WO2024108417A1 - 一种水系双离子电池及其制备方法 - Google Patents

一种水系双离子电池及其制备方法 Download PDF

Info

Publication number
WO2024108417A1
WO2024108417A1 PCT/CN2022/133691 CN2022133691W WO2024108417A1 WO 2024108417 A1 WO2024108417 A1 WO 2024108417A1 CN 2022133691 W CN2022133691 W CN 2022133691W WO 2024108417 A1 WO2024108417 A1 WO 2024108417A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
ion battery
organic
aqueous
electrolyte
Prior art date
Application number
PCT/CN2022/133691
Other languages
English (en)
French (fr)
Inventor
唐永炳
周小龙
曾科
申京受
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2022/133691 priority Critical patent/WO2024108417A1/zh
Publication of WO2024108417A1 publication Critical patent/WO2024108417A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention belongs to the field of energy storage devices, and in particular relates to an aqueous dual-ion battery and a preparation method thereof.
  • DIBs usually use organic electrolytes, which are potentially volatile, flammable, and highly toxic, which limits their widespread application in the field of large-scale energy storage.
  • Aqueous batteries use water as a solvent. Compared with non-aqueous systems, they have the characteristics of low volatility, non-toxicity, and non-flammability.
  • aqueous electrolytes have high ionic conductivity and do not require a dry, oxygen-free environment for assembly. They have unique advantages such as high power, fast charging, and low manufacturing cost.
  • the negative electrode material of traditional lithium-ion batteries is usually graphite, and the positive electrode is composed of lithium-containing transition metal oxides.
  • LIBs lithium-ion batteries
  • the positive electrode is composed of lithium-containing transition metal oxides.
  • the dual-graphite-dual-ion battery as an example, during charging, cations (such as Li + ) are intercalated into the interlayer of the graphite negative electrode, and anions (such as PF6 - ) are intercalated into the graphite positive electrode; the discharge process is the opposite, that is, anions and cations are extracted from the positive and negative electrodes respectively and returned to the electrolyte.
  • the graphite positive electrode has a high anion intercalation potential (>4.5V vs.Li/Li + ), the dual-ion battery has the characteristics of high voltage, which is conducive to obtaining high energy density.
  • the graphite positive electrode is environmentally friendly and can effectively reduce the overall cost of the battery.
  • the research and development team of the present invention used aluminum foil as the negative electrode and graphite as the positive electrode, and adopted an organic electrolyte: LiPF 6 with a concentration of 1M/L as the electrolyte, and ethylene carbonate (EC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) in a ratio of 1:1:1 as the solvent, to design an aluminum-graphite dual-ion battery (Adv. Energy Mater. 2016, 1502588).
  • this technology also usually uses organic solvents, which are volatile, flammable and highly toxic, which reduces the safety performance of dual-ion batteries.
  • dual-ion batteries are still in the early stages of research and development. In order to promote and apply them as a substitute for large-scale energy storage systems, in-depth research on the energy storage mechanism and improvement of their comprehensive electrochemical performance are needed. At the same time, since most dual-ion batteries currently use organic electrolytes, in addition to the disadvantages of being volatile, flammable and highly toxic, they usually require excessive amounts of electrolytes, which also means that in actual applications, they have to consider the cost increase caused by excessive amounts of electrolytes.
  • the present invention combines traditional aqueous batteries with dual-ion batteries, and proposes an aqueous dual-ion battery with high energy density, high cyclability, and intrinsic safety, and a preparation method thereof.
  • the first aspect of the present invention provides an aqueous dual-ion battery, which includes a positive electrode, a negative electrode, and a separator and an electrolyte between the positive electrode and the negative electrode; the electrolyte includes an electrolyte salt and an aqueous solvent; the positive electrode includes a positive electrode active material, and the positive electrode active material has a tunnel or layered pore structure, and the pore structure can be used for cations in the electrolyte and anions in the electrolyte salt to be deintercalated.
  • the aqueous dual-ion battery of the present invention adopts a positive electrode active material with a tunnel or layered pore structure, the size of which can meet the insertion/extraction of cations and anions during the charge and discharge process of the battery; that is, the intercalation of anions in the electrolyte salt during charging and the embedding of cations in the electrolyte during discharge can be achieved, and the cations in the electrolyte mainly come from the cations in the electrolyte salt or the negative electrode material.
  • the pore structure of the positive electrode active material of the present invention can store more anions, so that the battery has a larger capacity.
  • the electrolyte salt of the present invention can provide anions that act on the insertion/extraction of the positive electrode active material, which is beneficial to increase the cycle stability of the battery.
  • the electrolyte of the present invention adopts an aqueous solvent, has intrinsic safety, and effectively solves the disadvantages of volatility, flammability and toxicity brought by organic solvents.
  • the positive electrode active material includes at least one of carbon-based materials, manganese-based oxides, manganese-containing metal compounds, vanadium-based oxides, vanadium-containing metal compounds, metal compounds, Prussian blue compounds, MXene materials, metal organic framework materials, covalent organic framework materials, organic quinone compounds, organic carboxylate compounds, organic sulfides, imine compounds, and organic compounds containing azo groups;
  • the metal compound includes at least one of Fe 2 O 3 , Fe 3 O 4 , Nb 2 O 5 , and MoS.
  • the carbon-based material includes at least one of natural graphite, expanded graphite, soft carbon, hard carbon, graphene, and carbon nanotubes.
  • the manganese-based oxide includes at least one of Mn 3 O 4 , MnO, Mn 2 O, ⁇ -MnO 2 , ⁇ -MnO 2 , ⁇ -MnO 2 , t-MnO 2 , and ⁇ -MnO 2.
  • the positive electrode active material is tunnel-type manganese dioxide, namely t-MnO 2 .
  • the manganese metal-containing compound includes at least one of pyrolusite, psilomelane, metamanganate ore, manganite and brown manganite.
  • the vanadium-based oxide includes at least one of VO, VO 2 , V 2 O 3 , and V 2 O 5 .
  • the vanadium metal-containing compound includes at least one of ammonium metavanadate, sodium metavanadate, potassium metavanadate, sodium orthovanadate, vanadyl sulfate, and vanadyl oxalate.
  • the Prussian blue compound includes Prussian blue and/or Prussian white.
  • the MXene material includes at least one of Ti 4 N 3 , Ti 4 AlN 3 , MoTi 3 C 2 , Ti 3 C 2 , and Nb 2 C Ti .
  • the positive electrode includes a positive electrode current collector and a positive electrode material; the positive electrode material includes, by weight: 60-95 parts of positive electrode active material, 5-30 parts of conductive agent, and 5-10 parts of binder.
  • the present invention can further improve the comprehensive performance of the positive electrode material by optimizing the composition of the positive electrode material, better play the role of the positive electrode material in the battery, and thus improve the electrochemical performance of the battery.
  • the conductive agent and binder of the positive electrode material are not particularly limited, and the conductive agent and binder commonly used in the art can be used.
  • the positive electrode current collector includes any one metal of aluminum, copper, iron, tin, zinc, nickel, titanium, and manganese, or an alloy containing at least any one of the metals, or a composite material containing at least any one of the metals.
  • the conductive agent includes at least one of conductive carbon black, conductive carbon balls, conductive graphite, conductive carbon fibers, graphene, and reduced graphene oxide.
  • the binder includes at least one of polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl alcohol, carboxymethyl cellulose, SBR rubber, and polyolefins.
  • the aqueous solvent includes a pure water solvent or an aqueous solvent; the aqueous solvent includes water and a non-aqueous solvent, and the non-aqueous solvent includes an organic solvent and/or an ionic liquid.
  • the aqueous solvent of the present invention can be a pure water solvent or an aqueous solvent.
  • the electrolyte containing an aqueous solvent mainly includes a salt-in-water electrolyte, an aqueous organic mixed electrolyte, etc.
  • the non-aqueous solvent in the electrolyte there is no particular limitation on the non-aqueous solvent in the electrolyte, as long as the electrolyte can be dissociated into corresponding metal cations and anions, and the corresponding metal cations and anions can migrate freely, and the non-aqueous solvent includes an organic solvent and/or an ionic liquid.
  • the organic solvent includes at least one of ester compounds, ether compounds, sulfone compounds, amine compounds, and hydrocarbon compounds.
  • the ester compound includes at least one of propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), methyl formate (MF), methyl acetate (MA), fluoroethylene carbonate (FEC), methyl propionate (MP), ethyl propionate (EP), ethyl acetate (EA), ⁇ -butyrolactone (GBL), vinyl sulfite (ES), propylene sulfite (PS), dimethyl sulfite (DMS), and diethyl sulfite (DES).
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • MF methyl formate
  • MA fluoroethylene carbonate
  • MP methyl propionate
  • EP ethyl propionate
  • EA
  • the ether compound includes at least one of tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF), triethylene glycol dimethyl ether (DG), dimethyl ether (DME), and crown ether (12-crown-4).
  • THF tetrahydrofuran
  • 2MeTHF 2-methyltetrahydrofuran
  • DG triethylene glycol dimethyl ether
  • DME dimethyl ether
  • crown ether (12-crown-4).
  • the amine compound includes N,N-dimethylacetamide (DMA).
  • DMA N,N-dimethylacetamide
  • the sulfone compound comprises dimethyl sulfone (MSM).
  • the hydrocarbon compound includes at least one of 1,3-dioxolane (DOL), 4-methyl-1,3-dioxolane (4MeDOL), dimethoxymethane (DMM), and 1,2-dimethoxypropane (DMP).
  • DOL 1,3-dioxolane
  • 4MeDOL 4-methyl-1,3-dioxolane
  • DDM dimethoxymethane
  • DMP 1,2-dimethoxypropane
  • the ionic liquid includes at least one of imidazole compounds, pyrrole compounds and piperidine compounds.
  • the imidazole compound includes at least one of 1-ethyl-3-methylimidazolium hexafluorophosphate, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-propyl-3-methylimidazolium hexafluorophosphate, 1-propyl-3-methylimidazolium tetrafluoroborate, 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-butyl-1-methylimidazolium hexafluorophosphate, 1-butyl-1-methylimidazolium tetrafluoroborate, and 1-butyl-1-methylimidazolium bis(trifluoromethylsulfonyl)imide.
  • the pyrrole compound includes at least one of N-butyl-N-methylpyrrolidine-bis(trifluoromethylsulfonyl)imide salt, 1-butyl-1-methylpyrrolidine-bis(trifluoromethylsulfonyl)imide salt, and N-methyl-N-propylpyrrolidine-bis(trifluoromethylsulfonyl)imide salt.
  • the piperidine compound includes N-methyl,propylpiperidine-bis(trifluoromethylsulfonyl)imide salt and/or N-methyl,butylpiperidine-bis(trifluoromethylsulfonyl)imide salt.
  • the electrolyte salt includes a sulfate, sulfite, nitrate, nitrite, phosphate, chloride, iodide, bromide, fluoride, acetate, manganate, phosphate or organic salt whose cation is any one of zinc, tin, iron, magnesium, calcium, aluminum, lithium, sodium, potassium, ammonium, vanadium, copper, nickel and titanium.
  • the electrolyte salt is an electrolyte salt that can be dissolved in the aqueous solvent.
  • the electrolyte salt of the present invention only needs to allow the corresponding anions to be freely inserted into or removed from the pores of the layered or tunnel structured positive electrode active material.
  • the electrolyte is a zinc salt
  • a method of mixing the electrolyte of the corresponding anion and the negative electrode metal can be used.
  • the negative electrode is zinc foil, a method of mixing LiPF6 and ZnCl2 can be used to introduce PF6 - ions to intercalate and remove the positive electrode active material.
  • the electrolyte is an aqueous electrolyte formed by dissolving the above-mentioned inorganic salt in water.
  • the organic salt includes at least one of fluorine organic salts, imidazole organic salts, pyrrole organic salts, and piperidine organic salts.
  • the fluorine-based organic salt includes hexafluorophosphate, trifluoroborate or trifluoromethanesulfonate whose cation is any one of zinc, tin, iron, magnesium, calcium, aluminum, lithium, sodium, potassium, ammonium, vanadium, copper, nickel and titanium.
  • the imidazole organic salt includes 1-ethyl-3-methylimidazolium-hexafluorophosphate, 1-ethyl-3-methylimidazolium-tetrafluoroborate, 1-ethyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imide salt, 1-propyl-3-methylimidazolium-hexafluorophosphate, 1-propyl-3-methylimidazolium-tetrafluoroborate, 1-propyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imide salt, 1-butyl-1-methylimidazolium-hexafluorophosphate, 1-butyl-1-methylimidazolium-tetrafluoroborate or 1-butyl-1-methylimidazolium-bis(trifluoromethylsulfonyl)imide salt, wherein the cation is any one of zinc, tin, iron,
  • the pyrrole organic salt includes N-butyl-N-methylpyrrolidine-bis(trifluoromethylsulfonyl)imide salt, 1-butyl-1-methylpyrrolidine-bis(trifluoromethylsulfonyl)imide salt or N-methyl-N-propylpyrrolidine-bis(trifluoromethylsulfonyl)imide salt whose cation is any one of zinc, tin, iron, magnesium, calcium, aluminum, lithium, sodium, potassium, ammonium, vanadium, copper, nickel and titanium.
  • the piperidine organic salt includes N-methyl, propyl piperidine-bis(trifluoromethylsulfonyl)imide salt or N-methyl, butyl piperidine-bis(trifluoromethylsulfonyl)imide salt whose cation is any one of zinc, tin, iron, magnesium, calcium, aluminum, lithium, sodium, potassium, ammonium, vanadium, copper, nickel and titanium.
  • the concentration of the electrolyte is 0.1-30 mol/L.
  • concentration of the electrolyte it can be achieved that the electrolyte does not significantly disperse in a higher voltage range where the cut-off voltage is not less than 2.0-3.0 V.
  • concentration of the electrolyte will also affect the transmission performance of the ions in the electrolyte.
  • a suitable ion concentration is more conducive to the conductivity of the electrolyte.
  • the negative electrode includes any one metal of aluminum, copper, iron, tin, zinc, nickel, titanium, manganese, molybdenum, magnesium, and calcium, or an alloy of at least two of the metals or a carbon-based material, MoS, Nb2O5 , SnS, a metal organic framework material, a covalent organic framework material, an organic quinone compound, an organic carboxylate compound, an organic sulfide, an imine compound, and at least one of an organic compound containing an azo group.
  • the negative electrode can provide sufficient capacity for the aqueous dual-ion battery, and the theoretical capacity needs to be selected from a material higher than the theoretical capacity of the positive electrode.
  • the negative electrode of the present invention uses common cheap metal or alloy materials or metal compounds and organic materials, which can not only reduce the cost of the battery, but also achieve high stability cycle of the negative electrode through negative electrode interface modification and electrolyte control.
  • the negative electrode is a zinc-based alloy.
  • the carbon-based material includes at least one of natural graphite, expanded graphite, soft carbon, hard carbon, graphene, and carbon nanotubes.
  • the separator comprises a porous polymer film or an inorganic porous film.
  • the separator is mainly used to realize the free shuttling of anions and cations.
  • the porous polymer film includes any one of a porous polypropylene film, a porous polyethylene film, and a porous composite polymer film.
  • the inorganic porous film comprises glass fiber paper or a porous ceramic diaphragm.
  • the diaphragm is glass fiber paper.
  • the second aspect of the present invention provides a method for preparing an aqueous dual-ion battery, the method being used to prepare the aqueous dual-ion battery according to the first aspect of the present invention, comprising the following steps:
  • the positive electrode, the negative electrode, the separator and the electrolyte are assembled to obtain the aqueous dual-ion battery.
  • the assembly method of the positive electrode, the negative electrode, the separator and the electrolyte there is no particular limitation on the assembly method of the positive electrode, the negative electrode, the separator and the electrolyte, and conventional assembly methods can be used.
  • the method for preparing the dual-ion battery comprises the following steps:
  • the negative electrode material is a metal or alloy foil (such as zinc foil), it can be directly cut into the required size as the negative electrode;
  • the negative electrode material is a powder (such as natural graphite), it needs to be mixed with a conductive agent and a binder first, and then a proper amount of solvent is added to form a uniform slurry, which is then coated on the surface of the negative electrode current collector and cut into the negative electrode of the required size after drying;
  • the mass ratio of the negative electrode material, the conductive agent and the binder is (6-8):(1-3):1.
  • the negative electrode current collector comprises a metal foil
  • the metal comprises any one of aluminum, copper, iron, tin, zinc, nickel, titanium, manganese, molybdenum, magnesium, and calcium, or an alloy of at least two of the metals.
  • the present invention proposes an aqueous dual-ion battery based on the advantages of aqueous batteries.
  • the battery is based on the energy storage mechanism of the anion and cation stage intercalation positive electrode, achieves high capacity and highly stable long-cycle performance, and has intrinsic safety.
  • the present invention uses a positive electrode active material with a tunnel or layered pore structure, which can store more ions per unit volume and has a higher energy density; and the electrolyte salt can provide anions that act on the insertion/extraction of the positive electrode active material, which is beneficial to increase the cycle stability of the battery.
  • the electrolyte of the present invention uses an aqueous solvent, which has intrinsic safety and effectively solves the disadvantages of volatility, flammability and toxicity brought by organic solvents.
  • the aqueous dual-ion battery of the present invention has a simple process, readily available materials, and low production cost during preparation; and a wide range of optional electrolytes can be used, and a variety of ions and a variety of positive electrode structures can be combined with each other, which has good application and promotion potential.
  • FIG. 1 is a graph showing the long cycle performance of the aqueous dual-ion battery of Example 1.
  • An aqueous dual-ion battery comprises a positive electrode, a negative electrode, a separator and an electrolyte; wherein the positive electrode active material is t-MnO 2 , the negative electrode material is zinc foil, the separator is glass fiber paper, and the electrolyte is an aqueous electrolyte.
  • a method for preparing an aqueous dual-ion battery comprises the following steps:
  • the wet Mg-buserite was mixed with 15 mL of water in a polytetrafluoroethylene-lined autoclave and subjected to a hydrothermal treatment at 160° C. for 24 hours; the obtained Mg-todorokite was separated by filtration, washed three times with water, and then freeze-dried to obtain a positive electrode active material product, which was recorded as t-MnO 2 ;
  • the original negative electrode in this embodiment can also be used directly by simple cutting without any treatment.
  • the loading amount of the positive electrode active material is 1.2 mg cm -2 .
  • the battery performance is tested under the condition of 10C rate.
  • Figure 1 is a long cycle performance diagram of the aqueous dual ion battery prepared in Example 1, in which the horizontal axis Cycle number represents the number of cycles, the left vertical axis Specific capacity represents the specific capacity, and the right vertical axis Coulombic efficiency represents the coulombic efficiency.
  • the aqueous dual ion battery of Example 1 has a cut-off capacity of 105 mAh g -1 under the condition of 10C rate, and after 1000 cycles, the capacity retention rate of the battery can still reach 81%; the coulombic efficiency can reach 100%, and it has a highly stable long cycle performance.
  • Example 2-45 The difference between Example 2-45 and Example 1 is that the positive electrode active material is different, and the rest is the same as Example 1.
  • the performance of the aqueous dual-ion batteries using different positive electrode active materials was tested, and the results are shown in Table 1.
  • Embodiment 15 Ammonium metavanadate 82mAh g -1 753 71%
  • Example 16 Potassium Metavanadate 68mAh g -1 513 70%
  • Embodiment 17 Sodium orthovanadate 79mAh g -1 413 60%
  • Embodiment 18 Vanadyl Sulfate 69mAh g -1 713 72%
  • Embodiment 19 Vanadyl Oxalate 53mAh g -1 653 71% Embodiment 20
  • Prussian Blue 89mAh g -1 853 76% Embodiment 21 Prussian White 91mAh g -1 823 70% Embodiment 22 Lushi Blue Analogues 89mAh g -1 903 71% Embodiment 23 Ti 4 N 3 56mAh g -1 801 68% Embodiment 24 Ti 4 AlN 3 64mAh g -1 754 66% Embodiment 25 MoTi 3 C 2 59mAh g -1 602 73% Embodiment 26 Ti 3 C 2 72mAh
  • Embodiment 39 Imines 69mAh g -1 523 63% Embodiment 40 Azo organic compounds 51mAh g -1 513 70% Embodiment 41 Fe 3 O 4 61mAh g -1 521 63% Embodiment 42 Fe2O3 69mAh g -1 617 76% Embodiment 43 MoS 93mAh g -1 816 75% Embodiment 44 Nb2O5 99mAh g -1 913 82% Embodiment 45 S N 89mAh g -1 853 80%
  • the aqueous dual-ion batteries prepared using manganese-based oxides, manganese-containing metal compounds, vanadium-based oxides, vanadium-containing metal compounds, metal compounds (Fe 2 O 3 , Fe 3 O 4 , Nb 2 O 5 , MoS), Prussian blue compounds and MXene materials as positive electrode active materials show better battery performance than carbon-based materials, metal-organic framework materials, covalent organic framework materials, organic quinone compounds, organic carboxylate compounds, organic sulfide compounds, imine compounds, and organic compounds containing azo groups as positive electrode active materials.
  • Example 46-83 The difference between Examples 46-83 and Example 1 is only that the negative electrode material is different, and the others are the same as Example 1. Among them: the preparation of the negative electrode of Examples 46-67 is the same as that of Example 1; when preparing the negative electrode of Examples 68-83, the negative electrode material is first mixed evenly with conductive carbon black (SP) and polyvinylidene fluoride (PVDF) in a mass ratio of 7:2:1 in a mortar, and then 5 ml of N-methylpyrrolidone (NMP) is added dropwise to evenly mix to form a slurry; then a 150 ⁇ m scraper is used to evenly apply the slurry on the zinc foil, and the slurry is placed in a 60°C vacuum drying oven for drying, and finally the treated zinc foil is cut into a disc with a radius of 12 mm as the negative electrode.
  • SP conductive carbon black
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • Embodiment 49 Titanium foil 71mAh g -1 673 80% Embodiment 50 Manganese foil 63mAh g -1 722 73% Embodiment 51 Calcium foil 38mAh g -1 786 72% Embodiment 52 Iron foil 76mAh g -1 433 75% Embodiment 53 Magnesium Foil 65mAh g -1 315 79% Embodiment 54 Nickel Foil 52mAh g -1 873 80% Embodiment 55 Tin foil 76mAh g -1 522 73% Embodiment 56 Zinc-manganese alloy 90mAh g -1 933 75% Embodiment 57 Zinc copper alloy 91mAh g -1 915 79% Embodiment 58 Zinc-tin alloy 98mAh g -1 873 80% Embodiment 59 Zinc Nickel Alloy 89mAh g -1 922 73% Embodiment 60 Zinc Aluminum Alloy 86mAh g -1 786 72% Embodiment 61 Zinc Titanium
  • Embodiment 73 Carbon Nanotubes 71mAh g -1 473 80% Embodiment 74 MoS 75mAh g -1 822 73% Embodiment 75 Nb2O5 62mAh g -1 786 72% Embodiment 76 S N 81mAh g -1 933 75% Embodiment 77 MOF Materials 68mAh g -1 715 79% Embodiment 78 COF Materials 72mAh g -1 573 80% Embodiment 79 Azo organic compounds 63mAh g -1 686 72% Embodiment 80 Organic quinones 75mAh g -1 533 75% Embodiment 81 Organic carboxylates 68mAh g -1 315 79% Embodiment 82 Organic sulfide 81mAh g -1 473 80% Embodiment 83 Imines 72mAh g -1 422 73%
  • Example 84-124 The difference between Examples 84-124 and Example 1 is that the types of electrolyte salts in the electrolyte are different, and the rest are the same as Example 1. The performance of aqueous dual-ion batteries using different electrolyte salts was tested, and the results are shown in Table 3.
  • the prepared aqueous dual-ion battery exhibits better battery performance than sulfite, nitrate, nitrite, phosphate, chloride, iodide, fluoride, organic salt, etc. as the electrolyte solute.
  • Example 125-148 The difference between Examples 125-148 and Example 1 is that the concentration of the electrolyte is different, and the rest is the same as Example 1.
  • the performance of the aqueous dual-ion batteries using different electrolyte concentrations was tested, and the results are shown in Table 4.
  • a lithium ion battery comprises a positive electrode, a negative electrode, a separator and an electrolyte; wherein: the negative electrode is graphite, the positive electrode active material is lithium cobalt oxide, and the separator is glass fiber paper; the electrolyte is: LiPF6 with a concentration of 1M as an electrolyte, and ethylene carbonate (EC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) in a ratio of 1:1:1 as a solvent.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • a dual-ion battery comprises a positive electrode, a negative electrode, a separator and an electrolyte; wherein: the negative electrode is aluminum foil, the positive electrode active material is graphite, and the separator is glass fiber paper; an organic electrolyte is used: LiPF6 with a concentration of 1M is used as an electrolyte, and ethylene carbonate (EC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) are used as solvents in a ratio of 1:1:1.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • Example 1 of the present invention has better battery cycle stability and rate performance than the traditional lithium-ion battery in Comparative Example 1 and the dual-ion battery using an organic solvent in Comparative Example 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本发明属于储能器件技术领域,具体公开了一种水系双离子电池及其制备方法。该水系双离子电池包括正极、负极以及介于正极和负极之间的隔膜和电解液;电解液包括电解质盐和水系溶剂;正极包括正极活性材料,正极活性材料具有隧道或层状的孔道结构,孔道结构可供电解液中的阳离子和电解质盐中的阴离子脱嵌。本发明基于水系电池的优势,制备了一种水系双离子电池,该电池基于阴阳离子阶段插层正极的新型储能机理,具有高容量和高稳定的长循环性能,并具有本征安全性。

Description

一种水系双离子电池及其制备方法 技术领域
本发明属于储能器件领域,尤其涉及一种水系双离子电池及其制备方法。
背景技术
随着动力、储能等领域的快速发展,锂离子电池的需求量大大增加,由于锂资源匮乏且分布不均,推高了锂离子电池的价格,严重制约了锂离子电池在通讯基站、智能电网等规模化储能领域的广泛应用。为此,有必要寻找锂离子电池的替代品。当前,以阴离子插层正极为主要特点的双离子电池(DIBs)作为一种区别于“摇椅式”锂离子电池的新型电池体系,因其具备工作电压高、制造成本低、电极材料环保易回收等特点而受到广泛关注。然而,DIBs通常采用有机电解液,其潜在的易挥发、易燃、剧毒等限制了其在规模储能领域的广泛应用。同时,由于石墨类正极材料阴离子插层容量有限,DIBs发展仍受到能量密度较低的阻碍。水系电池以水作为溶剂,与非水体系相比,具有低挥发性、无毒、不易燃等特点;同时,水系电解液离子电导率高,组装无需干燥无氧环境,具有高功率、快充、制造成本低等独特优势。
传统锂离子电池(LIBs)负极材料通常采用石墨,正极则由含锂的过渡金属氧化物构成。充电时,锂离子从正极脱出,通过电解液插层到石墨负极夹层中,从而将电能转化为化学能;在放电过程中,锂离子从石墨负极脱出,回到正极,将化学能转化为电能。与LIBs不同,DIBs通常采用石墨类材料作为正极。以双石墨-双离子电池为例,充电时,阳离子(如Li +)插层到石墨负极层间,同时阴离子(如PF6 -)插层到石墨正极;放电过程则相反,即阴、阳离子分别从正负极脱出回到电解液中。由于石墨正极具有较高的阴离子插层电位(>4.5V vs.Li/Li +),使得双离子电池具有高电压的特点,从而有利于获得高的能量密度。此外,石墨正极具有环境友好的特点,并能够有效降低电池的整体成本。
现有技术中,本发明的研发团队用铝箔作为负极和石墨作为正极,采用有机电解液:以浓度为1M/L的LiPF 6为电解质,以1:1:1的碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二甲酯(DMC)为溶剂,设计出一种铝石墨双离子电池(Adv.Energy Mater.2016,1502588)。然而,该技术同样通常采用有机溶剂,其具有的易挥发性、易燃剧毒等让双离子电池的安全性能有所降低。
因此,与目前已经商业化的锂离子电池相比,双离子电池仍处于前期研发阶段,使其成 为大型储能系统的替代品进行推广应用,还需进行储能机理的深入研究并改善其电化学综合性能。同时,由于当前双离子电池多采用有机电解液,其除了具有易挥发、易燃剧毒的弊端以外,通常还需要过量的电解液,也使得其在实际应用中不得不考虑电解液过量等造成的成本提升等问题。
发明内容
针对目前双离子电池面临的有机电解液使用和用量的问题,本发明将传统的水系电池和双离子电池相结合,提出了一种具有高能量密度、高循环性、本征安全的水系双离子电池及其制备方法。
为解决上述技术问题,本发明的第一方面提供了一种水系双离子电池,所述水系双离子电池包括正极、负极以及介于所述正极和所述负极之间的隔膜和电解液;所述电解液包括电解质盐和水系溶剂;所述正极包括正极活性材料,所述正极活性材料具有隧道或层状的孔道结构,所述孔道结构可供所述电解液中的阳离子和所述电解质盐中的阴离子脱嵌。
具体地,本发明的水系双离子电池,采用具有隧道或层状的孔道结构的正极活性材料,该孔道结构的尺寸大小可满足电池在充放电过程中,阳离子和阴离子的插入/脱出;即可实现在充电时,电解质盐中的阴离子的插层和放电时电解液中阳离子的嵌入,电解液中的阳离子主要来自于电解质盐中的阳离子或负极材料。同时,本发明正极活性材料的孔道结构能够储存较多的阴离子,使电池具有较大的容量。且本发明的电解质盐可提供作用于正极活性物质的插入/脱出的阴离子,有利于增加电池的循环稳定性。此外,本发明电解液采用水系溶剂,具有本征安全性,有效解决了有机溶剂带来的易挥发、易燃和毒性的弊端。
作为上述方案的进一步改进,所述正极活性材料包括碳基材料、锰基氧化物、含锰金属的化合物、钒基氧化物、含钒金属的化合物、金属化合物、普鲁士蓝类化合物、MXene材料、金属有机框架材料、共价有机框架材料、有机醌类化合物、有机羧酸盐化合物、有机硫化物、亚胺类化合物,含偶氮基团的有机化合物中的至少一种;所述金属化合物包括Fe 2O 3、Fe 3O 4、Nb 2O 5、MoS中的至少一种。这些正极活性材料均具有较大的隧道或层状的孔道结构,可供充电时阴离子的插层和放电时阳离子的嵌入。
优选的,所述碳基材料包括天然石墨、膨胀石墨、软碳、硬碳、石墨烯、碳纳米管中的至少一种。
优选的,所述锰基氧化物包括Mn 3O 4、MnO、Mn 2O、α-MnO 2、β-MnO 2、γ-MnO 2、t-MnO 2、δ-MnO 2中的至少一种。进一步优选的,所述正极活性材料为隧道型二氧化锰,即t-MnO 2
优选的,所述含锰金属的化合物包括软锰矿、硬锰矿、偏锰酸矿、水锰矿、褐锰矿中的至少一种。
优选的,所述钒基氧化物包括VO、VO 2、V 2O 3、V 2O 5中的至少一种。
优选的,所述含钒金属的化合物包括偏钒酸铵、偏钒酸钠、偏钒酸钾、正钒酸钠、硫酸氧钒、草酸氧钒中的至少一种。
优选的,所述普鲁士蓝类化合物包括普鲁士蓝和/或普鲁士白。
优选的,所述MXene材料包括Ti 4N 3、Ti 4AlN 3、MoTi 3C 2、Ti 3C 2、Nb 2CT i中的至少一种。
作为上述方案的进一步改进,所述正极包括正极集流体和正极材料;所述正极材料按重量份计包括:正极活性材料60-95份,导电剂5-30份,粘结剂5-10份。
具体地,本发明通过优选正极材料的组成,可进一步提高正极材料的综合性能,更好地发挥正极材料在电池中的作用,进而提高电池的电化学性能。其中:正极材料的导电剂和粘结剂没有特别限制,可采用本领域常用的导电剂和粘结剂即可。
优选的,所述正极集流体包括铝、铜、铁、锡、锌、镍、钛、锰中的任意一种金属或至少含有任意一种所述金属的合金或至少含有任意一种所述金属的复合材料。
优选的,所述导电剂包括导电炭黑、导电碳球、导电石墨、导电碳纤维、石墨烯、还原氧化石墨烯中的至少一种。
优选的,所述粘结剂包括聚偏氟乙烯、聚四氟乙烯、聚乙烯醇、羧甲基纤维素、SBR橡胶、聚烯烃类中的至少一种。
作为上述方案的进一步改进,所述水系溶剂包括纯水溶剂或含水溶剂;所述含水溶剂包括水和非水溶剂,所述非水溶剂包括有机溶剂和/或离子液体。
具体地,本发明的水系溶剂可为纯水溶剂,也可以为含水溶剂。其中:含水溶剂的电解液,主要包括盐包水电解液、含水有机混合型电解液等。对于电解液中的非水溶剂没有特别的限制,只要可以使电解质离解成对应金属阳离子和阴离子,且对应金属阳离子和阴离子可以自由迁移即可,所述非水溶剂包括有机溶剂和/或离子液体。
优选的,所述有机溶剂包括酯类化合物、醚类化合物、砜类化合物、胺类化合物、烃类化合物中的至少一种。
优选的,所述酯类化合物包括碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、甲酸甲酯(MF)、乙酸甲酯(MA)、氟代碳酸乙烯酯(FEC)、丙酸甲酯(MP)、丙酸乙酯(EP)、乙酸乙酯(EA)、γ-丁内酯(GBL)、亚硫酸乙烯酯(ES)、亚硫酸丙烯酯(PS)、亚硫酸二甲酯(DMS)、亚硫酸二乙酯(DES)中的至少一种。
优选的,所述醚类化合物包括四氢呋喃(THF)、2-甲基四氢呋喃(2MeTHF)、三乙 二醇二甲醚(DG)、二甲醚(DME)、冠醚(12-冠-4)中的至少一种。
优选的,所述胺类化合物包括N,N-二甲基乙酰胺(DMA)。
优选的,所述砜类化合物包括二甲基砜(MSM)。
优选的,所述烃类化合物包括1,3-二氧环戊烷(DOL)、4-甲基-1,3-二氧环戊烷(4MeDOL)、二甲氧甲烷(DMM)、1,2-二甲氧丙烷(DMP)中的至少一种。
优选的,所述离子液体包括咪唑类化合物、吡咯类化合物、哌啶类化合物中的至少一种。
优选的,所述咪唑类化合物包括1-乙基-3-甲基咪唑-六氟磷酸盐、1-乙基-3-甲基咪唑-四氟硼酸盐、1-乙基-3-甲基咪唑-双三氟甲基磺酰亚胺盐、1-丙基-3-甲基咪唑-六氟磷酸盐、1-丙基-3-甲基咪唑-四氟硼酸盐、1-丙基-3-甲基咪唑-双三氟甲基磺酰亚胺盐、1-丁基-1-甲基咪唑-六氟磷酸盐、1-丁基-1-甲基咪唑-四氟硼酸盐、1-丁基-1-甲基咪唑-双三氟甲基磺酰亚胺盐、中的至少一种。
优选的,所述吡咯类化合物包括N-丁基-N-甲基吡咯烷-双三氟甲基磺酰亚胺盐、1-丁基-1-甲基吡咯烷-双三氟甲基磺酰亚胺盐、N-甲基-N-丙基吡咯烷-双三氟甲基磺酰亚胺盐中的至少一种。
优选的,所述哌啶类化合物包括N-甲,丙基哌啶-双三氟甲基磺酰亚胺盐和/或N-甲,丁基哌啶-双三氟甲基磺酰亚胺盐。
作为上述方案的进一步改进,所述电解质盐包括阳离子为锌、锡、铁、镁、钙、铝、锂、钠、钾、铵、钒、铜、镍、钛中的任意一种的硫酸盐、亚硫酸盐、硝酸盐、亚硝酸盐、磷酸盐、氯化盐、碘化盐、溴化盐、氟化盐、醋酸盐、锰酸盐、磷酸盐或有机盐。所述电解质盐为能够溶解于所述水系溶剂的电解质盐。
具体地,本发明的电解质盐只需对应阴离子可以自由插入或者脱出层状或隧道结构的正极活性材料的孔道之中即可。如电解质为锌盐,如果没有适合的相对应阴离子的负极金属盐可选择时,可以采用相应阴离子的电解质和负极金属混合加入的方法,若负极为锌箔,则可采用LiPF 6与ZnCl 2混合的方法引入PF 6 -离子,进行对正极活性材料的插层和脱出。
优选的,所述电解液为上述无机盐溶于水形成的水系电解液。
优选的,所述有机盐包括氟类有机盐、咪唑类有机盐、吡咯类有机盐、哌啶类有机盐中的至少一种。
优选的,所述氟类有机盐包括阳离子为锌、锡、铁、镁、钙、铝、锂、钠、钾、铵、钒、铜、镍、钛中任意一种的六氟磷酸盐、三氟硼酸盐或三氟甲磺酸盐。
优选的,所述咪唑类有机盐包括阳离子为锌、锡、铁、镁、钙、铝、锂、钠、钾、铵、钒、铜、镍、钛中任意一种的1-乙基-3-甲基咪唑-六氟磷酸盐、1-乙基-3-甲基咪唑-四氟硼酸 盐、1-乙基-3-甲基咪唑-双三氟甲基磺酰亚胺盐、1-丙基-3-甲基咪唑-六氟磷酸盐、1-丙基-3-甲基咪唑-四氟硼酸盐、1-丙基-3-甲基咪唑-双三氟甲基磺酰亚胺盐、1-丁基-1-甲基咪唑-六氟磷酸盐、1-丁基-1-甲基咪唑-四氟硼酸盐或1-丁基-1-甲基咪唑-双三氟甲基磺酰亚胺盐。
优选的,所述吡咯类有机盐包括阳离子为锌、锡、铁、镁、钙、铝、锂、钠、钾、铵、钒、铜、镍、钛中任意一种的N-丁基-N-甲基吡咯烷-双三氟甲基磺酰亚胺盐、1-丁基-1-甲基吡咯烷-双三氟甲基磺酰亚胺盐或N-甲基-N-丙基吡咯烷-双三氟甲基磺酰亚胺盐。
优选的,所述哌啶类有机盐包括阳离子为锌、锡、铁、镁、钙、铝、锂、钠、钾、铵、钒、铜、镍、钛中任意一种的N-甲,丙基哌啶-双三氟甲基磺酰亚胺盐或N-甲,丁基哌啶-双三氟甲基磺酰亚胺盐。
作为上述方案的进一步改进,所述电解液的浓度为0.1-30mol/L。通过控制电解液的浓度,可实现电解液在截止电压不低于2.0-3.0V较高电压范围内不发生显著分散。同时,电解液的浓度还将影响电解液中离子的传输性能,合适的离子浓度,更有利于电解液的电导率。
作为上述方案的进一步改进,所述负极包括铝、铜、铁、锡、锌、镍、钛、锰、钼、镁、钙中的任意一种金属或至少两种所述金属的合金或碳基材料、MoS、Nb 2O 5、SnS、金属有机框架材料、共价有机框架材料、有机醌类化合物、有机羧酸盐化合物、有机硫化物、亚胺类化合物,含偶氮基团的有机化合物中的至少一种。
具体地,负极可为水系双离子电池提供足够容量,理论容量需选择高于所述正极的理论容量的材料。本发明的负极采用常见的廉价金属或合金材料或金属化合物以及有机材料,不仅能够降低电池的成本,且可通过负极界面改性和电解液控制实现负极高稳定循环。
优选的,所述负极为锌基合金。
优选的,所述碳基材料包括天然石墨、膨胀石墨、软碳、硬碳、石墨烯、碳纳米管中的至少一种。
作为上述方案的进一步改进,所述隔膜包括多孔聚合物薄膜或无机多孔薄膜。隔膜主要用于实现阴阳离子自由穿梭。
优选的,所述多孔聚合物薄膜包括多孔聚丙烯薄膜、多孔聚乙烯薄膜、多孔复合聚合物薄膜中的任意一种。
优选的,所述无机多孔薄膜包括玻璃纤维纸或多孔陶瓷隔膜。进一步优选的,所述隔膜为玻璃纤维纸。
本发明的第二方面提供了一种水系双离子电池的制备方法,所述制备方法用于制备本发明第一方面所述的水系双离子电池,包括以下步骤:
将所述正极、所述负极、所述隔膜和所述电解液进行组装,得所述水系双离子电池。
本发明水系双离子电池在制备时,正极、负极、隔膜和电解液的组装方式没有特别限定,可以采用常规的组装方式进行。
优选的,所述双离子电池的制备方法,包括以下步骤:
(1)配制电解液:将电解质溶解于水系溶剂中,充分搅拌,得电解液;
(2)制备正极:在正极活性材料、导电剂和粘结剂中加入适量的溶剂充分混合成均匀浆料;然后将其涂覆于正极集流体表面,干燥后裁切成所需尺寸的正极;
(3)制备负极:当负极材料为金属或合金箔材(如锌箔)时,可直接将其裁切成所需尺寸,作为负极;当负极材料为粉末态物质(如天然石墨)时,则需先与导电剂和粘结剂混合,然后滴加适量溶剂混合形成均匀浆料,再将其涂覆于负极集流体表面,干燥后裁切成所需尺寸的负极;
(4)组装电池:将步骤(2)制得的正极、步骤(3)制得的负极与隔膜依次进行组装,然后滴加步骤(1)制得的电解液,使所述隔膜完全浸润,并进行封装,得所述水系双离子电池。
优选的,步骤(3)中,所述负极材料、所述导电剂和所述粘结剂的质量比为(6-8):(1-3):1。
优选的,所述负极集流体包括金属箔片,所述金属包括铝、铜、铁、锡、锌、镍、钛、锰、钼、镁、钙中的任意一种金属或至少两种所述金属的合金。
需要说明的是,尽管上述步骤是以特定顺序描述了本发明制备方法的操作,但是,这并非要求或者暗示必须按照该特定顺序来执行这些操作,步骤(1)、(2)和(3)的制备步骤可以同时或者任意先后执行。
本发明的上述技术方案相对于现有技术,至少具有如下技术效果或优点:
(1)本发明针对双离子电池采用有机溶剂所存在的不足,基于水系电池的优势,提出了一种水系双离子电池,该电池基于阴阳离子阶段插层正极的储能机理,实现了高容量和高稳定的长循环性能,并具有本征安全性。
(2)本发明采用具有隧道或层状的孔道结构的正极活性材料,其单位体积内能储存更多的离子,具有更高的能量密度;而电解质盐则可提供作用于正极活性物质的插入/脱出的阴离子,有利于增加电池的循环稳定性。同时,本发明的电解液采用水系溶剂,具有本征安全性,有效解决了有机溶剂带来的易挥发、易燃和毒性的弊端。
(3)本发明的水系双离子电池在制备时,工艺简单,材料易得,生产成本低;且电解液的可选范围广,可采用多种离子和多种正极结构相互组合,具有良好的应用推广潜力。
附图说明
图1为由实施例1的水系双离子电池的长循环性能图。
具体实施方式
下面结合实施例对本发明进行具体描述,以便于所属技术领域的人员对本发明的理解。有必要在此特别指出的是,实施例只是用于对本发明做进一步说明,不能理解为对本发明保护范围的限制,所属领域技术熟练人员,根据上述发明内容对本发明作出的非本质性的改进和调整,应仍属于本发明的保护范围。同时下述所提及的原料未详细说明的,均为市售产品;未详细提及的工艺步骤或制备方法均为本领域技术人员所知晓的工艺步骤或制备方法。
实施例1
一种水系双离子电池,包括正极、负极、隔膜和电解液;其中正极活性材料为t-MnO 2,负极材料为锌箔,隔膜为玻璃纤维纸,电解液为水系电解液。
一种水系双离子电池的制备方法,包括以下步骤:
(1)配制电解液:将2.41g(0.02mol)MgSO 4和0.755g(0.005mol)MnSO 4加入10mL去离子水中,充分搅拌,得电解液(2M MgSO 4+0.5M MnSO 4),其中M表示mol/L;
(2)制备正极:将1.69g(10.0mmol)MnSO 4·H 2O加入到20mL水中,并在塑料瓶中剧烈搅拌;然后缓慢加入30mL的NaOH(6M),以产生Mn(OH) 2的棕褐色浆料,再搅拌15分钟,在至少30分钟的过程中非常缓慢地加入1.89g K 2S 2O 8(7.0mmol)固体和0.17g MgSO 4(1.4mmol)的颗粒混合物,同时保持剧烈搅拌;通过过滤分离得到的钠型水钠锰矿(Na-birnessite)钠水镁石的橄榄色浆料,并用100mL水洗涤三次;在这之后,将钠水镁石在200mL mg -1Mg(NO 3) 2中成浆并搅拌过夜,以制备镁型水钠锰矿(Mg-birnessite),通过过滤分离,然后用100mL水洗涤三次;
将潮湿的镁硼镁石(镁型布赛尔矿Mg-buserite)与15mL的水在聚四氟乙烯内衬的高压釜中混合,并在160℃下进行24小时的水热处理;通过过滤分离得到的镁型钡镁锰矿(Mg-todorokite),用水洗涤三次,然后冷冻干燥,得到正极活性材料产物,记为t-MnO 2
将10.0mol制得的正极活性材料产物t-MnO 2与导电炭黑(SP)和聚偏氟乙烯(PVDF)以质量比为7:2:1在研钵中混合均匀,然后滴加5mL N-甲基吡咯烷酮(NMP)均匀混合形成浆料;再用150μm刮刀将浆料在铜箔上均匀涂布后,放入60℃真空干燥箱烘干;最后裁剪成直径为10mm的圆片作为正极;
(3)制备负极:将锌箔直接裁剪成直径为12mm的圆片作为负极;
(4)组装电池:在氩气气氛中,在手套箱中,将步骤(2)制得的正极、步骤(3)制得的负极与玻璃纤维纸隔膜依次进行组装,然后滴加步骤(1)制得的电解液,使隔膜完全浸润,再将上述组装部分封装入2025型硬币电池壳体中,得本实施例的水系双离子电池。
需要指出的是,本实施例中的原始负极也可通过简单剪裁直接使用,无需任何处理。正极活性材料的负载量为1.2mg cm -2。电池性能在倍率10C条件下进行测试。
图1为实施例1制得的水系双离子电池的长循环性能图,图中横坐标Cycle number表示循环圈数,左侧纵坐标Specific capacity表示比容量,右侧纵坐标Coulombic efficiency表示库伦效率。由图1可知,实施例1的水系双离子电池在倍率10C条件下,截止容量为105mAh g -1,循环1000次后,电池的容量保持率仍可达81%;库伦效率可达100%,具有高稳定的长循环性能。
实施例2-45
实施例2-45与实施例1的区别仅在于:正极活性材料的选择不同,其他均与实施例1相同。对采用不同正极活性材料的水系双离子电池的性能进行测试,其结果如表1所示。
表1:实施例1-45所制备的水系双离子电池的性能对比表
电池 正极材料 截止容量 循环圈数 容量保持率
实施例1 t-MnO 2 105mAh g -1 1000 81%
实施例2 β-MnO 2 101mAh g -1 862 80%
实施例3 γ-MnO 2 90mAh g -1 743 79%
实施例4 δ-MnO 2 87mAh g -1 702 78%
实施例5 α-MnO 2 93mAh g -1 863 81%
实施例6 Mn 3O 4 92mAh g -1 834 74%
实施例7 水锰矿 79mAh g -1 713 62%
实施例8 褐锰矿 65mAh g -1 513 52%
实施例9 软锰矿 71mAh g -1 613 62%
实施例10 硬锰矿 69mAh g -1 703 71%
实施例11 偏锰酸矿 71mAh g -1 513 67%
实施例12 V 2O 5 89mAh g -1 819 80%
实施例13 VO 2 91mAh g -1 813 75%
实施例14 偏钒酸钠 87mAh g -1 713 66%
实施例15 偏钒酸铵 82mAh g -1 753 71%
实施例16 偏钒酸钾 68mAh g -1 513 70%
实施例17 正钒酸钠 79mAh g -1 413 60%
实施例18 硫酸氧钒 69mAh g -1 713 72%
实施例19 草酸氧钒 53mAh g -1 653 71%
实施例20 普鲁士蓝 89mAh g -1 853 76%
实施例21 普鲁士白 91mAh g -1 823 70%
实施例22 鲁士蓝类似物 89mAh g -1 903 71%
实施例23 Ti 4N 3 56mAh g -1 801 68%
实施例24 Ti 4AlN 3 64mAh g -1 754 66%
实施例25 MoTi 3C 2 59mAh g -1 602 73%
实施例26 Ti 3C 2 72mAh g -1 623 74%
实施例27 Nb 2CTi 81mAh g -1 513 73%
实施例28 天然石墨 57mAh g -1 612 64%
实施例29 膨胀石墨 59mAh g -1 425 71%
实施例30 软碳 69mAh g -1 386 73%
实施例31 硬碳 53mAh g -1 453 64%
实施例32 石墨烯 79mAh g -1 393 61%
实施例33 碳纳米管 59mAh g -1 413 60%
实施例34 MOF材料 91mAh g -1 768 71%
实施例35 COF材料 89mAh g -1 593 70%
实施例36 有机醌类 62mAh g -1 453 63%
实施例37 有机羧酸盐类 73mAh g -1 635 65%
实施例38 有机硫化物 65mAh g -1 533 68%
实施例39 亚胺类 69mAh g -1 523 63%
实施例40 偶氮基团有机物 51mAh g -1 513 70%
实施例41 Fe 3O 4 61mAh g -1 521 63%
实施例42 Fe 2O 3 69mAh g -1 617 76%
实施例43 MoS 93mAh g -1 816 75%
实施例44 Nb 2O 5 99mAh g -1 913 82%
实施例45 SnS 89mAh g -1 853 80%
由表1可知,在以锌箔为负极,2M MgSO 4+0.5M MnSO 4为电解液时,以锰基氧化物、含锰金属的化合物、钒基氧化物、含钒金属的化合物、金属化合物(Fe 2O 3、Fe 3O 4、Nb 2O 5、MoS)、普鲁士蓝类化合物和MXene材料作为正极活性材料,相对于碳基材料、金属有机框架材料、共价有机框架材料、有机醌类化合物、有机羧酸盐化合物、有机硫化物、亚胺类化合物,含偶氮基团的有机化合物作为正极活性材料,所制得的水系双离子电池表现出更好的电池性能。
实施例46-83
实施例46-83与实施例1的区别仅在于:负极材料的选择不同,其他均与实施例1相同。其中:实施例46-67的负极的制备与实施例1相同;实施例68-83的负极在制备时,先将负极材料与导电炭黑(SP)和聚偏氟乙烯(PVDF)以质量比为7:2:1在研钵中混合均匀,然后滴加5ml N-甲基吡咯烷酮(NMP)均匀混合形成浆料;再使用150μm的刮刀将浆料均匀涂抹在锌箔上,放入60℃真空干燥箱中烘干,最后将处理过的锌箔裁剪成半径为12mm的圆片作为负极。
对采用不同负极材料的水系双离子电池的性能进行测试,其结果如表2所示。
表2:实施例1、46-83所制备的水系双离子电池的性能对比表
电池 负极材料 截止容量 循环圈数 容量保持率
实施例1 锌箔 105mAh g -1 1000 81%
实施例46 铝箔 78mAh g -1 786 72%
实施例47 铜箔 57mAh g -1 433 75%
实施例48 钼箔 46mAh g -1 315 79%
实施例49 钛箔 71mAh g -1 673 80%
实施例50 锰箔 63mAh g -1 722 73%
实施例51 钙箔 38mAh g -1 786 72%
实施例52 铁箔 76mAh g -1 433 75%
实施例53 镁箔 65mAh g -1 315 79%
实施例54 镍箔 52mAh g -1 873 80%
实施例55 锡箔 76mAh g -1 522 73%
实施例56 锌锰合金 90mAh g -1 933 75%
实施例57 锌铜合金 91mAh g -1 915 79%
实施例58 锌锡合金 98mAh g -1 873 80%
实施例59 锌镍合金 89mAh g -1 922 73%
实施例60 锌铝合金 86mAh g -1 786 72%
实施例61 锌钛合金 91mAh g -1 933 75%
实施例62 锌钼合金 95mAh g -1 915 79%
实施例63 锌镁合金 89mAh g -1 873 80%
实施例64 镁钙合金 68mAh g -1 322 73%
实施例65 镁铝合金 72mAh g -1 486 72%
实施例66 钛铝合金 75mAh g -1 533 75%
实施例67 锌钙合金 85mAh g -1 615 79%
实施例68 天然石墨 68mAh g -1 573 70%
实施例69 膨胀石墨 71mAh g -1 422 73%
实施例70 软碳 65mAh g -1 386 72%
实施例71 硬碳 64mAh g -1 433 75%
实施例72 石墨烯 73mAh g -1 515 79%
实施例73 碳纳米管 71mAh g -1 473 80%
实施例74 MoS 75mAh g -1 822 73%
实施例75 Nb 2O 5 62mAh g -1 786 72%
实施例76 SnS 81mAh g -1 933 75%
实施例77 MOF材料 68mAh g -1 715 79%
实施例78 COF材料 72mAh g -1 573 80%
实施例79 偶氮基团有机物 63mAh g -1 686 72%
实施例80 有机醌类 75mAh g -1 533 75%
实施例81 有机羧酸盐类 68mAh g -1 315 79%
实施例82 有机硫化物 81mAh g -1 473 80%
实施例83 亚胺类 72mAh g -1 422 73%
由表2可知,在以t-MnO 2为正极活性材料,2M MgSO 4+0.5M MnSO 4为电解液时,以锌及其合金、金属化合物(MoS、Nb 2O 5、SnS)为负极材料,相对于其他金属及其合金、碳基材料、金属有机框架材料、共价有机框架材料、有机醌类化合物、有机羧酸盐化合物、有机硫化物、亚胺类化合物,含偶氮基团的有机化合物为负极材料,所制得的水系双离子电池表现出更好的电池性能。
实施例84-124
实施例84-124与实施例1的区别仅在于:电解液中电解质盐的种类选择不同,其他均与实施例1相同。对采用不同电解质盐的水系双离子电池的性能进行测试,其结果如表3所示。
表3:实施例1、84-124所制备的水系双离子电池的性能对比表
Figure PCTCN2022133691-appb-000001
Figure PCTCN2022133691-appb-000002
Figure PCTCN2022133691-appb-000003
由表3可知,在以t-MnO 2为正极活性材料,锌箔为负极时,以硫酸盐为电解液溶质,相对于亚硫酸盐、硝酸盐、亚硝酸盐、磷酸盐、氯化盐、碘化盐、氟化盐、有机盐等为电解液溶质,所制得的水系双离子电池表现出更好的电池性能。
实施例125-148
实施例125-148与实施例1的区别仅在于:电解液的浓度不同,其他均与实施例1相同。对采用不同电解液浓度的水系双离子电池的性能进行测试,其结果如表4所示。
表4:实施例1、125-148所制备的水系双离子电池的性能对比表
Figure PCTCN2022133691-appb-000004
Figure PCTCN2022133691-appb-000005
Figure PCTCN2022133691-appb-000006
由表4可知,在以t-MnO 2为正极活性材料,锌箔为负极时,在不同浓度电解液中,在现有测试范围内,电解液浓度的增加,对于水系双离子电池的性能的提升不明显。
对比例1
一种锂离子电池,包括正极、负极、隔膜和电解液;其中:负极为石墨,正极活性材料为钴酸锂,隔膜为玻璃纤维纸;电解液为:以浓度为1M的LiPF 6为电解质,以1:1:1的碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二甲酯(DMC)为溶剂。锂离子电池的制备方法和测试条件均与实施例1相同。
对比例2
一种双离子电池,包括正极、负极、隔膜和电解液;其中:负极为铝箔,正极活性材料为石墨,隔膜为玻璃纤维纸;采用有机电解液:以浓度为1M的LiPF 6为电解质,以1:1:1的碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二甲酯(DMC)为溶剂。双离子电池的制备方法和测试条件均与实施例1相同。
将对比例1-2制得的电池进行性能测试,并与实施例1进行对比,其结果如表5所示。
表5:实施例1、对比例1-2所制备的电池的性能对比表
Figure PCTCN2022133691-appb-000007
由表5可知,本发明实施例1制得的水系双离子电池,相对于对比例1的传统锂离子电池和对比例2采用有机溶剂的双离子电池,电池循环稳定性和倍率性能都更加优异。
对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下还可以做出若干简单推演或替换,而不必经过创造性的劳动。因此,本领域技术人员根据本发明的揭示,对本发明做出的简单改进都应该在本发明的保护范围之内。上述实施例为本发明的优选 实施例,凡与本发明类似的工艺及所作的等效变化,均应属于本发明的保护范畴。

Claims (14)

  1. 一种水系双离子电池,其特征在于,所述水系双离子电池包括正极、负极以及介于所述正极和所述负极之间的隔膜和电解液;所述电解液包括电解质盐和水系溶剂;所述正极包括正极活性材料,所述正极活性材料具有隧道或层状的孔道结构,所述孔道结构可供所述电解液中的阳离子和所述电解质盐中的阴离子脱嵌。
  2. 根据权利要求1所述的水系双离子电池,其特征在于,所述正极包括正极集流体和正极材料;所述正极材料按重量份计包括:正极活性材料60-95份,导电剂5-30份,粘结剂5-10份。
  3. 根据权利要求1或2所述的水系双离子电池,其特征在于,所述正极活性材料包括碳基材料、锰基氧化物、含锰金属的化合物、钒基氧化物、含钒金属的化合物、金属化合物、普鲁士蓝类化合物、MXene材料、金属有机框架材料、共价有机框架材料、有机醌类化合物、有机羧酸盐化合物、有机硫化物、亚胺类化合物,含偶氮基团的有机化合物中的至少一种;所述金属化合物包括Fe 2O 3、Fe 3O 4、Nb 2O 5、MoS中的至少一种。
  4. 根据权利要求2所述的水系双离子电池,其特征在于,所述正极集流体包括铝、铜、铁、锡、锌、镍、钛、锰中的任意一种金属或至少含有任意一种所述金属的合金或至少含有任意一种所述金属的复合材料。
  5. 根据权利要求2所述的水系双离子电池,其特征在于,所述导电剂包括导电炭黑、导电碳球、导电石墨、导电碳纤维、石墨烯、还原氧化石墨烯中的至少一种。
  6. 根据权利要求2所述的水系双离子电池,其特征在于,所述粘结剂包括聚偏氟乙烯、聚四氟乙烯、聚乙烯醇、羧甲基纤维素、SBR橡胶、聚烯烃类中的至少一种。
  7. 根据权利要求1所述的水系双离子电池,其特征在于,所述水系溶剂包括纯水溶剂或含水溶剂;所述含水溶剂包括水和非水溶剂,所述非水溶剂包括有机溶剂和/或离子液体。
  8. 根据权利要求7所述的水系双离子电池,其特征在于,所述有机溶剂包括酯类化合物、醚类化合物、砜类化合物、胺类化合物、烃类化合物中的至少一种。
  9. 根据权利要求7所述的水系双离子电池,其特征在于,所述离子液体包括咪唑类化合物、吡咯类化合物、哌啶类化合物中的至少一种。
  10. 根据权利要求1所述的水系双离子电池,其特征在于,所述电解质盐包括阳离子为锌、锡、铁、镁、钙、铝、锂、钠、钾、铵、钒、铜、镍、钛中任意一种的硫酸盐、亚硫酸 盐、硝酸盐、亚硝酸盐、磷酸盐、氯化盐、碘化盐、溴化盐、氟化盐、醋酸盐、锰酸盐、磷酸盐或有机盐;所述有机盐包括氟类有机盐、咪唑类有机盐、吡咯类有机盐、哌啶类有机盐中的任意一种。
  11. 根据权利要求1所述的水系双离子电池,其特征在于,所述电解液的浓度为0.1-30mol/L。
  12. 根据权利要求1所述的水系双离子电池,其特征在于,所述负极包括铝、铜、铁、锡、锌、镍、钛、锰、钼、镁、钙中的任意一种金属或至少两种所述金属的合金或碳基材料、MoS、Nb 2O 5、SnS、金属有机框架材料、共价有机框架材料、有机醌类化合物、有机羧酸盐化合物、有机硫化物、亚胺类化合物,含偶氮基团的有机化合物中的至少一种。
  13. 根据权利要求1所述的水系双离子电池,其特征在于,所述隔膜包括多孔聚合物薄膜或无机多孔薄膜。
  14. 一种水系双离子电池的制备方法,其特征在于,所述制备方法用于制备权利要求1至13任意一项所述的水系双离子电池,包括以下步骤:
    将所述正极、所述负极、所述隔膜和所述电解液进行组装,得所述水系双离子电池。
PCT/CN2022/133691 2022-11-23 2022-11-23 一种水系双离子电池及其制备方法 WO2024108417A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/133691 WO2024108417A1 (zh) 2022-11-23 2022-11-23 一种水系双离子电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/133691 WO2024108417A1 (zh) 2022-11-23 2022-11-23 一种水系双离子电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2024108417A1 true WO2024108417A1 (zh) 2024-05-30

Family

ID=91194904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133691 WO2024108417A1 (zh) 2022-11-23 2022-11-23 一种水系双离子电池及其制备方法

Country Status (1)

Country Link
WO (1) WO2024108417A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180342758A1 (en) * 2016-05-06 2018-11-29 Shenzhen Institutes Of Advanced Technology Secondary battery and preparation method therefor
CN112242570A (zh) * 2019-07-19 2021-01-19 中国科学院物理研究所 碳材料和离子型溴化物的混合物的应用以及水系锌-溴双离子电池
CN114843627A (zh) * 2022-05-24 2022-08-02 中国科学院长春应用化学研究所 一种双离子电解液及含有该电解液的水系锌基双离子电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180342758A1 (en) * 2016-05-06 2018-11-29 Shenzhen Institutes Of Advanced Technology Secondary battery and preparation method therefor
CN112242570A (zh) * 2019-07-19 2021-01-19 中国科学院物理研究所 碳材料和离子型溴化物的混合物的应用以及水系锌-溴双离子电池
CN114843627A (zh) * 2022-05-24 2022-08-02 中国科学院长春应用化学研究所 一种双离子电解液及含有该电解液的水系锌基双离子电池

Similar Documents

Publication Publication Date Title
CN105304936B (zh) 一种锂离子二次电池
CN107785603B (zh) 锂硫电池电解液及其制备方法以及使用所述电解液的电池
WO2022042373A1 (zh) 锂离子电池
CN107732163B (zh) 一种锂离子二次电池
WO2016188130A1 (zh) 一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法
CN109659528B (zh) 钾离子电池负极活性材料、钾离子电池负极材料、钾离子电池负极、钾离子电池及其应用
CN103855389A (zh) 三氟化铁/碳复合材料及其制备方法和应用
CN109742324A (zh) 锂离子电池及其正极片及其制备方法
CN104934579A (zh) 一种多孔石墨掺杂与碳包覆石墨负极材料的制备方法
CN110148787A (zh) 一种提高锂硫电池容量的电解液及锂硫电池
CN103579677A (zh) 一种电解液及含有该电解液的二次锂电池和电容器
CN111952670A (zh) 一种具有宽工作温度范围的锂离子电池
CN103855373A (zh) 五氧化二钒/石墨烯复合材料及其制备方法和应用
WO2019095717A1 (zh) 一种锂原电池
CN107226454B (zh) 一种钛酸锂-石墨烯复合负极材料的制备方法
JP6346733B2 (ja) 電極、非水系二次電池及び電極の製造方法
CN110556537B (zh) 一种改善阴离子嵌入型电极材料电化学性能的方法
WO2023186165A1 (zh) 一种钠离子电池及其制备方法和应用
CN107799700A (zh) 一种原位合成普鲁士蓝修饰的隔膜的制备方法及其应用
CN116826165A (zh) 一种锂二次电池及其制备方法
WO2020124648A1 (zh) 氟化草酸盐材料的应用以及包含氟化草酸盐材料的产品、制备方法及其用途
CN109841800B (zh) 一种氟磷酸钒钠与碳复合物及其制备和应用
WO2024108417A1 (zh) 一种水系双离子电池及其制备方法
CN114743803A (zh) 一种高电压混合型锂离子超级电容器及其制备方法
CN112751014A (zh) 一种基于层状钒氧化合物负极的水系储能电池