>
実施例4では、実施例3のダブルアライメント方式を採用した真空蒸着装置において、多層成膜する場合の例である。とくに共蒸着とは限定しない。
<Double-alignment vacuum evaporation system for multilayer film formation>
Example 4 is an example in the case of multilayer film formation in a vacuum evaporation apparatus employing the double alignment method of Example 3. It is not particularly limited to co-evaporation.

図9は、実施例4における真空蒸着装置の蒸発源群3の配置および移動経路6を示す模式図である。   FIG. 9 is a schematic diagram showing the arrangement of the evaporation source group 3 and the movement path 6 of the vacuum evaporation apparatus in the fourth embodiment.

蒸発源群3は、基板2の下辺より低い待機場所から垂直方向に上移動しながら基板2の成膜を行う。その際、蒸発源群3の内、最下段(あるいは最上段)の蒸発源3−Aから出る蒸気を基板2まで届かないようにシャッター7で遮蔽する。そして蒸発源群3の位置が基板2の上辺より高くなったところで折り返す。   The evaporation source group 3 deposits the substrate 2 while moving vertically upward from a standby place lower than the lower side of the substrate 2. At that time, the vapor emitted from the lowermost (or uppermost) evaporation source 3-A in the evaporation source group 3 is shielded by the shutter 7 so as not to reach the substrate 2. Then, when the position of the evaporation source group 3 becomes higher than the upper side of the substrate 2, it is folded back.

続いて、垂直方向に下移動しながら基板2の成膜を行う。その際、蒸発源群3の内、最上段(あるいは最下段)の蒸発源3−Aから出る蒸気を基板2まで届かないようにシャッター7で遮蔽する。蒸発源群3の位置が基板2の下面より低くなったところで、基板2の成膜を終える。   Subsequently, the substrate 2 is formed while moving downward in the vertical direction. At that time, the vapor emitted from the uppermost (or lowermost) evaporation source 3-A in the evaporation source group 3 is shielded by the shutter 7 so as not to reach the substrate 2. When the position of the evaporation source group 3 becomes lower than the lower surface of the substrate 2, the film formation of the substrate 2 is finished.

蒸発源群3は、一体物のリニア蒸発源やマルチ蒸発源などのライン状の蒸発源から構成される。蒸発源群3の長手方向の長さは、水平方向の基板2の辺の長さより長い方が好ましい。これによって、基板2の全面に均一な膜厚を形成できる。また走査速度を一定に保つことで、高い膜厚均一性を得ることができる。   The evaporation source group 3 includes linear evaporation sources such as an integral linear evaporation source and a multi-evaporation source. The length in the longitudinal direction of the evaporation source group 3 is preferably longer than the length of the side of the substrate 2 in the horizontal direction. Thereby, a uniform film thickness can be formed on the entire surface of the substrate 2. Moreover, high film thickness uniformity can be obtained by keeping the scanning speed constant.

成膜方向に沿って配置されている3段のライン状の蒸発源群3は、上から順に第1材料Aを格納する蒸発源3−A、第2材料Bを格納する蒸発源3−B、第1材料を格納する蒸発源3−Aからなり、成膜方向ついて対称的に配置されている。第1基板2上には、蒸発源群3の上移動中の成膜により、第1材料A、第2材料Bの順に薄膜が形成される。第2基板2にも同様に、蒸発源群3の下移動中の成膜により、第1材料A、第2材料Bの順に薄膜が形成される。以上のようにして、第1基板2を成膜する上移動と、第2基板2を成膜する下移動で、蒸着材料の成膜順序を変えることがないので、第1基板2および第2基板2ともに同一の多層膜を形成できる。また蒸発源群の上移動と下移動のどちらも成膜に利用することができるので、片道のみで多層成膜を行う場合と比べてタクト時間を半減できる。   The three-stage linear evaporation source group 3 arranged along the film forming direction includes an evaporation source 3-A for storing the first material A and an evaporation source 3-B for storing the second material B in order from the top. The evaporation source 3-A for storing the first material is arranged symmetrically with respect to the film forming direction. A thin film is formed on the first substrate 2 in the order of the first material A and the second material B by film formation while the evaporation source group 3 is moving upward. Similarly, a thin film is formed on the second substrate 2 in the order of the first material A and the second material B by film formation while the evaporation source group 3 is moving downward. As described above, the deposition order of the vapor deposition material is not changed between the upward movement of forming the first substrate 2 and the downward movement of forming the second substrate 2, so that the first substrate 2 and the second substrate 2 are not changed. The same multilayer film can be formed together with the substrate 2. In addition, since both the upward movement and the downward movement of the evaporation source group can be used for film formation, the tact time can be halved compared to the case where multilayer film formation is performed only by one way.

以上では、1つの真空チャンバ1内で基板上に2層成膜する場合について述べたが、2層以上を成膜する場合についても同様である。また、1つの真空チャンバ1内で2枚の基板2を成膜する場合について説明したが、2枚以上の基板2を成膜する場合についても同様である。   Although the case where two layers are formed on the substrate in one vacuum chamber 1 has been described above, the same applies to the case where two or more layers are formed. Although the case where two substrates 2 are formed in one vacuum chamber 1 has been described, the same applies to the case where two or more substrates 2 are formed.

<蒸発源が水平方向に移動しつつ成膜する真空蒸着装置>
実施例1〜4までは、蒸発源が水平方向に移動しつつ成膜する真空蒸着装置の例を説明したが、実施例5では蒸発源が水平方向に移動しつつ成膜する真空蒸着装置の例を説明する。この蒸発源の制御を採用するにあたっても、図1の構成を用いれば良い。ここでは簡略化のため説明を省略する。
<Vacuum vapor deposition apparatus that forms a film while the evaporation source moves in the horizontal direction>
In Examples 1 to 4, an example of a vacuum deposition apparatus that forms a film while the evaporation source moves in the horizontal direction has been described. In Example 5, a vacuum deposition apparatus that forms a film while the evaporation source moves in the horizontal direction has been described. An example will be described. In adopting this evaporation source control, the configuration of FIG. 1 may be used. Here, description is omitted for simplification.

図10は実施例5における蒸発源の配置および移動経路を示す模式図である。蒸発源群3は、水平方向(左右方向)に移動しながら基板2に成膜を行い、右移動(右方向への移動をいう)と左移動(左方向への移動をいう)の間に垂直方向(上下方向)へ基板2の長さの略半分だけ移動することで基板2の全体を走査する。   FIG. 10 is a schematic diagram showing the arrangement and movement path of the evaporation source in the fifth embodiment. The evaporation source group 3 forms a film on the substrate 2 while moving in the horizontal direction (left and right direction), and moves between right movement (referred to as movement in the right direction) and left movement (referred to as movement in the left direction). The entire substrate 2 is scanned by moving in the vertical direction (vertical direction) by approximately half the length of the substrate 2.

例えば、図10に示すように、蒸発源群3は基板2の左端より外側の待機位置から右方向へ移動しながら基板2の略半分(上半分)の成膜を行う(S101)。そして基板2の右端より外側へ蒸発源群3が達したところで、垂直方向(上下方向)の下へ基板2の長さの略半分だけ移動する(S102)。その後、左方向へ移動しながら基板2の残り略半分(下半分)の成膜を行う(S103)。そして基板2の左端より外側へ蒸発源群3が達したところで、上方向へ基板2の長さの略半分だけ移動し、成膜前の待機位置まで戻る(S104)。   For example, as shown in FIG. 10, the evaporation source group 3 forms a film on substantially half (upper half) of the substrate 2 while moving in the right direction from the standby position outside the left end of the substrate 2 (S101). When the evaporation source group 3 reaches the outside from the right end of the substrate 2, it moves by about half the length of the substrate 2 downward in the vertical direction (up and down direction) (S 102). Thereafter, the remaining half (lower half) of the substrate 2 is formed while moving leftward (S103). When the evaporation source group 3 reaches the outside from the left end of the substrate 2, it moves upward by approximately half the length of the substrate 2 and returns to the standby position before film formation (S104).

以上のように、蒸発源群3が成膜方向に対称的に配置されているため、右移動と左移動で材料の成膜順序を変えることなく成膜することができる。なお、実施例1〜4までに説明した様々な構成を蒸発源が水平方向に移動しつつ成膜する真空蒸着装置に採用することも可能である。   As described above, since the evaporation source group 3 is arranged symmetrically in the film forming direction, it is possible to form a film without changing the film forming order of the material by moving right and moving left. Note that the various configurations described in the first to fourth embodiments can be applied to a vacuum deposition apparatus that forms a film while the evaporation source moves in the horizontal direction.

実施例1から実施例5までは、蒸発源群3が図11(1)に示すように、蒸発源3−A、蒸発源3−B、蒸発源3−Aが3段構成の場合について説明した。実施例6では、その他の蒸発源群3の構成について、いくつかの具体例を示す。もちろんこれ以外の種々の形態を取ることが可能であることは言うまでもない。
蒸発源群3は図11(2)に示すように、2つの蒸発源3−A、蒸発源3−B、2つの蒸発源3−Aの構成であっても良い。この場合には、蒸発源3−Aの個数増加に伴って材料Aの蒸着レートを増加させることができる。また蒸発源群3は図11(3)に示すように、蒸発源A、2つの蒸発源3−B、蒸発源3−Aとなる構成であっても良い。この場合には、蒸発源3−Bの個数増加に伴って、材料Bの蒸着レートを増加させることができる。
In the first to fifth embodiments, the case where the evaporation source group 3 has a three-stage configuration of the evaporation source 3-A, the evaporation source 3-B, and the evaporation source 3-A as illustrated in FIG. did. In the sixth embodiment, some specific examples of the configuration of the other evaporation source group 3 are shown. Of course, it goes without saying that various other forms can be adopted.
As shown in FIG. 11B, the evaporation source group 3 may have a configuration of two evaporation sources 3-A, an evaporation source 3-B, and two evaporation sources 3-A. In this case, the deposition rate of the material A can be increased as the number of evaporation sources 3-A increases. Further, as shown in FIG. 11C, the evaporation source group 3 may be configured to be an evaporation source A, two evaporation sources 3-B, and an evaporation source 3-A. In this case, the vapor deposition rate of the material B can be increased as the number of evaporation sources 3-B increases.

さらに蒸発源群3は、図11(4)あるいは図11(5)に示すように、リニア蒸発源とマルチ蒸発源の組合せから構成されていても良い。これによって種々の材料の成膜に対応することが可能である。
いずれにせよ、蒸発源群3が成膜方向に対称的に配置されているため、実施例1から実施例5までと同様に、成膜方向とその逆方向への移動で、材料の成膜順序を変えることなく成膜することが可能であるため、基板2全体に均一な組成の共蒸着膜を形成することができる。
Further, the evaporation source group 3 may be composed of a combination of a linear evaporation source and a multi-evaporation source, as shown in FIG. 11 (4) or FIG. 11 (5). Thus, it is possible to cope with film formation of various materials.
In any case, since the evaporation source group 3 is symmetrically arranged in the film forming direction, as in the first to fifth embodiments, the material is formed by moving in the film forming direction and in the opposite direction. Since it is possible to form a film without changing the order, a co-deposited film having a uniform composition can be formed on the entire substrate 2.

1 真空チャンバ
2 基板
3 蒸発源群
3−A、3−B 蒸発源
4 基板受け渡し部
5 ノズル
6 移動経路
7 シャッター
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Substrate 3 Evaporation source group 3-A, 3-B Evaporation source 4 Substrate delivery part 5 Nozzle 6 Movement path 7 Shutter

Claims (13)

基板に蒸着材料を成膜する真空蒸着装置において、
複数のライン状の蒸発源を成膜方向に対して対称となるように配置した蒸発源群を有し、
前記蒸発源群は、前記基板に対し第1方向に移動しつつ成膜した後、前記基板に対し前記第1方向と逆方向である第2方向に移動しつつ成膜することを特徴とする真空蒸着装置。
In a vacuum deposition apparatus for depositing a deposition material on a substrate,
It has an evaporation source group in which a plurality of linear evaporation sources are arranged so as to be symmetric with respect to the film forming direction,
The evaporation source group is formed while moving in the first direction with respect to the substrate, and then formed while moving in the second direction opposite to the first direction with respect to the substrate. Vacuum deposition equipment.
請求項1に記載の真空蒸着装置において、
前記蒸発源群は、第1材料を蒸着する第1蒸発源と、前記第1材料と異なる第2材料を蒸着する第2蒸発源と、前記第1材料を蒸着する第3蒸発源とで構成し、
前記第2蒸発源は、前記第1蒸発源と前記第3蒸発源の間に設けられていることを特徴とする真空蒸着装置。
In the vacuum evaporation system according to claim 1,
The evaporation source group includes a first evaporation source for depositing a first material, a second evaporation source for depositing a second material different from the first material, and a third evaporation source for depositing the first material. And
The vacuum evaporation apparatus, wherein the second evaporation source is provided between the first evaporation source and the third evaporation source.
請求項2に記載の真空蒸着装置において、
前記蒸発源群は、上下方向に第1蒸発源、第2蒸発源、第3蒸発源を並べて構成し、
前記第1方向は上方向または下方向であることを特徴とする真空蒸着装置。
In the vacuum evaporation system according to claim 2,
The evaporation source group is configured by arranging a first evaporation source, a second evaporation source, and a third evaporation source in the vertical direction,
The vacuum deposition apparatus, wherein the first direction is an upward direction or a downward direction.
請求項3に記載の真空蒸着装置において、
前記蒸発源群は、前記第1方向に移動した後、前記第2方向に移動する前に、左右方向へ移動することを特徴とする真空蒸着装置。
The vacuum evaporation apparatus according to claim 3,
The evaporation source group moves in the left-right direction after moving in the first direction and before moving in the second direction.
請求項2に記載の真空蒸着装置において、
前記蒸発源群は、左右方向に第1蒸発源、第2蒸発源、第3蒸発源を並べて構成し、
前記第1方向は左方向または右方向であることを特徴とする真空蒸着装置。
In the vacuum evaporation system according to claim 2,
The evaporation source group includes a first evaporation source, a second evaporation source, and a third evaporation source arranged in the left-right direction,
The vacuum deposition apparatus, wherein the first direction is a left direction or a right direction.
請求項5に記載の真空蒸着装置において、
前記蒸発源群は、前記第1方向に移動した後、前記第2方向に移動する前に、上下方向へ移動することを特徴とする真空蒸着装置。
In the vacuum evaporation apparatus of Claim 5,
The vacuum evaporation apparatus is characterized in that the evaporation source group moves in the vertical direction after moving in the first direction and before moving in the second direction.
請求項4または6に記載の真空蒸着装置において、
前記蒸発源群は、前記第1方向、第3方向、前記第2方向への移動を繰り返して前記基板を成膜することを特徴とする真空蒸着装置。
In the vacuum evaporation system of Claim 4 or 6,
The vacuum evaporation apparatus, wherein the evaporation source group deposits the substrate by repeatedly moving in the first direction, the third direction, and the second direction.
複数の基板に蒸着材料を成膜する真空蒸着装置において、
複数のライン状の蒸発源を上下方向に対して対称となるように配置した蒸発源群を有し、
第1基板の設置位置と第2基板の設置位置は左右方向に並んでおり、
前記蒸発源群は、前記第1基板に対し第1方向に移動しつつ成膜した後、前記第2基板に対し前記第1方向と逆方向である第2方向に移動しつつ成膜し、
前記第1方向は上方向または下方向であることを特徴とする真空蒸着装置。
In a vacuum deposition apparatus for depositing a deposition material on a plurality of substrates,
It has an evaporation source group in which a plurality of linear evaporation sources are arranged so as to be symmetrical with respect to the vertical direction,
The installation position of the first board and the installation position of the second board are aligned in the left-right direction,
The evaporation source group is formed while moving in the first direction with respect to the first substrate, and is then formed while moving in the second direction opposite to the first direction with respect to the second substrate,
The vacuum deposition apparatus, wherein the first direction is an upward direction or a downward direction.
請求項8に記載の真空蒸着装置において、
前記蒸発源群は、第1材料を蒸着する第1蒸発源と、前記第1材料と異なる第2材料を蒸着する第2蒸発源と、前記第1材料を蒸着する第3蒸発源とで構成し、
前記第2蒸発源は、前記第1蒸発源と前記第3蒸発源の間に設けられていることを特徴とする真空蒸着装置。
In the vacuum evaporation system according to claim 8,
The evaporation source group includes a first evaporation source for depositing a first material, a second evaporation source for depositing a second material different from the first material, and a third evaporation source for depositing the first material. And
The vacuum evaporation apparatus, wherein the second evaporation source is provided between the first evaporation source and the third evaporation source.
請求項8または9に記載の真空蒸着装置において、
前記第1基板を成膜中に、前記第2基板と、前記第2基板を保持する基板ホルダとのアライメントを行うことを特徴とする真空蒸着装置。
In the vacuum evaporation system according to claim 8 or 9,
A vacuum deposition apparatus, wherein the second substrate and a substrate holder for holding the second substrate are aligned during the formation of the first substrate.
請求項8乃至10のいずれかに記載の真空蒸着装置において、
前記蒸発源群は、前記第1方向に移動した後、前記第2方向に移動する前に、左右方向へ移動することを特徴とする真空蒸着装置。
In the vacuum evaporation system according to any one of claims 8 to 10,
The evaporation source group moves in the left-right direction after moving in the first direction and before moving in the second direction.
請求項1乃至11のいずれかに記載の真空蒸着装置において、
前記蒸発源群は、前記第1材料または前記第2材料を射出する開口部に開閉可能なシャッターを有し、
前記蒸発源群は、
前記第1方向に移動する場合には、前記第1蒸発源のシャッター及び前記第2蒸発源のシャッターを開き、前記第3蒸発源のシャッターを閉じ、
前記第2方向に移動する場合には、前記第1蒸発源のシャッターを閉じ、前記第2蒸発源のシャッター及び前記第3蒸発源のシャッターを開くことを特徴とする真空蒸着装置。
In the vacuum evaporation system in any one of Claims 1 thru | or 11,
The evaporation source group has a shutter that can be opened and closed at an opening for injecting the first material or the second material,
The evaporation source group is:
When moving in the first direction, open the shutter of the first evaporation source and the shutter of the second evaporation source, close the shutter of the third evaporation source,
When moving in the second direction, the vacuum evaporation apparatus is characterized in that the shutter of the first evaporation source is closed and the shutter of the second evaporation source and the shutter of the third evaporation source are opened.
請求項1乃至12のいずれかに記載の真空蒸着装置において、
前記第1材料は膜母材であり、前記第2材料は添加材であることを特徴とする真空蒸着装置。
The vacuum evaporation apparatus according to any one of claims 1 to 12,
The vacuum deposition apparatus, wherein the first material is a film base material and the second material is an additive.
JP2012089839A 2012-04-11 2012-04-11 Vacuum vapor deposition apparatus Pending JP2013216955A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012089839A JP2013216955A (en) 2012-04-11 2012-04-11 Vacuum vapor deposition apparatus
TW102112149A TW201404906A (en) 2012-04-11 2013-04-03 Vacuum evaporation apparatus
KR1020130037250A KR20130115139A (en) 2012-04-11 2013-04-05 Vacuum evaporation apparatus
CN2013101246413A CN103374700A (en) 2012-04-11 2013-04-11 Vacuum evaporation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012089839A JP2013216955A (en) 2012-04-11 2012-04-11 Vacuum vapor deposition apparatus

Publications (1)

Publication Number Publication Date
JP2013216955A true JP2013216955A (en) 2013-10-24

Family

ID=49460526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012089839A Pending JP2013216955A (en) 2012-04-11 2012-04-11 Vacuum vapor deposition apparatus

Country Status (4)

Country Link
JP (1) JP2013216955A (en)
KR (1) KR20130115139A (en)
CN (1) CN103374700A (en)
TW (1) TW201404906A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103924196B (en) * 2013-12-31 2016-06-08 上海天马有机发光显示技术有限公司 A kind of evaporation coating device
CN106521423A (en) 2016-11-28 2017-03-22 上海天马有机发光显示技术有限公司 Vacuum evaporation device and method and organic light-emitting display panel
CN108342692B (en) * 2017-01-24 2020-04-21 昆山国显光电有限公司 Evaporation method and evaporation equipment
CN108677147B (en) * 2018-06-13 2020-04-21 京东方科技集团股份有限公司 Vapor deposition apparatus and vapor deposition method
CN111058000B (en) * 2019-12-25 2022-06-24 复阳固态储能科技(溧阳)有限公司 High-speed volume to volume vacuum lithium film apparatus for producing of tertiary evaporation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW490714B (en) * 1999-12-27 2002-06-11 Semiconductor Energy Lab Film formation apparatus and method for forming a film
TWI336905B (en) * 2002-05-17 2011-02-01 Semiconductor Energy Lab Evaporation method, evaporation device and method of fabricating light emitting device
JP2008274322A (en) * 2007-04-26 2008-11-13 Sony Corp Vapor deposition apparatus

Also Published As

Publication number Publication date
TW201404906A (en) 2014-02-01
CN103374700A (en) 2013-10-30
KR20130115139A (en) 2013-10-21

Similar Documents

Publication Publication Date Title
US10287671B2 (en) Thin film deposition apparatus
TWI540777B (en) Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the apparatus
US9136310B2 (en) Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
KR101760897B1 (en) Deposition source and apparatus for organic layer deposition having the same
JP5356627B2 (en) Vapor deposition particle injection apparatus and vapor deposition apparatus
US11746408B2 (en) Modular confined organic print head and system
JP5324010B2 (en) Vapor deposition particle injection apparatus, vapor deposition apparatus, and vapor deposition method
US9871229B2 (en) OVJP for printing graded/stepped organic layers
JP2007070679A (en) Film deposition apparatus, film deposition apparatus system, film deposition method, and manufacturing method of electronic equipment or organic electroluminescence element
JP2013216955A (en) Vacuum vapor deposition apparatus
JP2011052318A (en) Thin film vapor deposition system
JP5352536B2 (en) Thin film deposition equipment
US20180138462A1 (en) Organic light emitting diode
WO2012108363A1 (en) Crucible, vapor deposition apparatus, vapor deposition method, and method for manufacturing organic electroluminescent display device