WO2024113676A1 - 换热器和空调系统 - Google Patents

换热器和空调系统 Download PDF

Info

Publication number
WO2024113676A1
WO2024113676A1 PCT/CN2023/092564 CN2023092564W WO2024113676A1 WO 2024113676 A1 WO2024113676 A1 WO 2024113676A1 CN 2023092564 W CN2023092564 W CN 2023092564W WO 2024113676 A1 WO2024113676 A1 WO 2024113676A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
heat exchanger
manifold
exchanger according
monomer
Prior art date
Application number
PCT/CN2023/092564
Other languages
English (en)
French (fr)
Inventor
于海峰
唐华
彭启
蔡国健
李日新
Original Assignee
美的集团股份有限公司
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202223202852.8U external-priority patent/CN219064207U/zh
Priority claimed from CN202211517963.XA external-priority patent/CN118149611A/zh
Application filed by 美的集团股份有限公司, 广东美的制冷设备有限公司 filed Critical 美的集团股份有限公司
Publication of WO2024113676A1 publication Critical patent/WO2024113676A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present application relates to the technical field of air conditioning, and in particular to a heat exchanger and an air conditioning system.
  • the refrigerant tubes and fins of the heat exchanger are produced separately, and then the refrigerant tubes and the fins are assembled, which leads to complex processes, low production efficiency and high costs; some use microchannel heat exchangers, but there are problems with poor heat exchange effect and low heat exchange efficiency of the heat exchanger.
  • one purpose of the present application is to propose a heat exchanger, in which the extension trajectory of the heat exchange monomer row in the third direction is non-linear, and the extension trajectory of the air flow channel in the third direction is non-linear, so that the disturbance of the heat exchange monomer row to the air can be enhanced, so that the air in the air flow channel has a suitable flow velocity, and the air in the air flow channel can fully exchange heat with the heat exchange monomer row, thereby improving the heat exchange effect, so that the heat exchanger has a better heat exchange effect, and the heat exchange efficiency is high, which is conducive to improving the heat exchange performance of the heat exchanger; in addition, the heat exchanger of the present application has a larger heat exchange area, and the overall structure is more compact.
  • the present application also provides an air conditioning system having the above heat exchanger.
  • the heat exchanger of the first aspect embodiment of the present application includes: a first collecting member and a second collecting member, which are arranged to be spaced apart along a first direction, the first collecting member has a first inlet and outlet, and the second collecting member has a second inlet and outlet; a plurality of rows of heat exchange monomer rows, which are arranged between the first collecting member and the second collecting member and are arranged in sequence in the second direction, each row of the heat exchange monomer rows includes at least one heat exchange monomer, and when the heat exchange monomer row includes a plurality of the heat exchange monomers, the plurality of heat exchange monomers in the heat exchange monomer row are arranged in sequence in a third direction, and a heat exchange channel extending along the first direction is provided in the heat exchange monomer, and the two ends of the heat exchange monomer along the first direction are respectively connected to the first collecting member and the second collecting member, an air flow channel is defined between two adjacent rows of the heat exchange monomer rows, and the extension trajectory of the heat exchange monomer row in the
  • the extension trajectory of the heat exchange monomer row in the third direction is non-linear, and the extension trajectory of the air flow channel in the third direction is non-linear, which can enhance the disturbance of the air by the heat exchange monomer row, reduce the air circulation speed, and the air in the air flow channel can fully exchange heat with the heat exchange monomer row, thereby improving the heat exchange effect, so that the heat exchanger has a better heat exchange effect and a higher heat exchange efficiency, which is beneficial to improving the heat exchange performance of the heat exchanger; in addition, the heat exchanger of the present application has a larger heat exchange area and the overall structure is more compact.
  • an extension trajectory of the heat exchange unit in the third direction is a broken line or a curve.
  • the extension trajectory of the heat exchange monomer row in the third direction is a broken line
  • the heat exchange monomer row includes a plurality of the heat exchange monomers arranged in sequence along the third direction, and there is an angle between the extension trajectories of two adjacent heat exchange monomers in the same heat exchange monomer row.
  • the heat exchange unit row includes two heat exchange units arranged sequentially along the third direction.
  • the angle between two heat exchange units in the heat exchange unit row is in the range of 60°-120°.
  • an extension trajectory of the heat exchange monomers in the third direction is a V-shaped broken line.
  • two adjacent heat exchange monomers in the same heat exchange monomer row are abutted against each other; or, two adjacent heat exchange monomers in the same heat exchange monomer row are spaced apart from each other; or, two adjacent heat exchange monomers in the same heat exchange monomer row are connected to each other.
  • an extension trajectory of the heat exchange units in the third direction is an arc.
  • the heat exchange unit row includes one heat exchange unit.
  • the heat exchange unit is in a plate shape, and the thickness of the heat exchange unit is not greater than 0.7 mm.
  • a dimension of the heat exchange channel in a thickness direction of the heat exchange unit is no greater than 0.4 mm.
  • the heat exchange unit has a plurality of heat exchange channels arranged in sequence along the flow direction of the airflow in the airflow channel.
  • the first collecting part includes a first collecting tube and a first joint assembly
  • the first collecting tube defines a plurality of first collecting cavities arranged in sequence along the third direction, each of the first collecting cavities extends along the second direction
  • the first joint assembly includes a connected first joint and a first distributor
  • the first joint has the first inlet and outlet
  • the first distributor is used to distribute the refrigerant to the plurality of the first collecting cavities or the refrigerant in the plurality of the first collecting cavities is suitable for being transported to the first inlet and outlet through the first distributor
  • the heat exchange monomer row includes a plurality of the heat exchange monomers arranged in sequence along the third direction, the number of the heat exchange monomers in a single row of the heat exchange monomer row is the same as the number of the first collecting cavities and corresponds one to one, and the heat exchange channels of the heat exchange monomers are connected to the corresponding first collecting cavities.
  • the first distributor includes a plurality of first collecting tubes, the number of the first collecting tubes is the same as the number of the first collecting chambers and corresponds one to one, each of the first collecting tubes is inserted in the corresponding first collecting chamber and extends along the second direction, a first connecting hole connected to the first collecting chamber is formed on each of the first collecting tubes, a plurality of the first connecting holes are arranged at intervals along the extension direction of the first collecting tube, the first joint is located on one side of the length direction of the first collecting tube and each of the first collecting tubes is connected to the first joint.
  • the cross-sectional areas of the inner cavities of the plurality of first collecting tubes decrease sequentially.
  • the heat exchange unit row includes two heat exchange units arranged sequentially along the third direction, there are two first collecting tubes, and the ratio of the cross-sectional areas of the inner cavities of the two first collecting tubes is 3:2.
  • the total flow area of the first connecting holes of the plurality of first collecting pipes decreases sequentially.
  • the plurality of first communicating holes on the first collecting tube are arranged at equal intervals.
  • the ratio of the aperture of the first connecting hole to the inner diameter of the corresponding first collecting pipe is in the range of 1/4-1/3.
  • the ratio of the number of the first connecting holes of a single first manifold to the number of the heat exchange unit rows is in a range of 1/5-1/4.
  • the heat exchange unit is inserted into the first collecting chamber in the first direction
  • the first connecting hole is formed on the side of the first collecting tube facing the heat exchange unit
  • the ratio of the length of the heat exchange unit inserted into the first collecting chamber in the first direction to the depth of the first collecting chamber in the first direction is in the range of 1/3-1/2.
  • the second collecting part includes a second collecting tube and a second joint assembly, the second collecting tube defines a plurality of second collecting cavities arranged in sequence along the third direction, the second joint assembly includes a connected second joint and a second distributor, the second joint has the second inlet and outlet, the refrigerant in the plurality of second collecting cavities is suitable for being transported to the second inlet and outlet through the second distributor, or the second distributor is used to distribute the refrigerant to the plurality of second collecting cavities; the number of the heat exchange monomers in a single row of the heat exchange monomers is the same as the number of the second collecting cavities and corresponds one to one, and the heat exchange channels of the heat exchange monomers are connected to the corresponding second collecting cavities.
  • the second distributor includes a plurality of second collecting tubes, the number of the second collecting tubes is the same as the number of the second collecting chambers and corresponds one to one, each of the second collecting tubes is inserted in the corresponding second collecting chamber and extends along the second direction, a second connecting hole connected to the second collecting chamber is formed on each of the second collecting tubes, a plurality of the second connecting holes are arranged at intervals along the extension direction of the second collecting tube, the second joint is located on one side of the length direction of the second collecting tube and each of the second collecting tubes is connected to the second joint.
  • the cross-sectional areas of the inner cavities of the plurality of second manifolds decrease sequentially.
  • the heat exchange unit row includes two heat exchange units arranged sequentially along the third direction, there are two second collecting tubes, and the ratio of the cross-sectional areas of the inner cavities of the two second collecting tubes is 3:2.
  • the total flow area of the second connecting holes of the plurality of second manifolds decreases sequentially.
  • the plurality of second communicating holes on the second manifold are arranged at equal intervals.
  • the ratio of the aperture of the second communicating hole to the inner diameter of the corresponding second manifold is in the range of 1/4-1/3.
  • the ratio of the number of the second connecting holes of a single second manifold to the number of the heat exchange unit rows is in a range of 1/5-1/4.
  • the heat exchange unit is inserted into the second collecting chamber in the first direction, and the second connecting hole is formed on the side of the second collecting tube facing the heat exchange unit, and the ratio of the length of the heat exchange unit inserted into the second collecting chamber in the first direction to the depth of the second collecting chamber in the first direction is in the range of 1/3-1/2.
  • the first direction is an up-down direction.
  • An air conditioning system includes: a heat exchanger according to the embodiment of the first aspect of the present application.
  • the extension trajectory of the heat exchange unit row in the third direction is non-linear, and the extension trajectory of the air flow channel in the third direction is non-linear, which can enhance the disturbance of the air by the heat exchange unit row, so that the air in the air flow channel has a suitable flow velocity, and the air in the air flow channel can fully exchange heat with the heat exchange unit row, thereby improving the heat exchange effect, so that the heat exchanger has a better heat exchange effect and a higher heat exchange efficiency, which is beneficial to improving the heat exchange performance of the heat exchanger; in addition, the heat exchanger of the present application has a larger heat exchange area and the overall structure is more compact.
  • FIG1 is a schematic structural diagram of a heat exchanger according to some embodiments of the present application.
  • FIG2 is a perspective cutaway view of the heat exchanger in FIG1 ;
  • FIG3 is a simplified diagram of the heat exchanger in FIG1 ;
  • FIG4 is a perspective cutaway view of the heat exchanger in FIG1 from another angle, showing two first headers and two second headers;
  • FIG5 is a partial structural schematic diagram of the heat exchanger in FIG1 , wherein the first current collecting member is removed;
  • FIG6 is a schematic structural diagram of the second current collecting member in FIG1 ;
  • FIG7 is a partial structural schematic diagram of the second current collecting member in FIG1;
  • FIG. 8 is a schematic diagram of the arrangement of multiple rows of heat exchange units of a heat exchanger according to some embodiments of the present application, wherein two adjacent heat exchange units are spaced apart and the extension tracks of the heat exchange units are V-shaped;
  • FIG. 9 is a schematic diagram of the arrangement of multiple rows of heat exchange units of a heat exchanger according to other embodiments of the present application, wherein two adjacent heat exchange units are in contact with each other, and the extension track of the heat exchange units is V-shaped;
  • FIG10 is a schematic diagram of the structure of the heat exchange unit in FIG1;
  • FIG11 is a schematic diagram of the arrangement of multiple rows of heat exchange units of a heat exchanger according to some other embodiments of the present application, and the extension trajectory of the heat exchange units is an arc;
  • FIG12 is a schematic diagram of the working principle of an air conditioning system according to some embodiments of the present application.
  • FIG. 13 is a cloud diagram of temperature, pressure and wind speed calculated by simulation for the multiple rows of heat exchange monomers in FIG. 9 .
  • the heat exchanger 100 according to an embodiment of the present application is described below with reference to the accompanying drawings.
  • the heat exchanger 100 includes: a first current collecting member 1, a second current collecting member 2 and a plurality of rows of heat exchange monomers 3, wherein the first current collecting member 1 and the second current collecting member 2 are spaced apart along a first direction (for example, referring to the up and down direction in the accompanying drawings).
  • the first current collecting member 1 has a first inlet and outlet 122, through which the refrigerant can flow into the first current collecting member 1, and the refrigerant in the first current collecting member 1 can also flow out through the first inlet and outlet 122;
  • the second current collecting member 2 has a second inlet and outlet 222, through which the refrigerant can flow into the second current collecting member 2, and the refrigerant in the second current collecting member 2 can also flow out through the second inlet and outlet 222.
  • the first current collecting member 1 and the second current collecting member 2 are spaced apart along the up and down direction, and the first current collecting member 1 is located above the second current collecting member 2, then the first inlet and outlet 122 is located above the second inlet and outlet 222.
  • multiple rows of heat exchange monomer rows 3 are arranged between the first current collecting member 1 and the second current collecting member 2, and the multiple rows of heat exchange monomer rows 3 are arranged in sequence in the second direction (for example, with reference to the left and right direction in the drawings), and each row of heat exchange monomer rows 3 may include one heat exchange monomer 31, and each row of heat exchange monomer rows 3 may also include multiple heat exchange monomers 31.
  • the heat exchange monomer row 3 includes multiple heat exchange monomers 31
  • the multiple heat exchange monomers 31 of the heat exchange monomer row 3 are arranged in sequence in the third direction (for example, with reference to the front and back direction in the drawings), and the heat exchange monomer 31 has a heat exchange channel 32, and the heat exchange channel 32 extends along the first direction.
  • the first direction, the second direction and the third direction are perpendicular to each other.
  • the first direction may be the up-down direction
  • the second direction may be the left-right direction
  • the third direction may be the front-back direction.
  • the windward side of the heat exchanger 100 may refer to the front side in the accompanying drawings
  • the leeward side of the heat exchanger 100 may refer to the rear side in the accompanying drawings.
  • the heat exchange monomer 31 can extend in the first direction, one end of the heat exchange monomer 31 in the first direction is connected to the first current collector 1, and the other end of the heat exchange monomer 31 in the first direction is connected to the second current collector 2.
  • the upper end of the heat exchange monomer 31 is connected to the first current collector 1, and the lower end of the heat exchange monomer 31 is connected to the second current collector 2.
  • the refrigerant can flow into the first collector through the first inlet and outlet 122.
  • the refrigerant can also flow into the second flow collecting member through the second inlet and outlet 222, flow into the first flow collecting member 1 along the heat exchange monomer 31, and then flow out from the first inlet and outlet 122.
  • an airflow channel 33 is defined between two adjacent rows of heat exchange monomer rows 3, and air can flow in the airflow channel 33, and when the air flows in the airflow channel 33, it can exchange heat with the heat exchange monomer row 3.
  • the extension trajectory of the heat exchange monomer row 3 in the third direction is non-linear
  • the extension trajectory of the airflow channel 33 in the third direction is non-linear, and the airflow contacts the surface of the heat exchange monomer 31 and performs convection heat exchange.
  • the disturbance of the heat exchange monomer row 3 to the air can be enhanced, so that the air in the airflow channel 33 has a suitable flow speed, and the air in the airflow channel 33 can fully exchange heat with the heat exchange monomer row 3, thereby improving the heat exchange effect, so that the heat exchanger 100 has a good heat exchange effect, and the heat exchange efficiency is high, which is conducive to improving the heat exchange performance of the heat exchanger 100.
  • the size is the same, the heat exchange area between the heat exchanger 100 of the present application and the air is larger; when the heat exchange area is the same, the structure of the heat exchanger 100 of the present application is more compact.
  • the extension trajectory of the heat exchange monomer row 3 in the third direction is non-linear, and the extension trajectory of the air flow channel 33 in the third direction is non-linear, which can enhance the disturbance of the air by the heat exchange monomer row 3, so that the air in the air flow channel 33 has a suitable flow velocity, and the air in the air flow channel 33 can fully exchange heat with the heat exchange monomer row 3, thereby improving the heat exchange effect, so that the heat exchanger 100 has a better heat exchange effect and a higher heat exchange efficiency, which is beneficial to improving the heat exchange performance of the heat exchanger 100; in addition, the heat exchanger 100 of the present application has a larger heat exchange area and the overall structure is more compact.
  • the extension trajectory of the heat exchange monomer row 3 in the third direction can be a broken line, and the corner of the broken line will destroy the laminar boundary layer on the surface of the heat exchange monomer 31, which can enhance the disturbance of the heat exchange monomer row 3 to the air, thereby reducing the air circulation speed.
  • the air in the airflow channel 33 can fully exchange heat with the heat exchange monomer row 3, thereby improving the heat exchange effect and thus improving the heat exchange performance of the heat exchanger 100.
  • the extension trajectory of the heat exchange monomer row 3 in the third direction can also be a curve, which can also enhance the disturbance of the air by the heat exchange monomer row 3.
  • the air in the airflow channel 33 can fully exchange heat with the heat exchange monomer row 3 to improve the heat exchange effect, thereby improving the heat exchange performance of the heat exchanger 100 and ensuring smooth air circulation.
  • the extension trajectory of the heat exchange monomer row 3 in the third direction is a broken line
  • the heat exchange monomer row 3 includes a plurality of heat exchange monomers 31, and the plurality of heat exchange monomers 31 are arranged in sequence along the third direction, and there is an angle between the extension trajectories of two adjacent heat exchange monomers 31 in the same heat exchange monomer row 3, which can enhance the disturbance of the air in the airflow channel 33, so that the air circulation speed is relatively small, and the air in the airflow channel 33 can fully exchange heat with the heat exchange monomer 31 to improve the heat exchange effect.
  • the heat exchanger row 3 includes two heat exchanger monomers 31, and the two heat exchanger monomers 31 are arranged in sequence along the third direction. There is an angle between the extension trajectories of the two heat exchanger monomers 31, which can enhance the disturbance of the air in the airflow channel 33, so that the air circulation speed is relatively small, and the air in the airflow channel 33 can fully exchange heat with the heat exchanger monomers 31 to improve the heat exchange effect.
  • two adjacent heat exchange units 31 are arranged in sequence along the front-to-back direction.
  • two adjacent heat exchange units 31 in the same heat exchange unit row 3 are located on the windward side and the leeward side, respectively.
  • the angle between the two adjacent heat exchange units 31 can destroy the laminar boundary layer on the surface of the heat exchange unit 31 on the windward side, thereby enhancing the disturbance to the air and improving the heat exchange effect.
  • the angle ⁇ between the two heat exchange monomers 31 of the heat exchange monomer row 3 is in the range of 60°-120°, for example, the angle ⁇ between the two heat exchange monomers 31 of the heat exchange monomer row 3 can be 70°, 80°, 90° or 110°.
  • the airflow enters the airflow channel 33 and contacts the surface of the heat exchange monomer 31 for forced convection heat exchange.
  • the angle ⁇ between the two heat exchange monomers 31 of the heat exchange monomer row 3 is not less than 60°, so as to prevent the wind resistance from being too large so as to increase the power of the fan driving the air circulation; the angle ⁇ between the two heat exchange monomers 31 of the heat exchange monomer row 3 is not greater than 120°, so as to prevent the air from flowing too fast in the airflow channel 33, so as to make it difficult for the air to fully exchange heat with the heat exchange monomer 31, thereby ensuring the heat exchange rate of the heat exchange monomer 31; the angle ⁇ between the two heat exchange monomers 31 of the heat exchange monomer row 3 is in the range of 60°-120°, so as to ensure not only the appropriate wind resistance but also the heat exchange effect and heat exchange efficiency of the heat exchange monomer 31.
  • the extension trajectory of the heat exchange monomer row 3 in the third direction is a V-shaped fold line, and the corner of the V-shaped fold line will destroy the laminar boundary layer on the surface of the heat exchange monomer 31, enhance the disturbance of the heat exchange monomer row 3 to the air, reduce the air circulation speed, and the air in the air flow channel 33 can fully exchange heat with the heat exchange monomer row 3, thereby improving the heat exchange effect and thus improving the heat exchange performance of the heat exchanger 100.
  • two adjacent heat exchange monomers 31 in the same heat exchange monomer row 3 are abutted against each other, making the overall structure more compact.
  • the heat exchange capacity of the heat exchanger 100 of this embodiment is increased by about 13%, and has a better heat exchange effect.
  • two adjacent heat exchange monomers 31 in the same heat exchange monomer row 3 are spaced apart; or, two adjacent heat exchange monomers 31 in the same heat exchange monomer row 3 are connected, which can ensure the stability and reliability of the heat exchange monomer row 3, thereby ensuring the stability of the heat exchanger 100.
  • the extension trajectory of the heat exchange unit row 3 in the third direction is an arc, which is beneficial to reduce wind resistance and ensure smooth air circulation.
  • the heat exchange unit row 3 includes a heat exchange unit 31, which has a simple structure and reduces the assembly process, so that the assembly efficiency of the heat exchanger 100 is higher, and the extension trajectory of the heat exchange unit 31 in the third direction is an arc, which is conducive to reducing wind resistance and ensuring smooth air circulation.
  • the heat exchange monomer 31 is in a plate shape, and the thickness L of the heat exchange monomer 31 is not greater than 0.7 mm, which can reduce wind resistance and save costs on the one hand, and on the other hand, the thickness of the heat exchange monomer 31 is small while ensuring the same heat exchange capacity of the heat exchanger 100, so that the structure of the heat exchanger 100 is more compact.
  • the thickness L of the heat exchange monomer 31 can be 0.7 mm, 0.65 mm, 0.6 mm or 0.5 mm.
  • the dimension L1 of the heat exchange channel 32 in the thickness direction of the heat exchange unit 31 is not greater than 0.4 mm, so that the amount of refrigerant in the heat exchange unit 31 is low, thereby saving refrigerant.
  • the dimension L1 of the heat exchange channel 32 in the thickness direction of the heat exchange unit 31 may be 0.4 mm, 0.35 mm, or 0.3 mm.
  • the heat exchange unit 31 has a plurality of heat exchange channels 32, and the plurality of heat exchange channels 32 are arranged in sequence along the flow direction of the airflow in the airflow channel 33, so that the airflow in the airflow channel 33 can fully exchange heat, ensuring the heat exchange effect of the heat exchange unit 31, so as to ensure that the heat exchanger 100 has good heat exchange performance.
  • the heat exchange channels 32 in the heat exchange unit 31 can be twelve, the heat exchange channels 32 in the heat exchange unit 31 can also be fourteen, and the plurality of heat exchange channels 32 can be arranged at equal intervals, and the direction indicated by the arrow in the figure is the flow direction of the airflow.
  • the first current collecting part 1 includes a first current collecting tube 11 and a first joint assembly 12, a plurality of first current collecting chambers 111 are defined in the first current collecting tube 11, and the plurality of first current collecting chambers 111 are sequentially arranged along the third direction, the plurality of first current collecting chambers 111 are separated from each other, and each first current collecting chamber 111 extends along the second direction.
  • first current collecting chambers 111 are defined in the first current collecting tube 11, and the two first current collecting chambers 111 are sequentially arranged along the front-to-back direction, each first current collecting chamber 111 extends along the left-to-right direction, and the two first current collecting chambers 111 are separated from each other.
  • the first joint assembly 12 includes a first joint 121 and a first distributor 123.
  • the first joint 121 is connected to the first distributor 123.
  • the first joint 121 has a first inlet and outlet 122.
  • the first inlet and outlet 122 may be located at the left end of the first joint 121.
  • the first distributor 123 is used to distribute the refrigerant to the plurality of first manifolds 111; or, the refrigerant in the plurality of first manifolds 111 is suitable for being transported to the first inlet and outlet 122 through the first distributor 123, thereby realizing the inflow and outflow of the refrigerant, so that the refrigerant circulates smoothly.
  • the heat exchange monomer row 3 includes a plurality of heat exchange monomers 31, and the plurality of heat exchange monomers 31 are arranged in sequence along the third direction.
  • the number of heat exchange monomers 31 in a single row of heat exchange monomers 3 is the same as the number of first manifolds 111 and corresponds one to one.
  • the heat exchange channels 32 of the heat exchange monomers 31 are connected to the corresponding first manifolds 111, and the refrigerant in the first manifolds 111 can flow into the heat exchange channels 32 of the corresponding heat exchange monomers 31, and the refrigerant in the heat exchange channels 32 of the heat exchange monomers 31 can also flow into the corresponding first manifolds 111.
  • a single row of heat exchange monomers 3 includes two heat exchange monomers 31, and correspondingly, two first manifolds 111 are defined in the first manifold 11, wherein one of the first manifolds 111 is connected to the heat exchange channel 32 of one of the heat exchange monomers 31 in the single row of heat exchange monomers 3, and the other first manifold 111 is connected to the heat exchange channel 32 of the single row of heat exchange monomers 31.
  • the heat exchange channel 32 of another heat exchange unit 31 of the body row 3 is connected.
  • the first distributor 123 includes a plurality of first collecting tubes 124, the number of the first collecting tubes 124 is the same as the number of the first collecting chambers 111 and corresponds one to one, each first collecting tube 124 is inserted in the corresponding first collecting chamber 111, and each first collecting tube 124 extends along the second direction.
  • the first joint assembly 12 has two first collecting tubes 124, and two first collecting chambers 111 are defined in the first collecting tube 11, wherein one of the first collecting tubes 124 is inserted in one of the first collecting chambers 111, and the other first collecting tube 124 is inserted in the other first collecting chamber 111.
  • a first connecting hole is formed on each first manifold insert 124, and the first connecting hole is connected to the first manifold cavity 111. According to the connection between the heat exchange channel 32 of the heat exchange unit 31 and the corresponding first manifold cavity 111, the first connecting hole can be connected to the heat exchange channel 32 of the corresponding heat exchange unit 31.
  • the first connecting holes are arranged at intervals along the extension direction of the first manifold insert 124.
  • the first joint 121 is located on one side (for example, the left side) in the length direction of the first manifold insert 11, and each first manifold insert 124 is connected to the first joint 121, and the first joint 121 has a first inlet and outlet 122.
  • the refrigerant entering the first joint 121 through the first inlet and outlet 122 can flow into the first collecting tube 124.
  • the refrigerant flowing in the first collecting tube 124 enters the first collecting cavity 111 through the first connecting hole, and then enters the heat exchange channel 32 of the corresponding heat exchange unit 31.
  • the refrigerant flowing out of the heat exchange channel 32 passes through the second collecting cavity 211 and the second connecting hole 225 and enters the second collecting tube 224.
  • the second collecting tube 224 can transport the refrigerant to the second inlet and outlet 222, and flow out from the second inlet and outlet 222.
  • the refrigerant entering the second joint 221 through the second inlet and outlet 222 can flow into the second collecting tube 224.
  • the refrigerant flowing in the second collecting tube 224 enters the second collecting cavity 211 through the second connecting hole 225, and then enters the heat exchange channel 32 of the corresponding heat exchange unit 31; then, the refrigerant flowing out of the heat exchange channel 32 passes through the first collecting cavity 111 and the first connecting hole and enters the first collecting tube 124.
  • the first collecting tube 124 can transport the refrigerant to the first inlet and outlet 122, and flow out from the first inlet and outlet 122.
  • the cross-sectional areas of the inner cavities of the plurality of first collecting tubes 124 decrease successively, the cross-sectional area of the inner cavities of the first collecting tubes 124 adjacent to the windward side of the heat exchanger 100 is larger, and the cross-sectional area of the inner cavities of the first collecting tubes 124 adjacent to the leeward side of the heat exchanger 100 is smaller, the flow rate of the refrigerant in the first collecting tubes 124 with larger cross-sectional areas of the inner cavities is larger, and the flow rate of the refrigerant in the first collecting tubes 124 with smaller cross-sectional areas of the inner cavities is smaller.
  • the cross-sectional areas of the inner cavities of the multiple first collecting tubes 124 are reduced successively in the flow direction of the airflow, so that the refrigerant flow rate in the first collecting tubes 124 on the windward side of the heat exchanger 100 is large, which can enhance the heat exchange capacity of the windward side of the heat exchanger 100 to improve the heat exchange effect;
  • the airflow completes heat exchange with the refrigerant on the windward side of the heat exchanger 100 and flows to the leeward side of the heat exchanger 100, so that the heat exchange temperature difference on the leeward side of the heat exchanger 100 is small, and the refrigerant flow rate in the first collecting tubes 124 on the leeward side of the heat exchanger 100 is small, which is conducive to ensuring the heat exchange efficiency.
  • the heat exchange monomer row 3 includes two heat exchange monomers 31 arranged in sequence along the third direction, there are two first headers 124, and the ratio of the cross-sectional areas of the inner cavities of the two first headers 124 is 3:2, then the ratio of the flow rate of the refrigerant in the two first headers 11 per unit time is 3:2, and the ratio of the heat exchange capacity of the heat exchange monomers 31 corresponding to the two first headers 11 is 3:2, which can ensure both the heat exchange capacity of the heat exchanger 100 and the heat exchange efficiency.
  • the cross section of the inner cavity of the second header 224 is circular, the inner diameter D1 of the first header 124 adjacent to the windward side is greater than the inner diameter D2 of the first header 124 adjacent to the leeward side, and the ratio of the cross-sectional area of the inner cavity of the first header 124 adjacent to the windward side to the cross-sectional area of the inner cavity of the first header 124 adjacent to the leeward side is 3:2.
  • the first manifold 124 is connected to the corresponding first manifold cavity 111 through the first connecting hole, and the first manifold cavity 111 is connected to the heat exchange channel 32 of the corresponding heat exchange monomer 31.
  • the total flow area of the first connecting holes of the plurality of first manifolds 124 is reduced in sequence along the third direction and in the flow direction of the airflow.
  • the total flow area of the first connecting holes of the plurality of first manifolds 124 is reduced in sequence along the third direction and in the flow direction of the airflow.
  • the plurality of first manifolds 124 The amount of refrigerant flowing into the corresponding first manifold 111 per unit time decreases sequentially, and the amount of refrigerant flowing from the first manifold 111 into the heat exchange channel 32 of the corresponding heat exchange unit 31 decreases sequentially, and the heat exchange capacity of the heat exchanger 100 gradually decreases along the flow direction of the airflow, so that both the heat exchange effect of the heat exchanger 100 and the heat exchange efficiency of the heat exchanger 100 can be ensured.
  • the total flow area of the first communication holes can be the sum of the flow areas of the multiple first communication holes of the multiple first manifold inserts 124, and the apertures of the first communication holes of the multiple first manifold inserts 124 decrease along the third direction and in the flow direction of the airflow.
  • the multiple first connecting holes on the first collecting tube 124 are arranged at equal intervals, which is beneficial to the uniformity of refrigerant distribution, so that the refrigerant entering the heat exchange channel 32 of the heat exchange unit 31 corresponding to the first collecting tube 124 is uniform, so as to ensure the uniformity of heat exchange of the heat exchange unit 31, thereby ensuring the heat exchange performance of the heat exchanger 100.
  • the ratio of the aperture of the first connecting hole to the inner diameter of the corresponding first header plug 124 is in the range of 1/4-1/3.
  • the ratio of the aperture of the first connecting hole to the inner diameter of the corresponding first header plug 124 is less than 1/4, the first connecting hole is too small, resulting in a small coverage range of the refrigerant sprayed from the first connecting hole, and the refrigerant sprayed from two adjacent first connecting holes is difficult to cover the entire area, so that the amount of refrigerant flowing in the heat exchange channel 32 of the refrigerant coverage part (i.e., the heat exchange unit row 3 closer to the first connecting hole) is relatively large, and the amount of refrigerant flowing in the heat exchange channel 32 of other parts is relatively small or no refrigerant flows, resulting in uneven heat exchange of the heat exchange unit 31.
  • the first connecting hole is too large, resulting in a too large coverage range of the refrigerant sprayed from the first connecting hole, and the coverage range of the refrigerant sprayed from two adjacent first connecting holes has an overlapping portion, so that the amount of refrigerant flowing in the heat exchange channel 32 located in the overlapping portion is large, and the amount of refrigerant flowing in the heat exchange channel 32 in other parts is small, resulting in uneven heat exchange of the heat exchange unit 31.
  • the ratio of the aperture of the first connecting hole to the inner diameter of the corresponding first header insert 124 is in the range of 1/4-1/3, so that the aperture size of the first connecting hole is appropriate, which can ensure the uniformity of the amount of refrigerant entering the multiple heat exchange channels 32 through the first connecting hole, so as to ensure the uniformity of heat exchange of the heat exchange unit 31.
  • the ratio of the number of first communication holes of a single first manifold 124 to the number of heat exchange unit rows 3 is in the range of 1/5-1/4.
  • the ratio of the number of first connecting holes of a single first collecting tube 124 to the number of heat exchange monomer rows 3 is less than 1/5, the number of first connecting holes is too small, and the refrigerant sprayed from two adjacent first connecting holes is difficult to cover the entire area, resulting in a large amount of refrigerant flowing in the heat exchange channel 32 of the refrigerant coverage area (i.e., the heat exchange monomer row 3 closer to the first connecting holes), and a small amount of refrigerant flowing in other parts of the heat exchange channel 32 or no refrigerant flowing, resulting in uneven heat exchange of the heat exchange monomer 31; when the ratio of the number of first connecting holes of a single first collecting tube 124 to the number of heat exchange monomer rows 3 is greater than 1/4, the number of first connecting holes is too large, resulting in a large
  • the ratio of the number of first connecting holes through a single first collecting tube 124 to the number of heat exchange monomer rows 3 is in the range of 1/5-1/4, and the number of heat exchange monomer rows 3 is 4-5 times the number of the first connecting holes.
  • the relative numbers of the first connecting holes and the heat exchange monomer rows 3 are appropriate, which can ensure the uniformity of the amount of refrigerant entering the multiple heat exchange channels 32 through the first connecting holes, so as to ensure the uniformity of heat exchange of the heat exchange monomer rows 3, thereby ensuring the uniformity of heat exchange of the heat exchanger 100.
  • the heat exchange unit 31 is inserted into the first manifold 111 in the first direction, and a first connecting hole is formed on the side of the first manifold insert 124 facing the heat exchange unit 31, so that the refrigerant flowing out of the first connecting hole can flow into the heat exchange channel 32 of the corresponding heat exchange unit 31, and the refrigerant flowing out of the heat exchange channel 32 of the heat exchange unit 31 can enter the corresponding first manifold insert 124 through the first connecting hole.
  • the ratio of the length H1 of the heat exchange unit 31 inserted into the first manifold 111 in the first direction to the depth H2 of the first manifold 111 in the first direction is in the range of 1/3-1/2, which can ensure the uniformity of the refrigerant diversion, so that the amount of refrigerant flowing in the heat exchange channel 32 of each heat exchange unit 31 corresponding to the first manifold 111 is uniform, so as to ensure the uniformity of heat exchange of the heat exchange unit 31.
  • the heat exchange monomer 31 is inserted into the first collecting cavity 111 in the up and down directions, the upper end of the heat exchange monomer 31 is connected to the first collecting tube 11, and the heat exchange monomer 31 and the first collecting tube 11 can be welded, and the first connecting hole is located above the heat exchange monomer 31.
  • the length H1 of the heat exchange unit 31 inserted into the first manifold 111 in the first direction is too short, the distance between the first connecting hole and the heat exchange unit 31 is too long, and the refrigerant sprayed from the two adjacent first connecting holes is difficult to cover the entire area, so that the refrigerant coverage area (i.e., the distance from the first connecting hole) is too short.
  • the amount of refrigerant flowing in the heat exchange channel 32 of the heat exchange unit row 3) with closer holes is relatively large, while the amount of refrigerant flowing in the heat exchange channels 32 of other parts is relatively small or no refrigerant flows, resulting in uneven heat exchange of the heat exchange unit 31.
  • the second current collecting part 2 includes a second collecting tube 21 and a second joint assembly 22, a plurality of second collecting chambers 211 are defined in the second collecting tube 21, and the second collecting chambers 211 are arranged in sequence along the third direction, and each first collecting chamber 111 can extend along the second direction.
  • two second collecting chambers 211 are defined in the second collecting tube 21, and the two second collecting chambers 211 are arranged in sequence along the front-to-back direction, each second collecting chamber 211 extends along the left-right direction, and the two first collecting chambers 111 are relatively independent.
  • the second joint assembly 22 includes a second joint 221 and a second distributor 223, the second joint 221 has a second inlet and outlet 222, and the refrigerant in the plurality of second collecting chambers 211 is suitable for being transported to the second inlet and outlet 222 through the second distributor 223, or the second distributor 223 is used to distribute the refrigerant to the plurality of second collecting chambers 211, thereby realizing the inflow and outflow of the refrigerant, so that the refrigerant circulates smoothly.
  • the refrigerant entering the first joint assembly 12 from the first inlet and outlet 122 can be distributed to multiple first collecting chambers 111 through the first distributor 123, and then enter the heat exchange channel 32 of the heat exchange unit 31 corresponding to each first collecting chamber 111 through the first collecting chamber 111, flow into the second distributor 223 through the second collecting chamber 211 through the heat exchange channel 32, and finally flow out through the second inlet and outlet 222;
  • the refrigerant entering the second joint assembly 22 from the second inlet and outlet 222 can be distributed to multiple second collecting chambers 211 through the second distributor 223, and then enter the heat exchange channel 32 of the heat exchange unit 31 corresponding to each second collecting chamber 211 through the second collecting chamber 211, flow into the first distributor 123 through the first collecting chamber 111 through the heat exchange channel 32, and finally flow out through the first inlet and outlet 122.
  • the number of heat exchange monomers 31 in a single-row heat exchange monomer row 3 is the same as the number of second manifolds 211 and corresponds one to one, and the heat exchange channels 32 of the heat exchange monomers 31 are connected to the corresponding second manifolds 211.
  • a single-row heat exchange monomer row 3 includes two heat exchange monomers 31, and correspondingly, two second manifolds 211 are defined in the second manifold 21, wherein one second manifold 211 is connected to the heat exchange channel 32 of one of the heat exchange monomers 31, and the other second manifold 211 is connected to the heat exchange channel 32 of the other heat exchange monomer 31.
  • the number of heat exchange monomers 31 in a single-row heat exchange monomer row 3 is the same as the number of first manifolds 111 and corresponds one to one, and the heat exchange channels 32 of the heat exchange monomers 31 are connected to the corresponding first manifolds 111.
  • the refrigerant in the first collecting chamber 111 can flow into the heat exchange channel 32 of the corresponding heat exchange unit 31, and the refrigerant in the heat exchange channel 32 can flow into the corresponding second collecting chamber 211; the refrigerant in the second collecting chamber 211 can flow into the heat exchange channel 32 of the corresponding heat exchange unit 31, and the refrigerant in the heat exchange channel 32 can flow into the corresponding first collecting chamber 111.
  • a single-row heat exchanger row 3 includes a heat exchanger 31, and correspondingly, a first collecting chamber 111 is defined in the first collecting tube 11, and a second collecting chamber 211 is defined in the second collecting tube 21.
  • the upper end of the heat exchange channel 32 of the heat exchanger 31 is connected to the first collecting chamber 111, and the lower end of the heat exchange channel 32 of the heat exchanger 31 is connected to the second collecting chamber 211.
  • the refrigerant in the first collecting chamber 111 can flow into the second collecting chamber 211 through the corresponding heat exchange channel 32 of the heat exchanger 31, and the refrigerant in the second collecting chamber 211 can also flow into the first collecting chamber 111 through the corresponding heat exchange channel 32 of the heat exchanger 31.
  • the second distributor 223 includes a plurality of second collecting tubes 224, the number of the second collecting tubes 224 is the same as the number of the second collecting chambers 211 and corresponds one to one, each second collecting tube 224 is inserted in the corresponding second collecting chamber 211, and each second collecting tube 224 extends along the second direction.
  • the second joint assembly 22 has two second collecting tubes 224, and two second collecting chambers 211 are defined in the second collecting tube 21, one of the second collecting tubes 224 is inserted in one of the second collecting chambers 211, and the other second collecting tube 224 is inserted in the other second collecting chamber 211.
  • each second manifold 224 is formed with a second connecting hole 225, and the second connecting hole 225 is connected to the second manifold cavity 211.
  • the second connecting hole 225 can be connected to the heat exchange channel 32 of the corresponding heat exchange unit 31.
  • the second connecting holes 225 are arranged in a plurality of intervals along the extension direction of the second manifold 224.
  • the second joint 221 is located on one side (e.g., the left side) in the length direction of the second manifold 21, and each second manifold 224 is connected to the second joint 221, and the second joint 221 has a second inlet and outlet 222.
  • the refrigerant entering the second joint 221 through the second inlet and outlet 222 can flow
  • the refrigerant in the second manifold 224 flows into the second manifold cavity 211 through the second connecting hole 225, and then flows into the heat exchange channel 32 of the corresponding heat exchange unit 31.
  • the refrigerant in the heat exchange channel 32 can enter the corresponding second manifold cavity 211, and enter the second manifold 224 through the second connecting hole 225.
  • the refrigerant in the second manifold 224 flows along the extension direction of the second manifold 224 and flows into the second joint 221, so that the refrigerant flows out from the second inlet and outlet 222 of the second joint 221.
  • the inner diameters of the plurality of second collecting tubes 224 decrease successively, the inner diameter of the second collecting tube 224 on the windward side adjacent to the heat exchanger 100 is larger, and the inner diameter of the second collecting tube 224 on the leeward side adjacent to the heat exchanger 100 is smaller, the flow rate of the refrigerant in the second collecting tube 224 with the larger inner diameter is larger, and the flow rate of the refrigerant in the second collecting tube 224 with the smaller inner diameter is smaller.
  • the inner diameters of the multiple second collecting tubes 224 are successively reduced in the flow direction of the airflow, so that the refrigerant flow rate in the second collecting tubes 224 on the windward side of the heat exchanger 100 is large, which can enhance the heat exchange capacity of the windward side of the heat exchanger 100 to improve the heat exchange effect;
  • the airflow completes heat exchange with the refrigerant on the windward side of the heat exchanger 100 and flows to the leeward side of the heat exchanger 100, so that the heat exchange temperature difference on the leeward side of the heat exchanger 100 is small, and the refrigerant flow rate in the second collecting tubes 224 on the leeward side of the heat exchanger 100 is small, which is conducive to ensuring the heat exchange efficiency.
  • the heat exchanger row 3 includes two heat exchangers 31 arranged in sequence along the third direction, there are two second headers 224, and the ratio of the cross-sectional areas of the inner cavities of the two second headers 224 is 3:2, then the ratio of the flow rate of the refrigerant in the two second headers 21 per unit time is 3:2, and the ratio of the heat exchange capacity of the heat exchangers 31 corresponding to the two second headers 21 is 3:2, which can ensure both the heat exchange capacity and the heat exchange efficiency of the heat exchanger 100.
  • the cross-section of the inner cavity of the second header 224 is circular, the inner diameter D2 of the second header 224 adjacent to the windward side is greater than the inner diameter D4 of the second header 224 adjacent to the leeward side, and the ratio of the cross-sectional area of the second header 224 adjacent to the windward side to the cross-sectional area of the second header 224 adjacent to the leeward side is 3:2.
  • the inner diameter D3 of the second header 224 adjacent to the windward side may be equal to the inner diameter D1 of the first header 124 adjacent to the windward side
  • the inner diameter D4 of the second header 224 adjacent to the leeward side may be equal to the inner diameter D2 of the first header 124 adjacent to the leeward side.
  • the second collecting tube 224 is connected to the corresponding second collecting cavity 211 through the second connecting hole 225, and the second collecting cavity 211 is connected to the heat exchange channel 32 of the corresponding heat exchange monomer 31.
  • the heat exchange capacity of the heat exchanger 100 gradually decreases, which can ensure both the heat exchange effect and the heat exchange efficiency of the heat exchanger 100.
  • the total flow area of the second connecting holes 225 may be the sum of the flow areas of the second connecting holes 225 of the second headers 224 , and the apertures of the second connecting holes 225 of the second headers 224 decrease along the third direction and in the flow direction of the airflow.
  • the plurality of second connecting holes 225 on the second collecting tube 224 are arranged at equal intervals, which is beneficial to the uniformity of the refrigerant entering the heat exchange channel 32 in the corresponding heat exchange unit 31, so as to ensure the uniformity of heat exchange of the heat exchange unit 31, thereby ensuring the heat exchange performance of the heat exchanger 100.
  • the ratio of the aperture of the second connecting hole 225 to the inner diameter of the corresponding second header plug 224 is in the range of 1/4-1/3.
  • the ratio of the aperture of the second connecting hole 225 to the inner diameter of the corresponding second header plug 224 is less than 1/4, the second connecting hole 225 is too small, resulting in a small coverage range of the refrigerant sprayed from the second connecting hole 225, and it is difficult for the refrigerant sprayed from two adjacent second connecting holes 225 to cover the entire area, so that the amount of refrigerant flowing in the heat exchange channel 32 of the refrigerant coverage part (i.e., the heat exchange unit row 3 closer to the second connecting hole 225) is large, and the amount of refrigerant flowing in the heat exchange channel 32 of other parts is small or no refrigerant flows, resulting in uneven heat exchange of the heat exchange unit 31.
  • the second connecting hole 225 is too large, resulting in a large coverage area of the refrigerant sprayed from the second connecting hole 225, and the coverage areas of the refrigerant sprayed from two adjacent second connecting holes 225 have overlapping parts, so that the amount of refrigerant flowing in the heat exchange channel 32 in the overlapping part is large, and the heat exchange channel 32 in other parts is small.
  • the amount of refrigerant flowing in the heat exchange channels 32 is small, resulting in uneven heat exchange of the heat exchange monomer 31.
  • the ratio of the aperture of the second connecting hole 225 to the inner diameter of the corresponding second manifold 224 is in the range of 1/4-1/3, so that the aperture size of the second connecting hole 225 is appropriate, which can ensure the uniformity of the amount of refrigerant entering the multiple heat exchange channels 32 through the second connecting hole 225, so as to ensure the uniformity of heat exchange of the heat exchange monomer 31.
  • the ratio of the number of second connecting holes 225 of a single second manifold 224 to the number of heat exchange monomer rows 3 is in the range of 1/5-1/4, and the number of heat exchange monomer rows 3 is 4-5 times the number of second connecting holes 225.
  • the relative number of second connecting holes 225 and heat exchange monomer rows 3 is appropriate, which can ensure the uniformity of the amount of refrigerant entering the multiple heat exchange channels 32 through the second connecting holes 225, so as to ensure the uniformity of heat exchange of the heat exchange monomer rows 3.
  • the refrigerant sprayed from two adjacent second connecting holes 225 is difficult to cover the entire area, so that the amount of refrigerant flowing in the heat exchange channel 32 of the refrigerant coverage area (i.e., the heat exchange monomer row 3 closer to the second connecting holes 225) is relatively large, and the amount of refrigerant flowing in the heat exchange channel 32 of other parts is relatively small or no refrigerant flows, resulting in uneven heat exchange of the heat exchange monomers 31.
  • the coverage areas of the refrigerant sprayed from two adjacent second connecting holes 225 have overlapping parts, so that the amount of refrigerant flowing in the heat exchange channel 32 located in the overlapping part is large, and the amount of refrigerant flowing in the heat exchange channel 32 in other parts is small, resulting in uneven heat exchange of the heat exchange unit 31.
  • the heat exchange unit 31, the first header 11 and the second header 21 can be made of metal materials such as aluminum alloy and copper alloy, which have good thermal conductivity.
  • the heat exchange unit 31 is inserted into the second manifold 211 in the first direction, and a second connecting hole 225 is formed on the side of the second manifold 224 facing the heat exchange unit 31, so that the refrigerant flowing out of the second connecting hole 225 flows into the corresponding heat exchange channel 32 of the heat exchange unit 31, and the refrigerant flowing out of the heat exchange channel 32 of the heat exchange unit 31 enters the corresponding second manifold 224 through the second connecting hole 225.
  • the ratio of the length H3 of the heat exchange unit 31 inserted into the second manifold 211 in the first direction to the depth H4 of the second manifold 211 in the first direction is in the range of 1/3-1/2, which can ensure the uniformity of the refrigerant diversion, so that the amount of refrigerant flowing in the heat exchange channel 32 of each heat exchange unit 31 corresponding to the first manifold 111 is uniform, so as to ensure the uniformity of heat exchange of the heat exchange unit 31.
  • the heat exchange monomer 31 is inserted into the second collecting cavity 211 in the up and down directions, the lower end of the heat exchange monomer 31 is connected to the second collecting tube 21, and the heat exchange monomer 31 and the second collecting tube 21 can be welded, and the second connecting hole 225 is located below the heat exchange monomer 31.
  • the heat exchange monomer 31 when the airflow in the airflow channel 33 exchanges heat with the heat exchange monomer 31, condensed water is easily generated on the surface of the heat exchange monomer 31, and the two ends of the heat exchange monomer 31 along the first direction can be respectively connected to the first collecting component 1 and the second collecting component 2.
  • the first direction as the up and down direction
  • the heat exchange monomer 31 can be arranged along the up and down directions, and the condensed water on the surface of the heat exchange monomer 31 can flow down along the heat exchange monomer 31 extending up and down, which facilitates the drainage of the heat exchange monomer 33 and improves the reliability of drainage of the heat exchanger 100.
  • the heat exchanger 100 according to some specific embodiments of the present application is described below with reference to FIGS. 1 to 12 .
  • the heat exchanger 100 includes a first current collector 1, a second current collector 2 and multiple rows of heat exchange monomer rows 3, and the first current collector 1 and the second current collector 2 are arranged spaced apart along the first direction. Multiple rows of heat exchange monomer rows 3 are arranged between the first current collector 1 and the second current collector 2, and multiple rows of heat exchange monomer rows 3 are arranged in sequence in the second direction, and an air flow channel 33 is defined between two adjacent rows of heat exchange monomer rows 3.
  • the first direction is the up-and-down direction
  • the second direction is the left-and-right direction
  • the third direction is the front-and-back direction
  • the first direction, the second direction and the third direction are perpendicular to each other.
  • the extension track of the heat exchange monomer row 3 in the third direction is a V-shaped fold line.
  • Each row of heat exchange monomer rows 3 includes two heat exchange monomers 31.
  • the heat exchange monomers 31 are arranged in sequence along the third direction.
  • the adjacent two heat exchange monomers 31 in the same heat exchange monomer row 3 form an angle ⁇ with each other, and the angle ⁇ is 90°.
  • the adjacent two heat exchange monomers 31 in the same heat exchange monomer row 3 are spaced apart.
  • the heat exchange monomer 31 extends along the first direction.
  • the heat exchange monomer 31 has a plurality of heat exchange channels 32.
  • the plurality of heat exchange channels 32 are arranged in sequence at equal intervals along the flow direction of the airflow in the airflow channel 33, and the heat exchange channels 32 also extend along the first direction.
  • the heat exchange monomer 31 is plate-shaped, and the thickness L of the heat exchange monomer 31 is not greater than 0.7 mm.
  • the dimension L1 of the heat exchange channel 32 in the thickness direction of the heat exchange monomer 31 is not greater than 0.4 mm.
  • One end of the heat exchange monomer 31 along the first direction is connected to the first collector 1, and the other end of the heat exchange monomer 31 along the first direction is connected to the second collector 2.
  • the first current collecting part 1 includes a first current collecting tube 11 and a first joint assembly 12.
  • Two first current collecting cavities 111 are defined in the first current collecting tube 11.
  • the two first current collecting cavities 111 are relatively independently sealed, and the two first current collecting cavities 111 are arranged in sequence along the third direction, and each first current collecting cavity 111 extends along the second direction.
  • the number of heat exchange monomers 31 in the single-row heat exchange monomer row 3 is the same as the number of first current collecting cavities 111 and corresponds one to one.
  • the heat exchange channels 32 of the heat exchange monomers 31 are connected to the corresponding first current collecting cavities 111.
  • the upper ends of the heat exchange monomers 31 are connected to the first current collecting tube 11 and the heat exchange monomers 31 and the first current collecting tube 11 are welded; the upper ends of the heat exchange monomers 31 extend into the corresponding first current collecting cavities 111, and the ratio of the dimension H1 of the heat exchange monomers 31 extending into the first current collecting cavities 111 to the height H2 of the first current collecting cavities 111 is in the range of 1/3-1/2.
  • the first joint assembly 12 includes a first joint 121 and a first distributor 123.
  • the first joint 121 is connected to the first distributor 123.
  • the first joint 121 has a first inlet and outlet 122, and the first inlet and outlet 122 is located at the left end of the first joint 121.
  • the first distributor 123 is used to distribute the refrigerant to the two first manifolds 111.
  • the refrigerant in the two first manifolds 111 is suitable for being transported to the first inlet and outlet 122 through the first distributor 123.
  • the first distributor 123 includes two first manifold plugs 124.
  • the first joint 121 is located on the left side of the first manifold 11, and each first manifold plug 124 is connected to the first joint 121.
  • the first joint 121 has a first inlet and outlet 122.
  • the number of the first manifold plugs 124 is the same as the number of the first manifolds 111 and corresponds one to one.
  • Each first manifold plug 124 is inserted in the corresponding first manifold 111, and each first manifold plug 124 extends along the second direction.
  • a plurality of first connecting holes are arranged at equal intervals on each first collecting tube 124 along the extension direction of the first collecting tube 124, the ratio of the aperture of the first connecting hole to the inner diameter of the corresponding first collecting tube 124 is in the range of 1/4-1/3, the first connecting holes are connected to the first collecting cavity 111, and the ratio of the number of the first connecting holes to the number of the heat exchange monomer rows 3 in the first collecting cavity 111 is in the range of 1/5-1/4.
  • the total flow area of the first communication holes of the first manifold 124 decreases successively, the apertures of the first communication holes of the two first manifolds 124 are different, and the inner diameters of the two first manifolds 124 decrease successively.
  • the cross-sections of the inner cavities of the two first manifolds 124 are both circular, the inner diameter D1 of the first manifold 124 adjacent to the windward side is greater than the inner diameter D2 of the first manifold 124 adjacent to the leeward side, the ratio of the cross-sectional area of the inner cavity of the first manifold 124 adjacent to the windward side to the cross-sectional area of the first manifold 124 adjacent to the leeward side is 3:2, and the ratio of the flow rate of the refrigerant in the first manifold 124 adjacent to the windward side to the flow rate of the refrigerant in the first manifold 124 adjacent to the leeward side is 3:2.
  • the second manifold 2 includes a second manifold 21 and a second joint assembly 22.
  • Two second manifolds 211 are defined in the second manifold 21.
  • the two second manifolds 211 are relatively independently sealed, and the two second manifolds 211 are sequentially arranged along the third direction, and each second manifold 211 extends along the second direction.
  • the number of heat exchange monomers 31 in the single-row heat exchange monomer row 3 is the same as the number of the second manifolds 211 and corresponds one to one, and the heat exchange channels 32 of the heat exchange monomers 31 are connected to the corresponding second manifolds 211.
  • the lower end of the heat exchange monomer 31 is connected to the second collecting tube 21 and the heat exchange monomer 31 and the second collecting tube 21 are welded; the heat exchange monomer 31 is inserted into the second collecting cavity 211 in the first direction, and a second connecting hole 225 is formed on the side of the second collecting tube 224 facing the heat exchange monomer 31.
  • the ratio of the length H3 of the heat exchange monomer 31 inserted into the second collecting cavity 211 in the first direction to the depth H4 of the second collecting cavity 211 in the first direction is in the range of 1/3-1/2.
  • the second joint assembly 22 includes a second joint 221 and a second distributor 223, the second joint 221 and the second distributor 223 are connected, the second joint 221 has a second inlet and outlet 222, and the second inlet and outlet 222 are located at the left end of the second distributor 223, the second distributor 223 is used to distribute the refrigerant to the two second manifolds 211, and the refrigerant in the two second manifolds 211 is suitable for being transported to the second inlet and outlet 222 through the second distributor 223.
  • the second distributor 223 includes two second manifold inserts 224, the second joint 221 is located on the left side of the second manifold 21, and each second manifold insert 224 is connected to the second joint 221, and the second joint 221 has a second inlet and outlet 222.
  • Second manifold insert 224 The number of the second manifolds 224 is the same as the number of the second manifolds 211 and corresponds one to one.
  • Each second manifold insert 224 is inserted into the corresponding second manifold 211, and each second manifold insert 224 extends along the second direction.
  • a plurality of second connecting holes 225 are arranged at equal intervals on each second manifold insert 224 along the extension direction of the second manifold insert 224.
  • the ratio of the aperture of the second connecting hole 225 to the inner diameter of the corresponding second manifold insert 224 is in the range of 1/4-1/3.
  • the second connecting holes 225 are connected to the second manifold 211, and the ratio of the number of the second connecting holes 225 to the number of the heat exchange monomer rows 3 in the second manifold 211 is in the range of 1/5-1/4.
  • the total flow area of the second communication holes 225 of the second header plug 224 decreases successively, and the inner diameters of the two second header plugs 224 decrease successively.
  • the cross-sections of the inner cavities of the two first header plugs 124 are both circular, the inner diameter D3 of the second header plug 224 adjacent to the windward side is greater than the inner diameter D4 of the second header plug 224 adjacent to the leeward side, the ratio of the cross-sectional area of the inner cavity of the second header plug 224 adjacent to the windward side to the cross-sectional area of the inner cavity of the second header plug 224 adjacent to the leeward side is 3:2, and the ratio of the flow rate of the refrigerant in the second header plug 224 adjacent to the windward side to the flow rate of the refrigerant in the second header plug 224 adjacent to the leeward side is 3:2.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the structure of this embodiment is substantially the same as that of the first embodiment, wherein the same components are marked with the same reference numerals, and the only difference is that: two adjacent heat exchange monomers 31 in the same heat exchange monomer row 3 are abutted against each other, a first manifold 111 is defined in the first manifold 11, a second manifold 211 is defined in the second manifold 21, the upper end of the heat exchange monomer row 3 extends into the first manifold 111, and the lower end of the heat exchange monomer row 3 extends into the second manifold 211, making the overall structure more compact.
  • the heat exchange capacity of the heat exchanger 100 of this embodiment is increased by about 13%, and has a better heat exchange effect.
  • the structure of this embodiment is substantially the same as that of the second embodiment, wherein the same components are marked with the same figures, and the only difference is that two adjacent heat exchange monomers 31 in the same heat exchange monomer row 3 are connected to ensure the stability and reliability of the heat exchange monomer row 3, thereby ensuring the stability of the heat exchanger 100.
  • the structure of this embodiment is substantially the same as that of the third embodiment, wherein the same components are marked with the same reference numerals, and the only difference is that the heat exchange monomer row 3 includes a heat exchange monomer 31, and the extension trajectory of the heat exchange monomer row 3 in the third direction is an arc.
  • the integrated structure is relatively simple, and the assembly process is reduced, so that the assembly efficiency of the heat exchanger 100 is relatively high.
  • the extension trajectory of the heat exchange monomer 31 in the third direction is an arc, which is beneficial to reduce wind resistance and ensure smooth air circulation.
  • the air conditioning system includes: the heat exchanger 100 according to the first aspect of the present application.
  • the air conditioning system includes a compressor 90, an outdoor heat exchanger 4, a throttling component 60 and an indoor heat exchanger 5, wherein the outdoor heat exchanger 4 can be the heat exchanger 100 of the first aspect of the present application, and the outdoor heat exchanger 4 includes the first collector 1, the second collector 2 and a plurality of rows of heat exchange monomers 3.
  • the compressor 90 and the outdoor heat exchanger 4 are usually located in the outdoor unit of the air conditioner, and the outdoor unit of the air conditioner can also include an outdoor fan 40, and the outdoor fan 40 can blow the outdoor air into the air flow channel 33 between the heat exchange monomer rows 3, which helps the refrigerant circulating in the heat exchange monomer 31 to exchange heat with the air.
  • the indoor heat exchanger 5 is located in the indoor unit of the air conditioner, and the indoor unit of the air conditioner also includes an indoor fan 50, and the indoor fan 50 can drive the indoor air to exchange heat with the indoor heat exchanger 5 to change the indoor temperature.
  • the throttling component 60 eg, an electronic expansion valve
  • the throttling component 60 may be connected between the indoor heat exchanger 5 and the outdoor heat exchanger 4, and the throttling component 60 is located in the indoor unit or the outdoor unit of the air conditioner.
  • the compressor 90 has an exhaust port 91 and an air return port 92.
  • the exhaust port 91 and the air return port 92 of the compressor 90 are both provided with a first sensor 71 and a second sensor 72.
  • the first sensor 71 may be a temperature sensor
  • the second sensor 72 may be a pressure sensor.
  • An oil separator 73 and a first control valve 81 are connected between the exhaust port 91 of the compressor 90 and the outdoor heat exchanger 4.
  • the oil separator 73 can filter the oil in the compressor 90 mixed with the refrigerant, and the filtered oil can enter the compressor 90 for recycling.
  • a gas-liquid separator 74 is connected between the first control valve 81 and the air return port 92 of the compressor 90.
  • the gas-liquid separator 74 can reduce the content of the liquid refrigerant sucked into the air return port 92 of the compressor 90, and avoid liquid hammer in the compressor 90.
  • a second control valve 82 is connected between the indoor heat exchanger 5 and the throttling component 60, and between the indoor heat exchanger 5 and the first control valve 81.
  • the first control valve 81 may be a four-way valve, which has a first interface D, a second interface C, a third interface E and a fourth interface S.
  • the first interface D is connected to the second interface C
  • the third interface E is connected to the fourth interface S
  • the second control valve 82 is turned on, and the refrigerant compressed by the compressor 90 is discharged through the exhaust port 91, and after passing through the oil separator and the first interface D and the second interface C of the first control valve 81, it enters the outdoor heat exchanger 4 through the first inlet and outlet 122, and performs heat exchange with the air in the air flow channel 33 in the outdoor heat exchanger 4
  • the refrigerant after heat exchange flows out of the outdoor heat exchanger 4 through the second inlet and outlet 222, and enters the indoor heat exchanger 5 through the throttling component 60, and performs heat exchange with the indoor air to cool the indoor temperature; then, the refrigerant flows out of the indoor heat exchanger 5, and after passing through the
  • the second control valve 82 is turned on, the first interface D and the third interface E of the first control valve 81 are connected, the second interface C and the fourth interface S are connected, and the refrigerant compressed by the compressor 90 is discharged through the exhaust port 91, passes through the oil separator and the first interface D and the third interface E of the first control valve 81, and enters the indoor heat exchanger 5, where it exchanges heat with the indoor air to increase the indoor temperature; after heat exchange, the refrigerant flows out of the indoor heat exchanger 5, and passes through the throttling component 60 from the second inlet and outlet 222 to enter the outdoor heat exchanger 4, where it exchanges heat with the air in the air flow channel 33; after heat exchange, the refrigerant flows out of the outdoor heat exchanger 4 through the first inlet and outlet 122, and the refrigerant flowing out of the outdoor heat exchanger 4 flows into the gas-liquid separator 74 after passing through the second interface C and the fourth interface S, and finally enters the compressor
  • the extension trajectory of the heat exchange monomer row 3 in the third direction is non-linear, and the extension trajectory of the air flow channel 33 in the third direction is non-linear, which can enhance the disturbance of the heat exchange monomer row 3 on the air, so that the air in the air flow channel 33 has a suitable flow velocity, and the air in the air flow channel 33 can fully exchange heat with the heat exchange monomer row 3, thereby improving the heat exchange effect, so that the heat exchanger 100 has a better heat exchange effect and a higher heat exchange efficiency, which is beneficial to improving the heat exchange performance of the heat exchanger 100; in addition, the heat exchanger 100 of the present application has a larger heat exchange area and the overall structure is more compact.
  • first feature to a second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种换热器(100)和空调系统,换热器(100)包括:第一集流件(1)、第二集流件(2)和多排换热单体排(3);换热单体排(3)包括多个换热单体(31)时,换热单体排(3)的多个换热单体(31)在第三方向上依次排布,换热单体(31)内具有沿第一方向延伸的换热通道(32),换热单体(31)的沿第一方向的两端分别与第一集流件(1)以及第二集流件(2)相连,相邻两排换热单体排(3)之间限定出气流通道(33),换热单体排(3)在第三方向上的延伸轨迹为非直线,第一方向、第二方向以及第三方向两两垂直。

Description

换热器和空调系统
相关申请的交叉引用
本申请基于申请号为202211517963.X、202223202852.8,申请日为2022年11月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空气调节技术领域,尤其是涉及一种换热器和空调系统。
背景技术
相关技术中,换热器的冷媒管与翅片分开生产,再将冷媒管与翅片装配,导致工艺复杂、生产效率低且成本较高;有的采用微通道换热器,但是存在换热器的换热效果较差、换热效率较低的问题。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个目的在于提出一种换热器,通过换热单体排在第三方向上的延伸轨迹为非直线,气流通道在第三方向上的延伸轨迹为非直线,可以增强换热单体排对于空气的扰动,使得气流通道内的空气具有合适的流动速度,气流通道内的空气可以与换热单体排充分换热,从而提高换热效果,使得换热器具有较好的换热效果,而且换热效率较高,有利于提高换热器的换热性能;另外,本申请的换热器具有较大的换热面积,而且整体的结构更紧凑。
本申请还提出一种具有上述换热器的空调系统。
根据本申请第一方面实施例的换热器,包括:第一集流件以及第二集流件,沿第一方向间隔开设置,所述第一集流件具有第一进出口,所述第二集流件具有第二进出口;多排换热单体排,设在所述第一集流件与所述第二集流件之间且在第二方向上依次间隔排布,每排所述换热单体排包括至少一个换热单体,所述换热单体排包括多个所述换热单体时,所述换热单体排的多个所述换热单体在第三方向上依次排布,所述换热单体内具有沿第一方向延伸的换热通道,所述换热单体的沿第一方向的两端分别与所述第一集流件以及所述第二集流件相连,相邻两排所述换热单体排之间限定出气流通道,所述换热单体排在所述第三方向上的延伸轨迹为非直线,所述第一方向、所述第二方向以及所述第三方向两两垂直。
根据本申请实施例的换热器,通过换热单体排在第三方向上的延伸轨迹为非直线,气流通道在第三方向上的延伸轨迹为非直线,可以增强换热单体排对于空气的扰动,使得空气流通的速度减小,气流通道内的空气可以与换热单体排充分换热,从而提高换热效果,使得换热器具有较好的换热效果,而且换热效率较高,有利于提高换热器的换热性能;另外,本申请的换热器具有较大的换热面积,而且整体的结构更紧凑。
根据本申请的一些实施例,所述换热单体排在所述第三方向上的延伸轨迹为折线或曲线。
根据本申请的一些可选实施例,所述换热单体排在所述第三方向上的延伸轨迹为折线,所述换热单体排包括沿所述第三方向依次排布的多个所述换热单体,同一所述换热单体排中相邻两个所述换热单体的延伸轨迹之间具有夹角。
在本申请的一些可选实施例中,所述换热单体排包括沿所述第三方向依次排布的两个所述换热单体。
在本申请的一些可选实施例中,所述换热单体排的两个所述换热单体之间的夹角范围为60°-120°。
在本申请的一些可选实施例中,所述换热单体排在所述第三方向上的延伸轨迹呈V形折线。
在本申请的一些可选实施例中,同一所述换热单体排中相邻两个所述换热单体之间抵接;或者,同一所述换热单体排中相邻两个所述换热单体之间间隔开;或者,同一所述换热单体排中相邻两个所述换热单体之间相连。
根据本申请的一些可选实施例,所述换热单体排在所述第三方向上的延伸轨迹为弧线。
在本申请的一些可选实施例中,所述换热单体排包括一个所述换热单体。
根据本申请的一些实施例,所述换热单体呈板状,所述换热单体的厚度不大于0.7mm。
根据本申请的一些可选实施例,所述换热通道在所述换热单体的厚度方向上的尺寸不大于0.4mm。
根据本申请的一些实施例,所述换热单体具有沿所述气流通道内的气流的流动方向依次排布的多个所述换热通道。
根据本申请的一些实施例,所述第一集流件包括第一集流管以及第一接头组件,所述第一集流管内限定出沿所述第三方向依次间隔排布的多个第一集流腔,每个所述第一集流腔沿所述第二方向延伸,所述第一接头组件包括相连的第一接头以及第一分配器,所述第一接头具有所述第一进出口,所述第一分配器用于将冷媒分配至多个所述第一集流腔内或是多个所述第一集流腔内的冷媒适于通过所述第一分配器输送至所述第一进出口;所述换热单体排包括沿所述第三方向依次排布的多个所述换热单体,单排所述换热单体排中的所述换热单体的数量与所述第一集流腔的数量相同且一一对应,所述换热单体的所述换热通道与对应的所述第一集流腔连通。
根据本申请的一些可选实施例,所述第一分配器包括多个第一集流插管,所述第一集流插管的数量与所述第一集流腔的数量相同且一一对应,每个所述第一集流插管插设于对应的所述第一集流腔且沿所述第二方向延伸,每个所述第一集流插管上形成有与所述第一集流腔连通的第一连通孔,所述第一连通孔为沿所述第一集流插管的延伸方向间隔设置的多个,所述第一接头位于所述第一集流管的长度方向上的一侧且每个所述第一集流插管均与所述第一接头相连。
在本申请的一些可选实施例中,沿所述第三方向且在气流的流动方向上,多个所述第一集流插管的内腔的横截面积依次减小。
在本申请的一些可选实施例中,所述换热单体排包括沿所述第三方向依次排布的两个所述换热单体,所述第一集流插管为两个,两个所述第一集流插管的内腔的横截面积之比为3:2。
在本申请的一些可选实施例中,沿所述第三方向且在气流的流动方向上,多个所述第一集流插管的所述第一连通孔的总流通面积依次减小。
在本申请的一些可选实施例中,所述第一集流插管上的多个所述第一连通孔等间距排布。
在本申请的一些可选实施例中,所述第一连通孔的孔径与对应的所述第一集流插管的内径的比值范围为1/4-1/3。
在本申请的一些可选实施例中,单个所述第一集流插管的所述第一连通孔的数量与所述换热单体排的数量的比值范围为1/5-1/4。
在本申请的一些可选实施例中,所述换热单体在所述第一方向上插入至所述第一集流腔内,所述第一集流插管的朝向所述换热单体的一侧形成有所述第一连通孔,所述换热单体在所述第一方向上插入至所述第一集流腔内的长度与所述第一集流腔在所述第一方向上的深度的比值范围为1/3-1/2。
根据本申请的一些可选实施例,所述第二集流件包括第二集流管以及第二接头组件,所述第二集流管内限定出沿所述第三方向依次间隔排布的多个第二集流腔,所述第二接头组件包括相连的第二接头以及第二分配器,所述第二接头具有所述第二进出口,多个所述第二集流腔内的冷媒适于通过所述第二分配器输送至所述第二进出口或是所述第二分配器用于将冷媒分配至多个所述第二集流腔内;单排所述换热单体排中的所述换热单体的数量与所述第二集流腔的数量相同且一一对应,所述换热单体的所述换热通道与对应的所述第二集流腔连通。
在本申请的一些可选实施例中,所述第二分配器包括多个第二集流插管,所述第二集流插管的数量与所述第二集流腔的数量相同且一一对应,每个所述第二集流插管插设于对应的所述第二集流腔且沿所述第二方向延伸,每个所述第二集流插管上形成有与所述第二集流腔连通的第二连通孔,所述第二连通孔为沿所述第二集流插管的延伸方向间隔设置的多个,所述第二接头位于所述第二集流管的长度方向上的一侧且每个所述第二集流插管均与所述第二接头相连。
在本申请的一些可选实施例中,沿所述第三方向且在气流的流动方向上,多个所述第二集流插管的内腔的横截面积依次减小。
在本申请的一些可选实施例中,所述换热单体排包括沿所述第三方向依次排布的两个所述换热单体,所述第二集流插管为两个,两个所述第二集流插管的内腔的横截面积之比为3:2。
在本申请的一些可选实施例中,沿所述第三方向且在气流的流动方向上,多个所述第二集流插管的所述第二连通孔的总流通面积依次减小。
根据本申请的一些可选实施例,所述第二集流插管上的多个所述第二连通孔等间距排布。
根据本申请的一些可选实施例,所述第二连通孔的孔径与对应的所述第二集流插管的内径的比值范围为1/4-1/3。
根据本申请的一些可选实施例,单个所述第二集流插管的所述第二连通孔的数量与所述换热单体排的数量的比值范围为1/5-1/4。
在本申请的一些可选实施例中,所述换热单体在所述第一方向上插入至所述第二集流腔内,所述第二集流插管的朝向所述换热单体的一侧形成有所述第二连通孔,所述换热单体在所述第一方向上插入至所述第二集流腔内的长度与所述第二集流腔在所述第一方向上的深度的比值范围为1/3-1/2。
根据本申请的一些实施例,所述第一方向为上下方向。
根据本申请第二方面实施例的空调系统,包括:根据本申请上述第一方面实施例所述的换热器。
根据本申请实施例的空调系统,通过设置上述的换热器,换热单体排在第三方向上的延伸轨迹为非直线,气流通道在第三方向上的延伸轨迹为非直线,可以增强换热单体排对于空气的扰动,使得气流通道内的空气具有合适的流动速度,气流通道内的空气可以与换热单体排充分换热,从而提高换热效果,使得换热器具有较好的换热效果,而且换热效率较高,有利于提高换热器的换热性能;另外,本申请的换热器具有较大的换热面积,而且整体的结构更紧凑。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请一些实施例的换热器的结构示意图;
图2是图1中换热器的立体剖切图;
图3是图1中换热器的简示图;
图4是图1中换热器的另一角度的立体剖切图,示出了两个第一集流插管和两个第二集流插管;
图5是图1中换热器的部分结构示意图,其中第一集流件被拆下;
图6是图1中第二集流件的结构示意图;
图7是图1中第二集流件的部分结构示意图;
图8是根据本申请一些实施例的换热器的多排换热单体排的排布示意图,其中相邻两个换热单体之间间隔开,换热单体的延伸轨迹呈V型;
图9是根据本申请另一些实施例的换热器的多排换热单体排的排布示意图,其中相邻两个换热单体之间抵接,换热单体的延伸轨迹呈V型;
图10是图1中换热单体的结构示意图;
图11是根据本申请又一些实施例的换热器的多排换热单体排的排布示意图,且换热单体的延伸轨迹为弧线;
图12是根据本申请一些实施例的空调系统的工作原理示意图;
图13是图9中的多排换热单体排的仿真计算温度、压力和风速云图。
附图标记:
100、换热器;
1、第一集流件;11、第一集流管;111、第一集流腔;12、第一接头组件;121、第一接头;122、
第一进出口;123、第一分配器;124、第一集流插管;
2、第二集流件;21、第二集流管;211、第二集流腔;22、第二接头组件;221、第二接头;222、
第二进出口;223、第二分配器;224、第二集流插管;225、第二连通孔;
3、换热单体排;31、换热单体;32、换热通道;33、气流通道;
4、室外换热器;40、室外风机;5、室内换热器;50、室内风机;60、节流部件;71、第一传感器;
72、第二传感器;73、油分离器;74、气液分离器;81、第一控制阀;82、第二控制阀;90、压缩机;91、排气口;92、回气口。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述根据本申请实施例的换热器100。
参照图1-图4,根据本申请第一方面实施例的换热器100,包括:第一集流件1、第二集流件2和多排换热单体排3,第一集流件1以及第二集流件2沿第一方向(例如参照附图中的上下方向)间隔开设置。第一集流件1具有第一进出口122,冷媒可以经过第一进出口122流进第一集流件1,第一集流件1内的冷媒也可以经过第一进出口122流出;第二集流件2具有第二进出口222,冷媒可以经过第二进出口222流进第二集流件2,第二集流件2内的冷媒也可以经过第二进出口222流出。例如,第一集流件1和第二集流件2沿上下方向间隔开设置,且第一集流件1位于第二集流件2的上方,则第一进出口122位于第二进出口222的上方。
参照图1-图5,多排换热单体排3设在第一集流件1与第二集流件2之间,且多排换热单体排3在第二方向(例如参照附图中的左右方向)上依次间隔排布,每排换热单体排3可以包括一个换热单体31,每排换热单体排3也可以包括多个换热单体31。换热单体排3包括多个换热单体31时,换热单体排3的多个换热单体31在第三方向(例如参照附图中的前后方向)上依次排布,换热单体31内具有换热通道32,且换热通道32沿第一方向延伸。
其中,第一方向、第二方向以及第三方向两两垂直。例如,第一方向可以为上下方向,第二方向可以为左右方向,第三方向可以为前后方向,需要说明的是,换热器100的迎风侧可以参照附图中的前侧,换热器100的背风侧可以参照附图中的后侧。
参照图1-图4,换热单体31可以沿第一方向延伸,换热单体31的沿第一方向的其中一端与第一集流件1相连,换热单体31的沿第一方向的另一端与第二集流件2相连。例如,换热单体31的上端与第一集流件1相连,换热单体31的下端与第二集流件2相连,冷媒可以经过第一进出口122流进第一集 流件1,并沿着换热单体31流进第二集流件2,然后从第二进出口222流出;冷媒也可以经过第二进出口222流进二集流件,并沿着换热单体31流进第一集流件1,然后从第一进出口122流出。
参照图8、图9和图11,相邻两排换热单体排3之间限定出气流通道33,空气可以在气流通道33内流通,且空气在气流通道33内流通时可以与换热单体排3换热。换热单体排3在第三方向上的延伸轨迹为非直线,则气流通道33在第三方向上的延伸轨迹为非直线,气流与换热单体31表面接触并进行对流换热,相对于换热单体排3在第三方向上的延伸轨迹为直线,换热单体排3延伸轨迹为非直线时,可以增强换热单体排3对于空气的扰动,使得气流通道33内的空气具有合适的流动速度,气流通道33内的空气可以与换热单体排3充分换热,从而提高换热效果,使得换热器100具有较好的换热效果,而且换热效率较高,有利于提高换热器100的换热性能。另外,在尺寸相同的情况下,本申请的换热器100的与空气的换热面积较大;在换热面积相同的情况下,本申请的换热器100的结构更紧凑。
根据本申请实施例的换热器100,通过换热单体排3在第三方向上的延伸轨迹为非直线,气流通道33在第三方向上的延伸轨迹为非直线,可以增强换热单体排3对于空气的扰动,使得气流通道33内的空气具有合适的流动速度,气流通道33内的空气可以与换热单体排3充分换热,从而提高换热效果,使得换热器100具有较好的换热效果,而且换热效率较高,有利于提高换热器100的换热性能;另外,本申请的换热器100具有较大的换热面积,而且整体的结构更紧凑。
参照图8和图9,根据本申请的一些实施例,换热单体排3在第三方向上的延伸轨迹可以为折线,折线的转角会破坏换热单体31表面的层流边界层,能够增强换热单体排3对于空气的扰动,使得空气流通的速度减小,气流通道33内的空气可以与换热单体排3充分换热,提高换热效果,从而提高换热器100的换热性能。
根据本申请的另一些实施例,参照图11,换热单体排3在第三方向上的延伸轨迹也可以为曲线,也可以增强换热单体排3对于空气的扰动,气流通道33内的空气可以与换热单体排3充分换热,提高换热效果,从而提高换热器100的换热性能,并且能够保证空气流通顺畅。
参照图8和图9,根据本申请的一些可选实施例,换热单体排3在第三方向上的延伸轨迹为折线,换热单体排3包括多个换热单体31,且多个换热单体31沿第三方向依次排布,同一换热单体排3中相邻两个换热单体31的延伸轨迹之间具有夹角,这样能够增强对于气流通道33内的空气的扰动,使得空气流通的速度较小,气流通道33内的空气可以与换热单体31充分换热,以提高换热效果。
参照图8和图9,在本申请的一些可选实施例中,换热单体排3包括两个换热单体31,两个换热单体31沿第三方向依次排布,两个换热单体31的延伸轨迹之间具有夹角,这样能够增强对于气流通道33内的空气的扰动,使得空气流通的速度较小,气流通道33内的空气可以与换热单体31充分换热,以提高换热效果。
例如,相邻两个换热单体31沿前后方向依次排布,另外,同一换热单体排3中相邻的两个换热单体31,一个位于迎风侧,一个位于背风侧,相邻两个换热单体31的夹角处能够破坏位于迎风侧的换热单体31表面的层流边界层,增强对于空气的扰动,提高换热效果。
参照图8和图9,在本申请的一些可选实施例中,换热单体排3的两个换热单体31之间的夹角α的范围为60°-120°,例如,换热单体排3的两个换热单体31之间的夹角α可以为70°、80°、90°或110°。风机作用下,气流进入气流通道33内,与换热单体31的表面接触进行强制对流换热,通过换热单体排3的两个换热单体31之间的夹角α不小于60°,防止风阻太大使得驱动空气流通的风机的功率增加;通过换热单体排3的两个换热单体31之间的夹角α不大于120°,防止空气在气流通道33内流通过快导致空气难以与换热单体31充分换热,从而保证换热单体31的换热率;通过换热单体排3的两个换热单体31之间的夹角α的范围为60°-120°,不仅可以保证合适的风阻,而且可以保证换热单体31的换热效果和换热效率。
参照图8和图9,在本申请的一些可选实施例中,换热单体排3在第三方向上的延伸轨迹呈V形折线,V形折线的转角会破坏换热单体31表面的层流边界层,增强换热单体排3对于空气的扰动,使得空气流通的速度减小,气流通道33内的空气可以与换热单体排3充分换热,提高换热效果,从而提高换热器100的换热性能。
参照图8和图9,在本申请的一些可选实施例中,同一换热单体排3中相邻两个换热单体31之间抵接,使得整体的结构更加紧凑,例如,参照图13,相对于常规的冷媒管和翅片焊接的换热器,在相同风速0.8m/s下,本实施例的换热器100的换热能力提高约13%,具有较好的换热效果。或者,同一换热单体排3中相邻两个换热单体31之间间隔开;或者,同一换热单体排3中相邻两个换热单体31之间相连,可以保证换热单体排3的稳定性和可靠性,从而保证换热器100的稳定性。
参照图11,根据本申请的一些可选实施例,换热单体排3在第三方向上的延伸轨迹为弧线,有利于减小风阻,保证空气流通顺畅。
参照图11,在本申请的一些可选实施例中,换热单体排3包括一个换热单体31,结构较简单,减少了装配工序,使得换热器100的装配效率较高,而且换热单体31在第三方向上的延伸轨迹为弧线,有利于减小风阻,保证空气流通顺畅。
参照图10,根据本申请的一些实施例,换热单体31呈板状,换热单体31的厚度L不大于0.7mm,一方面可以降低风阻、节省成本,另一方面,在保证换热器100换热量相同的情况下,换热单体31的厚度较小,使得换热器100的结构更加紧凑。例如,换热单体31的厚度L可以为0.7mm、0.65mm、0.6mm或0.5mm。
参照图10,根据本申请的一些可选实施例,换热通道32在换热单体31的厚度方向上的尺寸L1不大于0.4mm,使得换热单体31内的冷媒灌注量较低,从而可以节省冷媒。例如,换热通道32在换热单体31的厚度方向上的尺寸L1可以为0.4mm、0.35mm或0.3mm。
参照图8、图9和图11,根据本申请的一些实施例,换热单体31具有多个换热通道32,多个换热通道32沿气流通道33内的气流的流动方向依次排布,使得气流通道33内的气流可以充分换热,保证换热单体31的换热效果,以保证换热器100具有较好的换热性能。例如,换热单体31内的换热通道32可以为十二个,换热单体31内的换热通道32也可以为十四个,多个换热通道32可以是等间距排布,图中箭头指示方向为气流的流动方向。
参照图1-图4,根据本申请的一些实施例,第一集流件1包括第一集流管11以及第一接头组件12,第一集流管11内限定出多个第一集流腔111,且多个第一集流腔111沿第三方向依次间隔排布,多个第一集流腔111彼此之间隔断设置,每个第一集流腔111沿第二方向延伸。例如,第一集流管11内限定出两个第一集流腔111,且两个第一集流腔111沿前后方向依次排布,每个第一集流腔111均沿左右方向延伸,两个第一集流腔111相互隔断设置。
第一接头组件12包括第一接头121以及第一分配器123,第一接头121和第一分配器123相连,第一接头121具有第一进出口122,例如参照图1和图2,第一进出口122可以位于第一接头121的左端。第一分配器123用于将冷媒分配至多个第一集流腔111内;或着,多个第一集流腔111内的冷媒适于通过第一分配器123输送至第一进出口122,从而实现冷媒的流入和流出,使得冷媒流通顺畅。
参照图4,换热单体排3包括多个换热单体31,多个换热单体31沿第三方向依次排布,单排换热单体排3中换热单体31的数量与第一集流腔111的数量相同且一一对应,换热单体31的换热通道32与对应的第一集流腔111连通,第一集流腔111内的冷媒可以流入对应的换热单体31的换热通道32内,换热单体31的换热通道32内的冷媒也可以流入对应的第一集流腔111内。例如,单排换热单体排3包括两个换热单体31,对应的,第一集流管11内限定出两个第一集流腔111,其中一个第一集流腔111与单排换热单体排3的其中一个换热单体31的换热通道32连通,另一个第一集流腔111与单排换热单 体排3的另一个换热单体31的换热通道32连通。
参照图4,根据本申请的一些可选实施例,第一分配器123包括多个第一集流插管124,第一集流插管124的数量与第一集流腔111的数量相同且一一对应,每个第一集流插管124插设于对应的第一集流腔111,且每个第一集流插管124沿第二方向延伸,例如,第一接头组件12具有两个第一集流插管124,第一集流管11内限定出两个第一集流腔111,其中一个第一集流插管124插设于其中一个第一集流腔111,另一个第一集流插管124插设于另一个第一集流腔111。
具体地,每个第一集流插管124上形成有第一连通孔,第一连通孔与第一集流腔111连通,根据上述换热单体31的换热通道32与对应的第一集流腔111连通,可以实现第一连通孔与对应换热单体31的换热通道32连通。第一连通孔为沿第一集流插管124的延伸方向间隔设置的多个,第一接头121位于第一集流管11的长度方向上的一侧(例如左侧),且每个第一集流插管124均与第一接头121相连,第一接头121具有第一进出口122。通过沿第一集流插管124的延伸方向间隔设置多个第一连通孔,有助于冷媒分流均匀,可以保证同一第一集流腔111对应的换热单体31的每个换热通道32内冷媒分配均匀,从而保证同一第一集流腔111对应的换热单体31换热的均匀性。
例如,经过第一进出口122进入第一接头121的冷媒可以流入第一集流插管124,第一集流插管124内流通的冷媒经过第一连通孔进入第一集流腔111,从而进入对应的换热单体31的换热通道32内;然后,从换热通道32内流出的冷媒经过第二集流腔211和第二连通孔225进入第二集流插管224,第二集流插管224可以将冷媒输送至第二进出口222,并从第二进出口222流出。另外,经过第二进出口222进入第二接头221的冷媒可以流入第二集流插管224,第二集流插管224内流通的冷媒经过第二连通孔225进入第二集流腔211,从而进入对应的换热单体31的换热通道32内;然后,从换热通道32内流出的冷媒经过第一集流腔111和第一连通孔进入第一集流插管124,第一集流插管124可以将冷媒输送至第一进出口122,并从第一进出口122流出。
参照图4,在本申请的一些可选实施例中,沿第三方向且在气流的流动方向上,多个第一集流插管124的内腔的横截面积依次减小,邻近换热器100的迎风侧的第一集流插管124的内腔的横截面积较大,邻近换热器100的背风侧的第一集流插管124的内腔的横截面积较小,内腔的横截面积较大的第一集流插管124内冷媒的流通量较大,内腔的横截面积较小的第一集流插管124内冷媒的流通量较小。由于换热器100的迎风侧的换热温差较大,通过在气流的流动方向上,多个第一集流插管124的内腔的横截面积依次减小,使得在换热器100的迎风侧的第一集流插管124内冷媒流通量较大,可以增强换热器100的迎风侧的换热能力,以提高换热效果;气流在换热器100的迎风侧与冷媒完成热交换并流动至换热器100的背风侧,使得换热器100的背风侧的换热温差较小,换热器100的背风侧的第一集流插管124内冷媒流通量较小,有利于保证换热效率。
参照图4,在本申请的一些可选实施例中,换热单体排3包括沿第三方向依次排布的两个换热单体31,第一集流插管124为两个,两个第一集流插管124的内腔的横截面积之比为3:2,则单位时间内两个第一集流管11内冷媒的流通量之比为3:2,两个第一集流管11对应的换热单体31的换热能力之比为3:2,这样既可以保证换热器100的换热能力,又可以保证换热效率。例如,第二集流插管224的内腔的横截面为呈圆形,邻近迎风侧的第一集流插管124的内径D1大于邻近背风侧的第一集流插管124的内径D2,邻近迎风侧的第一集流插管124的内腔的横截面积与邻近背风侧的第一集流插管124的内腔的横截面积之比为3:2。
在本申请的一些可选实施例中,第一集流插管124通过第一连通孔与对应的第一集流腔111连通,第一集流腔111与对应的换热单体31的换热通道32连通,通过沿第三方向且在气流的流动方向上,多个第一集流插管124的第一连通孔的总流通面积依次减小,通过沿第三方向且在气流的流动方向上,多个第一集流插管124的第一连通孔的总流通面积依次减小,在气流的流动方向上,多个第一集流插管124 单位时间内流入对应的第一集流腔111内的冷媒量依次减少,第一集流腔111流入对应的换热单体31的换热通道32内的冷媒量依次减少,沿着气流的流动方向,换热器100的换热能力逐渐减小,这样既能保证换热器100的换热效果,又可以保证换热器100的换热效率。例如,第一连通孔的总流通面积可以是多个第一集流插管124的多个第一连通孔的流通面积之和,沿第三方向且在气流的流动方向上,多个第一集流插管124的第一连通孔的孔径减小。
在本申请的一些可选实施例中,第一集流插管124上的多个第一连通孔等间距排布,有利于冷媒分配的均匀性,使得进入与第一集流插管124对应的换热单体31的换热通道32内的冷媒均匀,以保证换热单体31换热的均匀性,从而保证换热器100的换热性能。
在本申请的一些可选实施例中,第一连通孔的孔径与对应的第一集流插管124的内径的比值范围为1/4-1/3。当第一连通孔的孔径与对应的第一集流插管124的内径的比值范围小于1/4时,第一连通孔过小,导致第一连通孔喷射出冷媒的覆盖范围过小,相邻两个第一连通孔喷射的冷媒难以覆盖全面,使得冷媒覆盖部位(即距离第一连通孔较近的换热单体排3)的换热通道32内流通的冷媒量较多,其他部分换热通道32内流通的冷媒量较少或者没有冷媒流通,导致换热单体31换热不均匀。当第一连通孔的孔径与对应的第一集流插管124的内径的比值范围为大于1/3时,第一连通孔过大,导致第一连通孔喷射出冷媒的覆盖范围过大,相邻两个第一连通孔喷射冷媒的覆盖范围具有重叠的部分,使得位于重叠部分的换热通道32内流通的冷媒量多,其他部分换热通道32内流通的冷媒量少,导致换热单体31换热不均匀。通过第一连通孔的孔径与对应的第一集流插管124的内径的比值范围为1/4-1/3,使得第一连通孔的孔径大小合适,可以保证经过第一连通孔进入多个换热通道32内的冷媒量的均匀性,以保证换热单体31换热的均匀性。
在本申请的一些可选实施例中,单个第一集流插管124的第一连通孔的数量与换热单体排3的数量的比值范围为1/5-1/4。当单个第一集流插管124的第一连通孔的数量与换热单体排3的数量的比值小于1/5时,第一连通孔的数量过少,相邻两个第一连通孔喷射的冷媒难以覆盖全面,使得冷媒覆盖部位(即距离第一连通孔较近的换热单体排3)的换热通道32内流通的冷媒量较多,其他部分换热通道32内流通的冷媒量较少或者没有冷媒流通,导致换热单体31换热不均匀;当单个第一集流插管124的第一连通孔的数量与换热单体排3的数量的比值大于1/4时,第一连通孔的数量过多,使得第一连通孔喷射出冷媒的覆盖范围过大,相邻两个第一连通孔喷射冷媒的覆盖范围具有重叠的部分,使得位于重叠部分的换热通道32内流通的冷媒量多,其他部分换热通道32内流通的冷媒量少,导致换热单体31换热不均匀。通过单个第一集流插管124的第一连通孔的数量与换热单体排3的数量的比值范围为1/5-1/4,换热单体排3的数量为第一连通孔数量的4-5倍,这样第一连通孔和换热单体排3的相对数量合适,可以保证经过第一连通孔进入多个换热通道32内的冷媒量的均匀性,以保证换热单体排3换热的均匀性,从而保证换热器100换热的均匀性。
参照图2,在本申请的一些可选实施例中,换热单体31在第一方向上插入至第一集流腔111内,第一集流插管124的朝向换热单体31的一侧形成有第一连通孔,方便第一连通孔内流出的冷媒流入对应的换热单体31的换热通道32内,也方便换热单体31的换热通道32内流出的冷媒经过第一连通孔进入对应的第一集流插管124内。换热单体31在第一方向上插入至第一集流腔111内的长度H1与第一集流腔111在第一方向上的深度H2的比值范围为1/3-1/2,可以保证冷媒分流的均匀性,使得每个第一集流腔111对应的换热单体31的换热通道32内流通的冷媒量均匀,以保证换热单体31换热的均匀性。例如,换热单体31在上下方向上插入至第一集流腔111内,换热单体31的上端与第一集流管11相连且换热单体31与第一集流管11可以为焊接连接,第一连通孔位于换热单体31的上方。
换热单体31在第一方向上插入至第一集流腔111内的长度H1过短时,第一连通孔与换热单体31之间的距离过长,相邻两个第一连通孔喷射的冷媒难以覆盖全面,使得冷媒覆盖部位(即距离第一连通 孔较近的换热单体排3)的换热通道32内流通的冷媒量较多,其他部分换热通道32内流通的冷媒量较少或者没有冷媒流通,导致换热单体31换热不均匀。换热单体31在第一方向上插入至第一集流腔111内的长度H1过长时,第一连通孔与换热单体31之间的距离过短,相邻两个第一连通孔喷射冷媒的覆盖范围具有重叠的部分,使得位于重叠部分的换热通道32内流通的冷媒量多,其他部分换热通道32内流通的冷媒量少,导致换热单体31换热不均匀。
参照图1-图7,根据本申请的一些可选实施例,第二集流件2包括第二集流管21以及第二接头组件22,第二集流管21内限定出多个第二集流腔211,且个第二集流腔211沿第三方向依次间隔排布,每个第一集流腔111可以均沿第二方向延伸。例如,第二集流管21内限定出两个第二集流腔211,且两个第二集流腔211沿前后方向依次排布,每个第二集流腔211均沿左右方向延伸,两个第一集流腔111相对独立。第二接头组件22包括第二接头221以及第二分配器223,第二接头221具有第二进出口222,多个第二集流腔211内的冷媒适于通过第二分配器223输送至第二进出口222,或者,第二分配器223用于将冷媒分配至多个第二集流腔211内,从而实现冷媒的流入和流出,使得冷媒流通顺畅。
例如,从第一进出口122进入第一接头组件12的冷媒可以通过第一分配器123分配至多个第一集流腔111内,再经过第一集流腔111进入与每个第一集流腔111对应的换热单体31的换热通道32内,经过换热通道32经过第二集流腔211流入第二分配器223内,最后通过第二进出口222流出;从第二进出口222进入第二接头组件22的冷媒可以通过第二分配器223分配至多个第二集流腔211内,再经过第二集流腔211进入与每个第二集流腔211对应的换热单体31的换热通道32内,经过换热通道32经过第一集流腔111流入第一分配器123内,最后通过第一进出口122流出。
参照图4,单排换热单体排3中的换热单体31的数量与第二集流腔211的数量相同且一一对应,换热单体31的换热通道32与对应的第二集流腔211连通,例如,单排换热单体排3包括两个换热单体31,对应的,第二集流管21内限定出两个第二集流腔211,其中一个第二集流腔211与其中一个换热单体31的换热通道32连通,另一个第二集流腔211与另一个换热单体31的换热通道32连通。根据上述,单排换热单体排3中换热单体31的数量与第一集流腔111的数量相同且一一对应,换热单体31的换热通道32与对应的第一集流腔111连通。第一集流腔111内的冷媒可以流入对应的换热单体31的换热通道32内,换热通道32内的冷媒可以流入对应的第二集流腔211内;第二集流腔211内的冷媒可以流入对应的换热单体31的换热通道32内,换热通道32内的冷媒可以流入对应的第一集流腔111内。
例如,根据本申请的另一些具体实施例,单排换热单体排3包括一个换热单体31,对应的,第一集流管11内限定出一个第一集流腔111,第二集流管21内限定出一个第二集流腔211,换热单体31的换热通道32的上端与第一集流腔111连通,换热单体31的换热通道32的下端与第二集流腔211连通,第一集流腔111内的冷媒可以通过对应的换热单体31的换热通道32流入第二集流腔211内,第二集流腔211内的冷媒也可以通过对应的换热单体31的换热通道32流入第一集流腔111内。
参照图7,在本申请的一些可选实施例中,第二分配器223包括多个第二集流插管224,第二集流插管224的数量与第二集流腔211的数量相同且一一对应,每个第二集流插管224插设于对应的第二集流腔211,且每个第二集流插管224沿第二方向延伸,例如,第二接头组件22具有两个第二集流插管224,第二集流管21内限定出两个第二集流腔211,其中一个第二集流插管224插设于其中一个第二集流腔211,另一个第二集流插管224插设于另一个第二集流腔211。
参照图7,每个第二集流插管224上形成有第二连通孔225,第二连通孔225与第二集流腔211连通,根据上述换热单体31的换热通道32与对应的第二集流腔211连通,可以实现第二连通孔225与对应换热单体31的换热通道32连通。第二连通孔225为沿第二集流插管224的延伸方向间隔设置的多个,第二接头221位于第二集流管21的长度方向上的一侧(例如左侧),且每个第二集流插管224均与第二接头221相连,第二接头221具有第二进出口222。经过第二进出口222进入第二接头221的冷媒可以流 入第二集流插管224,第二集流插管224内流通的冷媒经过第二连通孔225进入第二集流腔211,从而进入对应的换热单体31的换热通道32内。另外,换热通道32内冷媒可以进入对应的第二集流腔211内,并经过第二连通孔225进入第二集流插管224内,第二集流插管224内的冷媒沿着第二集流插管224的延伸方向流通并流入第二接头221,从而,冷媒从第二接头221的第二进出口222流出。通过沿第二集流插管224的延伸方向间隔设置多个第二连通孔225,有助于冷媒分流均匀,可以保证每个换热通道32内冷媒分配的均匀性,从而保证换热器100换热的均匀性。
参照图4,在本申请的一些可选实施例中,沿第三方向且在气流的流动方向上,多个第二集流插管224的内径依次减小,邻近换热器100的迎风侧的第二集流插管224的内径较大,邻近换热器100的背风侧的第二集流插管224的内径较小,内径较大的第二集流插管224内冷媒的流通量较大,内径较小的第二集流插管224内冷媒的流通量较小。由于换热器100的迎风侧的换热温差较大,通过在气流的流动方向上,多个第二集流插管224的内径依次减小,使得在换热器100的迎风侧的第二集流插管224内冷媒流通量较大,可以增强换热器100的迎风侧的换热能力,以提高换热效果;气流在换热器100的迎风侧与冷媒完成热交换并流动至换热器100的背风侧,使得换热器100的背风侧的换热温差较小,换热器100的背风侧的第二集流插管224内冷媒流通量较小,有利于保证换热效率。
在本申请的一些可选实施例中,换热单体排3包括沿第三方向依次排布的两个换热单体31,第二集流插管224为两个,两个第二集流插管224的内腔的横截面积之比为3:2,则单位时间内两个第二集流管21内冷媒的流通量之比为3:2,两个第二集流管21对应的换热单体31的换热能力之比为3:2,这样既可以保证换热器100的换热能力,又可以保证换热效率。例如,第二集流插管224的内腔的横截面为呈圆形,邻近迎风侧的第二集流插管224的内径D2大于邻近背风侧的第二集流插管224的内径D4,邻近迎风侧的第二集流插管224的截面积与邻近背风侧的第二集流插管224的截面积之比为3:2。例如,邻近迎风侧的第二集流插管224的内径D3可以与邻近迎风侧的第一集流插管124的内径D1相等,邻近背风侧的第二集流插管224的内径D4可以与邻近背风侧的第一集流插管124的内径D2相等。
参照图7,在本申请的一些可选实施例中,第二集流插管224通过第二连通孔225与对应的第二集流腔211连通,第二集流腔211与对应的换热单体31的换热通道32连通,通过沿第三方向且在气流的流动方向上,多个第二集流插管224的第二连通孔225的总流通面积依次减小,则多个第二集流插管224在单位时间内流入对应的第二集流腔211内的冷媒量依次减少,第二集流腔211流入对应的换热单体31的换热通道32内冷媒量依次减少,沿着气流的流动方向,换热器100的换热能力逐渐减小,这样既能保证换热器100的换热效果,又可以保证换热器100的换热效率。例如,第二连通孔225的总流通面积可以是多个第二集流插管224的多个第二连通孔225的流通面积之和,沿第三方向且在气流的流动方向上,多个第二集流插管224的第二连通孔225的孔径减小。
参照图6和图7,根据本申请的一些可选实施例,第二集流插管224上的多个第二连通孔225等间距排布,有利于进入对应的换热单体31内的换热通道32内的冷媒均匀性,以保证换热单体31换热的均匀性,从而保证换热器100的换热性能。
根据本申请的一些可选实施例,第二连通孔225的孔径与对应的第二集流插管224的内径的比值范围为1/4-1/3。当第二连通孔225的孔径与对应的第二集流插管224的内径的比值范围小于1/4时,第二连通孔225过小,导致第二连通孔225喷射出冷媒的覆盖范围过小,相邻两个第二连通孔225喷射冷媒的难以覆盖全面,使得冷媒覆盖部位(即距离第二连通孔225较近的换热单体排3)的换热通道32内流通的冷媒量较多,其他部分换热通道32内流通的冷媒量较少或者没有冷媒流通,导致换热单体31换热不均匀。当第二连通孔225的孔径与对应的第二集流插管224的内径的比值范围为大于1/3时,第二连通孔225过大,导致第二连通孔225喷射出冷媒的覆盖范围过大,相邻两个第二连通孔225喷射冷媒的覆盖范围具有重叠的部分,使得位于重叠部分的换热通道32内流通的冷媒量多,其他部分换热通 道32内流通的冷媒量少,导致换热单体31换热不均匀。通过第二连通孔225的孔径与对应的第二集流插管224的内径的比值范围为1/4-1/3,使得第二连通孔225的孔径大小合适,可以保证经过第二连通孔225进入多个换热通道32内的冷媒量的均匀性,以保证换热单体31换热的均匀性。
根据本申请的一些可选实施例,单个第二集流插管224的第二连通孔225的数量与换热单体排3的数量的比值范围为1/5-1/4,换热单体排3的数量为第二连通孔225数量的4-5倍,这样第二连通孔225和换热单体排3的相对数量合适,可以保证经过第二连通孔225进入多个换热通道32内的冷媒量的均匀性,以保证换热单体排3换热的均匀性。第二连通孔225的数量过少,相邻两个第二连通孔225喷射的冷媒难以覆盖全面,使得冷媒覆盖部位(即距离第二连通孔225较近的换热单体排3)的换热通道32内流通的冷媒量较多,其他部分换热通道32内流通的冷媒量较少或者没有冷媒流通,导致换热单体31换热不均匀。第二连通孔225的数量过多时,相邻两个第二连通孔225喷射冷媒的覆盖范围具有重叠的部分,使得位于重叠部分的换热通道32内流通的冷媒量多,其他部分换热通道32内流通的冷媒量少,导致换热单体31换热不均匀。
例如,换热单体31、第一集流管11和第二集流管21可以采用铝合金、铜合金等金属材料制作,导热性较好。
参照图2,在本申请的一些可选实施例中,换热单体31在第一方向上插入至第二集流腔211内,第二集流插管224的朝向换热单体31的一侧形成有第二连通孔225,方便第二连通孔225内流出的冷媒流入对应的换热单体31的换热通道32内,也方便换热单体31的换热通道32内流出的冷媒经过第二连通孔225进入对应的第二集流插管224内。换热单体31在第一方向上插入至第二集流腔211内的长度H3与第二集流腔211在第一方向上的深度H4的比值范围为1/3-1/2,可以保证冷媒分流的均匀性,使得每个第一集流腔111对应的换热单体31的换热通道32内流通的冷媒量均匀,以保证换热单体31换热的均匀性。例如,换热单体31在上下方向上插入至第二集流腔211内,换热单体31的下端与第二集流管21相连且换热单体31与第二集流管21可以为焊接连接,第二连通孔225位于换热单体31的下方。
换热单体31在第一方向上插入至第二集流腔211内的长度H3过短时,第二连通孔225与换热单体31之间的距离过长,相邻两个第二连通孔225喷射的冷媒难以覆盖全面,使得冷媒覆盖部位(即距离第二连通孔225较近的换热单体排3)的换热通道32内流通的冷媒量较多,其他部分换热通道32内流通的冷媒量较少或者没有冷媒流通,导致换热单体31换热不均匀;换热单体31在第一方向上插入至第二集流腔211内的长度H1过长时,第二连通孔225与换热单体31之间的距离过短,相邻两个第二连通孔225喷射冷媒的覆盖范围具有重叠的部分,使得位于重叠部分的换热通道32内流通的冷媒量多,其他部分换热通道32内流通的冷媒量少,导致换热单体31换热不均匀。
根据本申请的一些实施例,气流通道33内的气流与换热单体31换热时,换热单体31的表面易产生冷凝水,换热单体31的沿第一方向的两端可以分别与第一集流件1以及第二集流件2相连,通过第一方向为上下方向,换热单体31可以沿上下方向设置,换热单体31表面的冷凝水可以沿着上下延伸的换热单体31流下来,这样方便换热单体排3水,提高换热器100排水的可靠性。
下面参照图1-图12描述根据本申请一些具体实施例的换热器100。
实施例一,
具体地,参照图1-图8和图10,在该实施例中,换热器100包括第一集流件1、第二集流件2和多排换热单体排3,第一集流件1以及第二集流件2沿第一方向间隔开设置。多排换热单体排3设在第一集流件1与第二集流件2之间,且多排换热单体排3在第二方向上依次间隔排布,相邻两排换热单体排3之间限定出气流通道33。第一方向为上下方向,第二方向为左右方向,第三方向为前后方向,第一方向、第二方向以及第三方向两两垂直。
换热单体排3在第三方向上的延伸轨迹为V形折线,每排换热单体排3包括两个换热单体31,换热单体31沿第三方向依次排布,同一换热单体排3中相邻两个换热单体31之间互成角度α,且角度α为90°,同一换热单体排3中相邻两个换热单体31之间间隔开。换热单体31沿第一方向延伸,换热单体31具有多个换热通道32,多个换热通道32沿气流通道33内的气流的流动方向依次等间距排布,且换热通道32也沿第一方向延伸。换热单体31呈板状,换热单体31的厚度L不大于0.7mm,换热通道32在换热单体31的厚度方向上的尺寸L1不大于0.4mm。换热单体31的沿第一方向的其中一端与第一集流件1相连,换热单体31的沿第一方向的另一端与第二集流件2相连。
第一集流件1包括第一集流管11以及第一接头组件12,第一集流管11内限定出两个第一集流腔111,两个第一集流腔111相对独立密封,且两个第一集流腔111沿第三方向依次间隔排布,每个第一集流腔111均沿第二方向延伸。单排换热单体排3中换热单体31的数量与第一集流腔111的数量相同且一一对应,换热单体31的换热通道32与对应的第一集流腔111连通。换热单体31的上端与第一集流管11相连且换热单体31与第一集流管11为焊接连接;换热单体31的上端伸入对应的第一集流腔111内,换热单体31伸入第一集流腔111内的尺寸H1与第一集流腔111的高度H2的比值范围为1/3-1/2。
第一接头组件12包括第一接头121以及第一分配器123,第一接头121与第一分配器123相连,第一接头121具有第一进出口122,且第一进出口122位于第一接头121的左端,第一分配器123用于将冷媒分配至两个第一集流腔111内,两个第一集流腔111内的冷媒适于通过第一分配器123输送至第一进出口122。第一分配器123包括两个第一集流插管124,第一接头121位于第一集流管11的左侧,且每个第一集流插管124均与第一接头121相连,第一接头121具有第一进出口122。第一集流插管124的数量与第一集流腔111的数量相同且一一对应,每个第一集流插管124插设于对应的第一集流腔111,且每个第一集流插管124沿第二方向延伸。每个第一集流插管124上沿第一集流插管124的延伸方向等间距设置多个第一连通孔,第一连通孔的孔径与对应的第一集流插管124的内径的比值范围为1/4-1/3,第一连通孔与第一集流腔111连通,第一连通孔的数量与第一集流腔111内换热单体排3的数量的比值范围为1/5-1/4。
沿第三方向且在气流的流动方向上,第一集流插管124的第一连通孔的总流通面积依次减小,两个第一集流插管124的第一连通孔的孔径不同,两个第一集流插管124的内径依次减小。两个第一集流插管124的内腔的横截面均呈圆形,邻近迎风侧的第一集流插管124的内径D1大于邻近背风侧的第一集流插管124的内径D2,邻近迎风侧的第一集流插管124的内腔的横截面积与邻近背风侧的第一集流插管124的截面积之比为3:2,邻近迎风侧的第一集流插管124内冷媒的流通量与邻近背风侧的第一集流插管124内冷媒的流通量之比为3:2。
第二集流件2包括第二集流管21以及第二接头组件22,第二集流管21内限定出两个第二集流腔211,两个第二集流腔211相对独立密封,且两个第二集流腔211沿第三方向依次间隔排布,每个第二集流腔211均沿第二方向延伸。单排换热单体排3中换热单体31的数量与第二集流腔211的数量相同且一一对应,换热单体31的换热通道32与对应的第二集流腔211连通。换热单体31的下端与第二集流管21相连且换热单体31与第二集流管21为焊接连接;换热单体31在第一方向上插入至第二集流腔211内,第二集流插管224的朝向换热单体31的一侧形成有第二连通孔225,换热单体31在第一方向上插入至第二集流腔211内的长度H3与第二集流腔211在第一方向上的深度H4的比值范围为1/3-1/2。
第二接头组件22包括第二接头221和第二分配器223,第二接头221和第二分配器223相连,第二接头221具有第二进出口222,且第二进出口222位于第二分配器223的左端,第二分配器223用于将冷媒分配至两个第二集流腔211内,两个第二集流腔211内的冷媒适于通过第二分配器223输送至第二进出口222。第二分配器223包括两个第二集流插管224,第二接头221位于第二集流管21的左侧,且每个第二集流插管224均与第二接头221相连,第二接头221具有第二进出口222。第二集流插管224 的数量与第二集流腔211的数量相同且一一对应,每个第二集流插管224插设于对应的第二集流腔211,且每个第二集流插管224沿第二方向延伸。每个第二集流插管224上沿第二集流插管224的延伸方向等间距设置多个第二连通孔225,第二连通孔225的孔径与对应的第二集流插管224的内径的比值范围为1/4-1/3,第二连通孔225与第二集流腔211连通,第二连通孔225的数量与第二集流腔211内换热单体排3的数量的比值范围为1/5-1/4。
沿第三方向且在气流的流动方向上,第二集流插管224的第二连通孔225的总流通面积依次减小,两个第二集流插管224的内径依次减小。两个第一集流插管124的内腔的横截面均呈圆形,邻近迎风侧的第二集流插管224的内径D3大于邻近背风侧的第二集流插管224的内径D4,邻近迎风侧的第二集流插管224的内腔的横截面积与邻近背风侧的第二集流插管224的内腔的横截面积之比为3:2,邻近迎风侧的第二集流插管224内冷媒的流通量与邻近背风侧的第二集流插管224内冷媒的流通量之比为3:2。
实施例二,
参照图9,本实施例与实施例一的结构大致相同,其中相同的部件采用相同的附图标记,不同之处仅在于:同一换热单体排3中相邻两个换热单体31之间抵接,第一集流管11内限定出一个第一集流腔111,第二集流管21内限定出一个第二集流腔211,换热单体排3的上端伸入第一集流腔111内,换热单体排3的下端伸入第二集流腔211内,使得整体的结构更加紧凑。参照图13,相对于常规的冷媒管和翅片焊接的换热器,在相同风速0.8m/s下,本实施例的换热器100的换热能力提高约13%,具有较好的换热效果。
实施例三,
参照图11,本实施例与实施例二的结构大致相同,其中相同的部件采用相同的附图标记,不同之处仅在于:同一换热单体排3中相邻两个换热单体31之间相连,可以保证换热单体排3的稳定性和可靠性,从而保证换热器100的稳定性。
实施例四,
参照图11,本实施例与实施例三的结构大致相同,其中相同的部件采用相同的附图标记,不同之处仅在于:换热单体排3包括一个换热单体31,换热单体排3在第三方向上的延伸轨迹为弧线,一体式的结构较简单,减少了装配工序,使得换热器100的装配效率较高,而且换热单体31在第三方向上的延伸轨迹为弧线,有利于减小风阻,保证空气流通顺畅。
根据本申请第二方面实施例的空调系统,包括:根据本申请上述第一方面实施例的换热器100。例如,空调系统包括压缩机90、室外换热器4、节流部件60和室内换热器5,其中室外换热器4可以为上述第一方面实施例的换热器100,室外换热器4包括上述的第一集流件1、第二集流件2和多排换热单体排3。压缩机90和室外换热器4通常位于空调室外机,空调室外机还可以包括室外风机40,室外风机40可以将室外的空气吹送至换热单体排3之间的气流通道33内,有助于换热单体31内流通的冷媒与空气换热。室内换热器5位于空调室内机,空调室内机还包括室内风机50,室内风机50可以驱动室内的空气与室内换热器5进行热交换,以改变室内的温度。节流部件60(例如电子膨胀阀)可以连接在室内换热器5和室外换热器4之间,节流部件60位于空调室内机或空调室外机。
例如,压缩机90具有排气口91和回气口92,压缩机90的排气口91和回气口92处均设有第一传感器71和第二传感器72,例如,第一传感器71可以为温度传感器,第二传感器72可以为压力传感器。压缩机90的排气口91和室外换热器4之间连接有油分离器73和第一控制阀81,油分离器73可以过滤冷媒中掺杂的压缩机90内的机油,且过滤的机油可以进入压缩机90中循环利用。第一控制阀81和压缩机90的回气口92之间连接有气液分离器74,气液分离器74可以减少压缩机90回气口92中吸入的液态冷媒的含量,避免压缩机90产生液击。室内换热器5和节流部件60之间以及室内换热器5和第一控制阀81之间均连接有第二控制阀82。
例如,第一控制阀81可以为四通阀,四通阀具有第一接口D、第二接口C、第三接口E和第四接口S。当空调系统制冷时,第一接口D和第二接口C连通,第三接口E和第四接口S连通,第二控制阀82接通,压缩机90压缩后的冷媒经排气口91排出,经过油分和第一控制阀81的第一接口D和第二接口C后由第一进出口122进入室外换热器4,在室外换热器4中与气流通道33内的空气进行热交换;换热后的冷媒经第二进出口222流出室外换热器4,并经过节流部件60进入室内换热器5,与室内的空气进行热交换,以对室内降温;而后,冷媒从室内换热器5流出,并经过第三接口E和第四接口S后流入气液分离器74,最后经压缩机90的回气口92进入压缩机90。
例如,当空调系统制热时,第二控制阀82接通,第一控制阀81的第一接口D和第三接口E连通,第二接口C和第四接口S连通,压缩机90压缩后的冷媒经排气口91排出,经过油分和第一控制阀81的第一接口D和第三接口E后进入室内换热器5,在室内换热器5中与室内的空气进行热交换,以对室内升温;换热后冷媒流出室内换热器5,并经过节流部件60从第二进出口222进入室外换热器4,在室外换热器4中与气流通道33内的空气进行热交换;换热后的冷媒经第一进出口122流出室外换热器4,从室外换热器4流出的冷媒经过第二接口C和第四接口S后流入气液分离器74,最后经压缩机90的回气口92进入压缩机90。
根据本申请实施例的空调系统,通过设置上述的换热器100,换热单体排3在第三方向上的延伸轨迹为非直线,气流通道33在第三方向上的延伸轨迹为非直线,可以增强换热单体排3对于空气的扰动,使得气流通道33内的空气具有合适的流动速度,气流通道33内的空气可以与换热单体排3充分换热,从而提高换热效果,使得换热器100具有较好的换热效果,而且换热效率较高,有利于提高换热器100的换热性能;另外,本申请的换热器100具有较大的换热面积,而且整体的结构更紧凑。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,“多个”的含义是两个或两个以上。
在本申请的描述中,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (32)

  1. 一种换热器,其中,包括:
    第一集流件以及第二集流件,沿第一方向间隔开设置,所述第一集流件具有第一进出口,所述第二集流件具有第二进出口;
    多排换热单体排,设在所述第一集流件与所述第二集流件之间且在第二方向上依次间隔排布,每排所述换热单体排包括至少一个换热单体,所述换热单体排包括多个所述换热单体时,所述换热单体排的多个所述换热单体在第三方向上依次排布,所述换热单体内具有沿第一方向延伸的换热通道,所述换热单体的沿第一方向的两端分别与所述第一集流件以及所述第二集流件相连,相邻两排所述换热单体排之间限定出气流通道,所述换热单体排在所述第三方向上的延伸轨迹为非直线,所述第一方向、所述第二方向以及所述第三方向两两垂直。
  2. 根据权利要求1所述的换热器,其中,所述换热单体排在所述第三方向上的延伸轨迹为折线或曲线。
  3. 根据权利要求2所述的换热器,其中,所述换热单体排在所述第三方向上的延伸轨迹为折线,所述换热单体排包括沿所述第三方向依次排布的多个所述换热单体,同一所述换热单体排中相邻两个所述换热单体的延伸轨迹之间具有夹角。
  4. 根据权利要求3所述的换热器,其中,所述换热单体排包括沿所述第三方向依次排布的两个所述换热单体。
  5. 根据权利要求4所述的换热器,其中,所述换热单体排的两个所述换热单体之间的夹角范围为60°-120°。
  6. 根据权利要求3所述的换热器,其中,所述换热单体排在所述第三方向上的延伸轨迹呈V形折线。
  7. 根据权利要求3所述的换热器,其中,同一所述换热单体排中相邻两个所述换热单体之间抵接;或者,同一所述换热单体排中相邻两个所述换热单体之间间隔开;或者,同一所述换热单体排中相邻两个所述换热单体之间相连。
  8. 根据权利要求2所述的换热器,其中,所述换热单体排在所述第三方向上的延伸轨迹为弧线。
  9. 根据权利要求8所述的换热器,其中,所述换热单体排包括一个所述换热单体。
  10. 根据权利要求1-9中任一项所述的换热器,其中,所述换热单体呈板状,所述换热单体的厚度不大于0.7mm。
  11. 根据权利要求10所述的换热器,其中,所述换热通道在所述换热单体的厚度方向上的尺寸不大于0.4mm。
  12. 根据权利要求1-11中任一项所述的换热器,其中,所述换热单体具有沿所述气流通道内的气流的流动方向依次排布的多个所述换热通道。
  13. 根据权利要求1-12中任一项所述的换热器,其中,所述第一集流件包括第一集流管以及第一接头组件,所述第一集流管内限定出沿所述第三方向依次间隔排布的多个第一集流腔,每个所述第一集流腔沿所述第二方向延伸,所述第一接头组件包括相连的第一接头以及第一分配器,所述第一接头具有所述第一进出口,所述第一分配器用于将冷媒分配至多个所述第一集流腔内或是多个所述第一集流腔内的冷媒适于通过所述第一分配器输送至所述第一进出口;
    所述换热单体排包括沿所述第三方向依次排布的多个所述换热单体,单排所述换热单体排中的所述换热单体的数量与所述第一集流腔的数量相同且一一对应,所述换热单体的所述换热通道与对应的所述第一集流腔连通。
  14. 根据权利要求13所述的换热器,其中,所述第一分配器包括多个第一集流插管,所述第一集流插管的数量与所述第一集流腔的数量相同且一一对应,每个所述第一集流插管插设于对应的所述第一集流腔且沿所述第二方向延伸,每个所述第一集流插管上形成有与所述第一集流腔连通的第一连通孔,所述第一连通孔为沿所述第一集流插管的延伸方向间隔设置的多个,所述第一接头位于所述第一集流管的长度方向上的一侧且每个所述第一集流插管均与所述第一接头相连。
  15. 根据权利要求14所述的换热器,其中,沿所述第三方向且在气流的流动方向上,多个所述第一集流插管的内腔的横截面积依次减小。
  16. 根据权利要求15所述的换热器,其中,所述换热单体排包括沿所述第三方向依次排布的两个所述换热单体,所述第一集流插管为两个,两个所述第一集流插管的内腔的横截面积之比为3:2。
  17. 根据权利要求14所述的换热器,其中,沿所述第三方向且在气流的流动方向上,多个所述第一集流插管的所述第一连通孔的总流通面积依次减小。
  18. 根据权利要求14所述的换热器,其中,所述第一集流插管上的多个所述第一连通孔等间距排布。
  19. 根据权利要求14所述的换热器,其中,所述第一连通孔的孔径与对应的所述第一集流插管的内径的比值范围为1/4-1/3。
  20. 根据权利要求14所述的换热器,其中,单个所述第一集流插管的所述第一连通孔的数量与所述换热单体排的数量的比值范围为1/5-1/4。
  21. 根据权利要求14所述的换热器,其中,所述换热单体在所述第一方向上插入至所述第一集流腔内,所述第一集流插管的朝向所述换热单体的一侧形成有所述第一连通孔,所述换热单体在所述第一方向上插入至所述第一集流腔内的长度与所述第一集流腔在所述第一方向上的深度的比值范围为1/3-1/2。
  22. 根据权利要求13所述的换热器,其中,所述第二集流件包括第二集流管以及第二接头组件,所述第二集流管内限定出沿所述第三方向依次间隔排布的多个第二集流腔,所述第二接头组件包括相连的第二接头以及第二分配器,所述第二接头具有所述第二进出口,多个所述第二集流腔内的冷媒适于通过所述第二分配器输送至所述第二进出口或是所述第二分配器用于将冷媒分配至多个所述第二集流腔内;
    单排所述换热单体排中的所述换热单体的数量与所述第二集流腔的数量相同且一一对应,所述换热单体的所述换热通道与对应的所述第二集流腔连通。
  23. 根据权利要求22所述的换热器,其中,所述第二分配器包括多个第二集流插管,所述第二集流插管的数量与所述第二集流腔的数量相同且一一对应,每个所述第二集流插管插设于对应的所述第二集流腔且沿所述第二方向延伸,每个所述第二集流插管上形成有与所述第二集流腔连通的第二连通孔,所述第二连通孔为沿所述第二集流插管的延伸方向间隔设置的多个,所述第二接头位于所述第二集流管的长度方向上的一侧且每个所述第二集流插管均与所述第二接头相连。
  24. 根据权利要求23所述的换热器,其中,沿所述第三方向且在气流的流动方向上,多个所述第二集流插管的内腔的横截面积依次减小。
  25. 根据权利要求24所述的换热器,其中,所述换热单体排包括沿所述第三方向依次排布的两个所述换热单体,所述第二集流插管为两个,两个所述第二集流插管的内腔的横截面积之比为3:2。
  26. 根据权利要求25所述的换热器,其中,沿所述第三方向且在气流的流动方向上,多个所述第二集流插管的所述第二连通孔的总流通面积依次减小。
  27. 根据权利要求23所述的换热器,其中,所述第二集流插管上的多个所述第二连通孔等间距排布。
  28. 根据权利要求23所述的换热器,其中,所述第二连通孔的孔径与对应的所述第二集流插管的内径的比值范围为1/4-1/3。
  29. 根据权利要求23所述的换热器,其中,单个所述第二集流插管的所述第二连通孔的数量与所述换热单体排的数量的比值范围为1/5-1/4。
  30. 根据权利要求23所述的换热器,其中,所述换热单体在所述第一方向上插入至所述第二集流腔内,所述第二集流插管的朝向所述换热单体的一侧形成有所述第二连通孔,所述换热单体在所述第一方向上插入至所述第二集流腔内的长度与所述第二集流腔在所述第一方向上的深度的比值范围为1/3-1/2。
  31. 根据权利要求1-30中任一项所述的换热器,其中,所述第一方向为上下方向。
  32. 一种空调系统,其中,包括:根据权利要求1-31中任一项所述的换热器。
PCT/CN2023/092564 2022-11-29 2023-05-06 换热器和空调系统 WO2024113676A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202223202852.8U CN219064207U (zh) 2022-11-29 2022-11-29 换热器和空调系统
CN202223202852.8 2022-11-29
CN202211517963.XA CN118149611A (zh) 2022-11-29 2022-11-29 换热器和空调系统
CN202211517963.X 2022-11-29

Publications (1)

Publication Number Publication Date
WO2024113676A1 true WO2024113676A1 (zh) 2024-06-06

Family

ID=91322925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092564 WO2024113676A1 (zh) 2022-11-29 2023-05-06 换热器和空调系统

Country Status (1)

Country Link
WO (1) WO2024113676A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109579594A (zh) * 2017-09-29 2019-04-05 杭州三花微通道换热器有限公司 换热器芯体和具有其的空调器
CN109974484A (zh) * 2019-04-15 2019-07-05 合肥华凌股份有限公司 换热器和具有其的制冷设备
CN212132012U (zh) * 2020-03-12 2020-12-11 武彦峰 一种使用微通道换热的船用lng供气系统
CN213421945U (zh) * 2020-09-17 2021-06-11 浙江盾安热工科技有限公司 集流管及具有其的换热器
CN215260640U (zh) * 2021-06-29 2021-12-21 佛山市顺德区美的电子科技有限公司 微通道换热器及空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109579594A (zh) * 2017-09-29 2019-04-05 杭州三花微通道换热器有限公司 换热器芯体和具有其的空调器
CN109974484A (zh) * 2019-04-15 2019-07-05 合肥华凌股份有限公司 换热器和具有其的制冷设备
CN212132012U (zh) * 2020-03-12 2020-12-11 武彦峰 一种使用微通道换热的船用lng供气系统
CN213421945U (zh) * 2020-09-17 2021-06-11 浙江盾安热工科技有限公司 集流管及具有其的换热器
CN215260640U (zh) * 2021-06-29 2021-12-21 佛山市顺德区美的电子科技有限公司 微通道换热器及空调器

Similar Documents

Publication Publication Date Title
EP3875878B1 (en) Heat exchanger and refrigeration cycle device
CN205014688U (zh) 换热器以及换热设备
WO2007139137A1 (ja) 熱交換器
CN211119692U (zh) 换热器组件和具有其的空调室内机
WO2024113676A1 (zh) 换热器和空调系统
CN210861813U (zh) 换热器和具有其的空调器
CN210861410U (zh) 换热器组件和具有其的空调室内机
CN201100787Y (zh) 新型平行流式蒸发器
CN210861409U (zh) 换热器组件和具有其的空调室内机
JP2005201491A (ja) 熱交換器
JP2001317890A (ja) フィン付き熱交換器
CN210165622U (zh) 换热器及空调设备
EP3789697B1 (en) Heat exchanger and refrigeration cycle device
CN215260159U (zh) 换热器组件及具有其的空调室内机
CN216204483U (zh) 一种相变式冷却换热器
JP2003214724A (ja) 空気調和機
CN219064207U (zh) 换热器和空调系统
CN113624042A (zh) 相变式冷却换热器
JP4862218B2 (ja) 空気調和機
CN118149611A (zh) 换热器和空调系统
CN218154399U (zh) 一种集成灶烟道带内置微通道换热器结构
CN220062680U (zh) 换热单体、换热器及空调系统
CN112066598A (zh) 换热器及空调设备
CN215982867U (zh) 空调室内机
CN221222975U (zh) 换热器及空调系统