JP2021098885A - Film deposition device - Google Patents

Film deposition device Download PDF

Info

Publication number
JP2021098885A
JP2021098885A JP2020199650A JP2020199650A JP2021098885A JP 2021098885 A JP2021098885 A JP 2021098885A JP 2020199650 A JP2020199650 A JP 2020199650A JP 2020199650 A JP2020199650 A JP 2020199650A JP 2021098885 A JP2021098885 A JP 2021098885A
Authority
JP
Japan
Prior art keywords
substrate
film forming
chamber
forming apparatus
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020199650A
Other languages
Japanese (ja)
Inventor
義仁 小林
Yoshihito Kobayashi
義仁 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Canon Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Tokki Corp filed Critical Canon Tokki Corp
Publication of JP2021098885A publication Critical patent/JP2021098885A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67196Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the transfer chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Abstract

To provide a film deposition device that can suppress increase in tact time by reducing time necessary for alignment and save a space on a film deposition chamber.SOLUTION: A film deposition device includes: a film deposition chamber 11 for depositing a film on a substrate; and a transportation chamber 13 in which transportation means for receiving and feeding the substrate is installed to the film deposition chamber 11. The transportation chamber 13 includes a substrate cooling part 133 for cooling the substrate.SELECTED DRAWING: Figure 3

Description

本発明は、成膜装置に関するものである。 The present invention relates to a film forming apparatus.

有機発光素子(有機EL素子;OLED)を形成する成膜装置においては、蒸着された有機材料の変質や劣化を抑制するために、基板の温度上昇を抑制するための冷却機構が、基板ステージと共に設置されている。 In a film forming apparatus for forming an organic light emitting element (organic EL element; OLED), a cooling mechanism for suppressing a temperature rise of a substrate is provided together with a substrate stage in order to suppress deterioration and deterioration of the deposited organic material. is set up.

また、成膜精度を高めるために、成膜工程の前に、基板とマスクの相対的位置を測定し、相対的位置がずれている場合には、基板および/またはマスクを相対的に移動させて位置を調整(アライメント)する。基板とマスクの間のアライメントは、大まかな一次アライメントと高精度な二次アライメントの二つの段階で行われる。 Further, in order to improve the film forming accuracy, the relative positions of the substrate and the mask are measured before the film forming process, and if the relative positions are deviated, the substrate and / or the mask are relatively moved. Adjust the position (alignment). Alignment between the substrate and the mask is performed in two stages: rough primary alignment and high-precision secondary alignment.

通常、一つの成膜クラスタには複数の成膜室が設置されるが、各成膜室において一次アライメントと二次アライメントの両方を行っているので、アライメント工程に相当な時間がかかりタクトタイム(tact time)が増加する問題があった。 Normally, a plurality of film forming chambers are installed in one film forming cluster, but since both primary alignment and secondary alignment are performed in each film forming chamber, it takes a considerable amount of time for the alignment process and the tact time (tact time). There was a problem that the takt time) increased.

特許文献1(特開2019−192898号公報)には、電子デバイス製造装置において、中継装置から成膜クラスタに基板を搬入する前に、中継装置のアライメント室でアライメント工程を行う技術が提案されている。 Patent Document 1 (Japanese Unexamined Patent Publication No. 2019-192898) proposes a technique for performing an alignment process in an alignment chamber of a relay device before carrying a substrate from the relay device into a film forming cluster in an electronic device manufacturing apparatus. There is.

特開2019−192898号公報Japanese Unexamined Patent Publication No. 2019-192898

しかし、従来の電子デバイス製造装置では、基板が成膜室内の基板ステージ上に載置されてから冷却されるので、冷却にかかる時間が長く、タクトタイムが増加する要因となる。また、冷却時間を短縮するためには、冷却機構を大型化する必要があるが、限られた成膜室の空間のため、冷却機構の大型化には限界がある。 However, in the conventional electronic device manufacturing apparatus, since the substrate is placed on the substrate stage in the film forming chamber and then cooled, the cooling time is long, which causes an increase in takt time. Further, in order to shorten the cooling time, it is necessary to increase the size of the cooling mechanism, but there is a limit to the increase in size of the cooling mechanism due to the limited space of the film forming chamber.

また、前記特許文献1では、基板はアライメント室でアライメントされてからも、搬送室を経て成膜室に搬送されることになっているので、この搬送室での搬送の際に、基板の位置ずれが発生することもある。 Further, in Patent Document 1, even after the substrate is aligned in the alignment chamber, the substrate is transported to the film forming chamber via the transport chamber. Therefore, when the substrate is transported in this transport chamber, the position of the substrate is obtained. Misalignment may occur.

本発明は、成膜室で基板の冷却時間はもちろん、アライメントにかかる時間を減らしてタクトタイムの増加を抑制することができ、また、成膜室を省スペース化することができる成膜装置を提供することを目的とする。 The present invention provides a film forming apparatus capable of reducing not only the cooling time of the substrate in the film forming chamber but also the time required for alignment to suppress an increase in tact time, and also can save space in the film forming chamber. The purpose is to provide.

本発明の一実施形態による成膜装置は、基板に成膜を行う成膜室と、前記成膜室に前記基板を受け渡すための搬送手段を有する搬送室と、を備える成膜装置において、 前記搬送室は、前記基板を冷却するための基板冷却部を備えることを特徴とする。
本発明の一実施形態による成膜装置は、第1中継室、搬送室、成膜室、及び第2中継室の順に基板が搬送される成膜装置であって、前記搬送室は、容器と、前記容器内に配置され、前記基板を冷却するための基板冷却部と、前記容器内に配置され、前記基板を保持し
て搬送する搬送手段とを含み、前記成膜装置は、前記搬送室と、前記搬送手段を制御する搬送制御部を含み、前記搬送制御部は、前記第1中継室から前記容器に搬入される基板を、前記基板冷却部に搬送してから前記成膜室に搬送するように、前記搬送手段を制御することを特徴とする。
The film forming apparatus according to an embodiment of the present invention is a film forming apparatus including a film forming chamber for forming a film on a substrate and a conveying chamber having a conveying means for delivering the substrate to the film forming chamber. The transport chamber is characterized by including a substrate cooling unit for cooling the substrate.
The film forming apparatus according to an embodiment of the present invention is a film forming apparatus in which a substrate is conveyed in the order of a first relay chamber, a transfer chamber, a film formation chamber, and a second relay chamber, and the transfer chamber is a container. The film forming apparatus includes a substrate cooling unit arranged in the container for cooling the substrate and a conveying means arranged in the container for holding and conveying the substrate. The transfer control unit includes a transfer control unit that controls the transfer means, and the transfer control unit transfers the substrate carried into the container from the first relay chamber to the substrate cooling unit and then to the film forming chamber. It is characterized in that the transport means is controlled so as to be performed.

本発明によれば、タクトタイムを短縮し生産性を向上することができる。また、成膜室を省スペース化することができる。 According to the present invention, the takt time can be shortened and the productivity can be improved. In addition, the space of the film forming chamber can be saved.

図1は、電子デバイスの製造装置の一部の模式図である。FIG. 1 is a schematic view of a part of an electronic device manufacturing apparatus. 図2は、成膜装置の構成を示した模式図である。FIG. 2 is a schematic view showing the configuration of the film forming apparatus. 図3は、本発明の一実施形態による基板搬送システムの模式図である。FIG. 3 is a schematic view of a substrate transfer system according to an embodiment of the present invention. 図4(a)は、図3の基板搬送システムの基板冷却部に備えられた冷却板の一例を模式的に示す平面図と断面図である。図4(b)は、図3の基板搬送システムの基板冷却部に備えられた冷却板の他の例を模式的に示した平面図と断面図である。FIG. 4A is a plan view and a cross-sectional view schematically showing an example of a cooling plate provided in the substrate cooling portion of the substrate transfer system of FIG. FIG. 4B is a plan view and a cross-sectional view schematically showing another example of the cooling plate provided in the substrate cooling portion of the substrate transfer system of FIG. 図5Aは、 本発明の他の実施形態による基板搬送システムの模式図である。FIG. 5A is a schematic view of a substrate transfer system according to another embodiment of the present invention. 図5Bは、 本発明の他の実施形態による基板搬送システムの模式図である。FIG. 5B is a schematic view of a substrate transfer system according to another embodiment of the present invention. 図6Aは、 図3の基板搬送システムでの基板の搬送経路を模式的に示した図である。FIG. 6A is a diagram schematically showing a substrate transfer path in the substrate transfer system of FIG. 図5Aの基板搬送システムでの基板の搬送経路を模式的に示した図である。It is a figure which shows typically the transfer path of the substrate in the substrate transfer system of FIG. 5A. 図5Bの基板搬送システムでの基板の搬送経路を模式的に示した図である。FIG. 5B is a diagram schematically showing a substrate transfer path in the substrate transfer system of FIG. 5B.

以下、図面を参照しながら本発明の好適な実施形態及び実施例を説明する。ただし、以下の実施形態及び実施例は本発明の好ましい構成を例示的に示すものにすぎず、本発明の範囲はそれらの構成に限定されない。また、以下の説明における、装置のハードウェア構成及びソフトウェア構成、処理フロー、製造条件、寸法、材質、形状などは、特に特定的な記載がないかぎりは、本発明の範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, preferred embodiments and examples of the present invention will be described with reference to the drawings. However, the following embodiments and examples merely illustrate preferred configurations of the present invention, and the scope of the present invention is not limited to those configurations. Further, unless otherwise specified, the hardware configuration and software configuration, processing flow, manufacturing conditions, dimensions, materials, shapes, etc. of the apparatus in the following description are limited to those of the present invention. It is not the purpose.

本発明は、基板の表面に各種材料を堆積させて成膜を行う装置に適用することができ、真空蒸着によって所望のパターンの薄膜(材料層)を形成する装置に望ましく適用することができる。基板の材料としては、ガラス、高分子材料のフィルム、金属、シリコンなどの任意の材料を選択することができ、基板は、例えば、ガラス基板上にポリイミドなどのフィルムが積層された基板またはシリコンウエハであってもよい。また、蒸着材料としても、有機材料、金属性材料(金属、金属酸化物など)などの任意の材料を選択してもよい。なお、以下の説明において説明する真空蒸着装置以外にも、スパッタ装置やCVD(Chemical Vapor Deposition)装置を含む成膜装置にも、本発明を適用することができる。本発明の技術は、具体的には、有機電子デバイス(例えば、有機EL素子、薄膜太陽電池)、光学部材などの製造装置に適用可能である。その中でも、蒸着材料を蒸発させてマスクを介して基板に蒸着させることで有機EL素子を形成する有機EL素子の製造装置は、本発明の好ましい適用例の一つである。 The present invention can be applied to an apparatus for depositing various materials on the surface of a substrate to form a film, and can be preferably applied to an apparatus for forming a thin film (material layer) having a desired pattern by vacuum deposition. As the material of the substrate, any material such as glass, a film of a polymer material, a metal, and silicon can be selected, and the substrate is, for example, a substrate or a silicon wafer in which a film such as polyimide is laminated on a glass substrate. It may be. Further, as the vapor deposition material, any material such as an organic material and a metallic material (metal, metal oxide, etc.) may be selected. In addition to the vacuum deposition apparatus described in the following description, the present invention can be applied to a film forming apparatus including a sputtering apparatus and a CVD (Chemical Vapor Deposition) apparatus. Specifically, the technique of the present invention can be applied to a manufacturing apparatus such as an organic electronic device (for example, an organic EL element, a thin film solar cell), an optical member, or the like. Among them, an apparatus for manufacturing an organic EL element, which forms an organic EL element by evaporating a vapor-deposited material and vapor-depositing it on a substrate via a mask, is one of the preferred application examples of the present invention.

<電子デバイスの製造装置>
図1は、電子デバイスの製造装置の一部の構成を模式的に示す平面図である。
図1の製造装置は、例えば、有機EL表示装置の表示パネルの製造に用いられる。VR
HMD用の表示パネルの場合、所定のサイズのシリコンウエハに有機EL素子の形成のための成膜を行った後、素子形成領域の間の領域(スクライブ領域)に沿って該シリコンウエハを切り出して、複数の小さなサイズのパネルに製作する。スマートフォン用の表示パネルの場合は、4.5世代の基板(約700mm×約900mm)や6世代のフルサイズ(約1500mm×約1850mm)又はハーフカットサイズ(約1500mm×約925mm)の基板に、有機EL素子の形成のための成膜を行った後、該基板を切り抜いて複数の小さなサイズのパネルに製作する。
<Manufacturing equipment for electronic devices>
FIG. 1 is a plan view schematically showing a configuration of a part of an electronic device manufacturing apparatus.
The manufacturing apparatus of FIG. 1 is used, for example, for manufacturing a display panel of an organic EL display device. VR
In the case of a display panel for an HMD, after forming a film for forming an organic EL element on a silicon wafer of a predetermined size, the silicon wafer is cut out along a region (scribe region) between the element forming regions. , Manufacture on multiple small size panels. In the case of a display panel for smartphones, a 4.5th generation substrate (about 700mm x about 900mm), a 6th generation full size (about 1500mm x about 1850mm) or a half cut size (about 1500mm x about 925mm) substrate can be used. After forming a film for forming an organic EL element, the substrate is cut out to produce a plurality of small-sized panels.

電子デバイスの製造装置は、一般的に、複数のクラスタ装置1と、クラスタ装置の間を繋ぐ中継装置とを含む。
成膜システムとしてのクラスタ装置1は、基板Wに対する処理(例えば、成膜)を行う複数の成膜装置11または成膜室と、使用前後のマスクMを収納する複数のマスクストック装置12と、その中央に配置される搬送室13または搬送装置を具備する。搬送室13は、図1に示すように、複数の成膜装置11およびマスクストック装置12のそれぞれと接続される。
The electronic device manufacturing device generally includes a plurality of cluster devices 1 and a relay device that connects the cluster devices.
The cluster device 1 as a film forming system includes a plurality of film forming devices 11 or film forming chambers that perform processing (for example, film forming) on a substrate W, a plurality of mask stock devices 12 for accommodating masks M before and after use, and a plurality of mask stock devices 12. It is provided with a transport chamber 13 or a transport device arranged in the center thereof. As shown in FIG. 1, the transport chamber 13 is connected to each of the plurality of film forming apparatus 11 and the mask stock apparatus 12.

搬送室13内には、基板またはマスクを搬送する搬送ロボット14が配置されている。搬送ロボット14は、上流側に配置された中継装置のパス室15から成膜装置11へと基板Wを搬送する。また、搬送ロボット14は、成膜装置11とマスクストック装置12との間でマスクMを搬送する。搬送ロボット14は、例えば、多関節アームに、基板W又はマスクMを保持するロボットハンドが取り付けられた構造を有するロボットである。 A transfer robot 14 that transfers a substrate or a mask is arranged in the transfer chamber 13. The transfer robot 14 transfers the substrate W from the path chamber 15 of the relay device arranged on the upstream side to the film forming apparatus 11. Further, the transfer robot 14 transfers the mask M between the film forming apparatus 11 and the mask stock apparatus 12. The transfer robot 14 is, for example, a robot having a structure in which a robot hand holding a substrate W or a mask M is attached to an articulated arm.

本発明の実施形態によれば、パス室15から搬入される基板Wを成膜装置11に搬入する前に、搬送室13内に設置されている冷却機構(不図示)を利用して基板Wを冷却する。また、冷却機構によって冷却された基板Wを成膜装置11に搬入する前に、基板Wのアライメント工程(例えば、一次アライメント)を更に行っても良い。搬送室13内で行われる基板Wの冷却工程やアライメント工程、及びそのための装置(基板冷却部とアライメント部)の詳細な構成については、後述する。 According to the embodiment of the present invention, before the substrate W carried in from the pass chamber 15 is carried into the film forming apparatus 11, the substrate W is used by using a cooling mechanism (not shown) installed in the transport chamber 13. To cool. Further, the alignment step (for example, primary alignment) of the substrate W may be further performed before the substrate W cooled by the cooling mechanism is carried into the film forming apparatus 11. The details of the substrate W cooling step and alignment step performed in the transport chamber 13 and the apparatus (board cooling section and alignment section) for that purpose will be described later.

成膜装置11(蒸着装置とも呼ぶ)では、蒸発源に収納された蒸着材料がヒータによって加熱されて蒸発し、マスクMを介して基板W上に蒸着される。搬送ロボット14との基板W/マスクMの受け渡し、基板WとマスクMの相対位置の調整(アライメント)、マスクM上への基板Wの固定、成膜(蒸着)などの一連の成膜プロセスは、成膜装置11によって行われる。 In the film forming apparatus 11 (also referred to as a vapor deposition apparatus), the vapor deposition material stored in the evaporation source is heated by a heater and evaporated, and is deposited on the substrate W via the mask M. A series of film formation processes such as transfer of the substrate W / mask M to and from the transfer robot 14, adjustment (alignment) of the relative positions of the substrate W and the mask M, fixing of the substrate W on the mask M, and film formation (deposited film) , Is performed by the film forming apparatus 11.

マスクストック装置12には、成膜装置11での成膜工程に使われる新しいマスクと、使用済みのマスクとが、二つのカセットに分けて収納される。搬送ロボット14は、使用済みのマスクを成膜装置11からマスクストック装置12のカセットに搬送し、マスクストック装置12の他のカセットに収納された新しいマスクを成膜装置11に搬送する。 In the mask stock device 12, a new mask used in the film forming process in the film forming apparatus 11 and a used mask are separately stored in two cassettes. The transfer robot 14 transfers the used mask from the film forming apparatus 11 to the cassette of the mask stock device 12, and conveys a new mask stored in another cassette of the mask stock device 12 to the film forming apparatus 11.

クラスタ装置1には、基板Wの流れ方向において上流側からの基板Wを当該クラスタ装置1に伝達するパス室15と、当該クラスタ装置1で成膜処理が完了した基板Wを下流側の他のクラスタ装置に伝えるためのバッファ室16が連結される。実施形態によっては、バッファ室16の代わりに、基板Wを下流側のクラスタ装置に伝達するパス室が、クラスタ装置1に直接連結されてもよい。搬送室13の搬送ロボット14は、上流側のパス室15から基板Wを受け取って、当該クラスタ装置1内の成膜装置11の一つ(例えば、成膜装置11a)に搬送する。また、搬送ロボット14は、当該クラスタ装置1での成膜処理が完了した基板Wを複数の成膜装置11の一つ(例えば、成膜装置11b)から受け取って、下流側に連結されたバッファ室16またはパス室に搬送する。 The cluster device 1 includes a pass chamber 15 that transmits the board W from the upstream side to the cluster device 1 in the flow direction of the board W, and another board W on the downstream side that has been film-formed by the cluster device 1. A buffer chamber 16 for transmitting to the cluster device is connected. Depending on the embodiment, instead of the buffer chamber 16, the path chamber that transmits the substrate W to the cluster device on the downstream side may be directly connected to the cluster device 1. The transfer robot 14 in the transfer chamber 13 receives the substrate W from the path chamber 15 on the upstream side and transfers it to one of the film forming devices 11 (for example, the film forming device 11a) in the cluster device 1. Further, the transfer robot 14 receives the substrate W for which the film forming process in the cluster device 1 has been completed from one of the plurality of film forming devices 11 (for example, the film forming device 11b), and the buffer connected to the downstream side. Transport to room 16 or pass room.

バッファ室16とパス室15との間には、基板の向きを変える旋回室17が設置されてもよい。旋回室17には、バッファ室16から基板Wを受け取って基板Wを180°回転させ、パス室15に搬送するための搬送ロボット18が設けられる。これにより、上流側のクラスタ装置と下流側のクラスタ装置で基板Wの向きが同じくなり、基板処理が容易になる。 A swivel chamber 17 that changes the orientation of the substrate may be installed between the buffer chamber 16 and the pass chamber 15. The swivel chamber 17 is provided with a transport robot 18 for receiving the substrate W from the buffer chamber 16, rotating the substrate W by 180 °, and transporting the substrate W to the pass chamber 15. As a result, the orientation of the substrate W is the same between the cluster device on the upstream side and the cluster device on the downstream side, and the substrate processing becomes easy.

パス室15、バッファ室16、旋回室17は、クラスタ装置間を連結する、いわゆる中継装置であり、クラスタ装置の上流側及び/又は下流側に設置される中継装置は、パス室、バッファ室、旋回室のうち少なくとも1つを含む。 The pass chamber 15, the buffer chamber 16, and the swivel chamber 17 are so-called relay devices that connect the cluster devices, and the relay devices installed on the upstream side and / or the downstream side of the cluster device are the pass room, the buffer room, and the like. Includes at least one of the swivel chambers.

成膜装置11、マスクストック装置12、搬送室13、バッファ室16、旋回室17などは、有機発光素子の製造の過程で、高真空状態に維持される。パス室15は、通常低真空状態に維持されるが、必要に応じて高真空状態に維持されてもよい。 The film forming apparatus 11, the mask stock apparatus 12, the transport chamber 13, the buffer chamber 16, the swirl chamber 17, and the like are maintained in a high vacuum state in the process of manufacturing the organic light emitting element. The pass chamber 15 is usually maintained in a low vacuum state, but may be maintained in a high vacuum state if necessary.

本実施例では、図1を参照して、電子デバイスの製造装置の構成について説明したが、本発明はこれに限定されず、他の種類の装置やチャンバーを有してもよく、これらの装置やチャンバー間の配置が変わってもよい。例えば、本発明は、基板WとマスクMを、成膜装置11ではなく、別の装置またはチャンバーで合着させた後、これをキャリアに乗せて、一列に並んだ複数の成膜装置を通して搬送させながら成膜工程を行うインラインタイプの製造装置にも適用することができる。 In this embodiment, the configuration of the electronic device manufacturing apparatus has been described with reference to FIG. 1, but the present invention is not limited to this, and other types of apparatus and chambers may be provided, and these devices may be provided. And the arrangement between the chambers may change. For example, in the present invention, the substrate W and the mask M are coalesced by another device or chamber instead of the film forming apparatus 11, and then placed on a carrier and conveyed through a plurality of film forming apparatus arranged in a row. It can also be applied to an in-line type manufacturing apparatus that performs a film forming process while performing the film forming process.

電子デバイスの製造装置は、制御部(不図示)を備える。制御部は、中継装置15、16内での基板Wの搬送、中継装置15、16と搬送室13との間の基板の搬送等を制御する。制御部はまた成膜クラスタ内で、搬送室13と成膜装置11との間の基板Wの搬送とともに搬送室13内での基板Wの冷却やアライメントなどの制御機能を有するが、これについては後から詳しく説明する。
以下、成膜装置11の具体的な構成について説明する。
The electronic device manufacturing apparatus includes a control unit (not shown). The control unit controls the transfer of the substrate W in the relay devices 15 and 16, the transfer of the substrate between the relay devices 15 and 16 and the transfer chamber 13, and the like. The control unit also has control functions such as cooling and alignment of the substrate W in the transfer chamber 13 as well as the transfer of the substrate W between the transfer chamber 13 and the film formation device 11 in the film formation cluster. It will be explained in detail later.
Hereinafter, a specific configuration of the film forming apparatus 11 will be described.

<成膜装置>
図2は、成膜装置11の構成を示す模式図である。以下の説明においては、基板Wの成膜面に平行な面(XY平面)において交差する2つの方向をX方向(第1方向)とY方向(第2方向)とし、基板Wの成膜面に垂直な鉛直方向をZ方向(第3方向)とするXYZ直交座標系を用いる。また、Z軸まわりの回転角(回転方向)をθで表す。
<Film formation equipment>
FIG. 2 is a schematic view showing the configuration of the film forming apparatus 11. In the following description, the two intersecting directions on the plane (XY plane) parallel to the film forming surface of the substrate W are defined as the X direction (first direction) and the Y direction (second direction), and the film forming surface of the substrate W. An XYZ Cartesian coordinate system is used in which the vertical direction perpendicular to is the Z direction (third direction). Further, the rotation angle (rotation direction) around the Z axis is represented by θ.

成膜装置11は、真空雰囲気又は窒素ガスなどの不活性ガス雰囲気に維持される真空容器21と、真空容器21の内部に設けられる、基板支持ユニット22と、マスク支持ユニット23と、静電チャック24と、蒸発源25とを含む。 The film forming apparatus 11 includes a vacuum container 21 maintained in a vacuum atmosphere or an inert gas atmosphere such as nitrogen gas, a substrate support unit 22 provided inside the vacuum container 21, a mask support unit 23, and an electrostatic chuck. 24 and an evaporation source 25 are included.

基板支持ユニット22は、搬送室13に設けられた搬送ロボット14が搬送して来る基板Wを受取って保持する手段であり、基板ホルダとも呼ばれる。 The board support unit 22 is a means for receiving and holding the board W carried by the transfer robot 14 provided in the transfer chamber 13, and is also called a board holder.

マスク支持ユニット23は、搬送室13に設けられた搬送ロボット14が搬送して来るマスクMを受取って保持する手段であり、マスクホルダとも呼ばれる。
マスクMは、基板W上に形成する薄膜パターンに対応する開口パターンを有し、マスク支持ユニット23によって支持される。マスクMの素材は、金属でもよく、またはシリコンやガラスなどの透光性のものでもいい。
The mask support unit 23 is a means for receiving and holding the mask M transported by the transfer robot 14 provided in the transfer chamber 13, and is also called a mask holder.
The mask M has an opening pattern corresponding to the thin film pattern formed on the substrate W, and is supported by the mask support unit 23. The material of the mask M may be metal, or may be a translucent material such as silicon or glass.

基板支持ユニット22の上方には、基板Wを吸着し固定するための基板吸着手段としての静電チャック24が設けられる。静電チャック24は、電極と吸着面との間に相対的に抵抗が高い誘電体が介在して、電極と被吸着体との間のクーロン力によって吸着が行われ
るクーロン力タイプの静電チャックであってもよく、電極と吸着面との間に相対的に抵抗が低い誘電体が介在して、誘電体の吸着面と被吸着体との間に発生するジョンソン・ラーベック力によって吸着が行われるジョンソン・ラーベック力タイプの静電チャックであってもよく、不均一電界によって被吸着体を吸着するグラジエント力タイプの静電チャックであってもよい。
Above the substrate support unit 22, an electrostatic chuck 24 is provided as a substrate adsorption means for adsorbing and fixing the substrate W. The electrostatic chuck 24 is a Coulomb force type electrostatic chuck in which a dielectric having a relatively high resistance is interposed between an electrode and an adsorption surface, and adsorption is performed by a Coulomb force between the electrode and the object to be adsorbed. However, a dielectric having a relatively low resistance is interposed between the electrode and the adsorption surface, and adsorption is performed by the Johnson-Labeck force generated between the adsorption surface of the dielectric and the object to be adsorbed. It may be a Johnson-Labeck force type electrostatic chuck, or a gradient force type electrostatic chuck that adsorbs an object to be adsorbed by a non-uniform electric field.

被吸着体が導体または半導体(シリコンウエハ)である場合には、クーロン力タイプの静電チャックまたはジョンソン・ラーベック力タイプの静電チャックを用いることが好ましく、被吸着体がガラスのような絶縁体である場合には、グラジエント力タイプの静電チャックを用いることが好ましい。 When the object to be adsorbed is a conductor or a semiconductor (silicon wafer), it is preferable to use a Coulomb force type electrostatic chuck or a Johnson-Labeck force type electrostatic chuck, and the object to be adsorbed is an insulator such as glass. In this case, it is preferable to use a gradient force type electrostatic chuck.

静電チャック24は、一つのプレートで形成されてもよく、吸着力を独立的に制御できる複数のサブプレートを有するように形成されてもよい。また、一つのプレートで形成される場合も、その内部に複数の電極部を有し、一つのプレート内で電極部毎に吸着力を独立的に制御することができるようにしてもよい。
基板吸着手段として、静電引力による静電チャックの他に、粘着力による粘着パッドを使ってもよい。
The electrostatic chuck 24 may be formed of one plate, or may be formed so as to have a plurality of sub-plates capable of independently controlling the suction force. Further, even when formed by one plate, a plurality of electrode portions may be provided inside the plate so that the adsorption force can be independently controlled for each electrode portion in one plate.
As the substrate adsorption means, in addition to the electrostatic chuck by electrostatic attraction, an adhesive pad by adhesive force may be used.

本発明の実施の形態によれば、静電チャック24には、基板Wの温度上昇を抑制する冷却板を設置しなくてもよい。前述したように、成膜装置11に搬入される前に搬送室13で待機している間に、搬送室13内に設置されている冷却機構(基板冷却部)で基板Wが冷却されるので、成膜装置11で成膜工程が行われる間は、基板Wを冷却しなくてもよい。これにより、成膜装置11の構成が単純化され、成膜装置11内の空間を節約できる。 According to the embodiment of the present invention, the electrostatic chuck 24 does not need to be provided with a cooling plate that suppresses the temperature rise of the substrate W. As described above, the substrate W is cooled by the cooling mechanism (board cooling unit) installed in the transport chamber 13 while waiting in the transport chamber 13 before being carried into the film forming apparatus 11. The substrate W does not have to be cooled while the film forming step is performed by the film forming apparatus 11. As a result, the configuration of the film forming apparatus 11 is simplified, and the space inside the film forming apparatus 11 can be saved.

または、図示したように、静電チャック24の吸着面とは反対側に基板Wの温度上昇を抑える冷却板30を設けることで、基板W上に堆積された有機材料の変質や劣化を抑制する構成としてもよい。この場合には、基板Wが搬送室13で一次に冷却されるので、冷却板30の大きさを小さくしても、成膜工程が行われる間は、有機材料の変質や劣化を防止できるぐらい、基板Wの温度を低く維持することができる。 Alternatively, as shown in the figure, by providing a cooling plate 30 that suppresses the temperature rise of the substrate W on the side opposite to the suction surface of the electrostatic chuck 24, deterioration or deterioration of the organic material deposited on the substrate W is suppressed. It may be configured. In this case, since the substrate W is primarily cooled in the transport chamber 13, even if the size of the cooling plate 30 is reduced, deterioration or deterioration of the organic material can be prevented during the film forming process. , The temperature of the substrate W can be kept low.

蒸発源25は、基板に成膜される蒸着材料が収納されるるつぼ(不図示)、るつぼを加熱するためのヒータ(不図示)、蒸発源からの蒸発レートが一定になるまで蒸着材料が基板に飛散することを阻むシャッタ(不図示)などを含む。蒸発源25は、点(point)蒸発源や線状(linear)蒸発源、面状蒸発源など、用途に従って多様な構成を有することができる。 The evaporation source 25 includes a crucible (not shown) for storing the vaporized material deposited on the substrate, a heater for heating the crucible (not shown), and the vaporized material on the substrate until the evaporation rate from the evaporation source becomes constant. Includes shutters (not shown) that prevent scattering. The evaporation source 25 can have various configurations depending on the application, such as a point evaporation source, a linear evaporation source, and a planar evaporation source.

図2に図示しなかったが、成膜装置11は、基板に蒸着された膜の厚さを測定するための膜厚モニタ(不図示)及び膜厚算出ユニット(不図示)を含む。 Although not shown in FIG. 2, the film forming apparatus 11 includes a film thickness monitor (not shown) and a film thickness calculation unit (not shown) for measuring the thickness of the film deposited on the substrate.

真空容器21の上部外側(大気側)には、基板支持ユニットアクチュエータ26、マスク支持ユニットアクチュエータ27、静電チャックアクチュエータ28、位置調整機構29などが設けられる。これらのアクチュエータと位置調整機構は、例えば、モータとボールねじ、或いはモータとリニアガイドなどで構成される。基板支持ユニットアクチュエータ26は、基板支持ユニット22を昇降(Z方向移動)させるための駆動手段である。マスク支持ユニットアクチュエータ27は、マスク支持ユニット23を昇降(Z方向移動)させるための駆動手段である。静電チャックアクチュエータ28は、静電チャック24を昇降(Z方向移動)させるための駆動手段である。 A substrate support unit actuator 26, a mask support unit actuator 27, an electrostatic chuck actuator 28, a position adjusting mechanism 29, and the like are provided on the upper outer side (atmosphere side) of the vacuum vessel 21. These actuators and the position adjusting mechanism are composed of, for example, a motor and a ball screw, or a motor and a linear guide. The board support unit actuator 26 is a driving means for raising and lowering (moving in the Z direction) the board support unit 22. The mask support unit actuator 27 is a driving means for raising and lowering (moving in the Z direction) the mask support unit 23. The electrostatic chuck actuator 28 is a driving means for raising and lowering (moving in the Z direction) the electrostatic chuck 24.

位置調整機構29は、基板WとマスクMとの相対位置を調整するための手段としてのアライメントステージ機構である。例えば、図2に示した実施形態においては、位置調整機
構29は、静電チャック24又は静電チャックアクチュエータ28全体を基板支持ユニット22及びマスク支持ユニット23に対して、XYθ方向(X方向、Y方向、回転方向の少なくとも一つの方向)に移動及び/又は回転させる。なお、本実施形態では、基板Wを吸着した状態で、静電チャック24をXYθ方向に位置調整することで、基板WとマスクMの相対位置を調整するアライメントを行う。ただし、本発明は、このような構成に限定されず、例えば、位置調整機構29は、静電チャック24又は静電チャックアクチュエータ28ではなく、基板支持ユニット22又は基板支持ユニットアクチュエータ26及びマスク支持ユニット23又はマスク支持ユニットアクチュエータ27を静電チャック24に対してXYθ方向に相対的に移動させることができる構成を有しても良い。
The position adjusting mechanism 29 is an alignment stage mechanism as a means for adjusting the relative positions of the substrate W and the mask M. For example, in the embodiment shown in FIG. 2, the position adjusting mechanism 29 makes the entire electrostatic chuck 24 or the electrostatic chuck actuator 28 in the XYθ direction (X direction, Y) with respect to the substrate support unit 22 and the mask support unit 23. Move and / or rotate in at least one direction (direction, rotation direction). In the present embodiment, the electrostatic chuck 24 is positioned in the XYθ direction while the substrate W is adsorbed to perform alignment for adjusting the relative positions of the substrate W and the mask M. However, the present invention is not limited to such a configuration, and for example, the position adjusting mechanism 29 is not the electrostatic chuck 24 or the electrostatic chuck actuator 28, but the substrate support unit 22 or the substrate support unit actuator 26 and the mask support unit. The 23 or the mask support unit actuator 27 may have a configuration capable of moving relative to the electrostatic chuck 24 in the XYθ direction.

真空容器21の外側上面には、上述した駆動機構及び位置調整機構の他に、真空容器21の上面に設けられた透明窓を介して、基板W及びマスクMに形成されたアライメントマークを撮影するためのアライメント用カメラ31を設置される。アライメント用カメラ31は、基板W及びマスクMに形成されたアライメントマークに対応する位置に設けられる。例えば、円形の基板Wにおいて矩形をなす4つのコーナーのうち、少なくとも対角上の二つのコーナーまたは4つのコーナーすべてにアライメント用カメラ31を設置してもよい。 On the outer upper surface of the vacuum container 21, in addition to the drive mechanism and the position adjusting mechanism described above, an alignment mark formed on the substrate W and the mask M is photographed through a transparent window provided on the upper surface of the vacuum container 21. An alignment camera 31 for this purpose is installed. The alignment camera 31 is provided at a position corresponding to the alignment mark formed on the substrate W and the mask M. For example, the alignment camera 31 may be installed at least two diagonal corners or all four corners among the four rectangular corners on the circular substrate W.

図2には図示していないが、成膜装置11は、アライメント用カメラ31によってアライメントマークを撮影するために、アライメントマークを照らす照明用光源をさらに含んでも良い。成膜工程において密閉される真空容器21の内部は暗いので、光源でアライメントマークを照明することにより、より鮮明な画像を取得することができる。このため、光源は、同軸照明であることが好ましいが、これに限定されない。光源は、真空容器21の外部上側に設置されて、上方からアライメントマークを照らしてもよく、または下方からアライメントマークを照らすよう真空容器21の内部に設置されてもよい。 Although not shown in FIG. 2, the film forming apparatus 11 may further include an illumination light source that illuminates the alignment mark in order to capture the alignment mark by the alignment camera 31. Since the inside of the vacuum vessel 21 sealed in the film forming process is dark, a clearer image can be obtained by illuminating the alignment mark with a light source. Therefore, the light source is preferably, but is not limited to, coaxial illumination. The light source may be installed above the outside of the vacuum vessel 21 to illuminate the alignment mark from above, or may be installed inside the vacuum vessel 21 so as to illuminate the alignment mark from below.

成膜装置11は、制御部を有する。制御部は、基板W/マスクMの搬送及びアライメント、蒸発源25の制御、成膜の制御などの機能を有する。制御部は、成膜装置11ごとに独立して設けられるか、又は複数の成膜装置11に対して一つに統合されて設けられるか、或いは電子デバイス製造装置の制御部の一つの機能ユニットとして具現されても良い。 The film forming apparatus 11 has a control unit. The control unit has functions such as transfer and alignment of the substrate W / mask M, control of the evaporation source 25, and control of film formation. The control unit is provided independently for each film forming apparatus 11, or is provided integrally for a plurality of film forming apparatus 11, or is one functional unit of the control unit of the electronic device manufacturing apparatus. It may be embodied as.

制御部は、例えば、プロセッサ、メモリー、ストレージ、I/Oなどを持つコンピューターによって構成可能である。この場合、制御部33の機能はメモリーまたはストレージに格納されたプログラムをプロセッサが実行することにより実現される。コンピューターとしては、汎用のパーソナルコンピューターを使用してもよく、組込み型のコンピューターまたはPLC(programmable logic controller)を使用してもよい。または、制御部の機能の一部または全部をASICやFPGAのような回路で構成してもよい。 The control unit can be configured by, for example, a computer having a processor, memory, storage, I / O, and the like. In this case, the function of the control unit 33 is realized by the processor executing the program stored in the memory or the storage. As the computer, a general-purpose personal computer may be used, or an embedded computer or a PLC (programmable logical controller) may be used. Alternatively, a part or all of the functions of the control unit may be configured by a circuit such as an ASIC or FPGA.

<基板搬送システム>
図3は、本発明の一実施形態による基板搬送システムの構成を示す模式図である。基板搬送システムは、パス室(第1中継装置15、第1中継室)から搬送装置13に、搬送装置13(搬送室)から成膜装置11(成膜室)に、そして成膜装置11からバッファ室(第2中継装置16、第2中継室)に、順次に基板Wを搬送するためのものである。図1を参照して前述したように、電子デバイス製造装置の実装形態にとっては、バッファ室16は、パス室または他の中継装置であってもよい。
<Board transfer system>
FIG. 3 is a schematic view showing a configuration of a substrate transfer system according to an embodiment of the present invention. The substrate transfer system is carried out from the pass chamber (first relay device 15, first relay chamber) to the transfer device 13, from the transfer device 13 (convey room) to the film forming apparatus 11 (deposition chamber), and from the film forming device 11. This is for sequentially transporting the substrate W to the buffer chambers (second relay device 16, second relay chamber). As described above with reference to FIG. 1, the buffer chamber 16 may be a pass chamber or another relay device for the implementation of the electronic device manufacturing apparatus.

本実施形態の基板搬送システムでは、搬送装置13に搬入された基板Wが、成膜工程が行われる成膜装置11に搬送される前に待機する間、搬送装置13内で基板Wが事前に冷却されるように、搬送装置13内での基板Wの搬送が制御される。また、本実施形態の基
板搬送システムでは、搬送装置13に搬入された基板Wが、成膜装置11に搬送される前に、搬送装置13内で基板Wが予めアライメントされるように、搬送装置13内での基板Wの搬送が制御されてもよい。
In the substrate transfer system of the present embodiment, the substrate W is preliminarily placed in the transfer device 13 while the substrate W carried into the transfer device 13 waits before being transferred to the film forming device 11 where the film forming step is performed. The transfer of the substrate W in the transfer device 13 is controlled so as to be cooled. Further, in the substrate transfer system of the present embodiment, the substrate W carried into the transfer device 13 is previously aligned in the transfer device 13 before being transferred to the film forming apparatus 11. The transport of the substrate W within 13 may be controlled.

本実施形態によれば、搬送装置13で事前に冷却されるので、成膜装置11では、冷却が不要となるか、または冷却時間を短縮することができるので、全体の成膜工程にかかる時間を短縮することができる。また、成膜装置11に備えられる基板Wの冷却手段(例えば、静電チャック24に設置される冷却板30)をコンパクト化又は小型化することが可能となる。更に、成膜装置11に搬入される基板Wの位置を搬送装置11内で事前に調整することによって、成膜装置11内では、一次アライメント工程を省略し二次アライメント工程だけ行っても、高精度の位置調整が保証でき、アライメント工程にかかる全体の時間を大幅に短縮することができる。 According to the present embodiment, since the transfer device 13 cools the film in advance, the film forming apparatus 11 does not require cooling or the cooling time can be shortened, so that the time required for the entire film forming process can be shortened. Can be shortened. Further, the cooling means for the substrate W provided in the film forming apparatus 11 (for example, the cooling plate 30 installed on the electrostatic chuck 24) can be made compact or miniaturized. Further, by adjusting the position of the substrate W carried into the film forming apparatus 11 in advance in the conveying apparatus 11, even if the primary alignment step is omitted and only the secondary alignment step is performed in the film forming apparatus 11, it is high. Accurate position adjustment can be guaranteed, and the total time required for the alignment process can be significantly reduced.

このため、本実施形態の基板搬送システムは、パス室(第1中継装置、15)から搬入される基板Wを成膜装置11に搬送し、また成膜装置11から成膜工程が完了した基板Wをバッファ室(第2中継装置、16)に搬送する搬送装置13と、搬送装置13での基板Wの搬送を制御する搬送制御部134を含む。そして搬送装置13は、容器131と、容器131内に設置されている搬送ロボット132と基板冷却部133を含む。 Therefore, in the substrate transfer system of the present embodiment, the substrate W carried in from the pass chamber (first relay device, 15) is conveyed to the film forming apparatus 11, and the substrate whose film forming process is completed from the film forming apparatus 11 The transport device 13 that transports W to the buffer chamber (second relay device, 16) and the transport control unit 134 that controls the transport of the substrate W in the transport device 13 are included. The transfer device 13 includes a container 131, a transfer robot 132 installed in the container 131, and a substrate cooling unit 133.

容器131は、内部が真空状態に維持されるもので、高い真空状態に維持された方がよい。容器131は、パス室15に、バッファ室16及び成膜装置11のそれぞれの容器と隣接して配置され、これらと個別に接続されている。図面には成膜装置11が2つ備えた実施形態が示されているが、これは単に例示的なものであり、1つまたは2つ以上具備されてもよい。そして、図面に示されていないが、容器131には、更にマスクストック装置の容器が接続されてもよい。 The inside of the container 131 is maintained in a vacuum state, and it is preferable that the container 131 is maintained in a high vacuum state. The container 131 is arranged in the pass chamber 15 adjacent to each of the containers of the buffer chamber 16 and the film forming apparatus 11, and is individually connected to them. Although the drawing shows an embodiment in which the film forming apparatus 11 is provided with two, this is merely exemplary and may be provided with one or more. Then, although not shown in the drawing, the container of the mask stock device may be further connected to the container 131.

搬送ロボット132は、パス室15から基板Wを受け取り、また、バッファ室16に基板Wを搬出することを含み、搬送装置13の容器131の内部及び搬送装置13と成膜装置11の間に基板Wを搬送するためのものであり、容器131内に配置される。搬送ロボット132は、例えば、多関節アームに、基板WまたはマスクMを保持するロボットハンドが装着された構造を有するロボットである。この場合、搬送ロボット132の多関節アームは、XY方向に伸縮動作を、また、Z軸方向を軸として旋回動作をしながら、基板Wを搬送する。実施形態によって、搬送ロボット132は、Z軸方向に昇降可能であってもよい。 The transfer robot 132 includes receiving the substrate W from the pass chamber 15 and carrying out the substrate W to the buffer chamber 16 inside the container 131 of the transfer device 13 and between the transfer device 13 and the film forming device 11. It is for transporting W and is arranged in the container 131. The transfer robot 132 is, for example, a robot having a structure in which a robot hand holding a substrate W or a mask M is attached to an articulated arm. In this case, the articulated arm of the transfer robot 132 conveys the substrate W while expanding and contracting in the XY directions and turning around the Z-axis direction. Depending on the embodiment, the transfer robot 132 may be able to move up and down in the Z-axis direction.

基板冷却部133は、パス室15から容器131内に搬入された基板Wを、成膜装置11に搬送する前に冷却するための機構である。通常、成膜装置11では、アライメント工程及び成膜工程が行われるのに多少長い時間がかかるので、パス室15から搬送装置13に搬入された基板Wは、容器131内で所定の時間待機することになる。本実施の形態によれば、容器131内に基板冷却部133を設置することにより、基板Wが容器131内で待機している間に冷却が行われるようにする。このように本実施の形態では待機時間を利用し冷却を行うので、従来と比べ、基板冷却部133で基板Wを冷却するための時間を別途追加しなくてもよい。 The substrate cooling unit 133 is a mechanism for cooling the substrate W carried into the container 131 from the pass chamber 15 before being conveyed to the film forming apparatus 11. Normally, in the film forming apparatus 11, it takes a little longer time for the alignment step and the film forming process to be performed, so that the substrate W carried into the transfer device 13 from the pass chamber 15 waits in the container 131 for a predetermined time. It will be. According to the present embodiment, by installing the substrate cooling unit 133 in the container 131, cooling is performed while the substrate W is waiting in the container 131. As described above, in the present embodiment, since the cooling is performed by using the standby time, it is not necessary to separately add the time for cooling the substrate W in the substrate cooling unit 133 as compared with the conventional case.

基板冷却部133が配置される位置は、特に制限がなく、容器131内の空きスペースに適切に配置されればよい。一例として、容器131内でパス室15から成膜装置11への基板Wの搬送経路上に基板冷却部133が配置されると、パス室15から成膜装置11への搬送経路を最小化することができる。 The position where the substrate cooling unit 133 is arranged is not particularly limited, and may be appropriately arranged in the empty space in the container 131. As an example, when the substrate cooling unit 133 is arranged on the transport path of the substrate W from the pass chamber 15 to the film forming apparatus 11 in the container 131, the transport path from the pass chamber 15 to the film forming apparatus 11 is minimized. be able to.

基板冷却部133は、容器131内に一つ以上配置されることができる。一例として、
図面に示されたように、基板冷却部133は、容器131に接続されている成膜装置11の数(2個)と同じ個数配置された方がよい。例えば、成膜装置11(成膜室)の個数がN(Nは2以上の整数)個あるとすると、基板冷却部133もN個あってもよい。これにより、成膜装置11と基板冷却部133が一対一で対応(つまり、第1成膜装置11aは、第1の基板冷却部133aと対応し、第2成膜装置11bは、第2の基板冷却部133bと対応)するので、基板Wごとに基板冷却部133での冷却時間を最大限確保することができる。ただ、本発明は、ここに限定されず、基板冷却部133の数は、成膜装置11の数よりも少なくてもよい。
One or more substrate cooling units 133 can be arranged in the container 131. As an example,
As shown in the drawing, it is preferable that the number of substrate cooling units 133 is the same as the number (2) of the film forming apparatus 11 connected to the container 131. For example, assuming that the number of the film forming apparatus 11 (deposition chamber) is N (N is an integer of 2 or more), the substrate cooling unit 133 may also be N. As a result, the film-forming device 11 and the substrate cooling unit 133 have a one-to-one correspondence (that is, the first film-forming device 11a corresponds to the first substrate cooling unit 133a, and the second film-forming device 11b has a second. Since it corresponds to the substrate cooling unit 133b), the cooling time in the substrate cooling unit 133 can be secured to the maximum for each substrate W. However, the present invention is not limited to this, and the number of substrate cooling units 133 may be smaller than the number of film forming apparatus 11.

複数の基板冷却部133のそれぞれは、容器131内の搬送ロボット132の旋回領域内で昇降可能に設置する方がよい。これにより、搬送ロボット132がZ軸方向(つまり、基板冷却部133の基板支持面に対して垂直方向)を軸として容器131内で回転しても、基板冷却部133が下降(後述するフェイスアップ形態の機構である場合)、または上昇(後述するフェイスダウン形態の機構である場合)することにより、搬送ロボット132との衝突を回避することができる。その結果、容器131内に複数の基板冷却部133が設置されても、搬送ロボット132の動きは、これにより制約されない。 It is preferable that each of the plurality of substrate cooling units 133 is installed so as to be able to move up and down within the swirling region of the transfer robot 132 in the container 131. As a result, even if the transfer robot 132 rotates in the container 131 about the Z-axis direction (that is, the direction perpendicular to the substrate support surface of the substrate cooling unit 133), the substrate cooling unit 133 descends (face-up described later). Collision with the transfer robot 132 can be avoided by raising (when the mechanism is in the form) or ascending (when the mechanism is in the face-down form, which will be described later). As a result, even if a plurality of substrate cooling units 133 are installed in the container 131, the movement of the transfer robot 132 is not restricted by this.

基板冷却部133が基板Wを冷却する方式には、特に制限がない。例えば、基板冷却部133は、冷却水を利用する水冷式機構でもよく、または空気などの気体を利用する空冷式機構でもよい。 There is no particular limitation on the method in which the substrate cooling unit 133 cools the substrate W. For example, the substrate cooling unit 133 may be a water-cooled mechanism that uses cooling water, or an air-cooled mechanism that uses a gas such as air.

一実施形態によれば、水冷式基板冷却部133は、基板Wの底面(下面)を支持しながら冷却するフェイスアップ形態の機構でもよい。例えば、基板冷却部133は、容器131の底面に設置されている所定の支持構造体と、この支持構造体の上部に設置されている冷却板を含んで構成されてもよい。 According to one embodiment, the water-cooled substrate cooling unit 133 may be a face-up type mechanism that cools while supporting the bottom surface (lower surface) of the substrate W. For example, the substrate cooling unit 133 may be configured to include a predetermined support structure installed on the bottom surface of the container 131 and a cooling plate installed on the upper portion of the support structure.

図4(a)および図4(b)は、それぞれフェイスアップ形態の基板冷却部133に備えられた、冷却板の一例を模式的に示す平面図と断面図である。冷却板は、図4(a)に図示されたように、板状の部材に、流入口(IN)に流入した冷却水が、板状の部材に全
体的に形成されている冷却水路に沿って流れて流出口(OUT)から排出される構造であってもよい。また、冷却板は、図4(b)に図示するように、中央部が空いている板状の部材の一側に冷却水の流入口(IN)が形成され、また、他側に流出口(OUT)が形成
されている構造でもよい。この場合に、中央部に相対的に低い温度の冷却水が流入し、中央部から相対的に高い温度の冷却水が流出されるように、入口(IN)は、板状の部材の
底面に近い高さに形成されて、また流出口(OUT)は、板状の部材の上面に近い高さに形成されることが好ましい。
4 (a) and 4 (b) are a plan view and a cross-sectional view schematically showing an example of a cooling plate provided in the face-up type substrate cooling unit 133, respectively. As shown in FIG. 4A, the cooling plate is formed along a cooling water channel in which the cooling water flowing into the inflow port (IN) is formed in the plate-shaped member as a whole. It may have a structure in which the water flows and is discharged from the outlet (OUT). Further, as shown in FIG. 4B, the cooling plate has a cooling water inflow port (IN) formed on one side of a plate-shaped member having an open central portion, and an outflow port on the other side. It may be a structure in which (OUT) is formed. In this case, the inlet (IN) is located on the bottom surface of the plate-shaped member so that the cooling water having a relatively low temperature flows into the central portion and the cooling water having a relatively high temperature flows out from the central portion. It is preferable that the outlet (OUT) is formed at a height close to the upper surface of the plate-shaped member.

他の実施形態によれば、水冷式基板冷却部133は、基板Wの上面を吸着して保持しながら冷却するフェイスダウン形態の機構でもよい。例えば、基板冷却部133は、基板Wを吸着して保持する静電チャックと、この静電チャックに結合されている冷却板などの冷却機構を含んで構成される。または、静電チャックの代わりに粘着パッドなどのように、基板Wの上面を吸着して保持する他の形態の基板吸着手段でもよい。 According to another embodiment, the water-cooled substrate cooling unit 133 may be a face-down type mechanism that cools the substrate W while sucking and holding the upper surface thereof. For example, the substrate cooling unit 133 includes an electrostatic chuck that attracts and holds the substrate W, and a cooling mechanism such as a cooling plate coupled to the electrostatic chuck. Alternatively, instead of the electrostatic chuck, another form of substrate adsorption means such as an adhesive pad or the like that attracts and holds the upper surface of the substrate W may be used.

搬送制御部134は、搬送ロボット132による基板Wの搬送動作を制御する。搬送制御部134は、基本的に、上流側に配置された中継装置のパス室15から搬入される基板Wを受け取って、成膜装置11に基板Wを搬送した後、成膜装置11で成膜工程が完了した基板Wは、下流側に配置された中継装置のバッファ室16に搬送するように搬送ロボット132を制御する。そして、本実施形態によれば、搬送制御部134は、基板Wを成膜装置11に搬送する前に、基板冷却部133に搬送するように搬送ロボット132を制御する。搬送制御部134の制御による基板Wの具体的な搬送経路については、後述する。 The transfer control unit 134 controls the transfer operation of the substrate W by the transfer robot 132. The transfer control unit 134 basically receives the substrate W carried in from the pass chamber 15 of the relay device arranged on the upstream side, transfers the substrate W to the film forming apparatus 11, and then forms the substrate W in the film forming apparatus 11. The substrate W for which the film process has been completed controls the transfer robot 132 so as to transfer the substrate W to the buffer chamber 16 of the relay device arranged on the downstream side. Then, according to this embodiment, the transfer control unit 134 controls the transfer robot 132 so as to transfer the substrate W to the substrate cooling unit 133 before transferring the substrate W to the film forming apparatus 11. The specific transfer path of the substrate W controlled by the transfer control unit 134 will be described later.

搬送制御部134は、搬送ロボット132の動作を制御するように搬送ロボット132に別途備えられているコンピュータのプロセッサに具現されてもよい。または、搬送制御部134は、搬送装置13を制御する制御部の一機能ユニットとして具現されるか、または搬送装置13を含む成膜システムもしくは電子デバイス製造装置の制御部の一機能ユニットとして具現されてもよい。 The transfer control unit 134 may be embodied in a computer processor separately provided in the transfer robot 132 so as to control the operation of the transfer robot 132. Alternatively, the transfer control unit 134 is embodied as a functional unit of a control unit that controls the transfer device 13, or is embodied as a functional unit of a control unit of a film forming system or an electronic device manufacturing apparatus including the transfer device 13. You may.

図5A及び図5Bは、それぞれ、本発明の他の実施形態による基板搬送システムの構成を示す模式図である。図5A及び図5Bを参照すると、本実施形態の基板搬送システムは、搬送装置13a、13bと搬送制御部134を含み、搬送装置13a、13bは、容器131と、容器131内に設置されている搬送ロボット132と基板冷却部133を含むということは、図3に図示した実施形態の基板搬送システムと同じである。ただし、本実施形態の基板搬送システムは、容器13内に設置されているアライメント部135をさらに含んでおり、これによって搬送制御部134の制御による基板Wの搬送経路にアライメント部135が含まれるということが、図3に示した実施形態の基板搬送システムと異なる。以下、図3に示した実施形態の基板搬送システムとの相違点についてのみ説明する。 5A and 5B are schematic views showing the configuration of a substrate transfer system according to another embodiment of the present invention, respectively. Referring to FIGS. 5A and 5B, the substrate transfer system of the present embodiment includes transfer devices 13a and 13b and a transfer control unit 134, and the transfer devices 13a and 13b are installed in the container 131 and the container 131. The inclusion of the transfer robot 132 and the substrate cooling unit 133 is the same as the substrate transfer system of the embodiment shown in FIG. However, the substrate transfer system of the present embodiment further includes an alignment unit 135 installed in the container 13, whereby the alignment unit 135 is included in the transfer path of the substrate W controlled by the transfer control unit 134. This is different from the substrate transfer system of the embodiment shown in FIG. Hereinafter, only the differences from the substrate transfer system of the embodiment shown in FIG. 3 will be described.

アライメント部135は、容器131に搬入された基板W、より正確には、基板冷却部133で冷却された基板Wの位置を調整するためのものである。より具体的には、アライメント部135は、容器131内の特定の位置に設置されている所定の基準(例えば、基準マーク)に対し基板Wの位置を調整するものであり、その具体的な実装形態には、特に制限はない。 The alignment unit 135 is for adjusting the position of the substrate W carried into the container 131, or more accurately, the substrate W cooled by the substrate cooling unit 133. More specifically, the alignment unit 135 adjusts the position of the substrate W with respect to a predetermined reference (for example, a reference mark) installed at a specific position in the container 131, and the specific mounting thereof. The form is not particularly limited.

例えば、アライメント部135は、容器131で基板Wが載置される基板ステージと、基板Wのアライメントを行うためのアライメント機構と、アライメント機構の動作を制御するための制御手段を含んで構成されてもよい。アライメント機構は、基板Wが基板ステージに置かれた位置に関する情報(容器131に対する基板Wの位置を表す情報)を取得するための位置情報取得手段(例えば、アライメント用カメラ)と、基板ステージをX軸方向、Y軸方向及びθ方向に駆動するための基板ステージ駆動機構(XYθアクチュエータ)を含むことができる。基板ステージは、XYθアクチュエータにシャフトによって接続される。 For example, the alignment unit 135 includes a substrate stage on which the substrate W is placed in the container 131, an alignment mechanism for aligning the substrate W, and a control means for controlling the operation of the alignment mechanism. May be good. The alignment mechanism uses a position information acquisition means (for example, an alignment camera) for acquiring information about the position where the substrate W is placed on the substrate stage (information indicating the position of the substrate W with respect to the container 131) and X the substrate stage. A substrate stage drive mechanism (XYθ actuator) for driving in the axial direction, the Y-axis direction, and the θ direction can be included. The board stage is connected to the XYθ actuator by a shaft.

アライメント部135も、基板冷却部133と同様に、容器131内に一つ以上配置されることができる。一例として、図5Aに図示したように、アライメント部135は、容器131に接続されている成膜装置11の数(2個)よりも少なく(1個)配置されてもよい。この場合に、後述のように、異なる基板冷却部133a、133bにそれぞれ搬送され、冷却された基板Wであっても、同一のアライメント部135に搬送され、アライメントが行われる。又は、図5Bに示すように、アライメント部135a、135bは、容器131に接続されている成膜装置11の数(2個)と同じ数(2個)で配置されてもよい。例えば、成膜装置11(成膜室)の個数がN(Nは2以上の整数)個あるとすると、アライメント部135もN個あってもよい。これにより、成膜装置11a、11bと、基板冷却部133a、133bと、アライメント部135a、135bが一対一で対応(つまり、第1成膜装置11a、第1の基板冷却部133及び第1アライメント部135aが互いに対応し、また、第2成膜装置11b、第2の基板冷却部133b及び第2アライメント部135bが互いに対応)するので、基板Wごとに基板冷却部133での冷却時間と、アライメント部135でのアライメント時間を最大限確保することができる。 Like the substrate cooling unit 133, one or more alignment units 135 can be arranged in the container 131. As an example, as shown in FIG. 5A, the alignment portion 135 may be arranged in a smaller number (1) than the number (2) of the film forming apparatus 11 connected to the container 131. In this case, as will be described later, the substrates W are conveyed to different substrate cooling units 133a and 133b, respectively, and even the cooled substrate W is conveyed to the same alignment unit 135 for alignment. Alternatively, as shown in FIG. 5B, the alignment portions 135a and 135b may be arranged in the same number (2 pieces) as the number (2 pieces) of the film forming apparatus 11 connected to the container 131. For example, assuming that the number of film forming apparatus 11 (deposition chamber) is N (N is an integer of 2 or more), there may be N alignment portions 135 as well. As a result, the film forming apparatus 11a and 11b, the substrate cooling units 133a and 133b, and the alignment units 135a and 135b have a one-to-one correspondence (that is, the first film forming apparatus 11a, the first substrate cooling unit 133 and the first alignment). Since the parts 135a correspond to each other, and the second film forming apparatus 11b, the second substrate cooling part 133b, and the second alignment part 135b correspond to each other), the cooling time in the substrate cooling unit 133 and the cooling time in the substrate cooling unit 133 for each substrate W. The maximum alignment time in the alignment unit 135 can be secured.

アライメント部135も、基板冷却部133と同様に、容器131内に昇降可能に設置されることが好ましい。これにより、搬送ロボット132がZ軸方向(つまり、アライメント部135の基板支持面に対して垂直の方向)を軸として容器131内で回転しても、
アライメント部135が下降および/または上昇することにより、搬送ロボット132と
の衝突を回避することができる。その結果、容器131内にアライメント部135が設置されても、搬送ロボット132の動きは、これによって制約されない。
It is preferable that the alignment unit 135 is also installed in the container 131 so as to be able to move up and down, like the substrate cooling unit 133. As a result, even if the transfer robot 132 rotates in the container 131 about the Z-axis direction (that is, the direction perpendicular to the substrate support surface of the alignment portion 135),
By lowering and / or raising the alignment unit 135, it is possible to avoid a collision with the transfer robot 132. As a result, even if the alignment unit 135 is installed in the container 131, the movement of the transfer robot 132 is not restricted by this.

そして、本実施形態によれば、搬送制御部134は、搬送装置13a、13bに搬入された基板Wを成膜装置11に搬送する前に、基板冷却部133とアライメント部(135
、図5Aおよび図5Bを参照)に順次搬送するように搬送ロボット132を制御する。
搬送制御部134の制御による基板Wの具体的な搬送経路について後述する。
Then, according to the present embodiment, the transfer control unit 134 has the substrate cooling unit 133 and the alignment unit (135) before the substrate W carried into the transfer devices 13a and 13b is transferred to the film forming apparatus 11.
, FIG. 5A and FIG. 5B), and the transfer robot 132 is controlled so as to sequentially transfer.
A specific transfer path of the substrate W controlled by the transfer control unit 134 will be described later.

<基板搬送システムでの基板Wの搬送経路>
図6A、図6B、および図6Cは、それぞれ、図3、図5A、および図5Bに図示された基板搬送システムでの基板Wの搬送経路を模式的に示す図である。前述したように、基板Wの搬送経路は、搬送制御部134が搬送ロボット132の動作をコントロールすることで制御される。
<Transfer path of substrate W in substrate transport system>
6A, 6B, and 6C are diagrams schematically showing the transfer path of the substrate W in the substrate transfer system illustrated in FIGS. 3, 5A, and 5B, respectively. As described above, the transfer path of the substrate W is controlled by the transfer control unit 134 controlling the operation of the transfer robot 132.

図6Aを参照すると、パス室15から搬送装置13の容器131内に搬入された一番目の基板W1は、先ず、第1の基板冷却部133aに搬送される。そして、第1の基板冷却部133aから基板W1が所定の時間冷却された後、第1成膜装置11aに搬送される。第1成膜装置11aでは、基板W1の成膜工程が行われ、成膜工程が完了した基板W1は、バッファ室16に搬出される。 Referring to FIG. 6A, the first substrate W1 carried into the container 131 of the transfer device 13 from the pass chamber 15 is first conveyed to the first substrate cooling unit 133a. Then, after the substrate W1 is cooled from the first substrate cooling unit 133a for a predetermined time, it is conveyed to the first film forming apparatus 11a. In the first film forming apparatus 11a, the film forming step of the substrate W1 is performed, and the substrate W1 for which the film forming step is completed is carried out to the buffer chamber 16.

そしてパス室15から搬送装置13の容器131内に搬入された二番目の基板W2は、第2の基板冷却部133bに搬送される。この時、第1基板W1は、第1の基板冷却部133aで冷却工程が行われているか、または第1成膜装置11aで成膜工程が行われていてもよい。第2の基板冷却部133bで基板W2が所定の時間冷却された後、第2の成膜装置11bに搬送される。第2成膜装置11bでは、基板W2の成膜工程が行われて、成膜工程が完了した基板W2は、バッファ室16に搬出される。 Then, the second substrate W2 carried into the container 131 of the transfer device 13 from the pass chamber 15 is conveyed to the second substrate cooling unit 133b. At this time, the first substrate W1 may be subjected to a cooling step by the first substrate cooling unit 133a, or may be subjected to a film forming step by the first film forming apparatus 11a. After the substrate W2 is cooled by the second substrate cooling unit 133b for a predetermined time, it is conveyed to the second film forming apparatus 11b. In the second film forming apparatus 11b, the film forming step of the substrate W2 is performed, and the substrate W2 for which the film forming step is completed is carried out to the buffer chamber 16.

次に、図6Bを参照すると、パス室15から搬送装置13aの容器131内に搬入された一番目の基板W1は、先ず、第1の基板冷却部133aに搬送される。そして、第1の基板冷却部133aで基板W1が所定の時間冷却された後、アライメント部135に搬送される。アライメント部135で基板W1の位置が調整された後、基板W1は、第1成膜装置11aに搬送される。第1成膜装置11aでは、基板W1の成膜工程が行われ、成膜工程が完了した基板W1は、バッファ室16に搬出される。 Next, referring to FIG. 6B, the first substrate W1 carried into the container 131 of the transfer device 13a from the pass chamber 15 is first conveyed to the first substrate cooling unit 133a. Then, after the substrate W1 is cooled by the first substrate cooling unit 133a for a predetermined time, it is conveyed to the alignment unit 135. After the position of the substrate W1 is adjusted by the alignment unit 135, the substrate W1 is conveyed to the first film forming apparatus 11a. In the first film forming apparatus 11a, the film forming step of the substrate W1 is performed, and the substrate W1 for which the film forming step is completed is carried out to the buffer chamber 16.

そしてパス室15から搬送装置13aの容器131内に搬入された二番目の基板W2は、第2の基板冷却部133bに搬送される。このとき、第1基板W1は、第1の基板冷却部133aで冷却工程が行われているか、またはアライメント部135でアライメント工程が行われているか、または第1成膜装置11aで成膜工程が行われていてもよい。第2の基板冷却部133bで基板W2が所定の時間冷却された後、アライメント部135に搬送される。このとき、第1基板W1は、第1成膜装置11aで成膜工程が行われていてもよい。また、基板W2がアライメント部135に搬送されたら、パス室15から三番目の基板W1が搬入し、第1の基板冷却部133aに搬送されてもいい。続けて、アライメント部135で基板W2の位置が調整された後、基板W2は、第2成膜装置11bに搬送される。第2成膜装置11bでは、基板W2の成膜工程が行われ、成膜工程が完了した基板W2は、バッファ室16に搬出される。 Then, the second substrate W2 carried into the container 131 of the transfer device 13a from the pass chamber 15 is conveyed to the second substrate cooling unit 133b. At this time, the first substrate W1 has a cooling step performed by the first substrate cooling unit 133a, an alignment process performed by the alignment unit 135, or a film forming process performed by the first film forming apparatus 11a. It may be done. After the substrate W2 is cooled by the second substrate cooling unit 133b for a predetermined time, it is conveyed to the alignment unit 135. At this time, the first substrate W1 may be subjected to the film forming step by the first film forming apparatus 11a. Further, when the substrate W2 is conveyed to the alignment unit 135, the third substrate W1 may be carried in from the pass chamber 15 and conveyed to the first substrate cooling unit 133a. Subsequently, after the position of the substrate W2 is adjusted by the alignment unit 135, the substrate W2 is conveyed to the second film forming apparatus 11b. In the second film forming apparatus 11b, the film forming step of the substrate W2 is performed, and the substrate W2 for which the film forming step is completed is carried out to the buffer chamber 16.

次に図6Cを参照すると、パス室15から搬送装置13bの容器131内に搬入された一番目の基板W1は、先に第1の基板冷却部133aに搬送される。そして、第1の基板冷却部133aで基板W1が所定の時間冷却されてから、第1アライメント部135aに
搬送される。第1アライメント部135aで基板W1の位置が調整された後、基板W1は、第1成膜装置11aに搬送される。第1成膜装置11aでは、基板W1の成膜工程が行われ、成膜工程が完了した基板W1は、バッファ室16に搬出される。
Next, referring to FIG. 6C, the first substrate W1 carried into the container 131 of the transfer device 13b from the pass chamber 15 is first conveyed to the first substrate cooling unit 133a. Then, after the substrate W1 is cooled by the first substrate cooling unit 133a for a predetermined time, it is conveyed to the first alignment unit 135a. After the position of the substrate W1 is adjusted by the first alignment portion 135a, the substrate W1 is conveyed to the first film forming apparatus 11a. In the first film forming apparatus 11a, the film forming step of the substrate W1 is performed, and the substrate W1 for which the film forming step is completed is carried out to the buffer chamber 16.

そしてパス室15から搬送装置13bの容器131内に搬入された二番目の基板W2は、第2の基板冷却部133bに搬送される。この時、第1基板W1は、第1の基板冷却部133aで冷却工程が行われているか、または第1アライメント部135aでアライメント工程が行われているか、または第1成膜装置11aで成膜工程が行われていてもよい。第2の基板冷却部133bで基板W2が所定の時間冷却された後、第2アライメント部135bに搬送される。この時、第1基板W1は、第1アライメント部135aでアライメント工程が行われているか、または第1成膜装置11aで成膜工程が行われていてもよい。また、基板W2が第2アライメント部135bに搬送されたら、パス室15から三番目の基板W1が搬入し、第1の基板冷却部133aに搬送されるか、または冷却が完了した基板W1は第1アライメント部135aに搬送されてもよい。続けて、第2アライメント部135bで基板W2の位置が調整された後、基板W2は、第2成膜装置11bに搬送される。第2成膜装置11bでは、基板W2の成膜工程が行われ、成膜工程が完了した基板W2は、バッファ室16に搬出される。 Then, the second substrate W2 carried into the container 131 of the transfer device 13b from the pass chamber 15 is conveyed to the second substrate cooling unit 133b. At this time, the first substrate W1 is either cooled by the first substrate cooling unit 133a, aligned by the first alignment unit 135a, or filmed by the first film forming apparatus 11a. The process may be performed. After the substrate W2 is cooled by the second substrate cooling unit 133b for a predetermined time, it is conveyed to the second alignment unit 135b. At this time, the first substrate W1 may be subjected to an alignment step by the first alignment unit 135a or a film forming step by the first film forming apparatus 11a. Further, when the substrate W2 is conveyed to the second alignment portion 135b, the third substrate W1 is carried in from the pass chamber 15 and is conveyed to the first substrate cooling portion 133a, or the substrate W1 whose cooling is completed is the first. 1 It may be conveyed to the alignment unit 135a. Subsequently, after the position of the substrate W2 is adjusted by the second alignment portion 135b, the substrate W2 is conveyed to the second film forming apparatus 11b. In the second film forming apparatus 11b, the film forming step of the substrate W2 is performed, and the substrate W2 for which the film forming step is completed is carried out to the buffer chamber 16.

上記実施例は本発明の一例を示すものでしかなく、本発明は上記実施例の構成に限定されないし、その技術思想の範囲内で適宜に変形しても良い。 The above embodiment is only an example of the present invention, and the present invention is not limited to the configuration of the above embodiment, and may be appropriately modified within the scope of the technical idea.

11、11a、11b:成膜室又は成膜装置、13、13a、13b:搬送室又は搬送装置、14、132:搬送ロボット、15:パス室、16:バッファ室、131:容器、133、133a、133b:基板冷却部、134:搬送制御部、135、135a、135b:アライメント部 11, 11a, 11b: film forming chamber or film forming apparatus, 13, 13a, 13b: transfer chamber or transfer device, 14, 132: transfer robot, 15: pass chamber, 16: buffer chamber, 131: container 133, 133a , 133b: Substrate cooling unit, 134: Transfer control unit, 135, 135a, 135b: Alignment unit

Claims (16)

基板に成膜を行う成膜室と、
前記成膜室に前記基板を受け渡すための搬送手段を有する搬送室と、
を備える成膜装置において、
前記搬送室は、前記基板を冷却するための基板冷却部を備えることを特徴とする成膜装置。
A film forming chamber for forming a film on a substrate and
A transport chamber having a transport means for delivering the substrate to the film forming chamber, and a transport chamber.
In a film forming apparatus equipped with
The transport chamber is a film forming apparatus including a substrate cooling unit for cooling the substrate.
前記成膜装置の動作を制御するための制御部をさらに含み、
前記制御部は、前記搬送手段が前記搬送室に搬入された基板を前記成膜室に搬送する前に、前記基板冷却部に搬送して前記基板を冷却するように制御することを特徴とする請求項1に記載の成膜装置。
A control unit for controlling the operation of the film forming apparatus is further included.
The control unit is characterized in that the transfer means controls the substrate to be conveyed to the substrate cooling unit to cool the substrate before the substrate carried into the transfer chamber is conveyed to the film forming chamber. The film forming apparatus according to claim 1.
前記搬送室は、前記基板の位置を調整するためのアライメント部をさらに有することを特徴とする請求項2に記載の成膜装置。 The film forming apparatus according to claim 2, wherein the transport chamber further includes an alignment portion for adjusting the position of the substrate. 前記制御部は、前記搬送手段が前記基板冷却部で冷却された基板を前記成膜室に搬送する前に、前記アライメント部に搬送して前記基板の位置を調整するように制御することを特徴とする請求項3に記載の成膜装置。 The control unit is characterized in that the transport means controls to transport the substrate cooled by the substrate cooling unit to the alignment unit and adjust the position of the substrate before transporting the substrate to the film forming chamber. The film forming apparatus according to claim 3. 前記基板冷却部と前記アライメント部は、それぞれ、前記搬送手段が、前記基板冷却部の基板支持面に直交する方向を軸として回転するときに通る、旋回領域内で昇降可能に設置されていることを特徴とする請求項4に記載の成膜装置。 The substrate cooling unit and the alignment unit are each installed so as to be able to move up and down in a swivel region through which the transport means passes when rotating about a direction orthogonal to the substrate support surface of the substrate cooling unit. The film forming apparatus according to claim 4. 前記基板冷却部は、前記基板の下面を支持し、かつ、内部に冷却水路が形成されている冷却板を含むことを特徴とする請求項1から5のいずれか1項に記載の成膜装置。 The film forming apparatus according to any one of claims 1 to 5, wherein the substrate cooling unit includes a cooling plate that supports the lower surface of the substrate and has a cooling water channel formed therein. .. 前記基板冷却部は、前記基板の上面を吸着して保持するための基板吸着手段と、前記基板吸着手段に結合されている冷却機構を含むことを特徴とする請求項1から5のいずれか1項に記載の成膜装置。 Any one of claims 1 to 5, wherein the substrate cooling unit includes a substrate adsorption means for sucking and holding the upper surface of the substrate, and a cooling mechanism coupled to the substrate suction means. The film forming apparatus according to the section. 前記成膜室をN(Nは2以上の整数)個含み、
前記搬送室は、前記N個の成膜室のそれぞれに一対一で対応する、N個の前記基板冷却部を備えることを特徴とする請求項1から7のいずれか1項に記載の成膜装置。
The film forming chamber includes N (N is an integer of 2 or more).
The film forming according to any one of claims 1 to 7, wherein the transport chamber includes N of the substrate cooling portions corresponding to each of the N film forming chambers on a one-to-one basis. apparatus.
前記搬送室は、前記基板の位置を調整するためのアライメント部を、1〜N個備えるこ
とを特徴とする請求項8に記載の成膜装置。
The film forming apparatus according to claim 8, wherein the transport chamber includes 1 to N alignment portions for adjusting the position of the substrate.
第1中継室、搬送室、成膜室、及び第2中継室の順に基板が搬送される成膜装置であって、
前記搬送室は、容器と、前記容器内に配置され、前記基板を冷却するための基板冷却部と、前記容器内に配置され、前記基板を保持して搬送する搬送手段とを含み、
前記成膜装置は、前記搬送室と、前記搬送手段を制御する搬送制御部を含み、
前記搬送制御部は、前記第1中継室から前記容器に搬入される基板を、前記基板冷却部に搬送してから前記成膜室に搬送するように、前記搬送手段を制御することを特徴とする成膜装置。
A film forming apparatus in which a substrate is conveyed in the order of a first relay chamber, a transfer chamber, a film formation chamber, and a second relay chamber.
The transport chamber includes a container, a substrate cooling unit arranged in the container for cooling the substrate, and a transport means arranged in the container for holding and transporting the substrate.
The film forming apparatus includes the transport chamber and a transport control unit that controls the transport means.
The transport control unit is characterized in that the transport means is controlled so that the substrate carried into the container from the first relay chamber is transported to the substrate cooling unit and then to the film forming chamber. Film forming equipment.
前記搬送室は、前記容器内に設置され、前記基板の位置を調整するためのアライメント部をさらに含み、
前記搬送制御部は、前記基板冷却部で冷却された基板を前記成膜室に搬送する前に、前
記アライメント部に搬送するように、前記搬送手段を制御することを特徴とする請求項10に記載の成膜装置。
The transport chamber is installed in the container and further includes an alignment portion for adjusting the position of the substrate.
10. The transfer control unit is characterized in that the transfer control unit controls the transfer means so as to transfer the substrate cooled by the substrate cooling unit to the alignment unit before transporting the substrate to the film forming chamber. The film forming apparatus according to the above.
前記基板冷却部と前記アライメント部は、それぞれ、前記搬送手段が、前記基板冷却部の基板支持面に直交する方向を軸として回転するときに通る、旋回領域内で昇降可能に設置されていることを特徴とする請求項11に記載の成膜装置。 The substrate cooling unit and the alignment unit are each installed so as to be able to move up and down in a swivel region through which the transport means passes when rotating about a direction orthogonal to the substrate support surface of the substrate cooling unit. The film forming apparatus according to claim 11. 前記基板冷却部は、前記基板の下面を支持し、かつ、内部に冷却水路が形成されている冷却板を含むことを特徴とする請求項10から12のいずれか1項に記載の成膜装置。 The film forming apparatus according to any one of claims 10 to 12, wherein the substrate cooling unit includes a cooling plate that supports the lower surface of the substrate and has a cooling water channel formed therein. .. 前記基板冷却部は、前記基板の上面を吸着して保持するための基板吸着手段と、前記基板吸着手段に結合されている冷却機構を含むことを特徴とする請求項10から12のいずれか1項に記載の成膜装置。 Any one of claims 10 to 12, wherein the substrate cooling unit includes a substrate adsorption means for sucking and holding the upper surface of the substrate, and a cooling mechanism coupled to the substrate suction means. The film forming apparatus according to the section. 前記成膜室をN(Nは2以上の整数)個含み、
前記搬送室は、前記N個の成膜室それぞれに一対一で対応する、N個の前記基板冷却部を備えることを特徴とする請求項10から14のいずれか1項に記載の成膜装置。
The film forming chamber includes N (N is an integer of 2 or more).
The film forming apparatus according to any one of claims 10 to 14, wherein the transport chamber includes N of the substrate cooling portions corresponding to each of the N film forming chambers on a one-to-one basis. ..
前記搬送室は、前記基板の位置を調整するためのアライメント部を、1〜N個備えるこ
とを特徴とする請求項15に記載の成膜装置。
The film forming apparatus according to claim 15, wherein the transport chamber includes 1 to N alignment portions for adjusting the position of the substrate.
JP2020199650A 2019-12-23 2020-12-01 Film deposition device Pending JP2021098885A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0172688 2019-12-23
KR1020190172688A KR20210080776A (en) 2019-12-23 2019-12-23 Film-forming system and substrate conveying system

Publications (1)

Publication Number Publication Date
JP2021098885A true JP2021098885A (en) 2021-07-01

Family

ID=76540900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020199650A Pending JP2021098885A (en) 2019-12-23 2020-12-01 Film deposition device

Country Status (3)

Country Link
JP (1) JP2021098885A (en)
KR (1) KR20210080776A (en)
CN (1) CN113088871A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421773A (en) * 1990-05-15 1992-01-24 Nippon Steel Corp Sputter film forming device
JPH06291174A (en) * 1993-04-06 1994-10-18 Fuji Electric Co Ltd Electrostatic chuck, and method for adhering and holding semiconductor wafer to electrostatic chuck
JPH11288996A (en) * 1998-04-04 1999-10-19 Tokyo Electron Ltd Transfer device of processed work
JP2000299367A (en) * 1999-04-15 2000-10-24 Tokyo Electron Ltd Processing apparatus and transfer method of article to be processed
JP2002093715A (en) * 2000-09-12 2002-03-29 Hitachi Kokusai Electric Inc Semiconductor-manufacturing apparatus
JP2005314730A (en) * 2004-04-28 2005-11-10 Ulvac Japan Ltd Method and apparatus for forming organic thin film
KR20060058867A (en) * 2004-11-26 2006-06-01 엘지전자 주식회사 Cassette chamber with a cooling system
JP2006260939A (en) * 2005-03-17 2006-09-28 Ulvac Japan Ltd Manufacturing method and manufacturing device of organic el element
JP2006299358A (en) * 2005-04-21 2006-11-02 Sumitomo Heavy Ind Ltd Vacuum film deposition apparatus, and vacuum film deposition method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101960194B1 (en) * 2017-11-29 2019-03-19 캐논 톡키 가부시키가이샤 Film forming apparatus, film forming method and manufacturing method of organic el display device
KR101993532B1 (en) * 2017-11-29 2019-06-26 캐논 톡키 가부시키가이샤 Film formation apparatus, film formation method and manufacturing method of electronic device
KR20190124610A (en) * 2018-04-26 2019-11-05 캐논 톡키 가부시키가이샤 Substrate conveying system, method and apparatus for manufacturing electronic devices

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421773A (en) * 1990-05-15 1992-01-24 Nippon Steel Corp Sputter film forming device
JPH06291174A (en) * 1993-04-06 1994-10-18 Fuji Electric Co Ltd Electrostatic chuck, and method for adhering and holding semiconductor wafer to electrostatic chuck
JPH11288996A (en) * 1998-04-04 1999-10-19 Tokyo Electron Ltd Transfer device of processed work
JP2000299367A (en) * 1999-04-15 2000-10-24 Tokyo Electron Ltd Processing apparatus and transfer method of article to be processed
JP2002093715A (en) * 2000-09-12 2002-03-29 Hitachi Kokusai Electric Inc Semiconductor-manufacturing apparatus
JP2005314730A (en) * 2004-04-28 2005-11-10 Ulvac Japan Ltd Method and apparatus for forming organic thin film
KR20060058867A (en) * 2004-11-26 2006-06-01 엘지전자 주식회사 Cassette chamber with a cooling system
JP2006260939A (en) * 2005-03-17 2006-09-28 Ulvac Japan Ltd Manufacturing method and manufacturing device of organic el element
JP2006299358A (en) * 2005-04-21 2006-11-02 Sumitomo Heavy Ind Ltd Vacuum film deposition apparatus, and vacuum film deposition method

Also Published As

Publication number Publication date
CN113088871A (en) 2021-07-09
KR20210080776A (en) 2021-07-01

Similar Documents

Publication Publication Date Title
JP7450372B2 (en) Film deposition apparatus, film deposition method, and electronic device manufacturing method
JP7271740B2 (en) Film forming apparatus, electronic device manufacturing apparatus, film forming method, and electronic device manufacturing method
CN114175228A (en) Alignment mechanism, alignment method, film forming apparatus, and film forming method
US7503710B2 (en) Substrate processing system
JP2021066952A (en) Film deposition apparatus, manufacturing apparatus for electronic device, film deposition method, and manufacturing method for electronic device
CN111434796A (en) Film forming apparatus, film forming method, and apparatus and method for manufacturing electronic device
CN111434795A (en) Film forming apparatus, film forming method, and apparatus and method for manufacturing electronic device
CN112813381B (en) Film forming apparatus
JP2021098885A (en) Film deposition device
CN113106387B (en) Film forming apparatus and method for manufacturing electronic device
KR102182471B1 (en) Film forming apparatus and manufacturing apparatus of electronic device
JP2020070491A (en) Alignment device, film deposition, alignment method, film deposition method, and electronic device manufacturing method
TWI757930B (en) Film forming device
JP7220136B2 (en) Film deposition equipment and electronic device manufacturing equipment
KR20210090129A (en) Film forming apparatus and manufacturing apparatus of electronic device
JP2023088094A (en) Film deposition apparatus and film deposition method
JP2023038027A (en) Film deposition apparatus
JP2023038029A (en) Film deposition apparatus
JP2021098884A (en) Film deposition apparatus, film deposition method and manufacturing method of electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220308