WO2024116362A1 - 発光素子、表示装置、発光素子の製造方法 - Google Patents

発光素子、表示装置、発光素子の製造方法 Download PDF

Info

Publication number
WO2024116362A1
WO2024116362A1 PCT/JP2022/044337 JP2022044337W WO2024116362A1 WO 2024116362 A1 WO2024116362 A1 WO 2024116362A1 JP 2022044337 W JP2022044337 W JP 2022044337W WO 2024116362 A1 WO2024116362 A1 WO 2024116362A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
intermediate layer
layer
emitting element
Prior art date
Application number
PCT/JP2022/044337
Other languages
English (en)
French (fr)
Inventor
久幸 内海
昌行 兼弘
Original Assignee
シャープディスプレイテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープディスプレイテクノロジー株式会社 filed Critical シャープディスプレイテクノロジー株式会社
Priority to PCT/JP2022/044337 priority Critical patent/WO2024116362A1/ja
Publication of WO2024116362A1 publication Critical patent/WO2024116362A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers

Definitions

  • This disclosure relates to a light-emitting element and a display device equipped with the light-emitting element.
  • the light-emitting efficiency of the light-emitting element decreases. For example, if the flatness of the layer in contact with the light-emitting layer in a light-emitting element is low, the layer will come into local contact with the light-emitting layer, which may increase the local light emission of the light-emitting layer and reduce the light-emitting efficiency.
  • the light-emitting layer contains quantum dots as the light-emitting material
  • the top surface of the layer that serves as the base layer for the light-emitting layer is not very flat, the adhesion of the quantum dots in the light-emitting layer decreases, the leakage current of the light-emitting element increases, and the light-emitting efficiency of the light-emitting element further decreases.
  • Patent Document 1 discloses a technology that reduces leakage current in the light-emitting layer by providing a layer of PMMA resin between quantum dots.
  • Patent Document 1 a layer of PMMA resin is provided between the quantum dots, which increases the thickness of the light-emitting layer and increases the resistance of the light-emitting element.
  • the technology described in Patent Document 1 makes it difficult to improve the flatness of the layer in contact with the light-emitting layer. For this reason, the technology described in Patent Document 1 cannot efficiently improve the light-emitting efficiency of the light-emitting element.
  • a light-emitting element includes a first electrode, a second electrode, a light-emitting layer located between the first electrode and the second electrode and having a plurality of quantum dots, and a first intermediate layer located at least either between the first electrode and the light-emitting layer or between the second electrode and the light-emitting layer and in contact with the light-emitting layer, the first intermediate layer including a novolac-type phenolic resin.
  • a method for manufacturing a light-emitting element is a method for manufacturing a light-emitting element including a first electrode, a second electrode, a light-emitting layer located between the first electrode and the second electrode, and a first intermediate layer located at least either between the first electrode and the light-emitting layer or between the second electrode and the light-emitting layer and in contact with the light-emitting layer, the method including forming a first coating film by applying a first solution containing a phenolic compound, and forming the first intermediate layer containing a novolac-type phenolic resin by a condensation polymerization reaction of the phenolic compound in at least a portion of the first coating film.
  • 1 is a schematic cross-sectional side view of a display device according to a first embodiment.
  • 1 is a schematic plan view of a display device according to a first embodiment.
  • 4 is a flowchart of a method for manufacturing the display device according to the first embodiment.
  • 3A to 3C are schematic cross-sectional process diagrams illustrating a manufacturing method of the display device according to the first embodiment.
  • 5A to 5C are schematic cross-sectional views illustrating other steps in the manufacturing method of the display device according to the first embodiment.
  • 5A to 5C are schematic cross-sectional process diagrams illustrating another example of the manufacturing method for the display device according to the first embodiment.
  • 5A to 5C are schematic cross-sectional views illustrating other steps in the manufacturing method of the display device according to the first embodiment.
  • FIG. 11 is a schematic cross-sectional side view of a display device according to a second embodiment.
  • FIG. 11 is a schematic cross-sectional side view of a display device according to a third embodiment.
  • FIG. 2 is a schematic plan view of a display device according to this embodiment.
  • Display device 1 is a device that can be used, for example, as a display for a television or a smartphone.
  • Display device 1 comprises a display unit DA and a frame unit NA formed on the outer periphery of display unit DA.
  • Display device 1 performs display on display unit DA by controlling light emission from each of a number of light-emitting elements (described below) formed in display unit DA.
  • Drivers and the like for driving each of the multiple light-emitting elements of display unit DA may be formed in frame unit NA.
  • FIG. 1 is a schematic side cross-sectional view of the display device according to this embodiment, and is a cross-sectional view taken along line I-I in FIG. 2.
  • FIG. 1 is a diagram showing a cross section passing through blue subpixel SPB, green subpixel SPG, and red subpixel SPR, which will be described later, in a plan view of the display device 1 according to this embodiment.
  • the direction from the substrate 20 to the cathode 26, which will be described later, of the display device 1 may be referred to as "upper”, and the opposite direction may be referred to as "lower”.
  • the display device 1 includes light-emitting elements 2.
  • the light-emitting elements 2 include blue light-emitting elements 2B, green light-emitting elements 2G, and red light-emitting elements 2R, which will be described later.
  • the display device 1 includes an array of a blue sub-pixel SPB in which the blue light-emitting elements 2B are formed, a green sub-pixel SPG in which the green light-emitting elements 2G are formed, and a red sub-pixel SPR in which the red light-emitting elements 2R are formed.
  • the blue light-emitting elements 2B, green light-emitting elements 2G, and red light-emitting elements 2R individually emit blue light, green light, and red light, respectively.
  • the display device 1 performs color display by individually controlling the above-mentioned light-emitting elements, for example, by a driver (not shown) or the like.
  • blue light is, for example, light having a central emission wavelength in a wavelength band of 380 nm or more and 500 nm or less.
  • Green light is, for example, light having a central emission wavelength in a wavelength band of more than 500 nm and less than 600 nm.
  • Red light is, for example, light having a central emission wavelength in a wavelength band of more than 600 nm and less than 780 nm.
  • the light-emitting element 2 includes a substrate 20.
  • the substrate 20 is formed at a position overlapping the display section DA and the frame section NA in a plan view of the display device 1, and the light-emitting element 2 may be considered to include a portion of the substrate 20 that overlaps with the display section DA in a plan view of the display device 1.
  • the substrate 20 may be formed across the display section DA and the frame section NA in a plan view of the display device 1.
  • the upper surface of the substrate 20 may be approximately parallel to the display surface of the display device 1, in other words, the plan view of the substrate 20 may be approximately the same as the plan view of the display device 1.
  • the light-emitting element 2 includes an anode 21 as a first electrode, a hole transport layer 22, an intermediate layer 23 as a first intermediate layer, a light-emitting layer 24, an electron transport layer 25, and a cathode 26 as a second electrode, which are laminated in this order on the substrate 20.
  • the configuration of each layer on the substrate 20 of the light-emitting element 2 is not limited to the above configuration as long as the intermediate layer 23 is located closer to the substrate 20 than the light-emitting layer 24.
  • the light-emitting element 2 may include a cathode 26 as a first electrode, an electron transport layer 25, an intermediate layer 23 as a first intermediate layer, a light-emitting layer 24, a hole transport layer 22, and an anode 21 as a second electrode, which are laminated in this order on the substrate 20.
  • the light-emitting element 2 may include a hole injection layer between the anode 21 and the hole transport layer 22, or an electron injection layer between the electron transport layer 25 and the cathode 26.
  • the light-emitting element 2 may be formed individually for each of the multiple sub-pixels described above.
  • the display device 1 may also include a driver or the like (not shown) at a position overlapping with the frame portion NA of the substrate 20 in a planar view.
  • the substrate 20 may include a pixel circuit (not shown) corresponding to each sub-pixel.
  • the pixel circuit may be electrically connected to the anode 21 of the light-emitting element 2.
  • the display device 1 may control the light emission from each light-emitting element 2 by controlling the application of a voltage to the anode 21 by each pixel circuit through the control of a driver or the like.
  • At least one of the anode 21 and the cathode 26 is a transparent electrode that transmits visible light.
  • the transparent electrode for example, ITO, InZnO, SnO 2 , FTO, or the like may be used.
  • either the anode 21 or the cathode 26 may be a reflective electrode.
  • the reflective electrode may contain a metal material having a high reflectance of visible light, and the metal material may be, for example, Al, Ag, Cu, or Au alone or an alloy of these.
  • the hole transport layer 22 is a layer that transports holes injected from the anode 21 to the light emitting layer 24 side.
  • the hole transport layer 22 is electrically connected to each anode 21 through an opening of a bank BK described later.
  • the material of the hole transport layer 22 can be an organic or inorganic material having hole transport properties that has been conventionally adopted in light emitting devices including quantum dots.
  • Examples of the material of the hole transport layer 22 include poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-4-sec-butylphenyl))diphenylamine)] (abbreviated as "TFB”), poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)-benzidine] (abbreviated as "poly-TPD”), polyvinylcarbazole (abbreviated as "PVK”), and the like. As for these materials, only one type may be used, or two or more types may be appropriately mixed or laminated.
  • the electron transport layer 25 is a layer that transports electrons injected from the cathode 26 to the light-emitting layer 24.
  • the electron transport layer 25 may use, as an electron transport material, an organic or inorganic material having electron transport properties that has been conventionally employed in light-emitting devices including quantum dots.
  • the electron transport material may include, for example, 2,2',2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (abbreviated as "TPBi”), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (abbreviated as "BCP”), 4,7-diphenyl-1,10-phenanthroline (abbreviated as "Bphen”), or the like.
  • the electron transport layer 25 may include, as an electron transport material, bulk zinc oxide (ZnO) that is not nanoparticles, zinc oxide (ZnO), titanium oxide (TiO 2 ), or zirconium oxide (ZrO 2 ).
  • the bulk zinc oxide (ZnO) may be doped with at least one of Li, Mg, Al, Ti, Ga, and Zr.
  • the electron transport material may include only one of the above-mentioned materials, or may include two or more of them as appropriate.
  • the electron transport layer 25 may include nanoparticles including the above-mentioned inorganic electron transport material.
  • the hole injection layer may have a material having the above-mentioned hole transport properties.
  • the electron injection layer may have a material having the above-mentioned electron transport properties.
  • the intermediate layer 23 contacts the surface of the light-emitting layer 24 on the substrate 20 side, and has a function of flattening the surface on which the light-emitting layer 24 is formed by a mechanism described below.
  • the intermediate layer 23 functions as a base layer when the light-emitting layer 24 is formed.
  • the intermediate layer 23 contains a novolac-type phenolic resin.
  • the novolac-type phenolic resin contained in the intermediate layer 23 may be represented by the following general formula.
  • n is an integer of 1 to 4.
  • R 1 , R 2 , and R 3 is an alkyl group having 1 to 4 carbon atoms which may have a substituent, or H.
  • each of R 1 , R 2 , and R 3 may be an alkyl group having at least one hydrogen atom replaced with a substituent.
  • R 4 is an aliphatic compound containing an alkylene group having 1 to 3 carbon atoms which may have a substituent.
  • R 4 may be an alkylene group having at least one hydrogen atom replaced with a substituent.
  • the intermediate layer 23 may contain 20% by volume or more of novolac phenolic resin, or may contain other additives.
  • the intermediate layer 23 may contain, for example, a photosensitive resin.
  • the density of the novolac phenolic resin contained in the intermediate layer 23 may be calculated from the area ratio occupied by the novolac phenolic resin in the cross section of the intermediate layer 23. For example, the area ratio of the novolac phenolic resin in the cross section of the intermediate layer 23 may be 18% or more.
  • the thickness of the intermediate layer 23 may be 5 nm or more. Furthermore, from the viewpoint of sufficiently causing tunneling of holes from the hole transport layer 22 to the light-emitting layer 24 via the intermediate layer 23 and reducing the overall electrical resistance of the light-emitting element 2, the thickness of the intermediate layer 23 may be 20 nm or less.
  • the light-emitting layer 24 includes a light-emitting material that emits light when excited by excitons generated by recombination of holes injected from the anode 21 and electrons injected from the cathode 26. Light emitted from the light-emitting layer 24 is extracted from at least one of the transparent electrodes, the anode 21 and the cathode 26, for example.
  • the light-emitting layer 24 includes a plurality of quantum dots as a light-emitting material.
  • Each quantum dot in the light-emitting layer 24 may have a core/shell structure including a core that emits light by the above-mentioned excitons and a shell that is formed around the core and protects the core.
  • the light-emitting layer 24 also includes an organic or inorganic ligand that coordinates to the quantum dot by forming a coordinate bond with the outermost surface of each quantum dot.
  • quantum dot refers to a dot with a maximum width of 100 nm or less.
  • the shape of the quantum dot is not particularly restricted as long as it satisfies the above maximum width, and is not limited to a spherical three-dimensional shape (circular cross-sectional shape).
  • the shape of the quantum dot may be, for example, a polygonal cross-sectional shape, a rod-like three-dimensional shape, a branch-like three-dimensional shape, a three-dimensional shape with unevenness on the surface, or a combination of these.
  • the quantum dots are typically made of a semiconductor.
  • the semiconductor may have a certain band gap.
  • the semiconductor may be any material capable of emitting light, and may include at least the materials described below.
  • the semiconductor may emit blue, green, and red light, respectively.
  • the semiconductor may include at least one selected from the group consisting of II-VI compounds, III-V compounds, chalcogenides, and perovskite compounds.
  • the II-VI compounds refer to compounds containing II and VI elements
  • the III-V compounds refer to compounds containing III and V elements.
  • the II elements may include Group 2 and Group 12 elements
  • the III elements may include Group 3 and Group 13 elements
  • the V elements may include Group 5 and Group 15 elements
  • the VI elements may include Group 6 and Group 16 elements.
  • the II-VI compound includes, for example, at least one selected from the group consisting of MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, and HgTe.
  • the III-V compound includes, for example, at least one selected from the group consisting of GaAs, GaP, InN, InAs, InP, and InSb.
  • Chalcogenides are compounds that contain Group VI A(16) elements, such as CdS or CdSe. Chalcogenides may also include mixed crystals of these.
  • the perovskite compound has a composition represented by the general formula CsPbX 3 , for example.
  • the constituent element X includes at least one element selected from the group consisting of Cl, Br and I, for example.
  • the numbering of element groups using Roman numerals is based on the old IUPAC (International Union of Pure and Applied Chemistry) system or the old CAS (Chemical Abstracts Service) system, and the numbering of element groups using Arabic numerals is based on the current IUPAC system.
  • the multiple quantum dots in each light-emitting layer 24 may have a superlattice structure in which they are aligned at approximately regular intervals between the surrounding quantum dots.
  • the multiple quantum dots may have a superlattice structure in which they are three-dimensionally arranged so that the center of each core is approximately at the same position as a virtual lattice point.
  • the light-emitting layer 24 is not limited to the above-mentioned configuration, so long as it contains a light-emitting material that emits light due to holes from the anode 21 and electrons from the cathode 26.
  • the light-emitting layer 24 may contain an organic light-emitting material, in which case the display device 1 may be an OLED display that contains an OLED (organic light-emitting diode) as the light-emitting element 2.
  • the light-emitting element 2 includes a bank BK on the substrate 20.
  • the bank BK includes, for example, an insulating resin material including polyimide or the like.
  • the bank BK divides the anode 21, intermediate layer 23, and light-emitting layer 24 of the light-emitting element 2 into a red sub-pixel SPR, a green sub-pixel SPG, and a blue sub-pixel SPB, respectively, in a plan view of the substrate 20.
  • the hole transport layer 22, the electron transport layer 25, and the cathode 26 are formed in common to the above-mentioned multiple sub-pixels.
  • the hole transport layer 22, the electron transport layer 25, and the cathode 26 may also be divided into sub-pixels by the bank BK.
  • the light-emitting layer 24 is partitioned by the bank BK into a red light-emitting layer 24R of the red subpixel SPR, a green light-emitting layer 24G of the green subpixel SPG, and a blue light-emitting layer 24B of the blue subpixel SPB.
  • the red light-emitting layer 24R includes red quantum dots 3R that emit red light.
  • the green light-emitting layer 24G includes green quantum dots 3G that emit green light.
  • the blue light-emitting layer 24B includes blue quantum dots 3B that emit blue light.
  • the red quantum dots 3R, green quantum dots 3G, and blue quantum dots 3B may each have the same configuration as one another, except for the light-emitting color.
  • the anode 21 is also divided by the bank BK into an anode 21R for the red subpixel SPR, an anode 21G for the green subpixel SPG, and an anode 21B for the blue subpixel SPB.
  • the intermediate layer 23 is also divided by the bank BK into an intermediate layer 23R for the red subpixel SPR, an intermediate layer 23G for the green subpixel SPG, and an intermediate layer 23B for the blue subpixel SPB.
  • the anode 21 and intermediate layer 23 may have the same configuration regardless of the emission color of the subpixel to be formed.
  • the anode 21 and intermediate layer 23 may contain different materials between subpixels depending on the band gap of the emission layer 24 included in the same subpixel.
  • the red light-emitting element 2R located in the red subpixel SPR comprises an anode 21R, a hole transport layer 22, an intermediate layer 23R, a red light-emitting layer 24R, an electron transport layer 25, and a cathode 26.
  • the green light-emitting element 2G located in the green subpixel SPG comprises an anode 21G, a hole transport layer 22, an intermediate layer 23G, a green light-emitting layer 24G, an electron transport layer 25, and a cathode 26.
  • the blue light-emitting element 2B located in the blue subpixel SPB comprises an anode 21B, a hole transport layer 22, an intermediate layer 23B, a blue light-emitting layer 24B, an electron transport layer 25, and a cathode 26.
  • the bank BK may be formed in a position that covers the end of each anode 21.
  • the bank BK may have an opening in a part that overlaps with each anode 21 in a plan view of the substrate 20.
  • the bank BK can reduce the effect of electric field concentration at the end of the anode 21 in each light-emitting element 2 on the injection of holes from the anode 21 to the light-emitting layer 24.
  • the display device 1 may include, above the light-emitting element 2, an organic or inorganic sealing layer for sealing the light-emitting element 2, or a capping layer for improving the efficiency of extracting light from the light-emitting element 2.
  • the display device 1 may also include, above the light-emitting element 2, a touch panel unit for causing the display device 1 to function as a touch panel display.
  • Fig. 3 is a flow chart of the method for manufacturing the light-emitting element 2 according to this embodiment.
  • Figs. 4 to 7 are schematic cross-sectional views of steps in the method for manufacturing the light-emitting element 2 according to this embodiment, showing cross sections corresponding to the cross section shown in Fig. 1.
  • the substrate 20 is prepared (step S1).
  • the substrate 20 may be prepared, for example, by cutting a glass substrate or a film substrate into a predetermined shape. Alternatively, a large substrate 20 may be prepared, and after each process is performed, the substrate 20 may be cut out to separate it into a plurality of light-emitting elements 2.
  • Step S1 may include a process of forming pixel circuits at positions corresponding to each sub-pixel of the substrate 20, and may also include a process of forming drivers, etc. on the substrate 20.
  • the anode 21 is formed on the substrate 20 (step S2).
  • the anode 21 may be formed, for example, by forming a thin film of a metal material or the like on the substrate 20 by a sputtering method or the like, and then patterning the thin film by dry etching or the like.
  • a bank BK is formed on the substrate 20 and the anode 21 (step S3).
  • the bank BK may be formed, for example, by applying a photosensitive resin material onto the substrate 20 and the anode 21, and then forming an opening by photolithography or the like at a position that overlaps with the anode 21 in a plan view of the substrate 20.
  • a hole transport layer 22 is formed on the anode 21 (step S4).
  • the hole transport layer 22 may be formed, for example, by applying a material having hole transport properties between the banks BK in a plan view of the substrate 20 and on the anode 21 using an inkjet method or the like.
  • the hole transport layer 22 may be formed, for example, by applying a material having hole transport properties onto the anode 21 and the banks BK using a spin coat method or the like.
  • a first solution is applied onto the hole transport layer 22 and the bank BK to form a first coating film (step S5).
  • the first solution contains, for example, a plurality of phenolic compounds as monomers that are precursors of novolac-type phenolic resins, and a positive-type photosensitive resin.
  • the first solution may contain a photocatalyst that functions as an initiator of the condensation polymerization reaction of the above-mentioned phenolic compounds upon exposure to light.
  • a first coating film 41 is formed in common to a plurality of sub-pixels.
  • the first coating film 41 may be formed by coating using various coating methods including, for example, spin coating.
  • the first coating film 41 may be formed by heating the applied first solution to volatilize the solvent.
  • the first solution applied in step S5 is a solution containing a phenolic compound, a photosensitive resin, and a surfactant.
  • the solution is applied by a spin coating method.
  • the spin coating method for example, the rotation speed of the laminate including the substrate 20 is accelerated to 800 rpm over 5 seconds while the solution is applied.
  • the applied solution is then heated at 90°C for 3 minutes to form the first coating film 41.
  • a photomask M is placed above the side of the applied first coating film 41 opposite the substrate 20 (step S6).
  • the photomask M may be, for example, a mask that blocks ultraviolet light.
  • the photomask M is placed so that a light-transmitting portion MA including an opening that transmits ultraviolet light and the like is positioned at a position overlapping the red sub-pixel SPR.
  • step S7 a part of the applied first coating film 41 is exposed to, for example, ultraviolet light UV from above the side of the photomask M opposite to the substrate 20 (step S7).
  • the ultraviolet light UV is blocked by the photomask M. Therefore, the first coating film 41 located in the green subpixel SPG and the blue subpixel SPB is not irradiated with the ultraviolet light UV.
  • the ultraviolet light UV passes through the light-transmitting portion MA of the photomask M. Therefore, in step S7, only the first coating film 41 located in the red subpixel SPR is irradiated with the ultraviolet light UV.
  • the exposure intensity in step S7 is 200 mJ/ cm2 .
  • step S7 the first coating film 41 located in the red sub-pixel SPR irradiated with ultraviolet light UV changes into the exposed first coating film 42, as shown in the process cross-sectional view F7 in FIG. 5.
  • the photosensitive resin contained in the exposed first coating film 41 is modified, improving the solubility of the first coating film 42 in a developer solution described below.
  • the phenol compound contained in the exposed first coating film 41 initiates a condensation polymerization reaction via a photocatalyst, and a novolac-type phenolic resin is formed in the first coating film 42.
  • the first coating film 42 has the same structure as the intermediate layer 23R described above, except for the thickness.
  • step S8 the first coating film 41 and the first coating film 42 are washed with an appropriate developer to develop the first coating film 41.
  • the first coating film 41 before exposure is insoluble in the developer
  • the first coating film 42 after exposure is soluble in the developer. Therefore, in step S8, only the first coating film 42 located in the red sub-pixel SPR dissolves in the developer.
  • paddle development is performed in step S8.
  • the first coating film 41 is washed five times with a developer containing 0.6 mass % TMAH, and then washed once with water.
  • step S8 in the development process in step S8, only a portion of the first coating film 42 located in the red subpixel SPR is removed.
  • the first coating film 42 is left by a predetermined thickness from the top surface of the hole transport layer 22 in the red subpixel SPR.
  • Methods for leaving the first coating film 42 include, for example, increasing the thickness of the first coating film 41 in step S5, reducing the exposure intensity or shortening the exposure time in step S7, or shortening the cleaning time with the developer in step S8. Therefore, in step S8 according to this embodiment, the first coating film 42 remains as the intermediate layer 23R in the red subpixel SPR, as shown in the process cross-sectional view F8 in FIG. 5. In this manner, the intermediate layer 23R is formed.
  • a part of the light-emitting layer 24 is formed.
  • an example of forming the red light-emitting layer 24R located in the red sub-pixel SPR of the light-emitting layer 24 will be described first.
  • the second solution 43 is applied onto the formed intermediate layer 23R and the first coating film 41 (step S9).
  • the second solution 43 is, for example, a solution in which the red quantum dots 3R and a ligand capable of coordinating with the red quantum dots 3R are dispersed in a second solvent 44.
  • the second solution 43 may be manufactured, for example, by synthesizing the red quantum dots 3R in the second solvent 44 by various methods and then adding the ligand.
  • the second solution 43 is formed in common to a plurality of sub-pixels by various methods including, for example, a spin coating method.
  • the applied second solution 43 is dried (step S10).
  • the drying of the second solution 43 is performed, for example, by heating the second solution 43 or leaving it for a predetermined time to volatilize the second solvent 44 of the second solution 43.
  • the second solvent 44 of the applied second solution 43 volatilizes, and a second coating film 45 is formed, as shown in the process cross-sectional view F10 of FIG. 6.
  • a superlattice structure of red quantum dots 3R is formed by a mechanism described later.
  • FIG. 8 Schematic diagrams L1, L2, and L3 in FIG. 8 are schematic diagrams enlarging a part of the process cross-sectional diagrams F9 and F10 in steps S9 and S10 according to this embodiment.
  • schematic diagrams L1, L2, and L3 in FIG. 8 are schematic diagrams enlarging the region L shown in the process cross-sectional diagrams F9 and F10, in other words, the vicinity of the upper surface of the intermediate layer 23R.
  • Schematic diagrams L1, L2, and L3 in FIG. 8 are diagrams showing steps S9 or S10 at different times.
  • step S9 the second solution 43 is applied to the upper surface 23S of the intermediate layer 23R. Therefore, in step S9, the upper surface 23S of the intermediate layer 23R is in contact with the second solution 43 in which the red quantum dots 3R are dispersed in the second solvent 44, as shown in schematic diagram L1 of FIG. 8.
  • step S10 the second solvent 44 of the applied second solution 43 gradually evaporates.
  • the evaporation of the second solvent 44 occurs gradually from the periphery side of the second solution 43.
  • a flow of the second solvent 44 occurs from the center side of the second solution 43 toward the periphery side.
  • step S10 the second solvent 44 of the second solution 43 evaporates from one end side even near the upper surface 23S of the intermediate layer 23, and further, a flow of the second solvent 44 occurs toward the one end side. Therefore, in step S10, as shown in schematic diagram L2, the thickness of the second solvent 44 of the second solution 43 becomes thinner on one side, and the second solvent 44 flows toward the one side.
  • the red quantum dots 3R in the second solution 43 flow in the first direction D1 along the direction of the flow of the second solvent 44. Therefore, the red quantum dots 3R in the second solution 43 move to the end of the second solution 43 where the thickness of the second solvent 44 is thin. In the vicinity of the end of the second solution 43, the second solvent 44 located between the multiple red quantum dots 3R volatilizes. As a result, a lateral capillary force is generated in the multiple red quantum dots 3R along the second direction D2, which is the direction in which the red quantum dots 3R approach each other. Therefore, in step S10, the red quantum dots 3R are aligned in order from the end side of the second solution 43 where the second solvent 44 volatilizes.
  • step S10 when step S10 is completed and the formation of the second coating film 45 is completed, a superlattice structure of the red quantum dots 3R is formed on the upper surface 23S of the intermediate layer 23R, in other words, in the red subpixel SPR.
  • the flow of the second solvent 44 toward the end of the second solution 43 and the associated flow of the red quantum dots 3R tend to occur more efficiently as the flatness of the top surface 23S on which the second solvent 44 is located increases.
  • Novolac phenolic resin is a polymer of a monomer in which a phenol molecule is bonded to a methylene chain, and tends to polymerize with the phenol hydroxyl groups aligned.
  • the flatness of the top surface 23S of the intermediate layer 23R which is a thin film containing novolac phenolic resin, tends to increase. Therefore, the high flatness of the top surface 23S of the intermediate layer 23R allows the superlattice structure of the red quantum dots 3R to be formed more precisely on the intermediate layer 23R.
  • the lateral capillary force acting between the multiple red quantum dots 3R in the second solution 43 depends on the hydrophobic interaction, electrostatic interaction, van der Waals force, or the like between the multiple red quantum dots 3R.
  • the novolac-type phenolic resin improves the hydrophobic interaction or electrostatic interaction between the multiple red quantum dots 3R described above due to the repeating structure of phenol molecules and methylene chains. As a result, the superlattice structure of the red quantum dots 3R is formed with even greater precision on the intermediate layer 23R.
  • the superlattice structure of the red quantum dots 3R may not be formed on the upper surface of the unexposed first coating film 41, excluding the upper surface 23S of the intermediate layer 23R. Therefore, from the viewpoint of forming a superlattice structure of the red quantum dots 3R in the red subpixel SPR in step S10, the flatness of the upper surface of the unexposed first coating film 41 in positions other than the red subpixel SPR is not particularly required.
  • ⁇ Display device manufacturing method patterning of coating film containing quantum dots> Following the formation of the second coating film 45 and the formation of the superlattice structure of the red quantum dots 3R in the red subpixel SPR, the remaining unexposed first coating film 41 is washed with an appropriate cleaning solution (step S11).
  • the cleaning solution contains, for example, a solvent in which the first coating film 41 is soluble.
  • the first coating film 41 formed in the position including the green subpixel SPG and the blue subpixel SPB is removed.
  • the portion of the second coating film 45 located on the first coating film 41 is removed.
  • the intermediate layer 23R which is part of the first coating film 42 after exposure, is insoluble in the cleaning solution.
  • the second coating film 45 on the intermediate layer 23R is difficult to remove even by the cleaning.
  • the second coating film 45 remains in the red sub-pixel SPR.
  • a red light-emitting layer 24R having a superlattice structure of red quantum dots 3R is formed on the intermediate layer 23R.
  • the portion that overlaps with the intermediate layer 23R in a planar view becomes at least a part of the light-emitting layer 24.
  • steps S5 to S11 are repeatedly executed with some procedure changes.
  • step S6 the position of the light-transmitting portion MA of the photomask M is changed according to the positions of the sub-pixels of the intermediate layer 23 and the light-emitting layer 24 to be formed.
  • step S10 a second coating film 45 is formed on the upper surface of the intermediate layer 23G or the intermediate layer 23B.
  • an intermediate layer 23G and a green light-emitting layer 24G having a superlattice structure of green quantum dots 3G on the upper surface of the intermediate layer 23G are formed in the green subpixel SPG.
  • an intermediate layer 23B and a blue light-emitting layer 24B having a superlattice structure of blue quantum dots 3B on the upper surface of the intermediate layer 23B are formed in the blue subpixel SPB. This completes the process of forming the intermediate layer 23 and the light-emitting layer 24.
  • step S11 of the process of forming the red light-emitting layer 24R a portion of the unexposed first coating film 41 may remain in the green subpixel SPG and the blue subpixel SPB.
  • step S7 of the subsequent process of forming each light-emitting layer 24 the remaining first coating film 41 may be exposed together with the newly applied first coating film 41, or may become part of the first coating film 42 after exposure.
  • the electron transport layer 25 is formed on the light-emitting layer 24 (step S12).
  • the electron transport layer 25 may be formed, for example, by coating a material having electron transport properties on a position including the light-emitting layer 24, as in step S4.
  • the cathode 26 is formed on the electron transport layer 25 (step S13).
  • the cathode 26 may be formed, for example, by depositing a thin film of a metal material or the like on the electron transport layer 25 by a sputtering method or the like.
  • the cathode 26 may be formed so as to be electrically connected to the auxiliary power supply described above. This completes the manufacturing process for the display device 1.
  • the display device 1 includes a light-emitting element 2 including a light-emitting layer 24 and an intermediate layer 23 in contact with the light-emitting layer 24. Since the intermediate layer 23 includes a novolac-type phenolic resin, as described above, the flatness of the upper surface 23S of the intermediate layer 23 in contact with the light-emitting layer 24 is improved, and the intimate contact between the intermediate layer 23 and the light-emitting layer 24 is improved. Therefore, the localized light emission of the light-emitting layer 24 caused by the localized contact between the intermediate layer 23 and the light-emitting layer 24 is reduced, thereby improving the light-emitting efficiency of the light-emitting element 2.
  • the display device 1 equipped with the light-emitting element 2 according to this embodiment which has improved light-emitting efficiency, can reduce power consumption because the light-emitting element 2 can be driven at a lower voltage to perform display.
  • the display device 1 has a longer life because there is less need to drive the light-emitting element 2 at a high voltage that would increase the deterioration of the light-emitting layer 24.
  • the light-emitting element 2 according to this embodiment has an intermediate layer 23 on the substrate 20 side of the light-emitting layer 24. Therefore, as described in this embodiment, a method of forming the light-emitting element 2 can be considered, in which each layer of the light-emitting element 2 is formed in order on the substrate 20.
  • the light-emitting layer 24 is formed on the upper surface 23S of the intermediate layer 23. Therefore, by improving the flatness of the upper surface 23S of the intermediate layer 23, the flatness of the surface on which the light-emitting layer 24 is formed is improved, and the adhesion between the intermediate layer 23 and the light-emitting layer 24 is further improved. Therefore, the light-emitting element 2 according to this embodiment has a further improved light-emitting efficiency.
  • the light-emitting layer 24 of the light-emitting element 2 has quantum dots as the light-emitting material.
  • the process of forming the light-emitting layer 24 includes applying a second solution 43 onto the intermediate layer 23 and forming a second coating film 45 by drying the second solution 43. Therefore, in the process of forming the light-emitting layer 24, the flatness of the upper surface 23S of the intermediate layer 23 is improved, making it easier to form a superlattice structure of quantum dots. Therefore, the adhesion between the quantum dots in the light-emitting layer 24 is improved, and the light-emitting element 2 can reduce the leakage current flowing between the multiple quantum dots in the light-emitting layer 24. Therefore, the light-emitting efficiency of the light-emitting element 2 is further improved.
  • the light-emitting layer 24 in this embodiment contains a ligand capable of coordinating with the quantum dots.
  • a ligand is added to the solution in which the quantum dots are dispersed.
  • the ligand increases the dispersibility of the quantum dots in the solution and reduces the aggregation of the quantum dots, thereby suppressing a decrease in the light-emitting efficiency of the light-emitting layer 24.
  • the ligand increases the dispersibility of the quantum dots in the solution, so the adhesion of the quantum dots in the solution is reduced.
  • the light-emitting element 2 can suppress the reduction in adhesion between the quantum dots in the formed light-emitting layer 24 due to the ligand. Therefore, the light-emitting element 2 further improves the luminous efficiency by maintaining both the reduction in the aggregation of the quantum dots in the light-emitting layer 24 and the improvement in the adhesion of the quantum dots in the light-emitting layer 24.
  • the light-emitting element 2 includes an intermediate layer 23 between the anode 21 and the light-emitting layer 24. Therefore, the light-emitting element 2 can improve the efficiency of hole injection into the light-emitting layer 24 by improving the adhesion between the intermediate layer 23 and the light-emitting layer 24.
  • the mobility of holes is low relative to the mobility of electrons, and as a result, there is a tendency for the light-emitting layer to be in an electron-excess state, in which the concentration of holes injected into the light-emitting layer is lower than the concentration of electrons injected into the light-emitting layer.
  • An electron excess in the light-emitting layer can increase non-light-emitting processes, including the generation of Auger electrons, or processes that can deteriorate the light-emitting material of the light-emitting layer, and can reduce the light-emitting efficiency of the light-emitting element.
  • the light-emitting element 2 improves the efficiency of hole injection into the light-emitting layer 24, thereby reducing the excess of electrons in the light-emitting layer 24 and improving the carrier balance in the light-emitting layer 24. Therefore, the light-emitting element 2 improves the light-emitting efficiency more efficiently, and further reduces the progression of deterioration of the light-emitting layer 24, thereby extending the lifespan.
  • the light-emitting element 2 also has a hole transport layer 22 between the anode 21 and the intermediate layer 23.
  • the light-emitting element 2 can improve the adhesion between the intermediate layer 23 and the light-emitting layer 24 regardless of the flatness of the upper surface of the hole transport layer 22 on the light-emitting layer 24 side. Therefore, the light-emitting element 2 can improve the adhesion between the intermediate layer 23 and the light-emitting layer 24 regardless of the material contained in the hole transport layer 22 or the method of forming the hole transport layer 22.
  • the hole transport layer 22 has nanoparticles as a material having hole transport properties
  • the upper surface of the hole transport layer 22 reflects the shape of each nanoparticle, so the flatness of the upper surface of the hole transport layer 22 may decrease.
  • the light-emitting element 2 can improve the adhesion between the intermediate layer 23 and the light-emitting layer 24. Therefore, the light-emitting element 2 can achieve both the freedom of the material and manufacturing method of the hole transport layer 22 and the improvement of the luminous efficiency.
  • the intermediate layer 23 contains a photosensitive resin.
  • the first coating film 41 formed in the process of forming the intermediate layer 23 contains a photosensitive resin. Therefore, the intermediate layer 23 can be formed by patterning the first coating film 41 by photolithography and leaving only a portion of the exposed first coating film 42.
  • the accuracy of the formation position of the intermediate layer 23 is improved compared to a method in which the material of the intermediate layer 23 is applied separately by an inkjet method. Therefore, according to this formation method, the intermediate layer 23 can be formed with higher resolution, and the resolution of each subpixel of the display device 1 can be improved. Furthermore, according to this formation method, the accuracy of the film thickness of the intermediate layer 23 is improved and the formation process of the intermediate layer 23 is simplified compared to a method in which the material of the intermediate layer 23 is applied separately by an inkjet method.
  • the intermediate layer 23 containing a photosensitive resin and formed by a photolithography method can further improve the film formability of the light-emitting layer 24 formed on the upper surface.
  • the condensation polymerization reaction of the phenol compound in the first coating film 41 is initiated by exposing the first coating film 41 to light in the above-mentioned photolithography. Therefore, in the process of forming the intermediate layer 23, the process of separately carrying out the condensation polymerization reaction of the phenol compound in the first coating film 41 can be eliminated, and the process of forming the intermediate layer 23 is simplified.
  • the second solution 43 is applied onto the already formed intermediate layer 23 and the unexposed first coating film 41. Therefore, the patterning of the second coating film 45 formed from the second solution 43 can be performed together with the removal of the unexposed first coating film 41. Therefore, the process of removing the unexposed portion of the first coating film 41 used to form the intermediate layer 23 can be utilized for patterning the second coating film 45 for forming the light-emitting layer 24, simplifying the process of forming the intermediate layer 23 and the light-emitting layer 24. Furthermore, according to the above method, there is no need to apply the material of the light-emitting layer 24 to each subpixel by an inkjet method or the like, simplifying the process of forming the light-emitting layer 24.
  • the residue of the exposed first coating film 42 that remains after not being completely washed away by the developer can be used as the intermediate layer 23. Therefore, according to the above method, the process of separately forming the intermediate layer 23 is not necessary, and the process of forming the intermediate layer 23 can be further simplified.
  • the light-emitting elements according to Examples 1 and 2 were manufactured under the above-mentioned manufacturing conditions by the same method as the manufacturing method of the light-emitting element 2 according to the present embodiment described above.
  • the novolac-type phenolic resin contained in the intermediate layer 23 was a modified novolac-type phenolic resin, unlike the light-emitting element according to Example 1.
  • the novolac-type phenolic resin according to Example 1 is one in which, in the above general formula, R 1 , R 2 , and R 3 are each H, and R 4 is a methylene group represented by the following chemical formula:
  • the modified novolak phenolic resin according to Example 2 has the above general formula in which R 1 , R 2 and R 3 are each H, and R 4 is a dimethylmethylene group represented by the following chemical formula.
  • the light-emitting element according to Comparative Example 1 does not include an intermediate layer 23, unlike the light-emitting elements according to Examples 1 and 2.
  • the light-emitting element according to Comparative Example 1 was manufactured by a method that partially modified the manufacturing method of the light-emitting element 2 according to the above-mentioned embodiment. Specifically, in the manufacturing method of the light-emitting element according to Comparative Example 1, the first solution applied in step S5 does not contain a phenol compound, and the first coating film 42 is entirely removed in step S8.
  • Comparative example 2 differs from the light-emitting elements of Examples 1 and 2 in that the intermediate layer 23 has PMMA instead of novolac phenolic resin.
  • the light-emitting element of Comparative example 2 was manufactured by the same method as the manufacturing method of the light-emitting element 2 of the present embodiment described above, except that the first solution applied in step S5 contains a phenolic compound as a precursor of PMMA.
  • the column “Presence/Absence” of "Intermediate Layer” indicates the presence or absence of the intermediate layer 23 in each light-emitting element.
  • the column “Material” of "Intermediate Layer” indicates the name of the material that the intermediate layer 23 mainly contains, when each light-emitting element has the intermediate layer 23.
  • the "Film surface roughness [nm]” column indicates the film surface roughness of the underlayer of the light-emitting layer 24 of each light-emitting element in units of nm. Therefore, the “Film surface roughness [nm]” column indicates the roughness of the upper surface of the intermediate layer 23 in Example 1, Example 2, and Comparative Example 2, and indicates the roughness of the upper surface of the hole transport layer 22 in Comparative Example 1.
  • the “RMS” and “Rmax” columns of "Film surface roughness [nm]” indicate the root mean square value of the roughness of the film surface and the maximum roughness of the film surface, respectively. In each Example and Comparative Example, the film surface roughness was measured under the same conditions.
  • Example 1 the column “External quantum efficiency EQE [%]” indicates the external quantum efficiency of each light-emitting element in % when the light-emitting element is driven at a current density of 50.0 mA/cm 2. The external quantum efficiency was measured by measuring the emission luminance of each light-emitting element in a 4 mm square area viewed in the stacking direction of each light-emitting element.
  • the light-emitting devices of Examples 1 and 2 had a significantly reduced film surface roughness of the intermediate layer 23, which is the underlayer of the light-emitting layer 24, and also had improved external quantum efficiency.
  • the light-emitting device of Comparative Example 2 had a reduced film surface roughness of the intermediate layer 23, but the external quantum efficiency was almost unchanged.
  • FIG. 9 is a schematic side cross-sectional view of the display device 4 according to this embodiment, showing a cross section corresponding to the cross section of the display device 1 shown in Fig. 1.
  • the display device 4 according to this embodiment includes a light-emitting element 5 instead of the light-emitting element 2.
  • the light-emitting element 5 has a red light-emitting element 5R located in the red sub-pixel SPR, a green light-emitting element 5G located in the green sub-pixel SPG, and a blue light-emitting element 5B located in the blue sub-pixel SPB.
  • Light-emitting element 5 has the same configuration as light-emitting element 2, except that it has intermediate layer 27 as a first intermediate layer instead of intermediate layer 23.
  • Intermediate layer 27 is formed between light-emitting layer 24 and electron transport layer 25, and has the same configuration as intermediate layer 23, except that it is in contact with the upper surface of light-emitting layer 24 on the cathode 26 side.
  • intermediate layer 27 contains novolac-type phenolic resin.
  • the intermediate layer 27 has an intermediate layer 27R located in the red subpixel SPR, an intermediate layer 27G located in the green subpixel SPG, and an intermediate layer 27B located in the blue subpixel SPB. Therefore, the red light-emitting element 5R has an intermediate layer 27R, the green light-emitting element 5G has an intermediate layer 27G, and the blue light-emitting element 5B has an intermediate layer 27B.
  • the light-emitting element 5 according to this embodiment may be manufactured by a method that is a partial modification of the method for manufacturing the light-emitting element 2 according to the previous embodiment.
  • the substrate 20, the anode 21, the bank BK, and the hole transport layer 22 may be formed by the same method as steps S1 to S4 described in FIG. 3.
  • the light-emitting layer 24 may be formed following the formation of the hole transport layer 22, the light-emitting layer 24 may be formed.
  • the light-emitting layer 24 may be formed by the same method as in steps S5 to S11 described above, except that all of the first coating film 42 exposed in step S8 is removed. Therefore, the light-emitting layer 24 according to this embodiment may have a quantum dot superlattice structure.
  • the first coating film 41 does not need to contain a novolac-type phenolic resin, and a quantum dot superlattice structure does not need to be formed in step S10. Therefore, the light-emitting layer 24 according to this embodiment does not need to have a quantum dot superlattice structure.
  • the light-emitting layer 24 may be formed by applying layers in different colors using an inkjet method or the like.
  • the intermediate layer 27 may be formed following the formation of the light-emitting layer 24.
  • the above-mentioned first solution is first applied onto the light-emitting layer 24 and the bank BK to form the first coating film 41.
  • a photomask is used to expose only the first coating film 41 that overlaps with the light-emitting layer 24 in a planar view of the substrate 20, in order to initiate a condensation polymerization reaction of the phenol compound.
  • the first coating film 42 containing a novolac-type phenolic resin is formed only on the light-emitting layer 24.
  • the unexposed first coating film 41 is washed and removed using an appropriate developer, and the remaining exposed first coating film 42 becomes the intermediate layer 27.
  • the electron transport layer 25 and the cathode 26 may be formed by the same method as in steps S12 and S13 described above.
  • the intermediate layer 27 contains a novolac-type phenolic resin that tends to polymerize with the phenol hydroxyl groups aligned in the condensation polymerization reaction. Therefore, in this embodiment as well, the flatness of the surface of the intermediate layer 27 that contacts the light-emitting layer 24 is improved, and the adhesion between the intermediate layer 27 and the light-emitting layer 24 is improved. Therefore, the localized light emission of the light-emitting layer 24 caused by the localized contact between the intermediate layer 27 and the light-emitting layer 24 is reduced, thereby improving the light-emitting efficiency of the light-emitting element 5.
  • the light-emitting element 5 includes an intermediate layer 27 between the cathode 26 and the light-emitting layer 24. Therefore, the light-emitting element 5 can improve the efficiency of electron injection into the light-emitting layer 24 by improving the adhesion between the intermediate layer 27 and the light-emitting layer 24. Depending on the design of each layer, the light-emitting element may be in a state of excess holes, in which the concentration of electrons injected into the light-emitting layer is lower than the concentration of holes injected into the light-emitting layer.
  • the light-emitting element 5 improves the efficiency of electron injection into the light-emitting layer 24, thereby reducing the excess of holes in the light-emitting layer 24 and improving the carrier balance in the light-emitting layer 24. Therefore, the light-emitting element 5 improves the light-emitting efficiency more efficiently, and further reduces the progression of deterioration of the light-emitting layer 24, thereby extending the lifespan.
  • the light-emitting element 5 also has an electron transport layer 25 between the cathode 26 and the intermediate layer 27.
  • the light-emitting element 5 can improve the adhesion between the intermediate layer 27 and the light-emitting layer 24 regardless of the flatness of the lower surface of the electron transport layer 25 on the light-emitting layer 24 side. Therefore, the light-emitting element 5 can improve the adhesion between the intermediate layer 27 and the light-emitting layer 24 regardless of the material contained in the electron transport layer 25 or the method of forming the electron transport layer 25.
  • nickel oxide (NiO) nanoparticles can be cited as an example of a material having electron transport properties contained in the electron transport layer 25.
  • the light-emitting element 5 can improve the adhesion between the intermediate layer 27 and the light-emitting layer 24. Therefore, the light-emitting element 5 can achieve both freedom in the material and manufacturing method of the electron transport layer 25 and improved luminous efficiency.
  • Fig. 10 is a schematic side cross-sectional view of the display device 6 according to this embodiment, showing a cross section corresponding to the cross section of the display device 1 shown in Fig. 1.
  • the display device 6 according to this embodiment includes a light-emitting element 7 instead of the light-emitting element 2 or the light-emitting element 5.
  • the light-emitting element 7 has a red light-emitting element 7R located in the red sub-pixel SPR, a green light-emitting element 7G located in the green sub-pixel SPG, and a blue light-emitting element 7B located in the blue sub-pixel SPB.
  • Light-emitting element 7 has the same configuration as light-emitting element 2 or light-emitting element 5, except that it has both intermediate layer 23 as the first intermediate layer and intermediate layer 27 as the second intermediate layer.
  • light-emitting element 7 has both intermediate layer 23 in contact with the lower surface of light-emitting layer 24 on the anode 21 side and intermediate layer 27 in contact with the upper surface of light-emitting layer 24 on the cathode 26 side, and intermediate layer 23 and intermediate layer 27 have novolac-type phenolic resin.
  • Red light-emitting element 7R has intermediate layer 23R and intermediate layer 27R
  • green light-emitting element 7G has intermediate layer 23G and intermediate layer 27G
  • blue light-emitting element 7B has intermediate layer 27B and intermediate layer 27B.
  • the light-emitting element 7 may be manufactured by a method that partially changes the manufacturing method of the light-emitting element 2 or light-emitting element 5 according to the above-mentioned embodiment.
  • the substrate 20, the anode 21, the bank BK, the hole transport layer 22, the intermediate layer 23, and the light-emitting layer 24 may be formed by the same method as steps S1 to S11 described in FIG. 3. Therefore, in this embodiment, the light-emitting layer 24 may have a quantum dot superlattice structure.
  • the intermediate layer 27 after the formation of the light-emitting layer 24, the intermediate layer 27 may be formed by the same method as the method of forming the intermediate layer 27 according to the previous embodiment.
  • the electron transport layer 25 and the cathode 26 may be formed by the same method as steps S12 and S13 described above.
  • the flatness of both the surface of the intermediate layer 23 in contact with the light-emitting layer 24 and the surface of the intermediate layer 27 in contact with the light-emitting layer 24 is improved, and the closeness between the intermediate layer 23 and the light-emitting layer 24 and the closeness between the intermediate layer 27 and the light-emitting layer 24 are both improved. Therefore, the light-emitting element 7 reduces both the local contact between the intermediate layer 23 and the light-emitting layer 24 and the local contact between the intermediate layer 27 and the light-emitting layer 24, and further improves the light-emitting efficiency. In addition, by including both the intermediate layer 23 and the intermediate layer 27, the light-emitting element 7 improves the efficiency of both hole injection and electron injection into the light-emitting layer 24, and further improves the light-emitting efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

第1電極(21)と、第2電極(26)と、第1電極と前記第2電極との間に位置する発光層(24)と、第1電極と発光層との間、および第2電極と発光層との間の少なくとも一方に位置し、発光層に接する第1中間層(23)と、を備える。第1中間層は、ノボラック型フェノール樹脂を含む。

Description

発光素子、表示装置、発光素子の製造方法
 本開示は、発光素子、および当該発光素子を備えた表示デバイスに関する。
 電界注入型の発光素子において、発光層と接する層の平坦性が低い場合、発光素子の発光効率が低下する。例えば、発光素子において発光層と接する層の平坦性が低い場合、当該層と発光層とが局所的に接することに伴い、発光層の局所発光が増大し、発光効率が低下する場合がある。
 また、発光層が発光材料として量子ドットを有する場合、発光層の下地層となる層の上面の平坦性が低い場合、発光層における量子ドットの密接性が低下し、発光素子のリーク電流が増大し、発光素子の発光効率のさらなる低下を招来する。
 特許文献1は、量子ドットの間にPMMA樹脂の層を設けることにより、発光層におけるリーク電流を低減する技術について開示する。
日本国特表2020-537338号
 特許文献1においては、量子ドットの間にPMMA樹脂の層を設けるため、発光層の層厚が増大し、発光素子の抵抗が増大する。また、特許文献1に記載の技術によっては、発光層と接する層の平坦性を改善することは困難である。このため、特許文献1に記載の技術は、発光素子の発光効率を効率的に改善できない。
 本開示の一態様に係る発光素子は、第1電極と、第2電極と、前記第1電極と前記第2電極との間に位置し、複数の量子ドットを有する発光層と、前記第1電極と前記発光層との間、および前記第2電極と前記発光層との間の少なくとも一方に位置し、前記発光層に接する第1中間層と、を備え、前記第1中間層は、ノボラック型フェノール樹脂を含む。
 本開示の他の一態様に係る発光素子の製造方法は、第1電極と、第2電極と、前記第1電極と前記第2電極との間に位置する発光層と、前記第1電極と前記発光層との間、および前記第2電極と前記発光層との間の少なくとも一方に位置し、前記発光層に接する第1中間層と、を備えた発光素子の製造方法であって、フェノール化合物を含む第1溶液の塗布による第1塗布膜の形成と、前記第1塗布膜の少なくとも一部における前記フェノール化合物の縮重合反応によるノボラック型フェノール樹脂を含む前記第1中間層の形成と、を含む。
 発光層と接する第1中間層の平坦性を向上させ、発光素子の発光効率を改善する。
実施形態1に係る表示装置の概略側断面図である。 実施形態1に係る表示装置の概略平面図である。 実施形態1に係る表示装置の製造方法のフローチャートである。 実施形態1に係る表示装置の製造方法における概略の断面工程図である。 実施形態1に係る表示装置の製造方法における他の概略の断面工程図である。 実施形態1に係る表示装置の製造方法における他の概略の断面工程図である。 実施形態1に係る表示装置の製造方法における他の概略の断面工程図である。 実施形態1に係る表示装置の製造方法における、量子ドットの超格子構造の形成過程を説明するための模式図である。 実施形態2に係る表示装置の概略側断面図である。 実施形態3に係る表示装置の概略側断面図である。
 〔実施形態1〕
 <表示装置:概要>
 以下、本開示の実施形態について図面を参照しつつ説明する。なお、各図面において、同様の構成については同一の符号を付してその説明を省略する。
 図2は本実施形態に係る表示装置の概略平面図である。表示装置1は、例えば、テレビまたはスマートフォン等のディスプレイに用いることのできる装置である。表示装置1は、表示部DAと表示部DAの外周に形成された額縁部NAとを備える。表示装置1は、表示部DAに形成された後述する複数の発光素子のそれぞれからの発光を制御することにより、表示部DAにおいて表示を行う。額縁部NAには、表示部DAの複数の発光素子のそれぞれを駆動するためのドライバ等が形成されてもよい。
 本実施形態に係る表示装置1の表示部DAの構造について、図1を参照してより詳細に説明する。図1は、本実施形態に係る表示装置の概略側断面図であり、図2に示すI-I線矢視断面図である。特に、図1は、本実施形態に係る表示装置1の平面視において、後述する青色サブ画素SPB、緑色サブ画素SPG、および赤色サブ画素SPRを通る断面について示す図である。本開示において、表示装置1の後述する基板20からカソード26へ向かう方向を「上」として記載し、その反対方向を「下」と記載する場合がある。
 図1に示すように、表示装置1は、発光素子2を備える。発光素子2は、後述する青色発光素子2B、緑色発光素子2G、および赤色発光素子2Rを含む。表示装置1は、青色発光素子2Bが形成される青色サブ画素SPBと、緑色発光素子2Gが形成される緑色サブ画素SPGと、赤色発光素子2Rが形成される赤色サブ画素SPRとを配列して備える。青色発光素子2B、緑色発光素子2G、および赤色発光素子2Rは、それぞれ、青色光、緑色光、および赤色光を個々に出射する。これにより表示装置1は、例えば、図示しないドライバ等により、上述した発光素子を個々に制御することにより、カラー表示を行う。
 なお、本実施形態において、青色光とは、例えば、380nm以上500nm以下の波長帯域に発光中心波長を有する光である。また、緑色光とは、例えば、500nm超600nm以下の波長帯域に発光中心波長を有する光のことである。さらに、赤色光とは、600nm超780nm以下の波長帯域に発光中心波長を有する光のことである。
 <表示装置:発光素子:概要>
 発光素子2は、基板20を備える。例えば、基板20は、表示装置1の平面視において、表示部DAと額縁部NAとに重なる位置に形成され、発光素子2は、表示装置1の平面視において、基板20の表示部DAと重なる部分を備えていると見なしてよい。換言すれば、基板20は、表示装置1の平面視において、表示部DAと額縁部NAとに渡って形成されていてもよい。基板20の上面は表示装置1の表示面と略平行であってもよく、換言すれば、基板20の平面視は表示装置1の平面視と略同一であってもよい。
 さらに、発光素子2は、基板20上に、第1電極としてのアノード21、正孔輸送層22、第1中間層としての中間層23、発光層24、電子輸送層25、および第2電極としてのカソード26を、この順に積層して備える。ただし、本実施形態において、発光素子2の基板20上の各層の構成は、中間層23が発光層24より基板20の側に位置すれば、上記構成に限られない。例えば、発光素子2は、基板20上に、第1電極としてのカソード26、電子輸送層25、第1中間層としての中間層23、発光層24、正孔輸送層22、および第2電極としてのアノード21を、この順に積層して備えてもよい。さらに、発光素子2は、アノード21と正孔輸送層22との間の正孔注入層、あるいは、電子輸送層25とカソード26との間の電子注入層を備えていてもよい。
 発光素子2は、上述した複数のサブ画素のそれぞれに個別に形成されていてもよい。また、表示装置1は、平面視において基板20の額縁部NAと重なる位置に図示しないドライバ等を備えていてもよい。基板20は、各サブ画素に対応する図示しない画素回路を備えていてもよい。画素回路は、発光素子2のアノード21と電気的に接続してもよい。表示装置1は、ドライバ等の制御を介して、各画素回路によるアノード21への電圧印加を制御することにより、各発光素子2からの発光を制御してもよい。
 <表示装置:発光素子:電極>
 アノード21とカソード26との少なくとも何れか一方は、可視光を透過する透明電極である。透明電極としては、例えば、ITO、InZnO、SnO、またはFTO等が用いられてもよい。また、アノード21またはカソード26のいずれか一方は反射電極であってもよい。反射電極は、可視光の反射率の高い金属材料を含んでいてもよく、当該金属材料は、例えば、Al、Ag、Cu、またはAuの単独またはこれらの合金であってもよい。
 <表示装置:発光素子:電荷輸送層>
 正孔輸送層22は、アノード21から注入された正孔を発光層24側に輸送する層である。正孔輸送層22は、各アノード21と後述するバンクBKの開口を介して電気的に接続する。正孔輸送層22の材料には、量子ドットを含む発光素子等において、従来から採用されている、正孔輸送性を有する有機または無機の材料を使用することができる。正孔輸送層22の材料としては、例えば、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(4,4’-(N-4-sec-ブチルフェニル))ジフェニルアミン)](略称「TFB」)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)-ベンジジン](略称「poly-TPD」)、ポリビニルカルバゾール(略称「PVK」)等が挙げられる。これらの材料についても、一種類のみを用いてもよく、適宜二種類以上を混合または積層して用いてもよい。
 電子輸送層25は、カソード26から注入された電子を発光層24へと輸送する層である。電子輸送層25は、電子輸送材料として、量子ドットを含む発光素子等において、従来から採用されている、電子輸送性を有する有機または無機の材料を使用することができる。電子輸送材料は、例えば、2,2’,2”-(1,3,5-ベンジントリイル)-トリス(1-フェニル-1-H-ベンズイミダゾール)(略称「TPBi」)、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(略称「BCP」)、4,7-ジフェニル-1,10-フェナントロリン(略称「Bphen」)等を含んでいてもよい。あるいは、電子輸送層25は、電子輸送材料として、ナノ粒子ではないバルクの酸化亜鉛(ZnO)、酸化亜鉛(ZnO)、酸化チタン(TiO)、または酸化ジルコニウム(ZrO)を含んでもよい。バルクの酸化亜鉛(ZnO)は、Li、Mg、Al、Ti、Ga、Zrのうち少なくとも1つがドープされてもよい。電子輸送材料は、上述した材料について、一種類のみを含んでもよく、適宜二種類以上を含んでもよい。電子輸送層25は、上述した無機の電子輸送材料を含むナノ粒子を含んでもよい。
 発光素子2が正孔注入層を含む場合、正孔注入層は上述した正孔輸送性を有する材料を有してもよい。発光素子2が電子注入層を含む場合、電子注入層は上述した電子輸送性を有する材料を有してもよい。
 <表示装置:発光素子:中間層>
 中間層23は、発光層24の基板20の側の表面と接し、後述する機構により、発光層24が形成される面を平坦化する機能を有する。特に、本実施形態において、中間層23は、発光層24が形成される際における下地層として機能する。中間層23は、ノボラック型フェノール樹脂を含む。本実施形態において、中間層23が含むノボラック型フェノール樹脂は下記一般式にて表されてもよい。
Figure JPOXMLDOC01-appb-C000002
 上記一般式において、nは1以上4以下の整数である。R、R、およびRのそれぞれは、置換基を有してもよい炭素数1以上4以下のアルキル基またはHである。換言すれば、R、R、およびRのそれぞれは、少なくとも一つの水素が置換基に置き換わったアルキル基であってもよい。Rは、置換基を有してもよい炭素数1以上3以下のアルキレン基を含む脂肪族化合物である。例えば、Rは、少なくとも一つの水素が置換基に置き換わったアルキレン基であってもよい。
 なお、中間層23は、20体積%以上のノボラック型フェノール樹脂を含んでいてもよく、一方、他の添加物等を含んでいてもよい。中間層23は、例えば、感光性樹脂を含んでいてもよい。中間層23に含まれるノボラック型フェノール樹脂の密度は、中間層23の断面において、ノボラック型フェノール樹脂がしめる面積割合から算出してもよい。例えば、中間層23の断面において、ノボラック型フェノール樹脂の面積割合は18%以上であってもよい。
 中間層23の成膜性を高め、また、後述する発光層24が形成される面の平坦化の機能を向上させる観点から、中間層23の層厚は5nm以上であってもよい。また、中間層23を介した正孔輸送層22から発光層24への正孔のトンネリングを十分に生じさせ、発光素子2の全体の電気抵抗を低減する観点から、中間層23の層厚は20nm以下であってもよい。
 <表示装置:発光素子:発光層>
 発光層24は、アノード21から注入された正孔とカソード26から注入された電子との再結合によって生じる励起子によって励起され発光する発光材料を備える。発光層24からの発光は、例えば、アノード21とカソード26とのうち少なくとも一方の透明電極から取り出される。
 例えば、発光層24は発光材料として複数の量子ドットを含む。発光層24が備える各量子ドットは、上述した励起子によって発光するコアと、当該コアの周囲に形成されコアを保護するシェルと、を含むコア/シェル構造を有してもよい。また、本実施形態において、発光層24は、各量子ドットの最外周面と配位結合を形成することにより、当該量子ドットに配位する、有機または無機のリガンドを含む。
 なお、本開示において、「量子ドット」とは、最大幅が100nm以下のドットを意味する。量子ドットの形状は、上記最大幅を満たす範囲であればよく、特に制約されず、球状の立体形状(円状の断面形状)に限定されるものではない。量子ドットの形状は例えば、多角形状の断面形状、棒状の立体形状、枝状の立体形状、表面に凹凸を有す立体形状でもよく、または、それらの組合せでもよい。
 量子ドットは、典型的には半導体から成るとよい。半導体とは、一定のバンドギャップを有するとよい。半導体とは、光を発することができる材料であればよく、また、少なくとも下述する材料を含むとよい。半導体は、青色、緑色および赤色の光をそれぞれ発することができるとよい。半導体は、例えば、II-VI族化合物、III-V族化合物、カルコゲナイドおよびペロブスカイト化合物からなる群より選択される少なくとも1種を含む。なお、II-VI族化合物とはII族元素とVI族元素を含む化合物を意味し、III-V族化合物はIII族元素とV族元素を含む化合物を意味する。また、II族元素とは2族元素および12族元素を含み、III族元素とは3族元素および13族元素を含み、V族元素は5族元素および15族元素を含み、VI族元素は6族元素および16族元素を含み得る。
 II-VI族化合物は、例えば、MgS、MgSe、MgTe、CaS、CaSe、CaTe、SrS、SrSe、SrTe、BaS、BaSe、BaTe、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSe、およびHgTeからなる群より選択される少なくとも1種を含む。
 III-V族化合物は、例えば、GaAs、GaP、InN、InAs、InP、およびInSbからなる群より選択される少なくとも1種を含む。
 カルコゲナイドは、VI A(16)族元素を含む化合物であり、例えば、CdS又はCdSeを含む。カルコゲナイドが、これらの混晶を含んでもよい。
 ペロブスカイト化合物は、例えば、一般式CsPbXで表される組成を有する。構成元素Xは、例えば、Cl、BrおよびIからなる群より選択される少なくとも1種を含む。
 ここで、ローマ数字を用いた元素の族の番号表記は旧IUPAC(International Union of Pure and Applied Chemistry、国際純正・応用化学連合)方式または旧CAS(Chemical Abstracts Service)方式に基づく表記で、アラビア数字を用いた元素の族の番号表記は現IUPAC方式に基づく表記である。
 本実施形態において、各発光層24の複数の量子ドットは、周囲の量子ドットとの間に略一定の間隔をおいて整列する超格子構造を有してもよい。特に、各発光層24において、複数の量子ドットは、各々のコアの中心が仮想的な格子点と略同一の位置となるように三次元配列した超格子構造を有してもよい。
 なお、発光層24は、アノード21からの正孔とカソード26からの電子とによって発光する発光材料を含む限り、上述した構成に限られない。例えば、発光層24は、有機の発光材料を備えてもよく、この場合、表示装置1は、発光素子2としてOLED(有機発光ダイオード)を含むOLEDディスプレイであってもよい。
 <表示装置:発光素子:バンク>
 さらに、発光素子2は、基板20上にバンクBKを備える。バンクBKは、例えば、ポリイミド等を含む絶縁性の樹脂材料を含む。バンクBKにより、発光素子2のアノード21、中間層23、および発光層24のそれぞれは、基板20の平面視において、赤色サブ画素SPR、緑色サブ画素SPG、および青色サブ画素SPBに区画される。本実施形態においては、正孔輸送層22、電子輸送層25、およびカソード26は、上述した複数のサブ画素に対し共通に形成されている。ただし、正孔輸送層22、電子輸送層25、およびカソード26についても、バンクBKによってサブ画素ごとに区画されてもよい。
 本実施形態において、特に、発光層24は、バンクBKにより、赤色サブ画素SPRの赤色発光層24R、緑色サブ画素SPGの緑色発光層24G、および青色サブ画素SPBの青色発光層24Bに区画される。赤色発光層24Rは、赤色光を発する赤色量子ドット3Rを備える。緑色発光層24Gは、緑色光を発する緑色量子ドット3Gを備える。青色発光層24Bは、青色光を発する青色量子ドット3Bを備える。赤色量子ドット3R、緑色量子ドット3G、および青色量子ドット3Bのそれぞれは、発光色を除き互いに同一の構成を備えてもよい。
 他にも、アノード21は、バンクBKにより、赤色サブ画素SPRのアノード21R、緑色サブ画素SPGのアノード21G、および青色サブ画素SPBのアノード21Bに区画される。また、中間層23は、バンクBKにより、赤色サブ画素SPRの中間層23R、緑色サブ画素SPGの中間層23G、および青色サブ画素SPBの中間層23Bに区画される。
 ただし、アノード21および中間層23は、形成されるサブ画素の発光色によらず同一の構成を有してもよい。あるいは、アノード21および中間層23は、同じサブ画素に含まれる発光層24のバンドギャップに応じて、サブ画素の間において異なる材料を含んでいてもよい。
 したがって、本実施形態において、赤色サブ画素SPRに位置する赤色発光素子2Rは、アノード21R、正孔輸送層22、中間層23R、赤色発光層24R、電子輸送層25、およびカソード26を備える。また、緑色サブ画素SPGに位置する緑色発光素子2Gは、アノード21G、正孔輸送層22、中間層23G、緑色発光層24G、電子輸送層25、およびカソード26を備える。さらに、青色サブ画素SPBに位置する青色発光素子2Bは、アノード21B、正孔輸送層22、中間層23B、青色発光層24B、電子輸送層25、およびカソード26を備える。
 バンクBKは、各アノード21の端部を覆う位置に形成されていてもよい。換言すれば、バンクBKは、基板20の平面視において、各アノード21と重なる部分の一部に開口を有してもよい。この場合、バンクBKは、各発光素子2におけるアノード21の端部における電界集中がアノード21から発光層24への正孔の注入に与える影響を低減できる。
 <表示装置:補記>
 なお、表示装置1は、発光素子2の上層に、発光素子2を封止するための有機または無機の封止層、または、発光素子2からの光の取り出し効率を向上させるためのキャッピングレイヤ等を備えていてもよい。また、表示装置1は、発光素子2の上層に、表示装置1をタッチパネルディスプレイとして機能させるためのタッチパネルユニットを備えていてもよい。
 <表示装置の製造方法:正孔輸送層の形成まで>
 図3から図7を参照して、本実施形態に係る発光素子2の製造方法について説明する。図3は、本実施形態に係る発光素子2の製造方法のフローチャートである。図4から図7は、本実施形態に係る発光素子2の製造方法における概略の工程断面図であり、図1に示す断面と対応する断面について示す。
 本実施形態に係る発光素子2の製造方法においては、はじめに、基板20を用意する(ステップS1)。基板20の用意は、例えば、ガラス基板またはフィルム基板等を所定の形状に切り出すことにより実行してもよい。あるいは、大判の基板20を用意し、各工程の実行後に基板20を切り出すことにより複数の発光素子2に分断してもよい。ステップS1は、基板20の各サブ画素に対応する位置に画素回路を形成する工程を含んでよく、また、基板20にドライバ等を形成する工程を含んでよい。
 次いで、基板20上にアノード21を形成する(ステップS2)。アノード21は、例えば、金属材料等の薄膜をスパッタ法等により基板20上に成膜した後、ドライエッチング等によってパターニングすることにより形成してもよい。
 次いで、基板20上およびアノード21上にバンクBKを形成する(ステップS3)。バンクBKは、例えば、感光性樹脂材料を基板20上およびアノード21上に塗布成膜した後、フォトリソグラフィ等によって基板20の平面視においてアノード21と重なる位置に開口を設けることにより形成してもよい。
 次いで、アノード21上に、正孔輸送層22を形成する(ステップS4)。正孔輸送層22は、例えば、正孔輸送性を有する材料を、基板20の平面視におけるバンクBKの間かつアノード21上に、インクジェット法等により塗布成膜することにより形成してもよい。あるいは、正孔輸送層22は、例えば、正孔輸送性を有する材料を、アノード21上およびバンクBK上にスピンコート法等により塗布成膜することにより形成してもよい。
 <表示装置の製造方法:中間層の形成>
 次いで、本実施形態においては、中間層23の一部を形成する。特に、本実施形態においては、はじめに、中間層23のうち赤色サブ画素SPRに位置する中間層23Rを形成する例について説明する。
 はじめに、図4の工程断面図F5に示すように、正孔輸送層22およびバンクBK上に第1溶液を塗布することにより、第1塗布膜を塗布形成する(ステップS5)。第1溶液は、例えば、ノボラック型フェノール樹脂の前駆体であるモノマーとしての複数のフェノール化合物と、ポジ型の感光性樹脂と、を含んでいる。第1溶液は、露光により上述したフェノール化合物の縮重合反応の開始材として機能する光触媒を含んでもよい。特に、ステップS5において、工程断面図F5に示すように、複数のサブ画素に共通して第1塗布膜41が形成される。第1塗布膜41は、例えば、スピンコート法等を含む種々の塗布法によって塗布形成されてもよい。ステップS5においては、塗布した第1溶液を加熱して溶媒を揮発させることにより第1塗布膜41を形成してもよい。
 より具体的には、例えば、ステップS5において塗布する第1溶液は、フェノール化合物、感光性樹脂、および界面活性剤を含む溶液である。ステップ5においては、当該溶液をスピンコート法により塗布する。当該スピンコート法においては、例えば、基板20を含む積層体の回転速度を800rpmまで5秒かけて加速させつつ、溶液の塗布を行う。その後、塗布した溶液を90℃にて3分間加熱し、第1塗布膜41を形成する。
 次いで、図4の工程断面図F6に示すように、塗布された第1塗布膜41の基板20とは反対の側の上方に、フォトマスクMを設置する(ステップS6)。フォトマスクMは、例えば、紫外線を遮蔽するマスクであってもよい。ここで、中間層23Rおよび赤色発光層24Rを形成する工程の場合、ステップS6においては、赤色サブ画素SPRと重なる位置に、紫外線等を透過する開口を含む透光部MAが位置するように、フォトマスクMを設置する。
 次いで、図5の工程断面図F7に示すように、フォトマスクMの基板20とは反対の側の上方から、例えば紫外線UVを照射することにより、塗布された第1塗布膜41の一部を露光する(ステップS7)。紫外線UVは、フォトマスクMによって遮蔽される。このため、緑色サブ画素SPGおよび青色サブ画素SPBに位置する第1塗布膜41には、紫外線UVが照射されない。一方、紫外線UVは、フォトマスクMの透光部MAを透過する。このため、ステップS7においては、赤色サブ画素SPRに位置する第1塗布膜41にのみ、紫外線UVが照射される。例えば、ステップS7における露光強度は200mJ/cmである。
 ステップS7により、紫外線UVが照射された赤色サブ画素SPRに位置する第1塗布膜41は、図5の工程断面図F7に示すように、露光後の第1塗布膜42に変化する。特に、ステップS7においては、露光された第1塗布膜41が含む感光性樹脂の変性が生じ、後述する現像液に対する第1塗布膜42の溶解性が向上する。さらに、露光された第1塗布膜41が含むフェノール化合物が光触媒を介して縮重合反応を開始し、第1塗布膜42中にノボラック型フェノール樹脂が形成される。特に、第1塗布膜42は、膜厚を除き上述した中間層23Rと同一の構成を有している。
 次いで、第1塗布膜41と第1塗布膜42を、適切な現像剤によって洗浄することにより、第1塗布膜41を現像する(ステップS8)。ここで、露光前の第1塗布膜41は現像液に不溶である一方、露光後の第1塗布膜42は現像液に可溶である。このため、ステップS8においては、赤色サブ画素SPRに位置する第1塗布膜42のみが現像液に溶解する。
 より具体的には、例えば、ステップS8においてはパドル現像を行う。当該パドル現像においては、第1塗布膜41を、TMAHを0.6質量%含む現像液にて5回洗浄した後、水にて1回洗浄する。
 ここで、本実施形態においては、ステップS8における現像工程において、赤色サブ画素SPRに位置する第1塗布膜42の一部のみを除去する。これにより、ステップS8においては、赤色サブ画素SPRにおける正孔輸送層22の上面から所定の膜厚だけ当該第1塗布膜42を残存させる。第1塗布膜42を残存させる方法としては、例えば、ステップS5における第1塗布膜41の膜厚の増大、ステップS7における露光強度の低減または露光時間の短縮、あるいは、ステップS8における現像液による洗浄時間の短縮等が挙げられる。したがって、本実施形態に係るステップS8においては、図5の工程断面図F8に示すように、赤色サブ画素SPRに第1塗布膜42が中間層23Rとして残存する。以上により中間層23Rが形成される。
 <表示装置の製造方法:量子ドットを含む塗布膜の形成>
 次いで、本実施形態においては、発光層24の一部を形成する。特に、本実施形態においては、はじめに、発光層24のうち赤色サブ画素SPRに位置する赤色発光層24Rを形成する例について説明する。
 はじめに、図6の工程断面図F9に示すように、形成済の中間層23Rおよび第1塗布膜41上に第2溶液43を塗布する(ステップS9)。第2溶液43は、例えば、赤色量子ドット3Rと、当該赤色量子ドット3Rに配位可能なリガンドと、が第2溶媒44中に分散する溶液である。第2溶液43は、例えば、第2溶媒44中に赤色量子ドット3Rを種々の方法によって合成したのちリガンドを添加することにより製造してもよい。第2溶液43は、例えば、スピンコート法等を含む種々の方法により、複数のサブ画素に共通に形成される。
 次いで、塗布された第2溶液43を乾燥する(ステップS10)。第2溶液43の乾燥は、例えば、第2溶液43の加熱または所定時間の放置により、第2溶液43の第2溶媒44を揮発させることにより実行する。これにより、塗布された第2溶液43の第2溶媒44が揮発して、図6の工程断面図F10に示すように、第2塗布膜45が形成される。ここで、赤色サブ画素SPRにおいては、後述する機構により赤色量子ドット3Rの超格子構造が形成される。
 <表示装置の製造方法:量子ドットの超格子構造の形成機構>
 ステップS10における赤色量子ドット3Rの超格子構造の形成機構について、図8を参照し詳細に説明する。図8の模式図L1、模式図L2、および模式図L3は、本実施形態に係るステップS9およびステップS10において、工程断面図F9および工程断面図F10の一部を拡大した模式図である。特に、図8の模式図L1、模式図L2、および模式図L3は、工程断面図F9および工程断面図F10に示す領域L、換言すれば、中間層23Rの上面近傍について拡大して示す模式図である。図8の模式図L1、模式図L2、および模式図L3は、ステップS9またはステップS10の、互いに異なる時点において示す図である。
 ステップS9において、中間層23Rの上面23Sを含む位置には第2溶液43が塗布されている。このため、ステップS9において、中間層23Rの上面23Sには、図8の模式図L1に示すように、第2溶媒44中に赤色量子ドット3Rが分散する第2溶液43が接触している。
 ここで、ステップS10においては、塗布された第2溶液43の第2溶媒44が次第に揮発する。特に、ステップS10において、第2溶媒44の揮発は、第2溶液43の周囲側から次第に発生する。第2溶液43の周囲における第2溶媒44の揮発が生じると、次いで、第2溶液43の中心側から周囲側に向かって第2溶媒44の流動が生じる。
 このため、ステップS10においては、中間層23の上面23Sの近傍においても、第2溶液43の第2溶媒44が一端側から揮発し、さらに、当該一端側に第2溶媒44の流動が生じる。したがって、ステップS10においては、模式図L2に示すように、第2溶液43の第2溶媒44の厚みが一方側において薄くなり、かつ、当該一方側に向かって第2溶媒44が流動する。
 ここで、第2溶媒44の流動に伴い、第2溶液43中の赤色量子ドット3Rは、第2溶媒44の流動の方向に沿う第1方向D1に流動する。このため、第2溶液43中の赤色量子ドット3Rは、第2溶媒44の厚みが薄い第2溶液43の端部まで移動する。第2溶液43の端部の近傍においては、複数の赤色量子ドット3Rの間に位置する第2溶媒44の揮発が生じる。これにより、当該複数の赤色量子ドット3Rには互いに接近する方向である第2方向D2に沿って横毛管力が生じる。したがって、ステップS10においては、第2溶媒44が揮発する第2溶液43の端部側から順に赤色量子ドット3Rが整列する。以上より、ステップS10が完了し第2塗布膜45の形成が完了することにより、中間層23Rの上面23S上、換言すれば、赤色サブ画素SPRには、赤色量子ドット3Rの超格子構造が形成される。
 ここで、上述した第2溶媒44の第2溶液43の端部側への流動、およびこれに伴う赤色量子ドット3Rの流動は、第2溶媒44が位置する上面23Sの平坦性が高い程、より効率的に生じる傾向にある。また、ノボラック型フェノール樹脂はフェノール分子とメチレン鎖とが結合したモノマーの重合体であり、フェノールのヒドロキシ基の方向を揃えて重合する傾向にある。このため、ノボラック型フェノール樹脂を含む薄膜である、中間層23Rの上面23Sの平坦性は高くなる傾向にある。したがって、中間層23Rの上面23Sにおける平坦性が高いことにより、中間層23R上には赤色量子ドット3Rの超格子構造がより精度よく形成される。
 さらに、第2溶液43中の複数の赤色量子ドット3Rの間に働く横毛管力は、当該複数の赤色量子ドット3Rの間の疎水性相互作用、静電相互作用、またはファンデルワールス力等に依存する。ここで、ノボラック型フェノール樹脂は、フェノール分子とメチレン鎖との繰り返し構造により、上述した複数の赤色量子ドット3Rの間の疎水性相互作用、または静電相互作用を向上させる。このため、中間層23R上には赤色量子ドット3Rの超格子構造がさらに精度よく形成される。
 なお、ステップS10において、中間層23Rの上面23Sを除く、未露光の第1塗布膜41の上面等においては、赤色量子ドット3Rの超格子構造は形成されなくともよい。このため、ステップS10において赤色サブ画素SPRに赤色量子ドット3Rの超格子構造を形成する観点からは、赤色サブ画素SPRを除く位置における未露光の第1塗布膜41の上面の平坦性は特に求められない。
 <表示装置の製造方法:量子ドットを含む塗布膜のパターニング>
 第2塗布膜45の形成および赤色サブ画素SPRにおける赤色量子ドット3Rの超格子構造の形成に次いで、適切な洗浄液により残存する未露光の第1塗布膜41を洗浄する(ステップS11)。当該洗浄液は、例えば、第1塗布膜41が可溶である溶媒を含む。これにより、図7の工程断面図F11Aに示すように、緑色サブ画素SPGおよび青色サブ画素SPBを含む位置に形成されていた第1塗布膜41が除去される。これにより、第2塗布膜45のうち第1塗布膜41上に位置する部分が除去される。
 ここで、露光後の第1塗布膜42の一部である中間層23Rは、上記洗浄液に不溶である。あるいは、中間層23Rの膜厚が未露光の第1塗布膜41と比較して薄いために、上記洗浄によっても中間層23R上の第2塗布膜45が除去されにくい。このため、図7の工程断面図F11Aに示すように、赤色サブ画素SPRには第2塗布膜45が残存する。以上により、図7の工程断面図F11Aに示すように、赤色量子ドット3Rの超格子構造を備えた赤色発光層24Rが中間層23Rの上に形成される。換言すれば、ステップS10においては、中間層23Rと平面視において重なる部分が、発光層24の少なくとも一部となる。
 この後、ステップS5からステップS11を、一部の手順を変更しつつ繰り返し実行する。ここで、ステップS6においては、フォトマスクMの透光部MAの位置を、形成する中間層23および発光層24のサブ画素の位置に応じて変更する。この場合、ステップS10においては、中間層23Gまたは中間層23Bの上面に第2塗布膜45が形成される。
 これにより、図7の工程断面図F11Bに示すように、緑色サブ画素SPGに、中間層23Gと、中間層23Gの上面において緑色量子ドット3Gの超格子構造を備えた緑色発光層24Gと、が形成される。同じく、青色サブ画素SPBに、中間層23Bと、中間層23Bの上面において青色量子ドット3Bの超格子構造を備えた青色発光層24Bと、が形成される。以上により、中間層23および発光層24の形成工程が完了する。
 なお、赤色発光層24Rの形成工程のうちのステップS11において、緑色サブ画素SPGおよび青色サブ画素SPBにも未露光の第1塗布膜41が一部残存してもよい。この場合、以降の各発光層24の形成工程のうちのステップS7において、残存した第1塗布膜41が新たに塗布された第1塗布膜41と共に露光されてもよく、露光後の第1塗布膜42の一部となってもよい。
 <表示装置の製造方法:電子輸送層の形成以降>
 中間層23および発光層24の形成に次いで、発光層24上に電子輸送層25を形成する(ステップS12)。電子輸送層25は、例えば、ステップS4と同じく、発光層24上を含む位置に電子輸送性を有する材料を塗布成膜することにより形成してもよい。
 次いで、電子輸送層25上にカソード26を形成する(ステップS13)。カソード26は、例えば、金属材料等の薄膜をスパッタ法等により電子輸送層25上に成膜することにより形成してもよい。カソード26は、上述した補助電源と電気的に接続するように形成してもよい。以上により、表示装置1の製造工程が完了する。
 <表示装置の奏する効果>
 本実施形態に係る表示装置1は、発光層24、および発光層24と接する中間層23を含む発光素子2を備える。中間層23はノボラック型フェノール樹脂を含むため、上述した通り、中間層23の、発光層24と接する上面23Sの平坦性は向上し、中間層23と発光層24との密接性が向上する。したがって、中間層23と発光層24とが局所的に接することに伴う発光層24の局所発光が低減することにより、発光素子2の発光効率が改善する。
 発光効率が改善した、本実施形態に係る発光素子2を備えた表示装置1は、発光素子2をより低電圧にて駆動して表示が行えるため、消費電力を低減できる。また、表示装置1は、発光層24の劣化を増大させる程度の高電圧にて発光素子2を駆動させる必要性が低減するため、より長寿命となる。
 本実施形態に係る発光素子2は、発光層24よりも基板20の側に中間層23を備える。このため、発光素子2の形成方法としては、本実施形態において説明した通り、基板20の上に発光素子2の各層を順に形成する方法が考えられる。この場合、本実施形態においては、中間層23の上面23S上に発光層24が形成される。したがって、中間層23の上面23Sの平坦性が向上することにより、発光層24が形成される面の平坦性が向上するため、中間層23と発光層24との密接性はさらに向上する。ゆえに、本実施形態に係る発光素子2は、発光効率をより改善する。
 特に、本実施形態に係る発光素子2の発光層24は、発光材料として量子ドットを有する。また、発光層24の形成工程は、中間層23の上への第2溶液43の塗布と、第2溶液43の乾燥による第2塗布膜45の形成と、を含む。このため、発光層24の形成工程において、中間層23の上面23Sの平坦性が向上することにより、量子ドットの超格子構造が形成されやすくなる。したがって、発光層24における量子ドット同士の密着性が改善するため、発光素子2は発光層24において複数の量子ドットの間を流れるリーク電流を低減できる。ゆえに、発光素子2の発光効率はより改善する。
 なお、本実施形態における発光層24は量子ドットに配位可能なリガンドを含む。換言すれば、本実施形態に係る発光層24の形成工程において、量子ドットが分散する溶液にはリガンドが添加されている。当該リガンドは、量子ドットの溶液中の分散性を高め、量子ドットの凝集を低減することにより、発光層24における発光効率の低下を抑制する。
 一方、上記リガンドは、量子ドットの溶液中の分散性を高めるため、溶液中における量子ドットの密着性は低減する。ここで、本実施形態においては、中間層23の上面23Sの平坦性が高いために、量子ドットの溶液中の密着性が低い場合においても、発光層24の形成工程において量子ドットの超格子構造が形成されやすくなる。したがって、発光素子2は、形成された発光層24における量子ドット同士の密着性がリガンドによって低減することを抑制できる。ゆえに、発光素子2は、発光層24における量子ドットの凝集の低減と、発光層24における量子ドットの密着性の向上と、の双方を維持することにより、発光効率をさらに改善する。
 発光素子2は、アノード21と発光層24との間に中間層23を備える。このため、発光素子2は、中間層23と発光層24との間の密着性の改善により、発光層24への正孔の注入効率を改善できる。
 一般に、量子ドットを発光材料として有する発光層を備えた発光素子においては、電子の移動度に対し正孔の移動度が低いこと等に起因して、発光層に注入される電子の濃度より発光層に注入される正孔の濃度が低い電子過多の状態となる傾向にある。発光層における電子過多は、オージェ電子の生成過程を含む、非発光の過程、あるいは、発光層の発光材料を劣化し得る過程を増大させ、発光素子の発光効率を低下させ得る。
 発光素子2は、発光層24への正孔の注入効率を改善することにより、発光層24における電子過多を低減し、発光層24におけるキャリアバランスを改善する。したがって、発光素子2は、より効率的に発光効率を改善し、さらに、発光層24の劣化の進行を低減し、寿命を長期化する。
 また、発光素子2は、アノード21と中間層23との間に正孔輸送層22を有する。発光素子2は、正孔輸送層22の発光層24の側の上面の平坦性によらず、中間層23と発光層24との密着性を改善できる。したがって、発光素子2は、正孔輸送層22が含む材料または正孔輸送層22の形成方法等によらず、中間層23と発光層24との密着性を改善できる。例えば、正孔輸送層22が正孔輸送性を有する材料としてナノ粒子を有する場合、正孔輸送層22の上面は各ナノ粒子の形状を反映するため、正孔輸送層22の上面の平坦性が低下する場合がある。この場合においても、発光素子2は、中間層23と発光層24との密着性を改善できる。したがって、発光素子2は、正孔輸送層22の材料および製造方法の自由度と発光効率の向上とを両立できる。
 本実施形態において、中間層23は感光性樹脂を含む。換言すれば、中間層23の形成工程において形成される第1塗布膜41は感光性樹脂を含む。このため、中間層23は、第1塗布膜41をフォトリソグラフィにてパターニングし、露光した第1塗布膜42の一部のみを残存させることにより形成できる。
 当該形成方法によれば、中間層23の材料をインクジェット法により塗り分ける等の方法と比較して、中間層23の形成位置の精度が向上する。したがって、当該形成方法によれば、より高精細に中間層23を形成することができるため、表示装置1の各サブ画素の解像度を向上させることができる。また、当該形成方法によれば、中間層23の材料をインクジェット法により塗り分ける等の方法と比較して、中間層23の膜厚の精度が向上し、また、中間層23の形成工程が簡素化する。さらに、感光性樹脂を含む第1塗布膜41は、露光の有無によって現像液に対する溶解性が大きく変化するため、第1塗布膜41を用いたフォトリソグラフィ法によって均一かつ強固な膜を形成することができる。このため、感光性樹脂を含み、フォトリソグラフィ法によって形成された中間層23は、上面に形成された発光層24の成膜性をより改善することができる。
 本実施形態においては、第1塗布膜41中のフェノール化合物の縮重合反応を、上記フォトリソグラフィにおける第1塗布膜41の露光により開始する。このため、中間層23の形成工程において、第1塗布膜41中のフェノール化合物の縮重合反応を別途実行するための工程を削減でき、中間層23の形成工程が簡素化する。
 本実施形態に係る発光層24の形成工程においては、形成済の中間層23および未露光の第1塗布膜41の上に第2溶液43を塗布する。このため、第2溶液43から形成された第2塗布膜45のパターニングを、未露光の第1塗布膜41の除去と共に実行できる。したがって、発光層24の形成のための第2塗布膜45のパターニングに、中間層23の形成のために用いた第1塗布膜41の未露光部分の除去工程を利用できるため、中間層23および発光層24の形成工程が簡素化する。また、上記方法によれば、インクジェット法等によって発光層24の材料をサブ画素ごとに塗り分ける必要がないため、発光層24の形成工程が簡素化する。
 さらに、上記方法によれば、第1塗布膜41のフォトリソグラフィを用いたパターニングにおいて、現像液によって洗浄されきらずに残存した露光済の第1塗布膜42の残渣を、中間層23として用いることができる。したがって、上記方法によれば、中間層23を別途形成する工程を不要とでき、中間層23の形成工程をより簡素化できる。
 <発光素子の評価>
 本実施形態に係る発光素子2を評価するため、実施例1および実施例2に係る発光素子と、比較例1および比較例2に係る発光素子とを製造し、それらの性能を測定および比較した。
 実施例1および実施例2に係る発光素子は、上述した本実施形態に係る発光素子2の製造方法と同一の方法によって、上述した製造条件にて製造した。ただし、実施例2に係る発光素子においては、実施例1に係る発光素子と比較して、中間層23が含むノボラック型フェノール樹脂を変性ノボラックフェノール樹脂とした。ここで、実施例1に係るノボラック型フェノール樹脂は、上記一般式において、R、R、RのそれぞれをH、Rを以下の化学式にて示すメチレン基としたものである。
Figure JPOXMLDOC01-appb-C000003
 また、実施例2に係る変性ノボラック型フェノール樹脂は、上記一般式において、R、R、RのそれぞれをH、Rを以下の化学式にて示すジメチルメチレン基としたものである。
Figure JPOXMLDOC01-appb-C000004
 比較例1に係る発光素子は、実施例1および実施例2に係る発光素子と比較して、中間層23を備えていない。比較例1に係る発光素子は、上述した本実施形態に係る発光素子2の製造方法の一部を変更した方法により製造した。具体的には、比較例1に係る発光素子の製造方法においては、ステップS5において塗布する第1溶液がフェノール化合物を含まず、また、ステップS8において第1塗布膜42を全て除去した。
 比較例2に係る発光素子は、実施例1および実施例2に係る発光素子と比較して、中間層23がノボラック型フェノール樹脂に代えてPMMAを有する。比較例2に係る発光素子は、ステップS5において塗布する第1溶液がフェノール化合物をPMMAの前駆体とした点を除き、上述した本実施形態に係る発光素子2の製造方法と同一の方法によって製造した。
 以上の実施例1、実施例2、比較例1、および比較例2に係る発光素子について、性能を測定し、以下の表1にまとめた。
Figure JPOXMLDOC01-appb-T000005
 表1において、『中間層』の『有無』の欄は、各発光素子の中間層23の有無を表す。『中間層』の『材料』の欄は、各発光素子が中間層23を有している場合、当該中間層23が主に含む材料の名称を表す。
 表1において、『膜面粗さ[nm]』の欄は、各発光素子の発光層24の下地層の膜面粗さを単位nmにて表す。このため、『膜面粗さ[nm]』の欄は、実施例1、実施例2、および比較例2においては、中間層23の上面の粗さであり、比較例1においては、正孔輸送層22の上面の粗さである。『膜面粗さ[nm]』の『RMS』および『Rmax』の欄は、それぞれ、上記膜面の粗さの二乗平均の平方根の値、および上記膜面の最大粗さを表す。各実施例と各比較例において、膜面の粗さの測定は同一の条件にて測定した。
 表1において、『外部量子効率EQE[%]』の欄は、50.0mA/cmの電流密度にて各発光素子を駆動した場合における、各発光素子の外部量子効率を%にて表す。外部量子効率は、各発光素子の積層方向にみて、4mm角の範囲にて各発光素子の発光輝度を測定することにより測定した。
 実施例1および実施例2に係る発光素子は、比較例1に係る発光素子と比較して、発光層24の下地層にあたる中間層23の膜面粗さが大幅に低減し、また、外部量子効率が向上した。比較例2に係る発光素子は、比較例1に係る発光素子と比較して、中間層23の膜面粗さが低減したものの、外部量子効率はほとんど変化しなかった。
 〔実施形態2〕
 <発光層よりカソードの側に位置する中間層>
 本実施形態に係る表示装置4について、図9を参照して説明する。図9は、本実施形態に係る表示装置4の概略側断面図であり、図1に示す表示装置1の断面と対応する断面について示す。本実施形態に係る表示装置4は、前実施形態に係る表示装置1と比較して、発光素子2に代えて発光素子5を備える。発光素子5は、赤色サブ画素SPRに位置する赤色発光素子5Rと、緑色サブ画素SPGに位置する緑色発光素子5Gと、青色サブ画素SPBに位置する青色発光素子5Bとを有する。
 発光素子5は、中間層23に代えて、第1中間層としての中間層27を備える点を除き、発光素子2と同一の構成を有する。中間層27は、発光層24と電子輸送層25との間に形成され、発光層24のカソード26の側の上面と接する点を除き、中間層23と同一の構成を有する。換言すれば、中間層27はノボラック型フェノール樹脂を有する。
 中間層27は、赤色サブ画素SPRに位置する中間層27Rと、緑色サブ画素SPGに位置する中間層27Gと、青色サブ画素SPBに位置する中間層27Bとを有する。このため、赤色発光素子5Rは中間層27Rを備え、緑色発光素子5Gは中間層27Gを備え、青色発光素子5Bは中間層27Bを備える。
 本実施形態に係る発光素子5は、前実施形態に係る発光素子2の製造方法の一部を変更した方法により製造されてもよい。例えば、発光素子5の製造方法においては、基板20、アノード21、バンクBK、および正孔輸送層22は、図3にて説明したステップS1からステップS4と同一の方法にて形成されてもよい。
 本実施形態においては、正孔輸送層22の形成に次いで、発光層24を形成してもよい。本実施形態において、発光層24は、ステップS8において露光した第1塗布膜42を全て除去することを除き、上述したステップS5からステップS11と同一の方法によって形成されてもよい。このため、本実施形態に係る発光層24は量子ドットの超格子構造を有してもよい。
 ただし、当該方法においては、第1塗布膜41はノボラック型フェノール樹脂を含んでいなくともよく、ステップS10において量子ドットの超格子構造は形成されなくともよい。このため、本実施形態に係る発光層24は量子ドットの超格子構造を有さなくともよい。あるいは、発光層24は、インクジェット法等による塗り分けによって形成してもよい。
 本実施形態においては、発光層24の形成に次いで、中間層27を形成してもよい。中間層27の形成工程においては、例えば、はじめに、上述した第1溶液を発光層24およびバンクBK上に塗布して第1塗布膜41を形成する。次いで、フォトマスクを用いて基板20の平面視において発光層24と重なる第1塗布膜41のみに露光を行い、フェノール化合物の縮重合反応を開始させる。これにより、発光層24の上のみにノボラック型フェノール樹脂を含む第1塗布膜42が形成される。次いで、適切な現像液により未露光の第1塗布膜41を洗浄して除去することにより、残存した露光済の第1塗布膜42が中間層27となる。
 中間層27の形成以降、本実施形態においては、上述したステップS12およびステップS13と同一の方法によって電子輸送層25およびカソード26を形成してもよい。
 本実施形態においても、中間層27は、縮重合反応においてフェノールのヒドロキシ基の方向を揃えて重合する傾向にあるノボラック型フェノール樹脂を含む。このため、本実施形態においても、中間層27の発光層24と接する面の平坦性は向上し、中間層27と発光層24との密接性が向上する。したがって、中間層27と発光層24とが局所的に接することに伴う発光層24の局所発光が低減することにより、発光素子5の発光効率が改善する。
 発光素子5はカソード26と発光層24との間に中間層27を備える。このため、発光素子5は、中間層27と発光層24との間の密着性の改善により、発光層24への電子の注入効率を改善できる。発光素子は、各層の設計によっては、発光層に注入される正孔の濃度より発光層に注入される電子の濃度が低い正孔過多の状態となる場合がある。このような場合において、発光素子5は、発光層24への電子の注入効率を改善することにより、発光層24における正孔過多を低減し、発光層24におけるキャリアバランスを改善する。したがって、発光素子5は、より効率的に発光効率を改善し、さらに、発光層24の劣化の進行を低減し、寿命を長期化する。
 また、発光素子5は、カソード26と中間層27との間に電子輸送層25を有する。発光素子5は、電子輸送層25の発光層24の側の下面の平坦性によらず、中間層27と発光層24との密着性を改善できる。したがって、発光素子5は、電子輸送層25が含む材料または電子輸送層25の形成方法等によらず、中間層27と発光層24との密着性を改善できる。例えば、電子輸送層25が含む電子輸送性を有する材料として、酸化ニッケル(NiO)のナノ粒子が挙げられる。この場合においても、発光素子5は、中間層27と発光層24との密着性を改善できる。したがって、発光素子5は、電子輸送層25の材料および製造方法の自由度と発光効率の向上とを両立できる。
 〔実施形態3〕
 <第2中間層>
 本実施形態に係る表示装置6について、図10を参照して説明する。図10は、本実施形態に係る表示装置6の概略側断面図であり、図1に示す表示装置1の断面と対応する断面について示す。本実施形態に係る表示装置6は、前述の実施形態に係る表示装置1または表示装置4と比較して、発光素子2または発光素子5に代えて発光素子7を備える。発光素子7は、赤色サブ画素SPRに位置する赤色発光素子7Rと、緑色サブ画素SPGに位置する緑色発光素子7Gと、青色サブ画素SPBに位置する青色発光素子7Bとを有する。
 発光素子7は、第1中間層としての中間層23と、第2中間層としての中間層27とを双方備える点を除き、発光素子2または発光素子5と同一の構成を有する。換言すれば、発光素子7は、発光層24のアノード21の側の下面と接する中間層23と、発光層24のカソード26の側の上面と接する中間層27と、の双方を備え、中間層23と中間層27とはノボラック型フェノール樹脂を有する。赤色発光素子7Rは中間層23Rおよび中間層27Rを備え、緑色発光素子7Gは中間層23Gおよび中間層27Gを備え、青色発光素子7Bは中間層27Bおよび中間層27Bを備える。
 本実施形態に係る発光素子7は、前述の実施形態に係る発光素子2または発光素子5の製造方法の一部を変更した方法により製造されてもよい。例えば、発光素子7の製造方法においては、基板20、アノード21、バンクBK、正孔輸送層22、中間層23、および発光層24は、図3にて説明したステップS1からステップS11と同一の方法にて形成されてもよい。このため、本実施形態において、発光層24は何れも量子ドットの超格子構造を有してもよい。本実施形態においては、発光層24の形成に次いで、前実施形態に係る中間層27の形成方法と同一の方法により、中間層27を形成してもよい。中間層27の形成以降、本実施形態においては、上述したステップS12およびステップS13と同一の方法によって電子輸送層25およびカソード26を形成してもよい。
 本実施形態においては、中間層23の発光層24と接する面、および中間層27の発光層24と接する面の双方の平坦性が向上し、中間層23と発光層24との密接性、および中間層27と発光層24との密接性の双方が向上する。したがって、発光素子7は、中間層23と発光層24とが局所的に接すること、および中間層27と発光層24とが局所的に接することの双方を低減し、発光効率をより改善する。また、発光素子7は、中間層23と中間層27とを双方備えることにより、発光層24への正孔注入と電子注入との双方の効率を改善し、発光効率をより改善する。
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 1、4、6 表示装置
 2、5、7 発光素子
 3B    青色量子ドット
 3G    緑色量子ドット
 3R    赤色量子ドット
 20    基板
 21    アノード(第1電極)
 22    正孔輸送層
 23、27 中間層(第1中間層、第2中間層)
 24    発光層
 25    電子輸送層
 26    カソード(第2電極)
 41    (露光前の)第1塗布膜
 42    (露光済の)第1塗布膜
 43    第2溶液
 45    第2塗布膜

 

Claims (19)

  1.  第1電極と、
     第2電極と、
     前記第1電極と前記第2電極との間に位置する発光層と、
     前記第1電極と前記発光層との間、および前記第2電極と前記発光層との間の少なくとも一方に位置し、前記発光層に接する第1中間層と、を備え、
     前記第1中間層は、ノボラック型フェノール樹脂を含む、発光素子。
  2.  前記発光層は複数の量子ドットを有する請求項1に記載の発光素子。
  3.  前記発光層が、前記量子ドットに配位可能なリガンドを含む請求項2に記載の発光素子。
  4.  基板を備え、
     前記基板上に、前記基板の側から順に、前記第1電極と、前記第1中間層と、前記発光層と、前記第2電極と、を備えた、請求項1から3の何れか1項に記載の発光素子。
  5.  前記ノボラック型フェノール樹脂は下記一般式にて表され、
     nを、1以上4以下の整数とし、R、R、およびRのそれぞれを、置換基を有してもよい炭素数1以上4以下のアルキル基またはHとし、Rを、置換基を有してもよい炭素数1以上3以下の脂肪族化合物とする、
    Figure JPOXMLDOC01-appb-C000001
     請求項1から4の何れか1項に記載の発光素子。
  6.  前記第1中間層の層厚が5nm以上20nm以下である、請求項1から5の何れか1項に記載の発光素子。
  7.  前記第1中間層が感光性樹脂を含む、請求項1から6の何れか1項に記載の発光素子。
  8.  前記第1電極がアノードであり、前記第2電極がカソードである、請求項1から7の何れか1項に記載の発光素子。
  9.  前記アノードと前記発光層との間に前記第1中間層を備えた、請求項8に記載の発光素子。
  10.  前記アノードと前記第1中間層との間に位置する正孔輸送層を備えた、請求項9に記載の発光素子。
  11.  前記カソードと前記発光層との間に前記第1中間層を備えた、請求項8に記載の発光素子。
  12.  前記カソードと前記第1中間層との間に位置する電子輸送層を備えた、請求項11に記載の発光素子。
  13.  前記第1電極と前記発光層との間に前記第1中間層を備え、
     前記第2電極と前記発光層との間に位置し、前記発光層に接する第2中間層を備え、
     前記第2中間層は、前記ノボラック型フェノール樹脂を含む請求項1から12の何れか1項に記載の発光素子。
  14.  請求項1から13の何れか1項に記載の発光素子を備えた表示装置。
  15.  第1電極と、
     第2電極と、
     前記第1電極と前記第2電極との間に位置する発光層と、
     前記第1電極と前記発光層との間、および前記第2電極と前記発光層との間の少なくとも一方に位置し、前記発光層に接する第1中間層と、を備えた発光素子の製造方法であって、
     フェノール化合物を含む第1溶液の塗布による第1塗布膜の形成と、
     前記第1塗布膜の少なくとも一部における前記フェノール化合物の縮重合反応によるノボラック型フェノール樹脂を含む前記第1中間層の形成と、を含む、発光素子の製造方法。
  16.  前記第1中間層の上を含む位置への複数の量子ドットを含む第2溶液の塗布と、
     塗布された前記第2溶液の乾燥による前記複数の量子ドットを含む第2塗布膜の形成と、
     を含み、
     前記第2塗布膜のうち、前記第1中間層と平面視において重なる部分が、前記発光層の少なくとも一部である、請求項15に記載の発光素子の製造方法。
  17.  前記第1塗布膜は感光性樹脂を含み、
     前記第1中間層の形成において、前記第1塗布膜の少なくとも一部における前記フェノール化合物の縮重合反応は、前記第1塗布膜の少なくとも一部の露光により開始し、
     前記第1中間層の形成は、現像液を用いた前記第1塗布膜の洗浄による、露光された前記第1塗布膜の一部の除去を含む、請求項16に記載の発光素子の製造方法。
  18.  前記第2溶液の塗布が、前記第1中間層の上、および、未露光の前記第1塗布膜の上への前記第2溶液の塗布を含む、請求項17に記載の発光素子の製造方法。
  19.  洗浄液を用いた前記第1塗布膜および前記第2塗布膜の洗浄による、未露光の前記第1塗布膜の少なくとも一部、および、未露光の前記第1塗布膜の上の前記第2塗布膜の除去を含む、請求項18に記載の発光素子の製造方法。

     
PCT/JP2022/044337 2022-12-01 2022-12-01 発光素子、表示装置、発光素子の製造方法 WO2024116362A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044337 WO2024116362A1 (ja) 2022-12-01 2022-12-01 発光素子、表示装置、発光素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044337 WO2024116362A1 (ja) 2022-12-01 2022-12-01 発光素子、表示装置、発光素子の製造方法

Publications (1)

Publication Number Publication Date
WO2024116362A1 true WO2024116362A1 (ja) 2024-06-06

Family

ID=91323141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044337 WO2024116362A1 (ja) 2022-12-01 2022-12-01 発光素子、表示装置、発光素子の製造方法

Country Status (1)

Country Link
WO (1) WO2024116362A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730935B1 (en) * 2003-02-21 2004-05-04 Wintek Corporation Anti-penetration structure of EL device
JP2005505105A (ja) * 2001-09-28 2005-02-17 キヤノン株式会社 有機発光素子
US20080309234A1 (en) * 2007-06-15 2008-12-18 Samsung Electronics Co., Ltd. Alternating current driving type quantum dot electroluminescent device
JP2010093175A (ja) * 2008-10-10 2010-04-22 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子
WO2011086997A1 (ja) * 2010-01-15 2011-07-21 富士フイルム株式会社 感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置、及び、液晶表示装置
WO2013118474A1 (ja) * 2012-02-08 2013-08-15 パナソニック株式会社 表示パネルおよびその製造方法
WO2013133392A1 (ja) * 2012-03-09 2013-09-12 旭硝子株式会社 ポジ型感光性樹脂組成物、隔壁及び光学素子
JP2020198313A (ja) * 2019-01-17 2020-12-10 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005505105A (ja) * 2001-09-28 2005-02-17 キヤノン株式会社 有機発光素子
US6730935B1 (en) * 2003-02-21 2004-05-04 Wintek Corporation Anti-penetration structure of EL device
US20080309234A1 (en) * 2007-06-15 2008-12-18 Samsung Electronics Co., Ltd. Alternating current driving type quantum dot electroluminescent device
JP2010093175A (ja) * 2008-10-10 2010-04-22 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子
WO2011086997A1 (ja) * 2010-01-15 2011-07-21 富士フイルム株式会社 感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置、及び、液晶表示装置
WO2013118474A1 (ja) * 2012-02-08 2013-08-15 パナソニック株式会社 表示パネルおよびその製造方法
WO2013133392A1 (ja) * 2012-03-09 2013-09-12 旭硝子株式会社 ポジ型感光性樹脂組成物、隔壁及び光学素子
JP2020198313A (ja) * 2019-01-17 2020-12-10 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法

Similar Documents

Publication Publication Date Title
JP5708482B2 (ja) 有機電界発光装置,及び有機電界発光装置の製造方法
US9087964B2 (en) Light-emitting device
KR100768995B1 (ko) 유기 발광 표시 장치
US20140284575A1 (en) Display device and electronic device
CN111435676B (zh) 有机el显示面板和制造有机el显示面板的方法
JP5244191B2 (ja) 薄膜付き基板、有機エレクトロルミネセンス表示装置、カラーフィルタ基板及び薄膜付き基板の製造方法
JP5677434B2 (ja) 有機el素子
CN108029163B (zh) 有机电致发光装置、有机电致发光装置的制造方法、照明装置和显示装置
US11903287B2 (en) Light emitting element, light emitting device, and method for manufacturing light emitting element
US20110121719A1 (en) Organic el device and manufacturing method thereof
WO2021234893A1 (ja) 表示装置、及び表示装置の製造方法
WO2013011537A1 (ja) 有機発光素子
KR100739144B1 (ko) 전면 발광형 oled 소자 및 그 제조 방법
WO2013011538A1 (ja) 有機発光素子の製造方法
WO2024116362A1 (ja) 発光素子、表示装置、発光素子の製造方法
TW200417284A (en) Method for manufacturing a light emitting display
CN102203976B (zh) 发射辐射的有机器件和用于制造发射辐射的有机器件的方法
WO2021056725A1 (zh) 一种彩膜基板及其制备方法、oled显示装置
JP2020035713A (ja) 有機el表示パネル
WO2022190191A1 (ja) 量子ドット含有膜、発光素子、波長変換部材、表示装置
JP3850747B2 (ja) 正孔注入層用インク、el表示装置、及びこれらの製造方法
WO2013011539A1 (ja) 有機発光素子の製造方法
WO2021059472A1 (ja) 発光装置
WO2023181234A1 (ja) 発光デバイスおよびその製造方法
JP2010226055A (ja) 有機el表示装置