WO2024108364A1 - 循环式液体加热的烹饪设备、烹饪主机及控制方法 - Google Patents

循环式液体加热的烹饪设备、烹饪主机及控制方法 Download PDF

Info

Publication number
WO2024108364A1
WO2024108364A1 PCT/CN2022/133345 CN2022133345W WO2024108364A1 WO 2024108364 A1 WO2024108364 A1 WO 2024108364A1 CN 2022133345 W CN2022133345 W CN 2022133345W WO 2024108364 A1 WO2024108364 A1 WO 2024108364A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
self
cooking
air pump
heating
Prior art date
Application number
PCT/CN2022/133345
Other languages
English (en)
French (fr)
Inventor
陈旭潮
斯蒂芬斯卢克·威廉
周晨
Original Assignee
深圳市虎一科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市虎一科技有限公司 filed Critical 深圳市虎一科技有限公司
Priority to PCT/CN2022/133345 priority Critical patent/WO2024108364A1/zh
Publication of WO2024108364A1 publication Critical patent/WO2024108364A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J27/00Cooking-vessels
    • A47J27/10Cooking-vessels with water-bath arrangements for domestic use

Definitions

  • the present application relates to cooking equipment, and in particular to a water circulation system of a circulating liquid heating cooking equipment.
  • Circulating liquid heating cooking equipment is a type of cooking method that heats the liquid and then heats the ingredients.
  • This type of cooking equipment usually includes a cooking host and a water tank.
  • the cooking host continuously heats the liquid in the water tank through the heating element inside the cooking host and controls the temperature of the liquid in the water tank so that the user can use the liquid in the water tank for cooking, such as slow cooking at low temperature.
  • a self-priming pump is usually provided in the cooking host as a water pump, such as a diaphragm pump, a peristaltic pump, etc. Since the self-priming pump needs to integrate an air extraction structure, the structure is more complicated, so it has the defects of large volume, small pumping flow rate and noise, etc., and it is difficult to apply to cooking equipment with a larger water tank.
  • the present application provides a circulating liquid heating cooking device and a cooking host, the purpose of which is to provide a new liquid pump structure.
  • the present application also provides a control method for a cooking host so as to more accurately control the operation of the air pump.
  • an embodiment of the present application provides a cooking host with circulating liquid heating, characterized in that the cooking host has a control unit, a heating liquid circuit and a self-priming liquid circuit, the heating liquid circuit includes a liquid inlet, a liquid outlet, a non-self-priming pump and a heating element, the liquid inlet and the liquid outlet are used to connect to an external liquid container matched with the cooking host, the heating element and the non-self-priming pump are respectively connected to the control unit signal, the non-self-priming pump is arranged between the liquid inlet and the liquid outlet, the self-priming liquid circuit is connected to the non-self-priming pump to suck the liquid in the external liquid container into the non-self-priming pump, the non-self-priming pump is used to drive the liquid sucked from the liquid inlet to flow to the liquid outlet, and the control unit controls the heating element to heat the liquid in the heating liquid circuit.
  • the self-priming liquid circuit has a liquid storage container and an air pump
  • the liquid storage container has a liquid storage cavity
  • the liquid storage container is connected between the air pump and the heating liquid circuit
  • the air pump is signal-connected to the control unit
  • the air suction end of the air pump is connected to the liquid storage container for sucking the gas in the liquid storage container and the heating liquid circuit to suck the liquid in the external liquid container into the non-self-priming pump.
  • an embodiment of the present application provides a circulating liquid heating cooking device, including:
  • a cooking host wherein the cooking host is any one of the cooking hosts described above;
  • the external liquid container has a liquid holding cavity, a liquid extraction interface and a liquid return interface, the liquid extraction interface and the liquid return interface are both connected to the liquid holding cavity; the liquid inlet can be connected to the liquid extraction interface, and the liquid outlet can be connected to the liquid return interface to form a circulating heating liquid circuit between the heating liquid circuit and the liquid holding cavity.
  • the cooking host has a first connection port
  • the exhaust end of the air pump of the self-priming liquid circuit is connected to the first connection port
  • the external liquid container has a second connection port
  • the first connection port can be connected to the second connection port to discharge the liquid sucked into the air pump from the first connection port into the external liquid container.
  • an embodiment of the present application provides a control method for a cooking host, wherein the cooking host is the cooking host shown above, and the control method includes:
  • an embodiment of the present application provides a control method for a cooking host, wherein the cooking host is the cooking host shown above, and the control method includes:
  • the cooking host of the above embodiment has a control unit, a heating liquid circuit and a self-priming liquid circuit.
  • the heating liquid circuit can be used to form a circulating heating liquid circuit with an external liquid container.
  • the heating liquid circuit includes a non-self-priming pump.
  • the non-self-priming pump has low noise and a pumping flow rate greater than that of the self-priming pump, which can adapt to scenarios with a greater pumping flow rate requirement.
  • the self-priming liquid circuit is connected to the non-self-priming pump to suck the liquid in the external liquid container into the non-self-priming pump to start the non-self-priming pump.
  • control the air pump after sending a signal to control the air pump to stop pumping, it waits for the first time period. When at least one liquid arrival signal is received again within the first time period, or when no liquid arrival signal is received within the first time period, a signal is sent to control the non-self-priming pump to start pumping liquid.
  • This control method can avoid the erroneous triggering of the liquid arrival signal due to liquid splashing, shaking of the cooking host or other factors, and control the operation of the air pump more accurately.
  • FIG1 is a schematic diagram of the structure of a cooking device in one embodiment of the present application, in which a cooking host and an external liquid container are docked together;
  • FIG2 is a schematic diagram of the structure of a cooking host and an external liquid container separated in one embodiment of the present application;
  • FIG3 is a schematic diagram of the connection between the heating liquid circuit, the self-priming liquid circuit and the external liquid container of the cooking host in one embodiment of the present application;
  • FIG4 is a schematic diagram of the connection between the heating liquid circuit, the liquid storage container, the air pump and the external liquid container of the cooking host in one embodiment of the present application;
  • FIGS. 5 and 6 are schematic diagrams of the structures of the heating liquid circuit and the self-priming liquid circuit at different viewing angles in one embodiment of the present application;
  • FIG7 is a schematic diagram of the positions and heights of the components of the heating liquid circuit and the self-priming liquid circuit in the vertical direction in one embodiment of the present application;
  • FIG8 is a schematic diagram of the appearance structure of an external liquid container in one embodiment of the present application.
  • FIG9 is an exploded schematic diagram of an external liquid container structure in one embodiment of the present application.
  • FIG10 is a schematic cross-sectional view of an external liquid container along a vertical direction in one embodiment of the present application.
  • FIG11 is an enlarged view of portion A in FIG10 ;
  • FIG12 is a cross-sectional view of a first connection port and a second connection port when they are connected in one embodiment of the present application;
  • FIG13 is a control flow chart of a control method for a cooking device in one embodiment of the present application, which is mainly used for controlling an air pump;
  • FIG. 14 is a control flow chart of a control method for a cooking device in another embodiment of the present application, which is mainly used for controlling an air pump.
  • connection and “coupling” mentioned in this application include direct and indirect connections (couplings) unless otherwise specified.
  • Cooking equipment used for circulating liquid heating generally includes a cooking host, which heats the liquid in an external liquid container by continuously heating the liquid, thereby heating the food placed in the liquid.
  • the cooking host may be, but is not limited to, a low-temperature slow cooker or a constant-temperature slow cooker.
  • the external liquid container is used to hold food or a food storage unit containing food (such as a vacuum bag).
  • the external liquid container is externally connected to the cooking host, or the cooking host is inserted into the external liquid container.
  • the external liquid container can contain liquid, which is usually water (in this case, the external liquid container can also be called a water tank).
  • the external liquid container can also store other liquids besides water according to different cooking needs.
  • the cooking host and the external liquid container form a circulating heating liquid circuit, so that the liquid is pumped into the cooking host for heating and the heated liquid is discharged into the external liquid container.
  • the circulating liquid heating cooking device 1 includes a cooking host 100 and an external liquid container 200 (hereinafter referred to as the external container 200 ).
  • the cooking host 100 has a control unit 110, a heating liquid circuit 120, a self-priming liquid circuit 130 and other related structures.
  • Other related structures can be seen in the existing related technology and will not be repeated here.
  • the heating liquid circuit 120 includes a liquid inlet 121, a liquid outlet 122, a non-self-priming pump 123 and a heating element 124.
  • the liquid inlet 121 and the liquid outlet 122 can be connected to the external container 200 that cooperates with the cooking host 100 through various connecting structures.
  • the cooking host 100 has a liquid inlet connector 125 and a liquid outlet connector 126.
  • the liquid inlet 121 is arranged on the liquid inlet connector 125
  • the liquid outlet 122 is arranged on the liquid outlet connector 126.
  • the liquid inlet connector 125 and the liquid outlet connector 126 can be plugged in and matched with the external container 200 to achieve connection.
  • the external container 200 has a liquid containing chamber 201, a liquid extraction interface 202, and a liquid return interface 203.
  • the liquid containing chamber 201 is used to contain water or other liquids, and the liquid extraction interface 202 and the liquid return interface 203 are both connected to the liquid containing chamber 201.
  • the liquid inlet 121 of the liquid inlet joint 125 can be connected to the liquid extraction interface 202, and the liquid outlet 122 of the liquid outlet joint 126 can be connected to the liquid return interface 203, so as to form a circulating heating liquid circuit between the heating liquid circuit 120 and the liquid containing chamber 201.
  • the heating element 124 and the non-self-priming pump 123 are respectively connected to the control unit 110 by signal, and are controlled by the control unit 110.
  • the control unit 110 may be one or more circuit boards with control circuits, which can receive signals, process signals, and issue instructions to control the working state of part or all of the electric control components of the cooking device 1.
  • the control unit 110 may be a control unit that integrates various control functions into one, or may be a plurality of different sub-control units, which can at least be used to implement different control functions respectively. Of course, in some embodiments, at least a portion of these sub-control units may also be used to implement some of the same control functions.
  • the control unit 110 can control the relevant working states of the power devices in the heating liquid circuit 120 and the self-priming liquid circuit 130, for example, to control the relevant working states of the non-self-priming pump 123.
  • the relevant working states of the non-self-priming pump 123 include but are not limited to the start or stop of the non-self-priming pump 123, the liquid pumping speed, etc.
  • the control unit 110 can control the relevant working states of the heating element 124.
  • the relevant working states of the heating element 124 include but are not limited to the start or stop of the heating element 124, the working power of the heating element 124, etc.
  • the control unit 110 can heat the liquid in the external container 200 by controlling the operation of the heating element 124.
  • control unit 110 may include a processor. In some embodiments, the control unit 110 may include a single-chip microcomputer (MCU) control system. In some embodiments, the control unit 110 may include, but is not limited to, a programmable chip, a desktop computer, a laptop computer, a mobile phone terminal, a Pad (tablet computer) mobile terminal, etc.
  • MCU microcomputer
  • the non-self-priming pump 123 is disposed between the liquid inlet 121 and the liquid outlet 122, and its purpose is to drive the liquid sucked from the liquid inlet 121 to flow toward the liquid outlet 122.
  • the control unit 110 controls the heating element 124 to heat the liquid in the heating liquid path 120, so as to ensure that the liquid flowing out of the liquid outlet 122 is heated liquid.
  • the non-self-priming pump 123 may be a non-self-priming centrifugal pump or other types of non-self-priming pumps.
  • the pumping flow rate of the non-self-priming pump is greater than the pumping flow rate of the self-priming pump, and can adapt to the scene with a larger pumping flow rate requirement, for example, it can adapt to the external container 200 of a larger volume, realize the circulation heating of the liquid with a larger flow rate, and under the action of the heating element 124 of the same specification, it can ensure that the liquid in the external container 200 of a larger volume can be heated to the required temperature faster.
  • the water used in cooking equipment is usually a non-pure medium
  • the external container is in an open state
  • the water in the external container and the water pump is usually hard water, and may also be mixed with dust, seasoning and other particles.
  • the self-priming pump is prone to failure in long-term operation under the influence of water quality.
  • the diaphragm pump is intolerant to impurities, and the particle size exceeds 0.12mm, which may cause the diaphragm pump to fail.
  • the non-self-priming pump is less affected by the quality of the liquid, which can extend the service life of the non-self-priming pump 123.
  • the self-priming liquid circuit 130 is connected to the non-self-priming pump 123 (this includes direct and indirect communication between the self-priming liquid circuit 130 and the non-self-priming pump 123), and the self-priming liquid circuit 130 is used to suck the liquid from the external container 200 into the working chamber 1231 of the non-self-priming pump 123.
  • the self-priming liquid circuit 130 has a structure that can realize the liquid suction function.
  • the self-priming liquid circuit 130 can have an air pump as a driving pump.
  • the air pump changes the air pressure in the working chamber 1231 of the non-self-priming pump 123 by sucking the gas in the working chamber 1231 of the non-self-priming pump 123, so that the liquid in the external container 200 can enter the working chamber 1231 of the non-self-priming pump 123, ensuring that the non-self-priming pump 123 starts and runs normally. Since the air pump is mainly used to extract gas before the non-self-priming pump 123 is started or in the initial stage of starting, it is less affected by the quality of the liquid (such as water quality) in the heating liquid circuit 120, and the service life of the air pump can be avoided due to liquid quality problems.
  • the quality of the liquid such as water quality
  • the self-priming liquid circuit 130 may also have a self-priming pump (or self-priming pump) as a driving pump, through which the liquid in the external container 200 is sucked into the above-mentioned non-self-priming pump 123 to ensure the normal start and operation of the non-self-priming pump 123. Since the self-priming pump is mainly used to help the non-self-priming pump 123 start, the self-priming pump does not need to work continuously during the liquid circulation heating process, so the quality of the liquid in the pipeline has little effect on the self-priming pump, which can extend its service life.
  • a self-priming pump or self-priming pump
  • the self-priming liquid circuit 130 has a liquid storage container 131 and an air pump 132.
  • the liquid storage container 131 has a liquid storage cavity 1311.
  • the liquid storage container 131 is connected between the air pump 132 and the heating liquid circuit 120. This includes the liquid storage container 131 being directly and indirectly connected to the air pump 132 and the heating liquid circuit 120 respectively.
  • the air pump 132 is connected to the control unit 110 by signal.
  • the air pump 132 has an air suction end 1321 and an air exhaust end 1322 (see FIG. 4 ).
  • the air suction end 1321 of the air pump 132 is connected to the liquid storage container 131, and is used to suck the gas in the liquid storage container 131, and then suck the gas in the heating liquid circuit 120 through the liquid storage container 131, so as to form a low pressure state lower than the gas pressure in the liquid containing cavity 201 of the external container 200 in the liquid storage container 131 and the working cavity 1231 of the non-self-priming pump 123, so as to suck the liquid in the external container 200 into the non-self-priming pump 123.
  • the liquid storage container 131 can play a liquid storage function to prevent excessive liquid from being sucked into the air pump 132.
  • the air pump 132 can be understood as various devices capable of extracting gas, such as a vacuum pump.
  • the air pump 132 may include a device or apparatus for obtaining a vacuum by evacuating the pumped container using mechanical, physical, chemical or physicochemical methods.
  • the air pump 132 may include a gas transmission pump and a gas capture pump.
  • the gas transmission pump is to achieve the purpose of extracting gas by continuously inhaling and discharging gas.
  • the gas capture pump is to achieve the purpose of extracting gas by causing gas molecules to be adsorbed or condensed on the inner surface of the pump to reduce the number of gas molecules in the container.
  • the gas transmission pump includes but is not limited to a diaphragm pump, a piston air pump, a rotary vane air pump, a molecular gas pump, a jet air pump, a diffusion pump, a diffusion jet pump and an ion transport pump.
  • the gas capture pump includes but is not limited to an adsorption pump, a getter pump, a getter ion pump and a cryogenic pump.
  • the heating element 124 is connected between the non-self-priming pump 123 and the liquid outlet 122, and the liquid storage container 131 is connected between the non-self-priming pump 123 and the heating element 124.
  • the heating element 124 may also be provided between the non-self-priming pump 123 and the liquid inlet 121.
  • the liquid storage container 131 may be connected between the heating element 124 and the liquid inlet 121 or between the non-self-priming pump 123 and the liquid outlet 122.
  • the liquid storage cavity 1311 of the liquid storage container 131 is higher than the non-self-priming pump 123 in the vertical direction. This includes various situations such as the liquid storage cavity 1311 being higher than the non-self-priming pump 123 as a whole and the liquid storage cavity 1311 being partially higher than the non-self-priming pump 123. The purpose is to ensure that at least a portion of the cavity in the liquid storage cavity 1311 can be higher than the non-self-priming pump 123.
  • the heating element 124 is used to heat the liquid in the heating liquid circuit 120.
  • the heating element 124 can heat the liquid in the heating liquid circuit 120, and the heated liquid brings energy back to the external container 200, thereby heating the liquid in the external container 200.
  • the heated liquid in the heating liquid circuit 120 can heat the food placed in the liquid.
  • the heating element 124 may include components that directly heat the liquid in the heating liquid circuit 120.
  • the liquid is heated using a metal heating rod or heating wire placed in the liquid in the heating liquid circuit 120.
  • the heating element 124 may include components that directly heat the pipeline of the heating liquid circuit 120.
  • a heating base placed at the bottom of the pipeline of the heating liquid circuit 120.
  • the heating element 124 can also be connected to the pipeline of the heating liquid circuit 120.
  • the heating element 124 is a heating tube.
  • the heating chamber 1241 of the heating tube is connected to the non-self-priming pump 123 and the liquid outlet 122 through a pipeline.
  • a heating wire or other heating structure is provided on the tube wall of the heating tube, which can directly heat the liquid in the heating tube.
  • the heating element 124 adopts a heating tube
  • the liquid storage cavity 1311 of the liquid storage container 131 is higher than the heating element 124 in the vertical direction. This includes various situations such as the liquid storage cavity 1311 is higher than the heating element 124 as a whole and the liquid storage cavity 1311 is partially higher than the heating element 124. The purpose is to ensure that at least a part of the cavity in the liquid storage cavity 1311 can be higher than the heating element 124.
  • the heating cavity 1241 of the heating element 124 is already filled with liquid, preventing the situation where the liquid does not fill the interior of the heating element 124 and causing part of the side walls (especially the top wall) of the heating element 124 to dry out, so as to better protect the heating element 124, while ensuring that the heating element 124 is filled with liquid, and also improving the heating efficiency of the liquid.
  • the user can control the opening and closing of the air pump 132 by himself.
  • the air pump 132 When the air pump 132 is turned on, the user can manually turn off the air pump 132 to prevent the air pump 132 from pumping too much liquid into it.
  • the manufacturer pre-calculates how long the air pump 132 will start to make the liquid in the non-self-priming pump 123 meet the starting requirements, and records the start-up time of the air pump 132 in the manual or informs the user in other ways. The user turns off the air pump 132 according to the pre-given start-up time.
  • the liquid level change in the liquid storage container 131 can also be made into a visual form, which can include displaying through a display device or an indicator device (such as an indicator light, etc.), or reminding the user to turn off the air pump 132 through sound, image and/or light; the visual form can also include achieving visualization through a visual structure, for example, the liquid storage container 131 is designed as a user-visible structure.
  • the user-visible structure includes a transparent observation window or opening, so that the user can directly see the change in the liquid level in the liquid storage container 131 and control the closing of the air pump 132 according to the change in the liquid level.
  • a liquid level corresponding to the closing time of the air pump 132 can be set on the liquid storage container 131 or other components. When the liquid reaches this level, the user can understand that the air pump 132 needs to be closed.
  • the above are only examples, and the user can also control the opening and closing of the air pump 132 by himself in other ways.
  • the air pump 132 can also be controlled by the control unit 110.
  • the liquid storage container 131 is provided with a liquid level detection unit 133 for detecting the liquid level in the liquid storage cavity 1311.
  • the liquid level detection unit 133 can adopt various structures that can realize liquid level detection.
  • the liquid level detection unit 133 is connected to the control unit 110 by signal. When the liquid level detection unit 133 detects that the liquid in the liquid storage cavity 1311 reaches the detection liquid level, the liquid level detection unit 133 sends a liquid in place signal to the control unit 110, and the control unit 110 controls the air pump 132 to stop pumping air according to the liquid in place signal.
  • the liquid level detection unit 133 may also adopt other structures, such as a float liquid level sensor, a capacitor module, a liquid level sensor, etc.
  • the liquid level detection unit 133 is a float liquid level sensor, which has a base and a float, and the base has a signal sending circuit.
  • the base can be on the liquid storage container 131, and the float is arranged in the liquid storage cavity 1311. As the liquid in the liquid storage cavity 1311 increases, the float gradually moves up, and finally when the float moves to the detection liquid level, it is affected by the magnetic force in the float, and the signal sending circuit is closed and turned on, and a liquid level in place signal is sent to the control unit 110.
  • the liquid level detection unit 133 detects that the liquid in the liquid storage cavity 1311 reaches the detection liquid level, the liquid level detection unit 133 sends a liquid in place signal to the control unit 110, and the control unit 110 controls the air pump 132 to stop pumping according to the liquid in place signal.
  • the detection liquid level refers to the position where the liquid in the liquid storage cavity 1311 can trigger the liquid level detection unit 133, as shown by the dotted line C in FIG4 , and the detection liquid level can be flexibly set according to specific needs.
  • the detection liquid level of the liquid level detection unit 133 is higher than the non-self-priming pump 123 in the vertical direction, so as to ensure that when the air pump 132 is turned off, the working chamber 1231 of the non-self-priming pump 123 is full of liquid.
  • the detection liquid level of the liquid level detection unit 133 is higher than the heating element 124 in the vertical direction, so as to ensure that when the air pump 132 is turned off, the heating element 124 is full of liquid.
  • the liquid level detection unit 133 can detect the liquid height in the liquid storage container 131 in time. When the liquid level reaches the detection liquid level, it can help the control unit 110 to turn off the air pump 132 in time, and prevent the liquid in the liquid storage container 131 from flowing into the air pump 132 in large quantities over the connection port between the air pump 132 and the liquid storage container 131, thereby damaging the air pump 132.
  • the connection port of the air pump 132 on the liquid storage container 131 can be designed to be higher than the detection liquid level to ensure that the air pump 132 is turned off before the liquid reaches the connection port.
  • the liquid storage container 131 is located at the highest point to ensure that when the air pump 132 is turned off, the non-self-priming pump 123 and the heating element 124 are filled with liquid. At the same time, during the cyclic heating process, the non-self-priming pump 123 can be prevented from pumping liquid into the liquid storage container 131 and the air pump 132.
  • the liquid level detection unit 133 has a first detection end 1331 and a second detection end 1332.
  • the first detection end 1331 and the second detection end 1332 both extend into the liquid storage cavity 1311, and the first detection end 1331 is located above the second detection end 1332.
  • the liquid level detection unit 133 sends a liquid arrival signal to the control unit 110.
  • the liquid level detection unit 133 may send a first signal to the control unit 110 or not send a signal to the control unit 110.
  • the first signal and the fact that the liquid level detection unit 133 does not send a signal to the control unit 110 are both regarded as the liquid level detection unit 133 feeding back a liquid not in place signal to the control unit 110.
  • the control unit 110 can know that the liquid in the liquid storage cavity 1311 has not reached the detection liquid level at this time, and therefore controls the air pump 132 to continue pumping air to extract liquid into the liquid storage cavity 1311.
  • the liquid level detection unit 133 detects that the liquid has reached the detection liquid level C (see the dotted line in Figure 4). At this time, the first detection end 1331 and the second detection end 1332 are connected, and a second signal can be sent to the control unit 110.
  • the second signal is regarded as the liquid level detection unit 133 feeding back a liquid arrival signal to the control unit 110. Based on the liquid arrival signal, the control unit 110 can know that the liquid in the liquid storage cavity 1311 has reached the detection liquid level C at this time, and therefore controls the air pump 132 to stop pumping air and no longer extract liquid into the liquid storage cavity 1311.
  • the first signal and the second signal are different signals that can be distinguished by the control unit 110.
  • the first signal can be one of a high level and a low level
  • the second signal can be the other of the high level and the low level.
  • the first signal and the second signal can also be other different signals.
  • the control unit 110 when the liquid level detection unit 133 detects that the liquid has reached the detection liquid level C, the control unit 110 immediately turns off the air pump 132.
  • the liquid level sensor may be mistakenly triggered to send a liquid arrival signal, and then the control unit 110 mistakenly turns off the air pump 132 when the liquid has not yet reached the detection liquid level C.
  • the control unit 110 when the control unit 110 receives the liquid in place signal fed back by the liquid level detection unit 133, it controls the air pump 132 to stop pumping. Thereafter, the control unit 110 waits for a first time period, which can be determined by software or set by staff. For example, in some embodiments, the first time period can be 50ms-1000ms.
  • control unit 110 If the control unit 110 receives the liquid in place signal at least once again within the first time period, the liquid in place signal is determined to be valid, and the control unit 110 then controls the non-self-priming pump 123 to start pumping liquid.
  • the control unit 110 controls the non-self-priming pump 123 to start pumping liquid.
  • it can also be limited to the number of times the control unit 110 receives the liquid in place signal again within the first time period to determine that the liquid in place signal is valid.
  • the liquid level detection unit 133 continues to send the liquid in place signal to the control unit 110, it can also be regarded as the liquid level detection unit 133 sending multiple liquid in place signals to the control unit 110.
  • the control unit 110 does not receive a liquid arrival signal within the first time period, the liquid arrival signal is determined to be invalid. At this time, the liquid level detection unit 133 may be accidentally triggered, and the control unit 110 controls the air pump 132 to continue pumping air until the control unit 110 receives a liquid arrival signal again next time, and repeats the above steps.
  • the present application also provides another solution to the above-mentioned liquid level detection unit 133 being triggered by mistake.
  • the control unit 110 receives the liquid in place signal fed back by the liquid level detection unit 133, it controls the air pump 132 to stop pumping. Thereafter, the control unit 110 waits for a first time period, which can be determined by software or set by staff. For example, in some embodiments, the first time period can be 50ms-1000ms.
  • the control unit 110 does not receive a liquid not in place signal indicating that the liquid in the liquid storage chamber 1311 has not reached the detection liquid level C, then the previous liquid in place signal is determined to be valid, and the control unit 110 thereafter controls the non-self-priming pump 123 to start pumping liquid.
  • the liquid not in place signal is as described above.
  • control unit 110 If the control unit 110 receives a liquid not in place signal within the first time period, it determines that the previous liquid in place signal is invalid. At this time, the liquid level detection unit 133 may be accidentally triggered, and the control unit 110 controls the air pump 132 to continue pumping air until the control unit 110 receives the liquid in place signal again next time, and repeats the above steps.
  • liquid level detection unit 133 can be triggered by mistake.
  • more than two groups of liquid level detection units 133 can be set, and the detection results of more than two groups of liquid level detection units 133 can be compared to determine whether one or more liquid level detection units 133 are triggered by mistake. If the detection results of all liquid level detection units 133 are consistent, it is determined that the liquid in place signal is valid. If the detection result of at least one liquid level detection unit 133 is inconsistent with the detection results of other liquid level detection units 133, it is determined that the liquid in place signal is invalid and re-detection is performed.
  • the control unit 110 can also automatically control the closing of the air pump 132 in other ways.
  • the liquid level detection unit 133 can also be used to detect the liquid level in the working chamber 1231 of the non-self-priming pump 123 and/or the heating chamber 1241 of the heating element 124, and the control unit 110 controls the closing of the air pump 132 based on the detection result.
  • the control unit 110 can also control the time from opening to closing of the air pump 132 based on a fixed duration or a variable duration. The fixed duration can be obtained by engineers based on experiments.
  • the air pump working duration can be used as the fixed duration of the opening of the air pump 132.
  • multiple groups of different air pump working times can be obtained by combining factors such as the type of liquid medium, flow rate, and liquid volume of the heating liquid circuit 120.
  • the control unit 110 controls the air pump 132 to work for different durations according to different liquid media.
  • the air pump 132 can remain connected to the liquid storage container 131 or the heating liquid circuit 120. Although the air pump 132 is not working at this time, it can achieve the effect of exhausting air.
  • a first control valve 134 is provided between the air pump 132 and the liquid storage container 131, and the first control valve 134 is connected to the control unit 110 signal.
  • the first control valve 134 connects the air pump 132 with the liquid storage container 131, and the gas reaches the air pump 132 through the first control valve 134.
  • control unit 110 When the control unit 110 receives the liquid in place signal, it controls the first control valve 134 to disconnect the channel between the air pump 132 and the liquid storage container 131 to separate the air pump 132 from the liquid storage container 131 and prevent more liquid from entering the air pump 132.
  • the cooking host 100 when the air pump 132 is used as the driving pump of the self-priming liquid circuit 130, the cooking host 100 has an air pumping state and a liquid pumping state.
  • the air pump 132 In the air pumping state, the air pump 132 sucks the gas in the liquid storage container 131 and the heating liquid circuit 120 to at least drain the liquid in the external container 200 to the non-self-priming pump 123; in the liquid pumping state, the first control valve 134 disconnects the channel between the air pump 132 and the liquid storage container 131, and the non-self-priming pump 123 works to drive the liquid sucked from the liquid inlet 121 to flow to the liquid outlet 122.
  • the first control valve 134 in the liquid pumping state, can also open the channel between the air pump 132 and the liquid storage container 131 to facilitate the discharge of the gas in the self-priming liquid circuit 130 and the heating liquid circuit 120 through the air pump 132.
  • the first control valve 134 may be a solenoid valve or other valve components that can be used for pipeline control.
  • the first control valve 134 may also adopt other structures.
  • the first control valve 134 is a float valve, which has a valve seat and a float, and the valve seat has an inlet and outlet, and the liquid storage container 131 is connected to the air pump 132 through the inlet and outlet.
  • the valve seat can be on the liquid storage container 131, and the float is arranged in the liquid storage cavity 1311. As the liquid in the liquid storage cavity 1311 increases, the float gradually moves up, and finally when the float moves to the detection liquid level, the float valve switches to a closed state, cutting off the passage between the liquid storage container 131 and the air pump 132 to prevent more liquid from entering the air pump 132.
  • the float valve can also be replaced by other valve structures that can automatically cut off the passage between the air pump 132 and the liquid storage container 131.
  • a float valve or other first control valve when a float valve or other first control valve is used, other first control valves and the liquid level detection unit 133 on the passage between the air pump 132 and the liquid storage container 131 can be omitted to simplify the structure and reduce costs.
  • the float valve or similar control valve can also be used in combination with the liquid level detection unit 133 to more accurately shut down the air pump 132 and start the non-self-priming pump 123.
  • the cooking host 100 has a first connection port 135, and the exhaust end 1322 of the air pump 132 is connected to the first connection port 135, so that the liquid sucked into the air pump 132 can be discharged from the first connection port 135.
  • the first connection port 135 is also used as an exhaust port, and the flow of gas in the air pump 132 can also drive the liquid to flow to the first connection port 135, and the drainage effect is better.
  • the cooking host 100 has an auxiliary connector 136 for docking with the external container 200, and the first connection port 135 is provided on the auxiliary connector 136, so that the liquid sucked into the air pump 132 is discharged from the first connection port 135 into the external container 200. In this way, since the liquid sucked into the air pump 132 comes from the external container 200, the liquid is finally discharged back into the external container 200, and the liquid in the external container 200 will not be polluted.
  • the liquid in the air pump 132 has a separate drainage liquid path, which does not need to be connected to the liquid inlet connector 125 and the liquid outlet connector 126, so that the water can be prevented from flowing back into the air pump 132 in the drainage state.
  • the air pump 132 is docked with the external container 200, and there is no need to set up a separate container for holding the liquid, which can simplify the structure of the cooking host 100 and reduce the volume of the host.
  • the air pump 132 docking with the external container 200 can form an internal circulation within the device, which will not affect or pollute the surrounding environment of the device, nor increase the user's additional operations, and provide a better user experience.
  • the first connection port 135 can also be configured to discharge the liquid into other containers in the cooking host 100, or to a place outside the cooking device 1, such as a sink or other waste liquid tank.
  • the external container 200 has a second connection port 204, and the second connection port 204 is connected to the liquid containing cavity 201 of the external container 200.
  • the first connection port 135 can be connected to the second connection port 204, so that the liquid sucked into the air pump 132 is discharged from the first connection port 135 into the external container 200.
  • the communication between the first connection port 135 and the second connection port 204 can be achieved by various interface structures, such as plug-in fit or abutment fit.
  • the auxiliary connector 136 is a male structure
  • the second connection port 204 is a female structure
  • the auxiliary connector 136 can be inserted into the second connection port 204 or abutted/adsorbed onto the second connection port 204 to achieve a mating connection, which is a sealed connection.
  • the second connection port 204 can also be set on a male structure
  • the first connection port 135 is also set on a female structure, that is, the male structure where the second connection port 204 is located is inserted into the first connection port 135 or abutted/adsorbed onto the first connection port 135 to achieve mating.
  • the second connecting port 204 is connected to the top of the liquid containing chamber 201 to reduce the channel length of the second connecting port 204.
  • An excessively long channel structure will lead to a more complicated structure. Reducing the channel length of the second connecting port 204 can simplify the structure of the external container 200 and reduce manufacturing and assembly costs.
  • the second connection port 204 is extended into the opening on the wall of the liquid containing cavity 201, and a shielding structure 2121 is provided to reduce the splashing phenomenon generated when the liquid flows into the liquid containing cavity 201 from the second connection port 204, and at the same time, the integrity of the inner wall of the liquid containing cavity 201 is improved.
  • the shielding structure 2121 leaves a gap 2122 to connect the second connection port 204 with the liquid containing cavity 201.
  • the shielding structure 2121 can prevent the liquid from splashing when it flows out from the second connection port 204, and does not affect the liquid flowing into the liquid containing cavity 201.
  • the opening of the second connection port 204 extending into the wall of the liquid-containing cavity 201 is arranged in the horizontal direction, and the shielding structure 2121 is arranged at the opening approximately in the vertical direction to block the liquid flowing out of the second connection port 204.
  • the opening of the first connection port 135 communicating with the liquid-containing cavity 201 can also be arranged in other directions, such as vertically downward, or inclined in the horizontal direction or vertical direction.
  • the shielding structure 2121 can also be arranged at the opening in other forms, such as a hollow structure.
  • the external container 200 includes a box body 210 and a box cover 220, and the box body 210 has a liquid containing cavity 201 for containing liquid.
  • the box cover 220 is arranged on the box body 210 in a manner that the liquid containing cavity 201 can be opened and closed, so that the box cover 220 can close the solution device.
  • the opening and closing methods include but are not limited to the box cover 220 being movably connected to the box body 210, the box cover 220 being detachably connected to the box body 210, and the like.
  • the liquid containing cavity 201 can be opened and closed by changing the relative position of the box cover 220 and the box body 210.
  • the liquid containing cavity 201 can be opened and closed by installing and removing the box cover 220.
  • the box cover 220 can be covered on the box body 210, thereby shielding the liquid containing cavity 201 of the box body 210.
  • the liquid inlet connector 125, the liquid outlet connector 126 and the auxiliary connector 136 of the cooking host 100 are all arranged downward, and the liquid extraction interface 202, the liquid return interface 203 and the second connection port 204 are opened upward, so as to be connected with the liquid inlet connector 125, the liquid outlet connector 126 and the auxiliary connector 136 in the vertical direction.
  • the liquid inlet connector 125, the liquid outlet connector 126 and the auxiliary connector 136 can also be arranged in the horizontal direction, or inclined in the horizontal direction or the vertical direction, and the openings of the liquid extraction interface 202, the liquid return interface 203 and the second connection port 204 correspond to the liquid inlet connector 125, the liquid outlet connector 126 and the auxiliary connector 136 to achieve plug-in matching in different directions, such as plug-in in the horizontal direction, or plug-in at a certain angle relative to the horizontal direction or the vertical direction.
  • the liquid inlet connector 125 and the liquid outlet connector 126 are male structures, and the liquid extraction interface 202 and the liquid return interface 203 are female structures.
  • the liquid inlet connector 125 and the liquid outlet connector 126 can be correspondingly inserted into the liquid extraction interface 202 and the liquid return interface 203 to achieve a mating connection.
  • the mating connection can be a sealed plug-in connection, and the mating connection method can be a plug-in fit, a snap fit, an adsorption fit, etc.
  • the liquid extraction interface 202 and the liquid return interface 203 can also be set on the male structure, and the liquid inlet 121 and the liquid outlet 122 are set on the female structure, that is, the male structure where the liquid extraction interface 202 and the liquid return interface 203 are located is inserted into the liquid inlet 121 and the liquid outlet 122 to achieve a plug-in fit.
  • the lowest end of the auxiliary joint 136 is lower than the liquid inlet joint 125 and the liquid outlet joint 126, and the auxiliary joint 136 has a guide structure 1361 that is larger at the top and smaller at the bottom, which is used to assist the liquid inlet joint 125 and the liquid outlet joint 126 in docking with the external container 200.
  • the liquid inlet joint 125 and the liquid outlet joint 126 can be docked with the liquid extraction docking port 202 and the liquid return docking port 203 accurately, which is more convenient for the cooking host 100 to dock with the external container 200.
  • the guide structure 1361 is located at the outermost end of the auxiliary joint 136, and the guide structure 1361 can adopt any feasible docking guide structure 1361, for example, it can be conical, truncated cone, pyramidal, etc. After the front end of the guide structure 1361 extends into the second connection port 204, it can automatically guide the auxiliary joint 136 to move to the correct docking position of the second connection port 204, thereby driving the liquid inlet joint 125 and the liquid outlet joint 126 to accurately dock with the liquid extraction docking port 202 and the liquid return docking port 203.
  • the auxiliary connector 136 is located between the liquid inlet connector 125 and the liquid outlet connector 126.
  • the auxiliary connector 136 is located on one side of the liquid inlet connector 125 and the liquid outlet connector 126.
  • the liquid inlet connector 125 and the liquid outlet connector 126 are located between at least two auxiliary connectors 136.
  • the box body 210 has a main box body 211 and a top shell 212.
  • the main box body 211 has a liquid holding chamber 201.
  • the top shell 212 is buckled on the top of the side wall of the main box body 211.
  • the second connecting port 204 is through-set on the top shell 212 and the main box body 211. The liquid enters the liquid holding chamber 201 from the second connecting port 204 (as shown by arrow B in Figure 11).
  • the inner side wall of the top shell 212 extends into the liquid holding chamber 201 and extends to the end where the second connecting port 204 is connected to the liquid holding chamber 201, and a shielding structure 2121 is formed on the end where the second connecting port 204 is connected to the liquid holding chamber 201.
  • the main box body 211 may be an integrally formed structure or may be assembled from a plurality of sub-components.
  • the main box body 211 in addition to forming the liquid holding chamber 201, may also form a liquid extraction interface 202 and a liquid return interface 203 for a channel communicating with the liquid holding chamber 201, so that the liquid in the liquid holding chamber 201 can flow to the liquid extraction interface 202 and the liquid heated by the cooking host 100 can flow from the liquid return interface 203 into the liquid holding chamber 201.
  • the top shell 212 is a closed ring structure. In some other embodiments, the top shell 212 may be set only in the main box body 211 with the liquid extraction interface 202, the liquid return interface 203 and the second connection, and the top shell 212 is not set in other areas.
  • the second connection port 204 has a vertical section 2041 and a horizontal section 2042, the upper end of the vertical section 2041 is used to dock with the first connection port 135, the lower end of the vertical section 2041 is connected to one end of the horizontal section 2042, and the end of the horizontal section 2042 away from the vertical section 2041 is connected to the liquid containing cavity 201.
  • the horizontal section 2042 can change the liquid discharged from the first connection port 135 from falling vertically to flowing horizontally, slowing down the liquid, which is conducive to preventing the splashing phenomenon generated when the liquid enters the liquid containing cavity 201, and avoiding affecting the cooking of the food in the liquid containing cavity 201.
  • the cooking host 100 has a drainage state.
  • the liquid in the heating liquid path 120 and the self-priming liquid path 130 can be discharged outside the cooking host 100.
  • the liquid inlet 121 and the liquid outlet 122 are lower than the non-self-priming pump 123, the heating element 124 and the liquid storage container 131 in the vertical direction.
  • the non-self-priming pump 123 stops pumping liquid or stops driving the liquid to flow from the liquid inlet 121 to the liquid outlet 122, and the liquid in the non-self-priming pump 123, the heating element 124 and the liquid storage container 131 can flow out from the liquid inlet 121 and/or the liquid outlet 122 under the action of gravity.
  • the non-self-priming pump 123 in order to speed up the discharge of liquid, in the discharge state, can also pump liquid in the reverse direction toward the liquid inlet 121 to speed up the discharge of liquid.
  • the heating liquid circuit 120 is directly or indirectly connected to an auxiliary branch 140.
  • the end of the auxiliary branch 140 away from the heating liquid circuit 120 is a first connection port 135.
  • the auxiliary branch 140 is used to introduce gas into the heating liquid circuit 120 and the self-priming liquid circuit 130 when the cooking host 100 drains water.
  • the heating liquid circuit 120 and the self-priming liquid circuit 130 are connected to the atmospheric pressure through the first connection port 135, or are connected to the liquid holding cavity 201 of the external container 200 through the first connection port 135, so that the gas outside the heating liquid circuit 120 and the self-priming liquid circuit 130 can enter the heating liquid circuit 120, breaking the gas pressure balance in the heating liquid circuit 120 and the self-priming liquid circuit 130. Due to the high atmospheric pressure and the dead weight of the liquid, the liquid in the liquid storage container 131, the heating element 124 and the non-self-priming pump 123 can be discharged.
  • the first connection port 135 can be connected to the heating liquid circuit 120 through the self-priming liquid circuit 130, such as the first connection port 135 is connected to the liquid storage container 131, and then connected to the heating liquid circuit 120 through the liquid storage container 131. In other embodiments, the first connection port 135 can be directly connected to the heating liquid circuit 120 through a pipeline.
  • the first connection port 135 may be connected to the external container 200, and the liquid chamber 201 of the external container 200 may be in a closed state or in a state connected to the atmospheric pressure. In other embodiments, the first connection port 135 may not be connected to the external container 200, but may be connected to the atmospheric pressure outside the cooking host 100.
  • the auxiliary branch 140 may have a second control valve 141.
  • the second control valve 141 controls the auxiliary branch 140 to be connected, so as to facilitate the gas to enter the self-priming liquid circuit 130 and the heating liquid circuit 120.
  • the second control valve 141 controls the auxiliary branch 140 to be disconnected.
  • one end of the auxiliary branch 140 is connected to the liquid storage container 131, and the section of the pipeline of the auxiliary branch 140 connected to the liquid storage container 131 can be the same pipeline as the section of the pipeline of the air pump 132 connected to the liquid storage container 131.
  • the liquid storage container 131 is located at the highest point to ensure that in the drainage state, the liquid in the liquid storage container 131 can be discharged to the outside of the cooking host 100 as much as possible.
  • a connecting port 1312 connecting the liquid storage container 131 with the non-self-priming pump 123 and the heating element 124 is provided on the bottom or bottom wall of the liquid storage container 131, so that the liquid in the liquid storage container 131 can basically flow downward from the connecting port 1312 to the outside of the liquid storage container 131.
  • the present application further provides a control method for the above-mentioned cooking host 100, the purpose of which is to help the cooking host 100 start the non-self-priming pump 123 more accurately.
  • control method includes:
  • a signal is sent to control the air pump 132 to continue pumping air, and the above operation is repeated.
  • control method includes: sending a signal to drive the air pump 132 to work;
  • the air pump 132 is controlled to continue pumping air, and the above operation is repeated.
  • control method includes:
  • a signal is sent to control the second control valve 141 to conduct the auxiliary branch 140, thereby opening the auxiliary branch 140 to facilitate liquid discharge.
  • the signal indicating the end of cooking may be any signal that can indicate to the control unit that the cooking operation is over.
  • the signal indicating draining may be, but is not limited to, a fault signal, a cooking end signal, or other signals that feed back to the control unit 110 that draining is required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Cookers (AREA)

Abstract

循环式液体加热的烹饪主机(100),具有控制单元(110)、加热液路(120)以及自吸液路(130),加热液路(120)包括进液口(121)、出液口(122)、非自吸泵(123)和加热件(124),进液口(121)和出液口(122)用于连通与烹饪主机(100)配合的外接液体容器,加热件(124)和非自吸泵(123)分别与控制单元(110)信号连接,非自吸泵(123)设置于进液口(121)和出液口(122)之间,自吸液路(130)与非自吸泵(123)连通,用以将外接液体容器内的液体抽吸到非自吸泵(123)中,非自吸泵(123)用以驱动从进液口(121)抽吸的液体向出液口(122)流动,控制单元(110)控制加热件(124)对加热液路(120)中的液体进行加热。

Description

循环式液体加热的烹饪设备、烹饪主机及控制方法 技术领域
本申请涉及烹饪设备,具体涉及一种循环式液体加热烹饪设备的水循环系统。
背景技术
循环式液体加热的烹饪设备为一类通过加热液体,进而加热食材的烹饪方式。该类烹饪设备通常包括烹饪主机和水箱,该烹饪主机通过烹饪主机内部的加热件不断地加热水箱内的液体,并控制水箱内液体的温度,以便用户可以利用水箱中的液体进行烹饪,比如低温慢煮。
为了在烹饪主机和水箱之间形成循环加热液路,通常在烹饪主机中设有自吸泵作为水泵,例如可采用隔膜泵、蠕动泵等。由于自吸泵需要集成抽气结构,导致结构更加复杂,因此其具有体积大、泵注流量小以及噪声等的缺陷,难以应用到较大水箱的烹饪设备中。
发明内容
本申请提供一种循环式液体加热的烹饪设备及烹饪主机,其目的在于,提供一种新的泵液结构。
本申请还提供一种烹饪主机的控制方法,以便更准确地控制气泵的运作。
基于上述目的,本申请一种实施例中提供一种循环式液体加热的烹饪主机,其特征在于,所述烹饪主机具有控制单元、加热液路以及自吸液路,所述加热液路包括进液口、出液口、非自吸泵和加热件,所述进液口和所述出液口用于连通与所述烹饪主机配合的外接液体容器,所述加热件和所述非自吸泵分别与所述控制单元信号连接,所述非自吸泵设置于所述进液口和所述出液口之间,所述自吸液路与所述非自吸泵连通,用以将所述外接液体容器内的液体抽吸到所述非自吸泵中,所述非自吸泵用以驱动从所述进液口抽吸的液体向所述出液口流动,所述控制单元控制所述加热件对所述加热液路中的液体进行加热。
一种实施例中,所述自吸液路具有储液容器和气泵,所述储液容器具有储液腔体,所述储液容器连通在所述气泵和所述加热液路之间,所述气泵与所述控制单元信号连接,所述气泵的抽气端与所述储液容器连通,用于抽吸所述储液容器以及所述加热液路中的气体,以将所述外接液体容器内的液体抽吸到所述非自吸泵中。
基于上述目的,本申请一种实施例中提供一种循环式液体加热的烹饪设备,包括:
烹饪主机,所述烹饪主机采用如上述任一项所述烹饪主机;
以及外接液体容器,所述外接液体容器具有容液腔、抽液体对接口和回液体对接口,所述抽液体对接口和回液体对接口均与所述容液腔连通;所述进液口能够与所述抽液体对接口连通,所述出液口能够与所述回液体对接口连通,以在所述加热液路与所述容液腔之间形成循环加热液路。
一种实施例中,所述烹饪主机具有第一连接口,所述自吸液路的气泵的排气端与所述第一连接口连通,所述外接液体容器具有第二连接口,所述第一连接口能够与所述第二连接口连通,以将被吸入至所述气泵内的液体从所述第一连接口排入所述外接液体容器内。
基于上述目的,本申请一种实施例中提供一种烹饪主机的控制方法,所述烹饪主机为上述所示的烹饪主机,所述控制方法包括:
发出驱动气泵工作的信号;
接收表示储液容器内液体到达检测液位的液体到位信号;
发出控制气泵停止抽气的信号;
等待第一时间段,如在所述第一时间段内再次接收到至少一次所述液体到位信号,则发出控制非自吸泵开始泵液的信号。
基于上述目的,本申请一种实施例中提供一种烹饪主机的控制方法,所述烹饪主机为上述所示的烹饪主机,所述控制方法包括:
发出驱动气泵工作的信号;
接收表示储液容器内液体到达检测液位的液体到位信号;
发出控制气泵停止抽气的信号;
等待第一时间段,如在所述第一时间段内未接收到表示储液容器内液体未到达检测液位的液体未到位信号,则发出控制非自吸泵开始泵液的信号。
依据上述实施例的烹饪主机,其具有控制单元、加热液路以及自吸液路,加热液路能够用来与外接液体容器形成循环加热液路,该加热液路包括非自吸泵,该非自吸泵噪音小,且泵注流量大于自吸泵的泵注流量,可适应更大泵注流量要求的场景中。该自吸液路与非自吸泵连通,用以将外接液体容器内的液体抽吸到非自吸泵中,以启动非自吸泵。
依据上述实施例的控制方法,其在发出控制气泵停止抽气的信号后,再等待第一时间段。当第一时间段内再次接收到至少一次液体到位信号,或,在第一时间段内未接收到液体未到位信号,则发出控制非自吸泵开始泵液的信号。该控制方法可避免由于液体飞溅、烹饪主机晃动或其他因素而导致误触发液体到位信号,更加准确地控制气泵工作。
附图说明
图1为本申请一种实施例中烹饪设备的结构示意图,此时烹饪主机与外接液体容器对接在一起;
图2为本申请一种实施例中烹饪主机和外接液体容器分开后的结构示意图;
图3为本申请一种实施例中烹饪主机的加热液路、自吸液路与外接液体容器的连接示意图;
图4为本申请一种实施例中烹饪主机的加热液路、储液容器、气泵与外接液体 容器的连接示意图;
图5和6为本申请一种实施例中不同视角下加热液路和自吸液路的结构示意图;
图7为本申请一种实施例中在竖直方向上加热液路和自吸液路各部件的位置高度示意图;
图8为本申请一种实施例中外接液体容器的外观结构示意图;
图9为本申请一种实施例中外接液体容器结构的分解示意图;
图10为本申请一种实施例中外接液体容器沿竖直方向的剖视示意图;
图11为图10中A部分的放大图;
图12为本申请一种实施例中第一连接口与第二连接口对接时的剖视示意图;
图13为本申请一种实施例中烹饪设备的控制方法的控制流程图,主要用于对气泵的控制;
图14为本申请另一种实施例中烹饪设备的控制方法的控制流程图,主要用于对气泵的控制。
具体实施方式
下面通过具体实施方式结合附图对本申请作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
用于循环式液体加热的烹饪设备通常包括烹饪主机,该烹饪主机通过持续加热外接液体容器内的液体,进而加热置于液体中的食材,例如,该烹饪主机可以是但不限于低温慢煮机或恒温慢煮机等。
该外接液体容器用来容纳食材或装有食材的食材存放单元(例如抽真空袋)。该外接液体容器外接在烹饪主机之外,或烹饪主机插入至外接液体容器中。外接液体 容器中可装有液体,液体通常为水(此时外接液体容器也可称为水箱),当然外接液体容器内也可根据烹饪需求的不同而存放除水以外的其他液体。该烹饪主机与外接液体容器形成循环加热液路,以便将液体抽入到烹饪主机内进行加热并将加热后的液体排出到外接液体容器内。
请参考图1-2,一些实施例中,该循环式液体加热的烹饪设备1包括烹饪主机100以及外接液体容器200(以下简称为外接容器200)。
请参考图3-4,一些实施例中,该烹饪主机100具有控制单元110、加热液路120、自吸液路130以及其他相关结构。其他相关结构可见现有相关技术,在此不再赘言。
请参考图2-7,一些实施例中,该加热液路120包括进液口121、出液口122、非自吸泵123和加热件124,进液口121和出液口122可通过各种连通结构和与烹饪主机100配合的外接容器200连通,例如,请参考图2以及图5-7,一些实施例中,该烹饪主机100具有进液接头125和出液接头126,该进液口121设于进液接头125上,出液口122设于出液接头126上,该进液接头125、出液接头126能够与外接容器200的插接配合,实现连通。请参考图8-11,一些实施例中,该外接容器200具有容液腔201、抽液对接口202和回液对接口203,容液腔201用于容置水或其他液体,该抽液对接口202和回液对接口203均与容液腔201连通。请参考图1-12,进液接头125的进液口121能够与抽液对接口202连通,出液接头126的出液口122能够与回液对接口203连通,以在加热液路120与容液腔201之间形成循环加热液路。
该加热件124和非自吸泵123分别与控制单元110信号连接,由控制单元110进行控制。一些实施例中,该控制单元110可以为一个或多个具有控制电路的电路板,其能够接收信号、处理信号以及发出指令控制烹饪设备1的一部分或全部电控部件工作状态。该控制单元110可以为一个将各项控制功能集成为一体的控制单元,也可以为多个不同的子控制单元,这些子控制单元至少能够分别用于实现不同的控制功能,当然,一些实施例中,这些子控制单元中的至少一部分也可用来实现部分相同的控制功能。
该控制单元110可以控制加热液路120和自吸液路130中动力装置的相关工作状态,例如,用来控制非自吸泵123的相关工作状态。在一些实施例中,非自吸泵123的相关工作状态包括但不限于非自吸泵123的启动或停止、液体泵送速度等。又例如,控制单元110可以控制加热件124的相关工作状态。加热件124的相关工作状态包括但不限于加热件124的启动或停止、加热件124的工作功率等。控制单元110能够通过控制加热件124运行,以实现对外接容器200中的液体进行加热。
在一些实施例中,控制单元110可以包括处理器。在一些实施例中,控制单元110可以包括单片机(Microcontroller Unit,MCU)控制系统。在一些实施例中,控制单元110可以包括但不限于可编程芯片、台式计算机、笔记本电脑、手机移动终 端、Pad(平板电脑)移动终端等。
该非自吸泵123设置于进液口121和出液口122之间,其目的是驱动从进液口121抽吸的液体向出液口122流动。该控制单元110则控制加热件124对加热液路120中的液体进行加热,以保证从出液口122流出的液体为被加热后的液体。
一些实施例中,该非自吸泵123可以选用非自吸的离心泵或者其他类型的非自吸泵。非自吸泵的泵注流量大于自吸泵的泵注流量,可适应更大泵注流量要求的场景中,例如可适应更大容积的外接容器200,实现液体更大流量的循环加热,在相同规格的加热件124作用下,可保证更大容积的外接容器200内的液体可以更快地升温到需要的温度。而且,通常烹饪设备使用的水为非纯净介质,外接容器为可以打开的状态,外接容器和水泵内的水通常为硬水,也可能混合有灰尘、调料等颗粒物。当采用自吸泵作为加热液路的驱动泵时,在水质影响下,自吸泵长期运作容易失效。如隔膜泵对杂质不耐受,颗粒尺寸超过0.12mm即有可能令隔膜泵失效。相比之下,非自吸泵受液体质量影响更小,可延长非自吸泵123的使用寿命。
为了保证该非自吸泵123的能够正常启动,请参考图3和4,这些实施例中,自吸液路130与非自吸泵123连通(这包括自吸液路130与非自吸泵123直接连通和间接连通),利用自吸液路130将液体从外接容器200抽吸到非自吸泵123的工作腔1231中。该自吸液路130具有能够实现液体抽吸功能的结构,例如自吸液路130可具有作为驱动泵的气泵,该气泵通过抽吸非自吸泵123的工作腔1231中的气体,改变非自吸泵123的工作腔1231中气压,进而使外接容器200内的液体可进入到非自吸泵123的工作腔1231内,保证非自吸泵123正常启动和运行。由于该气泵主要用于在非自吸泵123启动前或启动初期抽取气体,受加热液路120内液体质量(如水质)影响较小,可避免因液体质量问题而影响气泵的使用寿命。此外,该自吸液路130也可具有作为驱动泵的自吸泵(或称为自灌泵),通过该自吸泵将外接容器200内的液体抽吸到上述非自吸泵123中,保证非自吸泵123正常启动和运行。由于该自吸泵主要用来帮助非自吸泵123启动,在对液体循环加热过程中,该自吸泵无需持续工作,因此管路内液体质量对该自吸泵的影响较小,可延长其使用寿命。
请参考图3-7,一些实施例中,自吸液路130具有储液容器131和气泵132,该储液容器131具有储液腔体1311,储液容器131连通在气泵132和加热液路120之间,这包括储液容器131分别与气泵132和加热液路120直接连通和间接连通。该气泵132与控制单元110信号连接,气泵132具有抽气端1321和排气端1322(见图4),该气泵132的抽气端1321与储液容器131连通,用于抽吸储液容器131内的气体,进而通过储液容器131抽吸加热液路120中的气体,从而在储液容器131以及非自吸泵123的工作腔1231中形成低于外接容器200的容液腔201内气压的低压状态,以将外接容器200内的液体抽吸到非自吸泵123中。相对于直接将气泵132与加热液路120连通来说,设置储液容器131可以起到储液功能,避免过多的液体被 吸入到气泵132中。
在一个或多个实施例中,气泵132可以理解为能够抽取气体的各种装置,如可以为真空泵。在一些实施例中,气泵132可以包括利用机械、物理、化学或物理化学的方法对被抽容器进行抽气而获得真空的器件或设备。在一些实施例中,气泵132可以包括气体传输泵与气体捕集泵。其中,气体传输泵是通过使气体不断地吸入和排出,以实现抽吸气体的目的。气体捕集泵是通过使气体分子被吸附或凝结在泵的内表面上,以减小容器内的气体分子数目,以实现抽取气体的目的。在一些实施例中,气体传输泵包括但不限于隔膜泵、活塞式气泵、旋片式气泵、分子气泵、喷射气泵、扩散泵、扩散喷射泵以及离子输运泵。在一些实施例中,气体捕集泵包括但不限于吸附泵、吸气剂泵、吸气剂离子泵以及低温泵。
进一步地,请参考图3-7,一些实施例中,该加热件124连通在非自吸泵123和出液口122之间,储液容器131连通在非自吸泵123和加热件124之间。在另一些实施例中,该加热件124也可设于非自吸泵123和进液口121之间,此时,储液容器131可连通在加热件124与进液口121之间或者连通在非自吸泵123与出液口122之间。
进一步地,请参考图4和7,一些实施例中,该储液容器131的储液腔体1311在竖直方向上高于非自吸泵123,这包括储液腔体1311整体高于非自吸泵123以及储液腔体1311部分高于非自吸泵123等多种情况,其目的是保证储液腔体1311内至少一部分腔体能够高于非自吸泵123,基于液体的流动性,当储液腔体1311内液体到达这些腔体的位置时,即代表非自吸泵123的工作腔1231内已经充满液体,保证非自吸泵123能够更好的启动和工作。
进一步地,该加热件124用于对加热液路120中的液体进行加热。作为示例,加热件124可以通过对加热液路120中的液体进行加热,加热后的液体将能量带回外接容器200,从而实现对外接容器200内的液体的加热。在一些实施例中,加热液路120中经过加热的液体,可以对放入液体中的食材进行加热。
在一些实施例中,加热件124可以包括直接对加热液路120中的液体进行加热的元器件。例如,利用放置在加热液路120液体中的金属加热棒或加热丝对液体进行加热。在一些实施例中,加热件124可以包括直接对加热液路120的管路进行加热的元器件。例如,放置在加热液路120的管路底部的加热底座。在一些实施例中,加热件124还可以连通在加热液路120的管路中,例如请参考3-6,加热件124为加热管,该加热管的加热腔1241通过管路与非自吸泵123以及出液口122连通,加热管的管壁上设有加热丝或其他加热结构,可直接对加热管内的液体加热。
请参考图4和7,当加热件124采用加热管时,一些实施例中,储液容器131的储液腔体1311在竖直方向上高于加热件124,这包括储液腔体1311整体高于加热件124以及储液腔体1311部分高于加热件124等多种情况,其目的是保证储液腔体1311 内至少一部分腔体能够高于加热件124,基于液体的流动性,当储液腔体1311内液体达到这些腔体位置时,即代表加热件124的加热腔1241内已经充满液体,防止出现液体未充满加热件124内部而造成加热件124的部分侧壁(尤其是顶壁)出现干烧的情况,以便更好地保护加热件124,同时保证加热件124内充满液体,也可以提高对液体的加热效率。
进一步地,可以由用户自行控制气泵132的开启和关闭,当气泵132开启后,用户可手动关闭气泵132,以防止气泵132将过多的液体抽入其中。一些实施例中,由厂家预先计算得出气泵132启动多少时长后即可使非自吸泵123内液体达到启动要求,并将该气泵132启动时长记录在说明书或通过其他方式告知用户,用户根据该预先给出的启动时长来关闭气泵132。一些实施例中,也可将储液容器131中液位变化做成可视形式,可视形式可包括通过显示装置或指示装置(如指示灯等)进行显示,也可通过声音、图像和/或灯光等方式提醒用户关闭气泵132;可视形式还可包括通过可视结构实现可视,例如将储液容器131设计为用户可视结构。该用户可视结构包括设置透明观察窗或开口,用户可直接看到储液容器131内的液位变化,并根据液位变化来控制气泵132的关闭。为了方便用户明确气泵132关闭时机,可在储液容器131或其他部件上设置用以指示与气泵132关闭时机对应的液位,当液体达到该液位时,用户即可明白需关闭气泵132。当然,以上种种仅是示例,用户还可通过其他方式来自行控制气泵132的开启和关闭。
当然,气泵132的也可以由控制单元110控制,请参考图4-7,一些实施例中,储液容器131设有用于检测储液腔体1311内液位的液位检测单元133。该液位检测单元133可采用各种能够实现液位检测的结构。该液位检测单元133与控制单元110信号连接,当液位检测单元133检测到储液腔体1311内液体到达检测液位后,液位检测单元133向控制单元110发送液体到位信号,控制单元110根据液体到位信号控制气泵132停止抽气。
一些实施例中,液位检测单元133也可采用其他结构,例如,浮球液位传感器、电容模组、液位传感器等。例如,一些实施例中,该液位检测单元133为浮球液位传感器,该浮球液位传感器具有底座和浮球,该底座具有信号发送电路,该底座可于储液容器131上,浮球设于储液腔体1311中,随着储液腔体1311内液体的增多,浮球逐渐上移,最后当浮球移动到检测液位时,受到浮球中的磁力影响,信号发送电路闭合导通,发送液位到位信号给控制单元110。当液位检测单元133检测到储液腔体1311内液体到达检测液位后,液位检测单元133向控制单元110发送液体到位信号,控制单元110根据液体到位信号控制气泵132停止抽气。
该检测液位是指储液腔体1311内液体能够触发液位检测单元133的位置,如图4中虚线C所示,该检测液位可根据具体需要而灵活设置。一些实施例中,请参考图4,该液位检测单元133的检测液位在竖直方向上高于非自吸泵123,以便保证在气 泵132关闭时,该非自吸泵123的工作腔1231内已充满液体。和/或,一些实施例中,请参考图4,液位检测单元133的检测液位在竖直方向上高于加热件124,以保证在气泵132关闭时,该加热件124内已充满液体。
该液位检测单元133可及时检测到储液容器131内的液体高度,当液位到达检测液位时,可帮助控制单元110及时关闭气泵132,可防止因为储液容器131内液体越过气泵132与储液容器131的连接口而大量地流向气泵132中,造成气泵132的破坏。一些实施例中,可以将气泵132在储液容器131上的连接口设计为高于检测液位,以保证液体还未到达连接口时,气泵132就被关闭。
请参考图4和7,一些实施例中,该储液容器131、加热件124和非自吸泵123中,储液容器131位于最高处,以保证在气泵132关闭时,非自吸泵123和加热件124中都充满液体。同时,也可在循环加热过程中,减少非自吸泵123将液体泵入至储液容器131以及气泵132的情况发生。
请参考图4和6,一些实施例中,液位检测单元133具有第一检测端1331和第二检测端1332,第一检测端1331和第二检测端1332均伸入储液腔体1311内,且第一检测端1331位于第二检测端1332的上方,在储液腔体1311内液体同时淹没第一检测端1331和第二检测端1332时,液位检测单元133向控制单元110发送液体到位信号。
具体地,在气泵132开启后,当储液腔体1311内的液体只淹没了第二检测端1332或位于第二检测端1332之下时,此时液位检测单元133可向控制单元110发送第一信号或者不向控制单元110发送信号,本实施例将该第一信号以及液位检测单元133不向控制单元110发送信号都视为液位检测单元133向控制单元110反馈了液体未到位信号,基于该液体未到位信号,控制单元110可获知此时储液腔体1311内液体还未到达检测液位,因此控制气泵132继续抽气,以向储液腔体1311内抽取液体。
当储液腔体1311内的液体同时淹没第二检测端1332和第一检测端1331时,液位检测单元133检测到液体到达检测液位C(见图4虚线所示)时,此时第一检测端1331和第二检测端1332导通,可向控制单元110发送第二信号,本实施例将该第二信号视为液位检测单元133向控制单元110反馈了液体到位信号,基于该液体到位信号,控制单元110可获知此时储液腔体1311内液体已到达检测液位C,因此控制气泵132停止抽气,不再向储液腔体1311内抽取液体。
其中,该第一信号和第二信号为控制单元110能够区分出的不同信号,例如第一信号可以为高电平和低电平中的一个,第二信号为高电平和低电平中的另一个。此外,该第一信号和第二信号也可为其他不同的信号。
一些实施例中,当液位检测单元133检测到液体到达检测液位C时,控制单元110即关闭气泵132。但,某些时候可能因液位检测单元133的灵敏度以及气泵132吸气导致液体流喷射等问题,液位传感器被误触发而发出液体到位信号,进而使得 在液体还未到达检测液位C时,控制单元110就错误地关闭气泵132。
为了解决液位传感器被误触发的问题,一些实施例中,请参考图13,当控制单元110接收到液位检测单元133反馈的液体到位信号后,控制气泵132停止抽气。此后,控制单元110等待第一时间段,该第一时间段可通过软件自行确定或工作人员设定,如一些实施例中,该第一时间段可以为50ms-1000ms。
如在第一时间段内,控制单元110再次接收到至少一次液体到位信号后,则判定液体到位信号为有效,控制单元110此后控制非自吸泵123开始泵液。当然,为了获得更准确的判断,也可限定在第一时间段内,控制单元110再次接收到液体到位信号的次数为两次以上,才判断液体到位信号为有效。此外,当液位检测单元133持续向控制单元110发送液体到位信号,也可视为液位检测单元133向控制单元110发送了多次液体到位信号。
如在第一时间段内控制单元110未接收到液体到位信号,则判定液体到位信号为无效,此时液位检测单元133可能被误触,控制单元110则控制气泵132继续抽气,直至控制单元110下一次重新接收到液体到位信号,重复以上步骤。
此外,本申请还提供了另一种解决上述液位检测单元133被误触发的方案,在另一种实施例中,请参考图14,当控制单元110接收到液位检测单元133反馈的液体到位信号后,控制气泵132停止抽气。此后,控制单元110等待第一时间段,该第一时间段可通过软件自行确定或工作人员设定,如一些实施例中,该第一时间段可以为50ms-1000ms。
如在第一时间段内,控制单元110未接收到表示储液腔体1311内液体未到达检测液位C的液体未到位信号,则判定此前的液体到位信号为有效,控制单元110此后控制非自吸泵123开始泵液。其中,该液体未到位信号如前述内容所述。
如在第一时间段内控制单元110接收到液体未到位信号,则判定此前的液体到位信号为无效,此时液位检测单元133可能被误触,控制单元110则控制气泵132继续抽气,直至控制单元110下一次重新接收到液体到位信号,重复以上步骤。
当然,在其他实施例中,还可通过其他方案来防止液位检测单元133被误触发,例如一些实施例中可设置两组以上的液位检测单元133,通过比对两组以上的液位检测单元133的检测结果,来判断某一个或多个液位检测单元133是否被误触发。如所有液位检测单元133的检测结果一致,则判定液体到位信号有效,如至少一个液位检测单元133的检测结果与其他液位检测单元133的检测结果不一致,则判定液体到位信号无效,重新进行检测。
控制单元110除了基于液位检测单元133对储液容器131的检测结果来控制气泵132的关闭之外,还可通过其他方式自动控制气泵132的关闭。例如,一些实施例中,也可用液位检测单元133检测非自吸泵123的工作腔1231和/或加热件124的加热腔1241内的液位,控制单元110基于该检测结果来控制气泵132关闭。另一些 实施例中,控制单元110也可基于固定时长或可变时长来控制气泵132从开启到关闭的时间,该固定时长可由工程师根据实验得到,例如工程师通过实验得到或计算出气泵132从开启到加热液路120和自吸液路130达到规定液量时所需时长(称为气泵工作时长),该气泵工作时长可作为气泵132开启的固定时长。此外,还可结合液体介质的类型、流速、加热液路120的液体容积等因素得到多组不同的气泵工作时长,控制单元110根据液体介质的不同而控制气泵132工作不同的时长。
进一步地,当非自吸泵123处于泵液状态,开始驱动液体在加热液路120中进行循环加热时,气泵132可与储液容器131或加热液路120保持连通状态,虽然此时气泵132不工作,但可起到排气的效果。
不过,在非自吸泵123开始工作时气泵132与储液容器131或加热液路120保持连通状态,容易导致更多液体进入到气泵132中,这会影响到气泵132的使用寿命。请参考图4-7,一些实施例中,该气泵132和储液容器131之间设有第一控制阀134,该第一控制阀134与控制单元110信号连接。当气泵132抽气时,第一控制阀134将气泵132与储液容器131连通,气体经过第一控制阀134达到气泵132。当控制单元110接收到液体到位信号后,控制第一控制阀134将气泵132与储液容器131之间的通道断开,以将气泵132与储液容器131隔开,防止更多的液体进入到气泵132中。
进一步地,一些实施例中,在采用气泵132作为自吸液路130的驱动泵时,该烹饪主机100具有抽气状态和泵液状态,在抽气状态下,气泵132抽吸储液容器131和加热液路120中的气体,以至少将外接容器200的液体引流至非自吸泵123中;在泵液状态下,第一控制阀134将气泵132与储液容器131之间的通道断开,非自吸泵123工作,驱动从进液口121抽吸的液体向出液口122流动。当然,某些实施例中,在泵液状态下,第一控制阀134也可将气泵132与储液容器131之间的通道导通,方便通过气泵132排出自吸液路130和加热液路120中的气体。
一些实施例中,该第一控制阀134可选用电磁阀或者其他可用作管路控制的阀门组件。
此外,一些实施例中,该第一控制阀134也可采用其他结构。例如,一些实施例中,该第一控制阀134为浮球阀,该浮球阀具有阀座和浮球,该阀座具有进出口,储液容器131与气泵132通过该进出口连通。该阀座可于储液容器131上,浮球设于储液腔体1311中,随着储液腔体1311内液体的增多,浮球逐渐上移,最后当浮球移动到检测液位时,浮球阀切换为关闭状态,切断储液容器131与气泵132的通路防止更多的液体进入到气泵132中。当然,在其他实施例中,也可将浮球阀替换为其他可自动切断气泵132与储液容器131之间通路的阀门结构。
一些实施例中,当采用了浮球阀或其他第一控制阀时,可省略气泵132与储液容器131通路上的其他第一控制阀以及液位检测单元133,以简化结构和降低成本。 当然,一些实施例中,该浮球阀或类似控制阀也可与液位检测单元133组合使用,以便更准确地关闭气泵132和启动非自吸泵123。
进一步地,一些实施例中,考虑到在抽气状态或泵液状态下可能有液体进入到气泵132中,为了防止液体在气泵132中堆积,造成气泵132的损坏,请参考图4-7,该烹饪主机100具有第一连接口135,该气泵132的排气端1322与第一连接口135连通,以将被吸入至气泵132内的液体从第一连接口135排出。该气泵132启动进行抽气操作时,该第一连接口135也作为排气口使用,气泵132内气体的流动也可带动液体向第一连接口135流动,排液效果更佳。
进一步地,一些实施例中,请参考图5-7,烹饪主机100具有用于与外接容器200对接的辅助接头136,第一连接口135设于辅助接头136上,以将被吸入至气泵132内的液体从第一连接口135排入外接容器200内。采用这种方式,由于气泵132中抽吸的液体来自于外接容器200,因此将这些液体最后再排回到外接容器200中,不会对外接容器200内的液体造成污染。气泵132中的液体单独一个排水液路,不用连接到进液接头125和出液接头126上,可以避免在排液状态下水倒流回气泵132中。而且,气泵132与外接容器200对接,无需另外设置用来盛接液体的容器,可简化烹饪主机100的结构和减小主机的体积。相对于将气泵132的液体排出到主机之外而言,气泵132与外接容器200对接可在设备内形成内循环,不会影响或污染到设备周边环境,也不会增加用户的额外操作,用户体验更好。
当然,在其他一些实施例中,该第一连接口135也可设置为把液体排放到烹饪主机100内的其他容器中,或排放到烹饪设备1之外的地方,如洗菜池或其他废液箱中。
一些实施例中,请参考图8-12,外接容器200具有第二连接口204,该第二连接口204与外接容器200的容液腔201连通。第一连接口135能够与第二连接口204连通,以将被吸入至气泵132内的液体从第一连接口135排入外接容器200内。该第一连接口135和第二连接口204的连通可采用各种接口结构实现,例如插接配合或者抵接配合等。
一些实施例中,请参考图2、5-12,该辅助接头136为公头结构,该第二连接口204为母头结构,辅助接头136能够插入至第二连接口204中或者抵接/吸附至第二连接口204上,实现配合连接,该配合连接为密封连接。在其他实施例中,该第二连接口204也可设置一个公头结构上,而第一连接口135也设置在一个母头结构上,即由第二连接口204所在的公头结构插入至第一连接口135中或者抵接/吸附至第一连接口135上实现配合。
一些实施例中,请参考图10-11,第二连接口204与容液腔201的顶部连通,以减小第二连接口204的通道长度,过长的通道结构将会导致结构更加复杂,减小第二连接口204的通道长度,可以简化外接容器200的结构,降低制造和装配成本。
一些实施例中,请参考图11-12,该第二连接口204伸入到容液腔201的腔壁上的开口处设有遮挡结构2121,用以减少液体从第二连接口204流入容液腔201时产生的飞溅现象,同时,使得容液腔201内壁的整体性好。该遮挡结构2121留出间隙2122,以使第二连接口204与容液腔201连通,遮挡结构2121既可以防止液体从第二连接口204流出时飞溅,也不影响液体流入到容液腔201中。
在图11-12所示实施例中,该第二连接口204伸入到容液腔201的腔壁上的开口沿水平方向设置,遮挡结构2121大致沿竖直方向设置在开口处,对从第二连接口204流出的液体进行阻挡。此外,该第一连接口135与容液腔201连通的开口还可沿其他方向设置,如竖直向下,或在水平方向或竖直方向倾斜设置。该遮挡结构2121也可采用其他形式布置在该开口处,如呈镂空状结构等。
一些实施例中,请参考图8-12,该外接容器200包括箱体210和箱盖220,箱体210具有容液腔201,用来容置液体。箱盖220以可打开和封闭容液腔201的方式设置在箱体210上,以实现箱盖220封闭溶液器。该打开和封闭的方式包括但不限于箱盖220与箱体210活动连接,箱盖220与箱体210可拆卸连接等。当箱盖220与箱体210活动连接时,可通过改变箱盖220与箱体210的相对位置而打开和封闭容液腔201。当箱盖220与箱体210可拆卸连接时,可通过安装和拆卸箱盖220来打开和封闭容液腔201。在图8-11所示实施例中,该箱盖220可盖合到箱体210上,从而遮蔽箱体210的容液腔201。当箱盖220从箱体210上揭开时,则打开容液腔201,用户可往箱体210内加注液体。
一些实施例中,请参考图8-11,该烹饪主机100的进液接头125、出液接头126和辅助接头136均朝下设置,该抽液对接口202、回液对接口203和第二连接口204开口朝上,以便与进液接头125、出液接头126和辅助接头136在竖直方向上对接。在其他实施例中,该进液接头125、出液接头126和辅助接头136也可沿水平方向设置,或者在水平方向或竖直方向倾斜设置,抽液对接口202、回液对接口203和第二连接口204开口与进液接头125、出液接头126和辅助接头136对应,以实现在不同方向的插接配合,如水平方向插接,或者相对水平方向或竖直方向上倾斜一定角度进行插接。
一些实施例中,请参考图5-11,该进液接头125、出液接头126为公头结构,该抽液对接口202、回液对接口203为母头结构,进液接头125、出液接头126能够对应插入至抽液对接口202、回液对接口203中,实现配合连接,该配合连接可以为密封插接,配合连接的方式可以为插接配合、卡扣配合、吸附配合等配合方式。此外,在其他实施例中,在其他实施例中,该抽液对接口202、回液对接口203也可设置在公头结构上,而进液口121、出液口122设置在母头结构上,即由抽液对接口202、回液对接口203所在的公头结构插入至进液口121、出液口122中实现插接配合。
进一步地,请参考图7,一些实施例中,辅助接头136最低端低于进液接头125 和出液接头126,辅助接头136具有上大下小的导向结构1361,用以辅助进液接头125和出液接头126与外接容器200对接。当烹饪主机100与外接容器200对接时,只要保证辅助接头136与外接容器200对接准确,就可保证进液接头125和出液接头126能够与抽液对接口202、回液对接口203对接准确,更方便烹饪主机100与外接容器200的对接。
其中,请参考图7和12,该导向结构1361位于辅助接头136的最外端,该导向结构1361可采用任意可行的对接导向结构1361,例如可以为圆锥形、锥台形、棱锥形等。该导向结构1361的前端伸入第二连接口204后,可自动导向辅助接头136移动到第二连接口204的正确对接位置,进而带动进液接头125和出液接头126与抽液对接口202、回液对接口203准确对接。
请参考图7,一些实施例中,辅助接头136位于进液接头125和出液接头126之间。此外,在其他实施例中,该辅助接头136位于进液接头125和出液接头126的一侧。或者,当辅助接头136为多个时,进液接头125和出液接头126位于至少两个辅助接头136之间。
进一步地,请参考图9-11,一些实施例中,该箱体210具有主箱体211和顶壳212,主箱体211具有容液腔201,顶壳212罩扣在主箱体211的侧壁的顶部,第二连接口204贯通设置在顶壳212和主箱体211上,液体从第二连接口204进入到容液腔201中(如图11中箭头B所示),顶壳212的内侧壁伸入至容液腔201内,并延伸至第二连接口204与容液腔201连通的一端,并对第二连接口204与容液腔201连通的一端形成遮挡结构2121。
一些实施例中,该主箱体211可以为一体成型结构,也可为多个子部件组装而成。一些实施例中,该主箱体211在形成容液腔201之外,还可形成抽液对接口202、回液对接口203用于与容液腔201连通的通道,以便容液腔201内的液体能够流向抽液对接口202以及烹饪主机100加热后的液体能从回液对接口203流入到容液腔201内。
请参考图8-11,一些实施例中,该顶壳212为一圈封闭的环状结构,在其他一些实施例中,也可仅在主箱体211设有抽液对接口202、回液对接口203和第二连接处设置顶壳212,其他区域不设置顶壳212。
进一步地,请参考图11,一些实施例中,该第二连接口204具有竖向段2041和横向段2042,竖向段2041的上端用于与第一连接口135对接,竖向段2041的下端与横向段2042的一端连通,横向段2042背离竖向段2041的一端与容液腔201连通。由于第一连接口135位于外接容器200的上方,该横向段2042可以使从第一连接口135排出的液体从竖直落下变为沿横向流动,对液体进行减速,有利于防止液体进入容液腔201时产生的飞溅现象,避免对容液腔201内的食材烹饪造成影响。
进一步地,一些实施例中,烹饪主机100具有排液状态,在烹饪主机100处于 排液状态时,可将加热液路120和自吸液路130中的液体排出到烹饪主机100之外。
请参考图3、4和7,一些实施例中,该进液口121和出液口122在竖直方向上低于非自吸泵123、加热件124和储液容器131,在排液状态下,非自吸泵123停止泵液或停止驱动液体从进液口121向出液口122流动,非自吸泵123、加热件124和储液容器131中的液体能够在重力作用下自进液口121和/或出液口122流出。
一些实施例中,为了加快排液,在排液状态下,非自吸泵123还可反向向进液口121泵液,加快液体的排出。
一些实施例中,请参考图3-6,为了使加热液路120更加顺畅的排液,该加热液路120直接或间接连通有辅助支路140,辅助支路140背离加热液路120的一端为第一连接口135,该辅助支路140用来在烹饪主机100排水时向加热液路120和自吸液路130中导入气体。该加热液路120和自吸液路130通过第一连接口135与大气压连通,或通过第一连接口135与外接容器200的容液腔201连通,以使加热液路120和自吸液路130之外的气体能够进入加热液路120中,打破加热液路120和自吸液路130中的气压平衡,由于大气压压强较高,加上液体的自重作用,储液容器131、加热件124和非自吸泵123中的液体得以排出。其中,一些实施例中,该第一连接口135可通过自吸液路130与加热液路120连通,如第一连接口135与储液容器131连通,再通过该储液容器131与加热液路120连通。另一些实施例中,该第一连接口135可以直接通过管路与加热液路120连通。
一些实施例中,该第一连接口135可与外接容器200连通,该外接容器200的容液腔201可以为封闭状态,也可以为与大气压连通的状态。另一些实施例中,该第一连接口135可不与外接容器200连通,而与烹饪主机100之外的大气压连通。
一些实施例中,请参考图5和6,该辅助支路140可具有第二控制阀141,在烹饪主机100处于排液状态时,该第二控制阀141控制该辅助支路140导通,以方便气体进入到自吸液路130与加热液路120中。当烹饪主机100处于抽气状态或泵液状态时,该第二控制阀141控制该辅助支路140断开。
一些实施例中,请参考图5和6,该辅助支路140一端与储液容器131连通,该辅助支路140连接储液容器131的段管路可与气泵132连通储液容器131的一段管路为同一条管路。
请参考图3、4和7,一些实施例中,该储液容器131、加热件124和非自吸泵123中,储液容器131位于最高处,以保证在排液状态下,储液容器131内的液体可以尽可能地排出到烹饪主机100之外。
一些实施例中,请参考图6,为了防止储液容器131内液体无法排尽,将储液容器131与非自吸泵123和加热件124连接的连接口1312设于储液容器131的底部或底壁上,使储液容器131内的液体基本都可以从连接口1312向下流出到储液容器131之外。
另一方面,本申请针对上述烹饪主机100还提供了一种控制方法,其目的在于,帮助烹饪主机100更准确地启动非自吸泵123。
请参考图12,一些实施例中,该控制方法包括:
发出驱动气泵132工作的信号;
接收表示储液容器131内液体到达检测液位C的液体到位信号;
发出控制气泵132停止抽气的信号;
等待第一时间段,如在第一时间段内再次接收到至少一次液体到位信号,则发出控制非自吸泵123开始泵液的信号。
进一步地,一些实施例中,如在第一时间段内未接收到液体到位信号,则发出控制气泵132继续抽气的信号,并重复上述操作。
请参考图13,另一些实施例中,该控制方法包括:发出驱动气泵132工作的信号;
接收表示储液容器131内液体到达检测液位C的液体到位信号;
发出控制气泵132停止抽气的信号;
等待第一时间段,如在第一时间段内未接收到表示储液容器131内液体未到达检测液位C的液体未到位信号,则发出控制非自吸泵123开始泵液的信号。
进一步地,一些实施例中,如在第一时间段内接收到液体未到位信号,则控制气泵132继续抽气,并重复上述操作。
进一步地,一些实施例中,该控制方法包括:
接收表示烹饪结束的信号或表示排液的信号;
发出控制第二控制阀141将辅助支路140导通的信号,打开辅助支路140,以方便排液。
该表示烹饪结束的信号可以为各种能够向控制单元表示烹饪操作结束的信号。该表示排液的信号可以是但不限于故障信号、烹饪结束信号或者其他向控制单元110反馈需要进行排液的信号。
具有本领域技术的人将认识到,在不脱离本申请的基本原理的情况下,可以对上述实施例的细节进行许多改变。因此,本申请的范围应根据以下权利要求确定。

Claims (30)

  1. 一种循环式液体加热的烹饪主机,其特征在于,所述烹饪主机具有控制单元、加热液路以及自吸液路,所述加热液路包括进液口、出液口、非自吸泵和加热件,所述进液口和所述出液口用于连通与所述烹饪主机配合的外接液体容器,所述加热件和所述非自吸泵分别与所述控制单元信号连接,所述非自吸泵设置于所述进液口和所述出液口之间,所述自吸液路与所述非自吸泵连通,用以将所述外接液体容器内的液体抽吸到所述非自吸泵中,所述非自吸泵用以驱动从所述进液口抽吸的液体向所述出液口流动,所述控制单元控制所述加热件对所述加热液路中的液体进行加热。
  2. 如权利要求1所述的烹饪主机,其特征在于,所述自吸液路具有储液容器和气泵,所述储液容器具有储液腔体,所述储液容器连通在所述气泵和所述加热液路之间,所述气泵与所述控制单元信号连接,所述气泵的抽气端与所述储液容器连通,用于抽吸所述储液容器以及所述加热液路中的气体,以将所述外接液体容器内的液体抽吸到所述非自吸泵中。
  3. 如权利要求2所述的烹饪主机,其特征在于,所述储液容器的储液腔体在竖直方向上高于所述非自吸泵。
  4. 如权利要求2或3所述的烹饪主机,其特征在于,所述储液容器的储液腔体在竖直方向上高于所述加热件。
  5. 如权利要求2所述的烹饪主机,其特征在于,所述储液容器设有用于检测所述储液腔体内液位的液位检测单元,所述液位检测单元与所述控制单元信号连接,当所述液位检测单元检测到所述储液腔体内液体到达检测液位后,所述液位检测单元向所述控制单元发送液体到位信号,所述控制单元根据所述液体到位信号控制所述气泵停止抽气。
  6. 如权利要求5所述的烹饪主机,其特征在于,所述液位检测单元的检测液位在竖直方向上高于所述非自吸泵,和/或所述液位检测单元的检测液位在竖直方向上高于加热件。
  7. 如权利要求5或6所述的烹饪主机,其特征在于,所述液位检测单元具有第一检测端和第二检测端,所述第一检测端和所述第二检测端均伸入所述储液腔体内,且所述第一检测端位于所述第二检测端的上方,在所述储液腔体内液体同时淹没所述第一检测端和所述第二检测端时,所述液位检测单元向所述控制单元发送所述液体到位信号。
  8. 如权利要求5-7任一项所述的烹饪主机,其特征在于,当所述控制单元接收到所述液位检测单元反馈的液体到位信号后,控制所述气泵停止抽气;
    此后,所述控制单元等待第一时间段,如在所述第一时间段内所述控制单元再 次接收到至少一次所述液体到位信号后,控制所述非自吸泵开始泵液。
  9. 如权利要求8所述的烹饪主机,其特征在于,如在所述第一时间段内所述控制单元未接收到所述液体到位信号,则控制所述气泵继续抽气。
  10. 如权利要求5-7任一项所述的烹饪主机,其特征在于,当所述控制单元接收到所述液位检测单元反馈的液体到位信号后,控制所述气泵停止抽气;
    此后,所述控制单元等待第一时间段,如在所述第一时间段内所述控制单元未接收到表示所述储液腔体内液体未到达检测液位的液体未到位信号,则控制所述非自吸泵开始泵液。
  11. 如权利要求10所述的烹饪主机,其特征在于,如在所述第一时间段内所述控制单元接收到所述液体未到位信号,则控制所述气泵继续抽气。
  12. 如权利要求5-10任一项所述的烹饪主机,其特征在于,所述气泵和所述储液容器之间设有第一控制阀,所述第一控制阀与所述控制单元信号连接,当所述气泵抽气时,所述第一控制阀将所述气泵与所述储液容器连通;当所述控制单元接收到所述液体到位信号后,控制所述第一控制阀将所述气泵与所述储液容器之间的通道断开。
  13. 如权利要求12所述的烹饪主机,其特征在于,所述烹饪主机具有抽气状态和泵液状态,在所述抽气状态下,所述气泵抽吸所述储液容器和所述加热液路中的气体,以至少将所述外接液体容器的液体引流至所述非自吸泵中;在所述泵液状态下,所述第一控制阀将所述气泵与所述储液容器之间的通道断开,所述非自吸泵工作,驱动从所述进液口抽吸的液体向所述出液口流动。
  14. 如权利要求2-13任一项所述的烹饪主机,其特征在于,所述烹饪主机具有第一连接口,所述气泵的排气端与所述第一连接口连通,以将被吸入至所述气泵内的液体从所述第一连接口排出。
  15. 如权利要求14所述的烹饪主机,其特征在于,所述烹饪主机具有用于与所述外接液体容器对接的辅助接头,所述第一连接口设于所述辅助接头上,以将被吸入至所述气泵内的液体从所述第一连接口排入所述外接液体容器内。
  16. 如权利要求15所述的烹饪主机,其特征在于,所述烹饪主机具有进液接头和出液接头,所述进液口设于所述进液接头上,所述出液口设于所述出液接头上,所述进液接头、出液接头和辅助接头能够与所述外接液体容器插接配合。
  17. 如权利要求16所述的烹饪主机,其特征在于,所述进液接头、出液接头和辅助接头均朝下设置,所述辅助接头最低端低于所述进液接头和所述出液接头,所述辅助接头具有上大下小的导向结构,用以辅助所述进液接头和所述出液接头与所述外接液体容器对接。
  18. 如权利要求16所述的烹饪主机,其特征在于,所述辅助接头位于所述进 液接头和所述出液接头之间。
  19. 如权利要求2-18任一项所述的烹饪主机,其特征在于,所述烹饪主机具有排液状态,所述进液口和所述出液口在竖直方向上低于所述非自吸泵、加热件和储液容器,在所述排液状态下,所述非自吸泵停止泵液或停止驱动液体从所述进液口向所述出液口流动,所述非自吸泵、加热件和储液容器中的液体在重力作用下自所述进液口和所述出液口流出,所述加热液路与第一连接口形成辅助支路,所述加热液路能够通过第一连接口与大气压或外接容器连通,以使所述加热液路以及自吸液路之外的气体能够进入所述加热液路和自吸液路中。
  20. 一种循环式液体加热的烹饪设备,其特征在于,包括:
    烹饪主机,所述烹饪主机采用如权利要求1-19任一项所述烹饪主机;
    以及外接液体容器,所述外接液体容器具有容液腔、抽液体对接口和回液体对接口,所述抽液体对接口和回液体对接口均与所述容液腔连通;所述进液口能够与所述抽液体对接口连通,所述出液口能够与所述回液体对接口连通,以在所述加热液路与所述容液腔之间形成循环加热液路。
  21. 如权利要求20所述的烹饪设备,其特征在于,所述烹饪主机具有第一连接口,所述自吸液路的气泵的排气端与所述第一连接口连通,所述外接液体容器具有第二连接口,所述第一连接口能够与所述第二连接口连通,以将被吸入至所述气泵内的液体从所述第一连接口排入所述外接液体容器内。
  22. 如权利要求20-21任一项所述的烹饪设备,其特征在于,所述第二连接口与所述容液腔的顶部连通。
  23. 如权利要求22所述的烹饪设备,其特征在于,所述第二连接口与所述容液腔连通的一端设有遮挡结构,用以减少液体从所述第二连接口流入所述容液腔时产生的飞溅现象,所述遮挡结构留出间隙,以使所述第二连接口与所述容液腔连通。
  24. 如权利要求23所述的烹饪设备,其特征在于,所述外接液体容器包括箱体和箱盖,所述箱体具有所述容液腔,所述箱盖以可打开和封闭容液腔的方式设置在所述箱体上;所述箱体具有主箱体和顶壳,所述主箱体具有所述容液腔,所述顶壳罩扣在所述主箱体的侧壁的顶部,所述第二连接口贯通设置在所述顶壳和所述主箱体上,所述顶壳的内侧壁伸入至所述容液腔内,并延伸至所述第二连接口与所述容液腔连通的一端,并对所述第二连接口与所述容液腔连通的一端形成所述遮挡结构。
  25. 如权利要求20-24任一项所述的烹饪设备,其特征在于,所述第二连接口具有竖向段和横向段,所述竖向段的上端用于与所述第一连接口对接,所述竖向段的下端与所述横向段的一端连通,所述横向段背离所述竖向段的一端与所述容液腔连通。
  26. 一种烹饪主机的控制方法,其特征在于,所述烹饪主机为权利要求5所示的烹饪主机,所述控制方法包括:
    发出驱动气泵工作的信号;
    接收表示储液容器内液体到达检测液位的液体到位信号;
    发出控制气泵停止抽气的信号;
    等待第一时间段,如在所述第一时间段内再次接收到至少一次所述液体到位信号,则发出控制非自吸泵开始泵液的信号。
  27. 如权利要求26项所述的控制方法,其特征在于,如在所述第一时间段内未接收到所述液体到位信号,则发出控制所述气泵继续抽气的信号。
  28. 一种烹饪主机的控制方法,其特征在于,所述烹饪主机为权利要求5所示的烹饪主机,所述控制方法包括:
    发出驱动气泵工作的信号;
    接收表示储液容器内液体到达检测液位的液体到位信号;
    发出控制气泵停止抽气的信号;
    等待第一时间段,如在所述第一时间段内未接收到表示储液容器内液体未到达检测液位的液体未到位信号,则发出控制非自吸泵开始泵液的信号。
  29. 如权利要求28所述的控制方法,其特征在于,如在所述第一时间段内接收到所述液体未到位信号,则控制所述气泵继续抽气。
  30. 如权利要求26-29任一项所述的控制方法,其特征在于,所述控制方法还包括:
    接收表示烹饪结束的信号或表示排液的信号;
    发出控制第二控制阀将辅助支路导通的信号,打开辅助支路。
PCT/CN2022/133345 2022-11-21 2022-11-21 循环式液体加热的烹饪设备、烹饪主机及控制方法 WO2024108364A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/133345 WO2024108364A1 (zh) 2022-11-21 2022-11-21 循环式液体加热的烹饪设备、烹饪主机及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/133345 WO2024108364A1 (zh) 2022-11-21 2022-11-21 循环式液体加热的烹饪设备、烹饪主机及控制方法

Publications (1)

Publication Number Publication Date
WO2024108364A1 true WO2024108364A1 (zh) 2024-05-30

Family

ID=91194909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133345 WO2024108364A1 (zh) 2022-11-21 2022-11-21 循环式液体加热的烹饪设备、烹饪主机及控制方法

Country Status (1)

Country Link
WO (1) WO2024108364A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3653413A (en) * 1970-04-02 1972-04-04 Fred Sheya Pump apparatus for bottled water
DE102015107497A1 (de) * 2015-05-13 2016-11-17 Miele & Cie. Kg Gargerät, insbesondere Dampfgarer, sowie Verfahren zu dessen Betrieb
CN208491704U (zh) * 2017-12-20 2019-02-15 武汉市农业科学院 一种具有循环功能的夹层锅
CN209629455U (zh) * 2018-12-08 2019-11-15 广州浩恩奉仕食品有限公司 一种隔水式夹层锅
CN111386059A (zh) * 2017-07-12 2020-07-07 家庭技术创新股份有限公司 烹饪装置中使用的食物盒和承载体
WO2021143777A1 (zh) * 2020-01-19 2021-07-22 佛山市顺德区美的电热电器制造有限公司 烹饪设备及其控制方法、控制装置和计算机可读存储介质
CN217743977U (zh) * 2022-05-18 2022-11-08 深圳市虎一科技有限公司 循环式液体加热的烹饪主机
CN217744001U (zh) * 2022-05-18 2022-11-08 深圳市虎一科技有限公司 循环式液体加热的烹饪主机及烹饪设备
CN115736621A (zh) * 2022-11-21 2023-03-07 深圳市虎一科技有限公司 循环式液体加热的烹饪设备、烹饪主机及控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3653413A (en) * 1970-04-02 1972-04-04 Fred Sheya Pump apparatus for bottled water
DE102015107497A1 (de) * 2015-05-13 2016-11-17 Miele & Cie. Kg Gargerät, insbesondere Dampfgarer, sowie Verfahren zu dessen Betrieb
CN111386059A (zh) * 2017-07-12 2020-07-07 家庭技术创新股份有限公司 烹饪装置中使用的食物盒和承载体
CN208491704U (zh) * 2017-12-20 2019-02-15 武汉市农业科学院 一种具有循环功能的夹层锅
CN209629455U (zh) * 2018-12-08 2019-11-15 广州浩恩奉仕食品有限公司 一种隔水式夹层锅
WO2021143777A1 (zh) * 2020-01-19 2021-07-22 佛山市顺德区美的电热电器制造有限公司 烹饪设备及其控制方法、控制装置和计算机可读存储介质
CN217743977U (zh) * 2022-05-18 2022-11-08 深圳市虎一科技有限公司 循环式液体加热的烹饪主机
CN217744001U (zh) * 2022-05-18 2022-11-08 深圳市虎一科技有限公司 循环式液体加热的烹饪主机及烹饪设备
CN115736621A (zh) * 2022-11-21 2023-03-07 深圳市虎一科技有限公司 循环式液体加热的烹饪设备、烹饪主机及控制方法

Similar Documents

Publication Publication Date Title
CN103807897B (zh) 多点分吸式吸油烟机及其控制方法
CA2673127C (en) Infusion brewing device and method
CN204218697U (zh) 一种泡茶机的加水装置
WO2020034798A1 (zh) 烹饪器具和烹饪器具的控制方法
CN111485612B (zh) 一种无需集中泵站楼宇居民真空污水排放单元及其实现方法
WO2024108364A1 (zh) 循环式液体加热的烹饪设备、烹饪主机及控制方法
CN115736621A (zh) 循环式液体加热的烹饪设备、烹饪主机及控制方法
WO2008027495A9 (en) Self-priming adapter apparatus and method
WO2024108362A1 (zh) 循环式液体加热的烹饪设备、烹饪主机及外接液体容器
CN101284217A (zh) 微小气泡发生装置
CN109157121A (zh) 烹饪装置与烹饪装置的排液控制方法
CN109330370B (zh) 一种饮品冲泡机及冲泡方法
WO2019141020A1 (zh) 一种真空泵自动断电装置及真空搅拌机
CN210343881U (zh) 一种真空排液装置及排液系统
CN217118153U (zh) 冷萃取装置
CN110860534A (zh) 真空管道的清洁方法和清洁装置、烹饪器具
CN115736623A (zh) 循环式液体加热的烹饪设备、烹饪主机及外接液体容器
CN212346299U (zh) 真空料理机
CN212643076U (zh) 一种带线遥控抽排液体装置、茶盘和茶水桶组合
CN219570349U (zh) 高效节能同步排吸自吸泵
WO2024108361A1 (zh) 循环式液体加热的烹饪主机及烹饪设备
CN206708038U (zh) 一种下吸潜水电泵
CN206290498U (zh) 一种借助真空动力源抽取液体的辅助装置
CN216416830U (zh) 液体加热容器
CN216256706U (zh) 容器和饮品冲泡设备