WO2024108344A1 - 墩压装置、电池、电池单体、加工方法及生产系统 - Google Patents

墩压装置、电池、电池单体、加工方法及生产系统 Download PDF

Info

Publication number
WO2024108344A1
WO2024108344A1 PCT/CN2022/133297 CN2022133297W WO2024108344A1 WO 2024108344 A1 WO2024108344 A1 WO 2024108344A1 CN 2022133297 W CN2022133297 W CN 2022133297W WO 2024108344 A1 WO2024108344 A1 WO 2024108344A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressing
electrode assembly
assembly
pressing device
pier
Prior art date
Application number
PCT/CN2022/133297
Other languages
English (en)
French (fr)
Inventor
徐月明
范翔
林纲
白清林
王永辉
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/133297 priority Critical patent/WO2024108344A1/zh
Publication of WO2024108344A1 publication Critical patent/WO2024108344A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, and in particular to a pressing device, a battery, a battery cell, a processing method and a production system.
  • the present application provides a pressing device, a battery, a battery cell, a processing method and a production system, which can improve the energy of the battery cell.
  • the present application provides a pressing device for pressing a flattened electrode assembly, comprising: a support member for placing the electrode assembly; a pressing assembly for pressing the electrode assembly, wherein the pressing assembly and the support member are arranged on both sides of the electrode ear of the electrode assembly.
  • the pressing assembly is used to press the electrode assembly.
  • the pressing assembly applies pressure to the electrode assembly, which can reduce the height of the flattened layer of the electrode assembly and reduce the internal space of the battery cell occupied by the flattened layer of the electrode assembly, thereby increasing the energy of the battery cell.
  • the pressing assembly includes: a pressing member, used to press the electrode assembly; and a pressing driving member, connected to the pressing member, used to drive the pressing member to press the electrode assembly.
  • the pressing member is driven by the pressing driving member to press the electrode assembly, so that the pressing driving member adjusts the pressure applied by the pressing member to the electrode assembly, thereby improving the pressing accuracy.
  • the pressing device includes a support frame, and the pressing assembly is installed on the support frame.
  • the pressing assembly is located above the electrode assembly, which facilitates the pressing assembly to press the electrode assembly.
  • the pressing device includes a detection component, which is disposed on the support frame and is used to detect the distance between the electrode component and the detection component.
  • a detection component is set on the support frame to detect the distance between the electrode component and the detection component, and the height of the electrode assembly is calculated based on the distance; the height of the flattened layer of the electrode assembly is obtained through the height of the electrode assembly, and by monitoring the height of the flattened layer, the accuracy of the pressing assembly in pressing the electrode assembly can be improved, and the consistency of the electrode assembly after pressing can be improved.
  • the pressing device includes a positioning assembly for positioning the electrode assembly between the support and the pressing assembly.
  • a positioning assembly for positioning the electrode assembly between the support and the pressing assembly.
  • the positioning assembly includes: a mounting seat; a clamping jaw, which is mounted on the mounting seat in a floating manner, and the clamping jaw is used to clamp the electrode assembly.
  • the clamping jaw is mounted on the mounting seat in a floating manner, so that the clamping jaw moves with the decrease in the height of the electrode assembly, and the clamping jaw and the electrode assembly can be kept relatively still, thereby improving the consistency of the electrode assembly pressed by the pressing device.
  • the positioning assembly includes: a clamping jaw driving member, the clamping jaw is connected to the clamping jaw driving member, and the clamping jaw driving member is used to drive the clamping jaw to clamp the electrode assembly.
  • the clamping jaw is driven by the clamping jaw driving member to clamp the electrode assembly to improve the stability of the clamping jaw clamping the electrode assembly.
  • the positioning assembly includes: a floating driving member mounted on the mounting seat, the clamping jaw driving member is arranged on the floating driving member, and the floating driving member is used to drive the clamping jaw and the clamping jaw driving member to move along the pressing direction of the pressing assembly.
  • the clamping jaw and the clamping jaw driving member are driven by the floating driving member to move along the pressing direction of the pressing assembly to keep the clamping jaw and the electrode assembly relatively still.
  • the floating driving member is a floating cylinder, which can be easily realized by driving the clamping jaw and the clamping jaw driving member to move along the pressing direction of the pressing assembly through the floating cylinder.
  • the floating driving member includes: a guide rod mounted on the guide rod mounting seat of the mounting seat; an elastic member, the elastic member is sleeved on the corresponding guide rod; a bearing, which is arranged on the guide rod and the elastic member is used to support the bearing; a mounting member, which is arranged on the bearing and is used to mount the clamping jaw driving member.
  • the bearing is supported by the elastic member to allow the bearing to move along the extension direction of the guide rod to keep the clamping jaw and the electrode assembly relatively still, which has a simple structure and reduces costs.
  • the cross-sectional shape of the clamping jaw along the pressing direction of the pressing assembly is V-shaped.
  • the cross-sectional shape of the clamping jaw is set to be V-shaped, so that the clamping jaw can clamp electrode assemblies of different sizes.
  • the pressing direction of the pressing assembly is the gravity direction of the electrode assembly. Pressing the electrode assembly along the gravity direction of the electrode assembly by the pressing assembly is easy to achieve.
  • the present application provides a battery cell processing method, comprising: placing a flattened electrode assembly in a pressing device; and controlling the pressing device to press the electrode assembly to compress the height of the flattened layer of the electrode assembly.
  • the processing method further comprises: positioning the electrode assembly during the pressing of the electrode assembly. By positioning the electrode assembly, the position of the electrode assembly during the pressing process can be maintained, and the parallelism of the flattened layer of the electrode assembly after pressing can be improved.
  • the step of positioning the electrode assembly when the electrode assembly is pressed includes: controlling a positioning assembly of the pressing device to clamp the electrode assembly.
  • the step of controlling the pressing device to press the electrode assembly includes: controlling the pressing member of the pressing device to move to a pressing position through a pressing driving member of the pressing device so that the pressing member presses the electrode assembly; controlling the pressing time of the pressing member at the pressing position to be greater than or equal to a preset time through the pressing driving member.
  • the pressing time of the pressing member at the pressing position is controlled to be greater than or equal to the preset time by the pressing driving member, so that the pressing member can continuously press the electrode assembly at the pressing position, thereby preventing the electrode assembly from rebounding after pressing.
  • the processing method further includes: controlling the pressing member to move from the pressing position to the original position by the pressing driving member; and taking out the pressed electrode assembly.
  • the present application provides a battery cell, wherein the battery cell includes an electrode assembly prepared by the processing method in the above embodiment.
  • the height of the flattened layer of the electrode assembly is in the range of 0-4 mm.
  • the present application provides a battery, comprising the battery cell in the above-mentioned embodiment.
  • the present application provides a battery cell production system, comprising: a flattening device for flattening the electrode assembly of the battery cell; and a pressing device such as the above-mentioned embodiment, the pressing device is used to press the flattened electrode assembly.
  • FIG1 is a schematic structural diagram of a vehicle according to some embodiments of the present application.
  • FIG2 is a schematic diagram of an exploded structure of a battery according to some embodiments of the present application.
  • FIG3 is a schematic diagram of the exploded structure of a battery cell according to some embodiments of the present application.
  • FIG4 is a schematic diagram of the structure of a pressing device and an electrode assembly according to some embodiments of the present application.
  • FIG5 is a cross-sectional schematic diagram of an electrode assembly according to some embodiments of the present application.
  • FIG6 is a schematic diagram of the structure of a positioning assembly in some embodiments of the present application.
  • FIG. 7 is an exploded schematic diagram of a positioning assembly according to some embodiments of the present application.
  • FIG8 is a schematic diagram of the structure of a positioning assembly in some embodiments of the present application.
  • FIG9 is an exploded schematic diagram of a positioning assembly according to some embodiments of the present application.
  • FIG10 is a cross-sectional schematic diagram of a clamping jaw according to some embodiments of the present application.
  • FIG11 is a schematic flow chart of a processing method according to some embodiments of the present application.
  • FIG12 is a flow chart of step S402 of some embodiments of the present application.
  • FIG13 is a schematic flow chart of a processing method according to some embodiments of the present application.
  • FIG14 is a schematic diagram of a framework of a battery monomer production system according to some embodiments of the present application.
  • markings vehicle 1000, battery 100, controller 200, motor 300, housing 10, battery cell 20, first part 11, second part 12, end cover 21, shell 22, electrode assembly 23, electrode terminal 21a, pole ear 23a, flattening layer 231, pier pressing device 30, support member 31, pier pressing assembly 32, height direction X, pier pressing member 321, pier pressing driving member 322, connecting rod 323, support frame 33, base 36, detection assembly 34, positioning assembly 35, mounting seat 351, clamping jaw 352, clamping jaw driving member 353, floating driving member 354, fixing member 355, guide rod 3541, elastic member 3542, bearing 3543 and mounting member 3544.
  • multiple means more than two (including two).
  • multiple groups refers to more than two groups (including two groups)
  • multiple sheets refers to more than two sheets (including two sheets); the terms “center”, “longitudinal”, “lateral”, “length”, “width”, “thickness”, “up”, “down”, “front”, “back”, “left”, “right”, “vertical”, “horizontal”, “top”, “bottom”, “inside”, “outside”, “clockwise”, “counterclockwise”, “axial”, “radial”, “circumferential”, etc.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between two elements.
  • installed can be a fixed connection, a detachable connection, or an integral one
  • it can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between two elements.
  • Batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but also widely used in electric vehicles such as electric bicycles, electric motorcycles, electric cars, as well as military equipment and aerospace and other fields. With the continuous expansion of battery application areas, its market demand is also constantly expanding.
  • the inventors of the present invention noticed that there are gaps between the multilayer pole ears of the electrode assembly.
  • Laser welding of adapters or electrode terminals on the multilayer pole ears of the electrode assembly causes the laser to pass through the gaps and weld through the electrode assembly, and the effective welding area between the pole ears of the electrode assembly and the adapter is small. Therefore, the pole ears of the electrode assembly are flattened to obtain a flattened electrode assembly.
  • the pole ears of the flattened electrode assembly are defined as the flattened layer of the electrode assembly to increase the effective welding area of the flattened layer of the electrode assembly and avoid the laser passing through the gap.
  • the flattened layer is designed to be higher, and the flattened layer of the electrode assembly will still occupy the space of the electrode assembly in the battery cell, resulting in a reduction in the energy of the battery cell.
  • the inventors have designed a pressing device after in-depth research. By pressing the two sides of the pole ears of the flattened electrode assembly through the pressing device, the height of the flattened layer of the electrode assembly can be reduced, and the internal space of the battery cell occupied by the flattened layer of the electrode assembly can be reduced, thereby improving the energy of the battery cell.
  • the battery cell disclosed in the embodiments of the present application can be used in electrical devices that use batteries as power sources or various energy storage systems that use batteries as energy storage elements.
  • Electrical devices can be, but are not limited to, mobile phones, tablets, laptops, electric toys, electric tools, battery cars, electric cars, ships, spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, and electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, and spacecraft, etc.
  • FIG. 1 is a schematic diagram of the structure of a vehicle 1000 provided in some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a battery 100 is provided inside the vehicle 1000, and the battery 100 may be provided at the bottom, head or tail of the vehicle 1000.
  • the battery 100 may be used to power the vehicle 1000, for example, the battery 100 may be used as an operating power source for the vehicle 1000.
  • the vehicle 1000 may also include a controller 200 and a motor 300, and the controller 200 is used to control the battery 100 to power the motor 300, for example, for the starting, navigation and driving power requirements of the vehicle 1000.
  • the battery 100 can not only serve as an operating power source for the vehicle 1000, but also serve as a driving power source for the vehicle 1000, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000.
  • FIG. 2 is a schematic diagram of the exploded structure of the battery of some embodiments of the present application.
  • the battery 100 includes a box 10 and a battery cell 20, and the battery cell 20 is contained in the box 10.
  • the box 10 is used to provide a storage space for the battery cell 20, and the box 10 can adopt a variety of structures.
  • the box 10 may include a first part 11 and a second part 12, and the first part 11 and the second part 12 cover each other, and the first part 11 and the second part 12 jointly define a storage space for accommodating the battery cell 20.
  • the second part 12 can be a hollow structure with one end open, and the first part 11 can be a plate-like structure, and the first part 11 covers the open side of the second part 12, so that the first part 11 and the second part 12 jointly define a storage space; the first part 11 and the second part 12 can also be hollow structures with one side open, and the open side of the first part 11 covers the open side of the second part 12.
  • the box 10 formed by the first part 11 and the second part 12 can be in a variety of shapes, such as a cylinder, a cuboid, etc.
  • the battery 100 there may be multiple battery cells 20, and the multiple battery cells 20 may be connected in series, in parallel, or in a mixed connection.
  • a mixed connection means that the multiple battery cells 20 are both connected in series and in parallel.
  • the multiple battery cells 20 may be directly connected in series, in parallel, or in a mixed connection, and then the whole formed by the multiple battery cells 20 is accommodated in the box 10; of course, the battery 100 may also be a battery module formed by connecting multiple battery cells 20 in series, in parallel, or in a mixed connection, and then the multiple battery modules are connected in series, in parallel, or in a mixed connection to form a whole, and accommodated in the box 10.
  • the battery 100 may also include other structures, for example, the battery 100 may also include a busbar component for realizing electrical connection between the multiple battery cells 20.
  • Each battery cell 20 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 20 may be cylindrical, flat, rectangular or in other shapes.
  • FIG. 3 is a schematic diagram of the exploded structure of a battery cell 20 provided in some embodiments of the present application.
  • the battery cell 20 refers to the smallest unit that constitutes a battery.
  • the battery cell 20 includes an end cap 21, a housing 22, an electrode assembly 23 and other functional components.
  • the end cap 21 refers to a component that covers the opening of the shell 22 to isolate the internal environment of the battery cell 20 from the external environment.
  • the shape of the end cap 21 can be adapted to the shape of the shell 22 to match the shell 22.
  • the end cap 21 can be made of a material with a certain hardness and strength (such as aluminum alloy), so that the end cap 21 is not easily deformed when squeezed and collided, so that the battery cell 20 can have a higher structural strength and the safety performance can also be improved.
  • Functional components such as electrode terminals 21a can be provided on the end cap 21.
  • the electrode terminal 21a can be used to electrically connect to the electrode assembly 23, and the battery cell 20 can also include an adapter, which is used to connect the electrode terminal 21a and the pole ear 23a of the electrode assembly 23 to electrically connect the electrode terminal 21a with the pole ear 23a of the electrode assembly 23 for outputting or inputting electrical energy of the battery cell 20.
  • the housing 22 is a component used to cooperate with the end cap 21 to form the internal environment of the battery cell 20, wherein the formed internal environment can be used to accommodate the electrode assembly 23, the electrolyte and other components.
  • the electrode assembly 23 is a component in the battery cell 100 where an electrochemical reaction occurs.
  • One or more electrode assemblies 23 may be contained in the housing 22.
  • the electrode assembly 23 is mainly formed by winding or stacking the positive electrode sheet and the negative electrode sheet, and a separator is usually provided between the positive electrode sheet and the negative electrode sheet.
  • the parts of the positive electrode sheet and the negative electrode sheet with active materials constitute the main body of the electrode assembly 23, and the parts of the positive electrode sheet and the negative electrode sheet without active materials each constitute the pole ear 23a.
  • the positive pole ear and the negative pole ear may be located together at one end of the main body or at both ends of the main body respectively.
  • the positive electrode active material and the negative electrode active material react with the electrolyte, and the pole ear 23a connects the electrode terminal to form a current loop.
  • FIG. 4 is a schematic diagram of the structure of a pier pressing device and an electrode assembly according to some embodiments of the present application.
  • the present application provides a pier pressing device 30, which is used to pier and press the flattened electrode assembly 23.
  • the pier pressing device 30 includes a support member 31 and a pier pressing assembly 32; the support member 31 is used to place the electrode assembly 23, and the pier pressing assembly 32 is used to pier and press the electrode assembly 23, wherein the support member 31 and the pier pressing assembly 32 are arranged on both sides of the pole ear 23a of the electrode assembly 23.
  • the X direction in the figure is the height direction of the electrode assembly 23.
  • FIG. 5 is a cross-sectional schematic diagram of an electrode assembly according to some embodiments of the present application.
  • the flattened electrode assembly 23 refers to the flattening of the pole lug 23a of the electrode assembly 23; the pole lug 23a of the flattened electrode assembly 23 serves as the flattened layer 231 of the electrode assembly 23. Since there is a gap between the pole lugs 23a of the electrode assembly 23, the adapter is welded on the pole lug 23a of the electrode assembly 23 by laser, resulting in the laser passing through the gap to weld through the electrode assembly 23, and the effective welding area between the pole lug 23 of the electrode assembly 23 and the adapter is small.
  • the electrode ear 23a of the electrode assembly 23 is flattened, and one end of the electrode ear 23a of the flattened electrode assembly 23 is straight, and the other end of the electrode ear 23a of the flattened electrode assembly 23 is curved, thereby avoiding the existence of gaps between the electrode ears 23a of the flattened electrode assembly 23, thereby preventing laser welding through the electrode assembly 23; in addition, the effective welding area between the flattened layer 231 of the flattened electrode assembly 23 and the adapter is increased, making it easier to weld the adapter.
  • the “pressing device 30” is used to output pressure to press the flattened electrode assembly 23.
  • the flattened electrode assembly 23 is placed on the support 31, and the pressing assembly 32 is used to output pressure to press the flattened electrode assembly 23 placed on the support 31.
  • Bottom sides of the electrode assembly 23 refers to both sides of the electrode assembly 23 having the tabs 23a in the height direction (X direction in FIG. 4 ).
  • both sides of the electrode assembly 23 include the upper side of the electrode assembly 23 and the lower side of the electrode assembly 23 .
  • the electrode assembly 23 is cylindrical in shape, and both sides of the electrode assembly 23 have a flattened layer 231. In other embodiments of the present application, the electrode assembly 23 is flat, rectangular, or in other shapes.
  • the pressing assembly 32 is used to press the electrode assembly 23; wherein the pressing assembly 32 applies pressure to the electrode assembly 23 to compress the flattened layer 231 of the electrode assembly 23, which can reduce the height of the flattened layer 231 of the electrode assembly 23, reduce the internal space of the battery cell 20 occupied by the flattened layer 231 of the electrode assembly 23, and thus improve the energy of the battery cell 20.
  • the support 31 and the pressing assembly 32 are arranged on both sides of the tab 23a of the electrode assembly 23. As the pressing assembly 32 applies pressure to the electrode assembly 23, it is equivalent to that the support 31 and the pressing assembly 32 press both sides of the tab 23a of the electrode assembly 23, respectively, thereby improving the pressing efficiency of the pressing device 30.
  • the tab 23a of the flattened electrode assembly 23 is used for welding a connector, and the connector is used to connect the electrode terminal to the tab 23a of the electrode assembly 23. Since heat radiation is generated during the welding of the connector to the tab 23a of the electrode assembly 23, and the heat radiation may burn the isolation membrane of the electrode assembly 23, the tab 23a of the flattened electrode assembly 23 needs to be provided with a safe area, and welding the connector in the safe area can avoid burning the isolation membrane. However, the safe area will occupy the space of the tab 23a of the electrode assembly 23, resulting in the flattened layer 231 of the electrode assembly 23 occupying the space of the electrode assembly 23 in the battery cell.
  • the pressing device 30 is used to press the flattened electrode assembly 23 to reduce the height of the flattened layer 231 of the electrode assembly 23; therefore, the area of the safe area of the tab 23a of the flattened electrode assembly 23 can be increased, thereby improving the quality rate of the welded connector.
  • the pressing assembly 32 includes a pressing member 321 and a pressing driving member 322 , and the pressing driving member 322 is connected to the pressing member 321 for driving the pressing member 321 to press the electrode assembly 23 .
  • the “pressing driving member 322 ” refers to a component that provides pressure to the pressing member 321 during the process of the pressing assembly 32 pressing the electrode assembly 23 .
  • the pressing driving member 322 can adjust the pressure applied by the pressing member 321 to the electrode assembly 23 .
  • the pressing assembly 32 includes a connecting rod 323 , and the connecting rod 323 is used to connect the pressing driving member 322 and the pressing member 321 , and the pressing driving member 322 drives the pressing member 321 via the connecting rod 323 .
  • the pressing member 321 is driven by the pressing driving member 322 to press the electrode assembly 23 .
  • the pressing driving member 322 can adjust the pressure applied by the pressing member 321 to the electrode assembly 23 , thereby improving the pressing accuracy.
  • the pier pressing device 30 includes a support frame 33 , and the pier pressing assembly 32 is installed on the support frame 33 .
  • the “support frame 33 ” refers to a component used to support the pier pressing assembly 32 in the pier pressing device 30 .
  • the pier pressing driving member 322 is installed on the support frame 33
  • the pier pressing member 321 is installed on the pier pressing driving member 322 .
  • the pressing assembly 32 is installed on the support frame 33 so that the pressing assembly 32 is located above the electrode assembly 23 , making it easier for the pressing assembly 32 to press the electrode assembly 23 .
  • the pier pressing device 30 includes a detection component 34 , and the detection component 34 is disposed on the support frame 33 for detecting the distance between the electrode component 23 and the detection component 34 .
  • the detection assembly 34 may include a distance sensor or a displacement sensor, which is disposed on the support frame 33 and is used to detect the distance between the electrode assembly 23 and the detection assembly 34.
  • the detection assembly 34 is used to detect the distance between the pier pressing member 321 and the detection assembly 34, and calculate the height of the electrode assembly 23 based on the distance between the pier pressing member 321 and the detection assembly 34.
  • a detection component 34 is set on the support frame 33 to detect the distance between the electrode assembly 23 and the detection component 34, and the height of the electrode assembly 23 is calculated based on the distance; the height of the flattened layer 231 of the electrode assembly 23 is obtained through the height of the electrode assembly 23, and by monitoring the height of the flattened layer 231, the accuracy of the pressing component 32 in pressing the electrode assembly 23 can be improved, and the consistency of the electrode assembly 23 after pressing can be improved.
  • the pressing device 30 includes a positioning assembly 35 , and the positioning assembly 35 is used to position the electrode assembly 23 between the support member 31 and the pressing assembly 32 .
  • the positioning assembly 35 is fixed to the base 36 and disposed adjacent to the electrode assembly 23 for positioning the electrode assembly 23 so that the electrode assembly 23 is located between the support member 31 and the pressing assembly 32 .
  • the electrode assembly 23 is positioned between the support member 31 and the pressing assembly 32 by the positioning assembly 35, so that the position of the electrode assembly 23 during the pressing process can be maintained, the consistency of the electrode assembly 23 during the pressing process can be ensured, the parallelism of the flattened layer 231 of the electrode assembly 23 after pressing can be improved, and the yield of subsequent processes can be improved.
  • the subsequent process of the electrode assembly 23 can be a welding process.
  • the positioning assembly 35 includes a mounting seat 351 and a clamping jaw 352 , the clamping jaw 352 is floatingly mounted on the mounting seat 351 , and the clamping jaw 352 is used to clamp the electrode assembly 23 .
  • the clamping jaw 352 can move relative to the mounting seat 351 to achieve the floating installation of the clamping jaw 352 on the mounting seat 351.
  • the height of the flattened layer 231 of the electrode assembly 23 is reduced, so that the height of the electrode assembly 23 is reduced.
  • the clamping jaw 352 is floatingly installed on the mounting seat 351, which can make the clamping jaw 352 move with the height reduction of the electrode assembly 23, and can keep the clamping jaw 352 and the electrode assembly 23 relatively still, thereby improving the consistency of the pressing device 30 pressing the electrode assembly 23.
  • the positioning assembly 35 includes a clamping jaw driving member 353 , the clamping jaw 352 is connected to the clamping jaw driving member 353 , and the clamping jaw driving member 353 is used to drive the clamping jaw 352 to clamp the electrode assembly 23 .
  • the clamping jaw 352 is driven to clamp the electrode assembly 23 by the clamping jaw driving member 353 .
  • the clamping jaw driving member 353 can adjust the force of the clamping jaw 352 clamping the electrode assembly 23 to improve the stability of the clamping jaw 352 clamping the electrode assembly 23 .
  • FIG. 6 is a schematic diagram of the structure of the positioning assembly of some embodiments of the present application.
  • the positioning assembly 35 includes a floating driving member 354, the floating driving member 354 is mounted on the mounting seat 351, the clamping claw driving member 353 is arranged on the floating driving member 354, and the floating driving member 354 is used to drive the clamping claw 352 and the clamping claw driving member 353 to move along the pier pressing direction of the pier pressing assembly 32.
  • the pressing direction of the pressing component 32 refers to the direction in which the pressing component 32 presses the electrode component 23, that is, the moving direction in which the pressing driving member 322 drives the pressing member 321; for example, the direction in which the pressing component 32 presses the electrode component 23 is the same as the height direction X of the electrode component 23.
  • the cross-sectional shape of the clamp 352 along the pressing direction of the pressing assembly 32 is arc-shaped or square-shaped, etc.
  • the cross-sectional shape of the clamp 352 along the pressing direction of the pressing assembly 32 is set corresponding to the shape of the electrode assembly 23 to facilitate the clamp 352 to position the electrode assembly 23.
  • the floating driving member 354 drives the clamp 352 and the clamp driving member 353 to move along the pressing direction of the pressing assembly 32 to keep the clamp 352 and the electrode assembly 23 relatively still, so as to ensure that the posture of the clamp 352 clamping the electrode assembly 23 is fixed.
  • Figure 7 is an exploded schematic diagram of the positioning assembly of some embodiments of the present application.
  • the floating drive member 354 is a floating cylinder, wherein the clamping jaw 352 is mounted on the clamping jaw drive member 353, the clamping jaw drive member 353 is mounted on the floating drive member 354 through the fixing member 355, and the floating drive member 354 is mounted on the mounting seat 351.
  • clamping jaw 352 and the clamping jaw driving member 353 are driven by a floating cylinder to move along the pressing direction of the pressing assembly 32 .
  • Figure 8 is a schematic diagram of the structure of the positioning assembly of some embodiments of the present application
  • Figure 9 is a schematic diagram of the decomposition of the positioning assembly of some embodiments of the present application.
  • the floating drive member 354 includes a guide rod 3541, an elastic member 3542, a bearing 3543 and a mounting member 3544, the guide rod 3541 is mounted on the guide rod mounting seat 3545 of the mounting seat 351, and the elastic member 3542 is sleeved on the corresponding guide rod 3541; the bearing 3543 is arranged on the guide rod 3541, and the elastic member 3542 is used to support the bearing 3543; the mounting member 3544 is arranged on the bearing 3543, and the mounting member 3544 is used to install the clamping jaw drive member 352.
  • the floating driving member 354 may include two guide rods 3541, two elastic members 3542 and two bearings 3543, wherein the two bearings 3543 are mounted on one side of the mounting member 3544, and the clamping jaw driving member 352 is mounted on the other side of the mounting member 3544.
  • the elastic member 3542 may include a leaf spring, a coil spring, a torsion bar spring, a gas spring or a rubber spring; and the bearing 3543 may be a linear bearing to move along the extension direction of the guide rod 3541.
  • the elastic member 3542 is sleeved on the corresponding guide rod 3541, the bearing 3543 is arranged on the guide rod 3541, and the elastic member 3542 is used to support the bearing 3543; in the process of the pressing assembly 32 pressing the electrode assembly 23, the pressing assembly 32 applies pressure to the electrode assembly 23, and the bearing 3543 compresses the elastic member 3542 under the action of the pressure, and then moves along the extension direction of the guide rod 3541 to keep the clamp 352 and the electrode assembly 23 relatively still, with a simple structure and reduced cost.
  • the extension direction of the guide rod 3541 is the same as the direction of the pressing assembly 32 pressing the electrode assembly 23.
  • Figure 10 is a cross-sectional schematic diagram of the clamping jaws of some embodiments of the present application, wherein the cross-sectional shape of the clamping jaws 352 along the pressing direction of the pressing assembly 32 is V-shaped.
  • the cross-sectional shape of the clamping jaws 352 along the pressing direction of the pressing assembly 32 is V-shaped, that is, the clamping jaws 352 form clamping spaces of various sizes, so that the clamping jaws 352 can clamp electrode assemblies 23 of different sizes.
  • the pressing direction of the pressing assembly 32 is the gravity direction of the electrode assembly 23 , wherein the gravity direction of the electrode assembly 23 is the same as the height direction X of the electrode assembly 23 .
  • a pressing device 30 is provided, and the flattened electrode assembly 23 is placed on a support member 31 to support the flattened electrode assembly 23.
  • the clamping jaws 352 of the positioning assembly 35 are used to clamp the electrode assembly 23, so that the clamping jaws 352 guide the electrode assembly 23 in the direction of gravity of the electrode assembly 23, so that the electrode assembly 23 maintains a vertical direction.
  • the pressing member 321 is driven by the pressing driving member 322 to press the upper side of the electrode assembly 23.
  • the clamping jaws 352 and the clamping jaw driving member 353 move relative to the floating driving member 354 along the pressing direction of the pressing assembly 32, and the clamping jaws 352 and the electrode assembly 23 are kept relatively still, ensuring that the posture of the clamping jaws 352 clamping the electrode assembly 23 is fixed, so as to improve the parallelism of the flattened layer 231 of the electrode assembly 23.
  • the pressing member 321 presses the electrode assembly 23 to the pressing position, and the pressing driving member 322 drives the pressing member 321 to keep applying pressure to the electrode assembly 23, and keeps the pressing time of the pressing member 32 greater than or equal to the preset time, which can effectively prevent the flattened layer 231 of the pressed electrode assembly 23 from rebounding.
  • the pressing driving member 322 drives the pressing member 321 to press the electrode assembly 23
  • the pressing driving member 322 drives the pressing member 321 to return to the initial position
  • the clamp driving member 353 drives the clamp 352 to open to take out the pressed electrode assembly 23, thereby reducing the height of the flattened layer 231 of the electrode assembly 23, reducing the internal space of the battery cell 20 occupied by the flattened layer 231 of the electrode assembly 23, and thus improving the energy of the battery cell 20.
  • the present application also provides a processing method for a battery cell, please refer to FIG11, FIG11 is a flow chart of the processing method of some embodiments of the present application.
  • the processing method includes:
  • step S401 the tab 23a of the electrode assembly 23 is flattened to obtain the flattened electrode assembly 23, and the tab 23a of the flattened electrode assembly 23 is the flattened layer 231.
  • the flattened electrode assembly 23 is placed on the pressing device 30, for example, manually or automatically by the pressing device 30 to place the flattened electrode assembly 23 on the support 31 of the pressing device 30.
  • step S402 the pressing device 30 is controlled to press the electrode assembly 23 to compress the height of the flattened layer 231 of the electrode assembly 23.
  • the pressing driving member 322 is controlled to drive the pressing member 321 to press the electrode assembly 23 to compress the height of the flattened layer 231 of the electrode assembly 23, that is, to reduce the height of the flattened layer 231 of the electrode assembly 23.
  • the pressing device 30 By controlling the pressing device 30 to press the electrode assembly 23 to compress the height of the flattened layer 231 of the electrode assembly 23, the height of the flattened layer 231 of the electrode assembly 23 can be reduced, and the internal space of the battery cell 20 occupied by the flattened layer 231 of the electrode assembly 23 can be reduced, thereby increasing the energy of the battery cell 20.
  • the support member 31 and the pressing member 321 press the two sides of the tab 23a of the electrode assembly 23 respectively, thereby improving the pressing efficiency of the pressing device 30.
  • a safety area is provided on the tab 23a of the flattened electrode assembly 23, and the connector is welded to the safety area of the tab 23a to avoid burns to the isolation membrane of the electrode assembly 23; the area of the safety area of the tab 23a of the flattened electrode assembly 23 can be increased, thereby improving the quality rate of the welded connector.
  • the processing method further includes: positioning the electrode assembly 23 when the electrode assembly 23 is pressed.
  • the position of the electrode assembly 23 during the pressing process can be ensured, and the parallelism of the flattened layer 231 of the electrode assembly 23 after the pressing can be improved.
  • the step of positioning the electrode assembly 23 includes: controlling the positioning assembly 35 of the pressing device 30 to clamp the electrode assembly 23 .
  • the positioning component 35 is arranged adjacent to the electrode component 23, and the positioning component 35 of the pressing device 30 is controlled to clamp the electrode component 23 so that the electrode component 23 is located between the support member 31 and the pressing component 32; this can ensure that the electrode component 23 maintains consistency during the pressing process, improve the parallelism of the flattened layer 231 of the electrode component 23 after pressing, and improve the quality rate of subsequent processes, for example, the subsequent process of the electrode component 23 can be a welding process.
  • Step S402 includes:
  • S502 Control the pressing member 321 at the pressing position for a pressing time greater than or equal to a preset time through the pressing driving member 322.
  • the "pressing position” refers to the position of the pressing driving member 322 of the pressing device 30 driving the driving member 322 to press the electrode assembly 23; the pressing driving member 322 of the pressing device 30 controls the pressing member 321 of the pressing device 30 to move to the pressing position, so that the pressing driving member 322 drives the pressing member 321 to press the electrode assembly 23.
  • step S502 the pressing time of the pressing member 321 at the pressing position is controlled to be greater than or equal to the preset time by the pressing driver 322.
  • the pressing driver 322 drives the pressing member 321 to move to the pressing position
  • the pressing driver 322 controls the pressing member 321 to keep applying pressure to the electrode assembly 23, so as to continuously press the electrode assembly 23, wherein the pressing time is greater than or equal to the preset time, which can effectively prevent the flattened layer 231 of the electrode assembly 23 from rebounding after pressing. Therefore, the height of the flattened layer 231 of the electrode assembly 23 can be reduced, and the internal space of the battery cell 20 occupied by the flattened layer 231 of the electrode assembly 23 can be reduced, thereby increasing the energy of the battery cell 20.
  • FIG. 13 is a schematic flow chart of a processing method of some embodiments of the present application.
  • the processing method includes:
  • Steps S601-S602 Control the pressing device 30 to press the electrode assembly 23 to compress the height of the flattened layer 231 of the electrode assembly 23. Steps S601-S602 are the same as steps S401-S402, and will not be described again.
  • S603 Control the pressing member 321 to move from the pressing position to the original position through the pressing driving member 322.
  • the “original position” refers to the position of the pressing member 321 when the pressing driving member 322 of the pressing assembly 32 does not drive the pressing member 321 .
  • the pressing driving component 322 controls the pressing component 321 to complete pressing the electrode assembly 23 , the pressing driving component 322 controls the pressing component 321 to move from the pressing position to the original position to take out the pressed electrode assembly 23 .
  • the electrode assembly 23 can be taken out after the pressing member 321 is in a safe position, thereby improving safety.
  • a processing method for a battery cell comprising: flattening the pole ear 23a of the electrode assembly 23 to obtain the flattened electrode assembly 23; providing a safety area on the pole ear 23a of the flattened electrode assembly 23, and welding the connector to the safety area of the pole ear 23a; placing the flattened electrode assembly 23 in a pressing device 30, and controlling the pressing device 30 to press the electrode assembly 23; rubber-coating the pole ear 23a of the pressed electrode assembly 23; referring to FIG. 3 , placing the rubber-coated electrode assembly 23 into the shell 22, covering the opening of the shell 22 with the end cover 21 and welding it.
  • the height of the flattened layer 231 of the electrode assembly 23 can be reduced, and the flattened layer 231 of the electrode assembly 23 occupies less space inside the battery cell 20, thereby increasing the energy of the battery cell 20.
  • welding the connector to the safe area of the tab 23a can prevent burns to the separator of the electrode assembly 23; since the flattened layer 231 of the electrode assembly 23 occupies less space inside the battery cell 20, the safe area of the tab 23a of the flattened electrode assembly 23 can be increased, thereby increasing the quality rate of the welded connector.
  • a processing method for a battery cell comprising: placing a flattened electrode assembly 23 on a support member 31 of a pressing device 30; controlling the clamping jaws 352 of a positioning assembly 35 to clamp the electrode assembly 23, so that the clamping jaws 352 guide the electrode assembly 23 in the direction of gravity of the electrode assembly 23, thereby maintaining the electrode assembly 23 in a vertical direction; controlling the pressing member 321 to press the upper side of the electrode assembly 23 through the pressing driving member 322, at which time the clamping jaws 352 move along the pressing direction of the pressing assembly 32, and maintaining the electrode assembly 23 in a vertical direction.
  • the clamping jaws 352 and the electrode assembly 23 are relatively still, ensuring that the clamping jaws 352 are fixed in position to hold the electrode assembly 23, so as to improve the parallelism of the flattened layer 231 of the electrode assembly 23;
  • the pressing time of the pressing member 321 at the pressing position is controlled by the pressing driving member 322 to be greater than or equal to the preset time, which can effectively prevent the flattened layer 231 of the electrode assembly 23 after pressing from rebounding;
  • the pressing driving member 322 controls the pressing member 321 to move from the pressing position to the original position, and takes out the pressed electrode assembly 23;
  • the pressing driving member 322 controls the pressing member 321 to move from the pressing position to the original position, so as to take out the pressed electrode assembly 23, thereby improving safety.
  • a battery cell 20 comprising an electrode assembly 23 prepared by the processing method of any of the above schemes.
  • the height range of the flattened layer 231 of the electrode assembly 23 is 0-4 mm, and the height of the flattened layer 231 of the electrode assembly 23 can be 0 mm, 0.5 mm, 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm or 4 mm.
  • the height of the flattened layer 231 of the electrode assembly 23 after piercing is in the range of 0-4 mm, thereby reducing the height of the flattened layer 231 of the electrode assembly 23 and reducing the internal space of the battery cell 20 occupied by the flattened layer 231 of the electrode assembly 23, thereby increasing the energy of the battery cell 20.
  • a battery 100 comprising a battery cell 20 according to any of the above solutions.
  • a battery cell production system is provided. Please refer to FIG. 14, which is a schematic diagram of the framework of the battery cell production system of some embodiments of the present application.
  • the battery cell production system includes a flattening device 70 and a pressing device 30 of any of the above schemes.
  • the flattening device 70 is used to flatten the electrode assembly 23 of the battery cell 20; the pressing device 30 is used to press the flattened electrode assembly 23.
  • the pressing device 30 of the battery cell production system is used to press the flattened electrode assembly 23, which can reduce the height of the flattened layer 231 of the electrode assembly 23 and reduce the internal space of the battery cell 20 occupied by the flattened layer 231 of the electrode assembly 23, thereby increasing the energy of the battery cell 20.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种墩压装置、电池、电池单体、加工方法及生产系统;墩压装置用于墩压揉平后的电极组件,包括:支撑件,用于放置所述电极组件;墩压组件,用于墩压所述电极组件,所述墩压组件和所述支撑件设置于所述电极组件的极耳的两侧。本申请实施例的墩压装置能够减小电极组件的揉平层的高度,减少电极组件的揉平层占用电池单体的内部空间,进而提升电池单体的能量。

Description

墩压装置、电池、电池单体、加工方法及生产系统 技术领域
本申请涉及电池技术领域,特别是涉及一种墩压装置、电池、电池单体、加工方法及生产系统。
背景技术
目前节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池单体的生产过程中,如何提升电池单体的能量,是一个亟待解决的问题。
发明内容
鉴于上述问题,本申请提供一种墩压装置、电池、电池单体、加工方法及生产系统,能够提升电池单体的能量。
第一方面,本申请提供一种墩压装置,用于墩压揉平后的电极组件,包括:支撑件,用于放置所述电极组件;墩压组件,用于墩压所述电极组件,所述墩压组件和所述支撑件设置于所述电极组件的极耳的两侧。
本申请实施例的技术方案中,墩压组件用于墩压电极组件,墩压组件对电极组件施加压力,能够减小电极组件的揉平层的高度,减少电极组件的揉平层占用电池单体的内部空间,进而提升电池单体的能量。
在一些实施例中,所述墩压组件包括:墩压件,用于墩压所述电极组件;墩压驱动件,与所述墩压件连接,用于驱动所述墩压件墩压所述电极组件。
通过墩压驱动件驱动墩压件墩压电极组件,以使墩压驱动件调整墩压件对电极组件施加的压力,提高墩压精度。
在一些实施例中,所述墩压装置包括支撑架,所述墩压组件安装于所述支撑架上。通过在支撑架上安装墩压组件,以使墩压组件位于电极组件的上方,便于墩压组件墩压电极组件。
在一些实施例中,所述墩压装置包括检测组件,设置于所述支撑架上,用于检测所述电极组件与所述检测组件之间的距离。
通过在支撑架上设置检测组件,以检测电极组件与检测组件之间的距离,并基于所述距离计算出电极组件的高度;通过电极组件的高度获取电极组件的揉平层的高度,通过监测揉平层的高度,能够提高墩压组件墩压电极组件的精度,提高墩压后的电极组件的一致性。
在一些实施例中,所述墩压装置包括定位组件,用于将所述电极组件定位于所述支撑件和所述墩压组件之间。通过定位组件将电极组件定位于支撑件和墩压组件之间,能够保持电极组件在墩压过程中的位置,提升墩压后电极组件的揉平层的平行度。
在一些实施例中,所述定位组件包括:安装座;夹爪,浮动安装于所述安装座上,所述夹爪用于夹持所述电极组件。通过夹爪浮动安装于安装座上,以使夹爪跟随电极组件的高度减小而移动,能够保持夹爪和电极组件之间相对静止,提高墩压装置墩压电极组件的一致性。
在一些实施例中,所述定位组件包括:夹爪驱动件,所述夹爪与所述夹爪驱动件连接,所述夹爪驱动件用于驱动所述夹爪夹持所述电极组件。通过夹爪驱动件驱动夹爪夹持电极组件,以提高夹爪夹持电极组件的稳定性。
在一些实施例中,所述定位组件包括:浮动驱动件,安装于所述安装座,所述夹爪驱动件设置于所述浮动驱动件上,所述浮动驱动件用于驱动所述夹爪和所述夹爪驱动件沿所述墩压组件的墩压方向移动。通过浮动驱动件驱动夹爪和夹爪驱动件沿墩压组件的墩压方向移动,以保持夹爪和电极组件之间相对静止。
在一些实施例中,所述浮动驱动件为浮动气缸。通过浮动气缸驱动夹爪和夹爪驱动件沿墩压组件的墩压方向移动,易于实现。
在一些实施例中,所述浮动驱动件包括:导杆,安装于所述安装座的导杆安装座;弹性件,所述弹性件套设于对应的所述导杆;轴承,设置于所述导杆上,且所述弹性件用于支撑所述轴承;安装件,设置于所述轴承上,用于安装所述夹爪驱动件。通过弹性件支撑轴承,以允许轴承沿导杆的延伸方向移动,以保持夹爪和电极组件之间相对静止,结构简单,降低成本。
在一些实施例中,所述夹爪沿所述墩压组件的墩压方向的截面形状为V字形。通过夹爪的截面形状设置为V字形,以使夹爪实现夹持不同尺寸的电极组件。
在一些实施例中,所述墩压组件的墩压方向为所述电极组件的重力方向。通过墩压组件沿电极组件的重力方向墩压电极组件,易于实现。
第二方面,本申请提供一种电池单体的加工方法,包括:将揉平后的电极组件放置于墩压装置;控制所述墩压装置对所述电极组件进行墩压,以压缩所述电极组件的揉平层的高度。通过控制墩压装置对电极组件进行墩压,以压缩电极组件的揉平层的高度,减少电极组件的极耳占用电池单体的内部空间,进而提升电池单体的能量。
在一些实施例中,所述加工方法还包括:在所述电极组件墩压时,对所述电极组件定位。通过对电极组件定位,能够保持电极组件在墩压过程中的位置,提升墩压后电极组件的揉平层的平行度。
在一些实施例中,所述在所述电极组件墩压时,对所述电极组件定位的步骤包括:控制所述墩压装置的定位组件夹持所述电极组件。
在一实施例中,所述控制所述墩压装置对所述电极组件进行墩压的步骤包括:通过所述墩压装置的墩压驱动件控制所述墩压装置的墩压件移动至墩压位置,以使所述墩压件对所述电极组件进行墩压;通过所述墩压驱动件控制所述墩压件在所述墩压位置的墩压时间大于或等于预设时间。
通过墩压驱动件控制墩压件在墩压位置的墩压时间大于或等于预设时间,实现墩压件在墩压位置上对电极组件进行持续墩压,能够防止电极组件在墩压后反弹。
在一些实施例中,在所述控制所述墩压装置对所述电极组件进行墩压的步骤之后,所述加工方法还包括:通过所述墩压驱动件控制所述墩压件从所述墩压位置移至原始位置;将墩压后的所述电极组件取出。通过墩压驱动件控制墩压件从墩压位置移至原始位置,能够保证墩压件位于安全位置后取出电极组件,提高安全性。
第三方面,本申请提供一种电池单体,所述电池单体包括通过上述实施例中的加工方法制备而成的电极组件。
在一些实施例中,所述电极组件的揉平层的高度范围为0-4mm。
第四方面,本申请提供一种电池,包括上述实施例中的电池单体。
第五方面,本申请提供一种电池单体的生产系统,包括:揉平装置,用于对所述电池单体的电极组件进行揉平;如上述实施例中的墩压装置,所述墩压装置用于对揉平后的所述电极组件进行墩压。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一些实施例的车辆的结构示意图;
图2是本申请一些实施例的电池的分解结构示意图;
图3是本申请一些实施例的电池单体的分解结构示意图;
图4是根据本申请一些实施例的墩压装置和电极组件的结构示意图;
图5是根据本申请一些实施例的电极组件的剖面示意图;
图6是本申请一些实施例的定位组件的结构示意图;
图7是本申请一些实施例的定位组件的分解示意图;
图8是本申请一些实施例的定位组件的结构示意图;
图9是本申请一些实施例的定位组件的分解示意图;
图10是本申请一些实施例的夹爪的截面示意图;
图11是本申请一些实施例的加工方法的流程示意图;
图12是本申请一些实施例的步骤S402的流程示意图;
图13是本申请一些实施例的加工方法的流程示意图;
图14是本申请一些实施例的电池单体的生产系统的框架示意图;
在附图中,附图并未按照实际的比例绘制。
标记说明:车辆1000、电池100、控制器200、马达300、箱体10、电池单体20、第一部分11、第二部分12、端盖21、壳体22、电极组件23、电极端子21a、极耳23a、揉平层231、墩压装置30、支撑件31、墩压组件32、高度方向X、墩压件321、墩压驱动件322、连接杆323、支撑架33、底座36、检测组件34、定位组件35、安装座351、夹爪352、夹爪驱动件353、浮动驱动件354、固定件355、导杆3541、弹性件3542、轴承3543和安装件3544。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片);术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请的描述中,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的描述中,需要说明的是,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
目前,从市场形势的发展来看,电池的应用越加广泛。电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
本发明人注意到,电极组件的多层极耳之间存在间隙,在电极组件的多层极耳上通过激光焊接转接件或电极端子,导致激光穿过间隙焊穿电极组件,且电极组件的极耳与转接件之间的有效焊接面积小。因此对电极组件的极耳进行揉平处理,得到揉平后的电极组件,揉平后的电极组件的极耳定义为电极组件的揉平层,以增加电极组件的揉平层的有效焊接面积,且避免激光穿过间隙。但,为了避免激光焊接的热量损坏隔膜,揉平层设计较高,电极组件的揉平层仍然会占用电极组件在电池单体内的空间,导致电池单体的能量降低。
基于以上考虑,为了解决电池单体的能量降低的问题,发明人经过深入研究,设计了一种墩压装置,通过墩压装置对揉平后的电极组件的极耳的两侧进行墩压,能够减小电极组件的揉平层的高度,减小电极组件的揉平层占用电池单体的内部空间,进而提升电池单体的能量。
本申请实施例公开的电池单体可以用于使用电池作为电源的用电装置或者使用电池作为储能元件的各种储能系统。用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆1000为例进行说明。
请参照图1,图1是本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2是本申请一些实施例的电池的分解结构示意图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳空间。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单 体20可呈圆柱体、扁平体、长方体或其它形状等。
请参照图3,图3是本申请一些实施例提供的电池单体20的分解结构示意图。电池单体20是指组成电池的最小单元。如图3,电池单体20包括有端盖21、壳体22、电极组件23以及其他的功能性部件。
端盖21是指盖合于壳体22的开口处以将电池单体20的内部环境隔绝于外部环境的部件。不限地,端盖21的形状可以与壳体22的形状相适应以配合壳体22。可选地,端盖21可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖21在受挤压碰撞时就不易发生形变,使电池单体20能够具备更高的结构强度,安全性能也可以有所提高。端盖21上可以设置有如电极端子21a等的功能性部件。电极端子21a可以用于与电极组件23电连接,电池单体20还可以包括转接件,转接件用于连接电极端子21a和电极组件23的极耳23a,以将电极端子21a与电极组件23的极耳23a电连接,以用于输出或输入电池单体20的电能。
壳体22是用于配合端盖21以形成电池单体20的内部环境的组件,其中,形成的内部环境可以用于容纳电极组件23、电解液以及其他部件。电极组件23是电池单体100中发生电化学反应的部件。壳体22内可以包含一个或更多个电极组件23。电极组件23主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔膜。正极片和负极片具有活性物质的部分构成电极组件23的主体部,正极片和负极片不具有活性物质的部分各自构成极耳23a。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳23a连接电极端子以形成电流回路。
根据本申请的一些实施例,参照图4所示,图4是根据本申请一些实施例的墩压装置和电极组件的结构示意图。本申请提供一种墩压装置30,墩压装置30用于墩压揉平后的电极组件23。墩压装置30包括支撑件31和墩压组件32;支撑件31用于放置电极组件23,墩压组件32用于墩压电极组件23,其中支撑件31和墩压组件32设置于电极组件23的极耳23a的两侧。
如图中所示,图中X方向为电极组件23的高度方向。
参照图4和5所示,图5是根据本申请一些实施例的电极组件的剖面示意图。“揉平后的电极组件23”是指电极组件23的极耳23a进行揉平处理;揉平后的电极组件23的极耳23a作为电极组件23的揉平层231。由于电极组件23的极耳23a之间存在间隙,在电极组件23的极耳23a上通过激光焊接转接件,导致激光穿过间隙焊穿电极组件23,且电极组件23的极耳23与转接件之间的有效焊接面积小。因此,电极组件23的极耳23a进行揉平处理,揉平后的电极组件23的极耳23a的一端呈直线状,揉平后的电极组件23的极耳23a的另一端呈弯曲状,进而能够避免揉平后的电极组件23的极耳23a之间存在间隙,防止激光焊穿电极组件23;此外,揉平后的电极组件23的揉平层231与转接件之间的有效焊接面积增大,易于焊接转接件。
“墩压装置30”是指用于输出压力,以通过压力对揉平后的电极组件23进行墩压。揉平后的电极组件23放置于支撑件31上,墩压组件32用于输出压力,以对放置于支撑件31上的揉平后的电极组件23进行墩压。
“电极组件23的两侧”是指电极组件23在沿高度方向(图4中的X方向)上具有极耳23a的两侧。例如,电极组件23的两侧包括电极组件23的上侧和电极组件23的下侧。
可选地,电极组件23的形状呈圆柱体状,电极组件23的两侧均具有揉平层231。在本申请的其他实施例中,电极组件23的形状呈扁平体、长方体或其它形状等。
通过在支撑件31上放置电极组件23,墩压组件32用于墩压电极组件23;其中墩压组件32对电极组件23施加压力,以压缩电极组件23的揉平层231,能够减小电极组件23的揉平层231的高度,减少电极组件23的揉平层231占用电池单体20的内部空间,进而提升电池单体20的能量。通过支撑件31和墩压组件32设置于电极组件23的极耳23a的两侧,随着墩压组件32对电极组件23施加压力,相当于支撑件31和墩压组件32分别对电极组件23的极耳23a的两侧进行墩压,提高墩压装置30的墩压效率。
根据本申请的一些实施例,可选地,揉平后的电极组件23的极耳23a用于焊接连接件,连接件用于将电极端子与电极组件23的极耳23a连接。由于电极组件23的极耳23a焊接连接件的过程中产生热辐射,而热辐射会对电极组件23的隔离膜产生烫伤,因此揉平后的电极组件23的极耳23a需要设置有安全区域,在安全区域焊接连接件,能够避免隔离膜产生烫伤。但,安全区域会占用电极组件23的极耳23a的空间,导致电极组件23的揉平层231占用电极组件23在电池单体内的空间。由于墩压装置30用于墩压揉平后的电极组件23,以减小电极组件23的揉平层231的高度;因此能够增加揉平后的电极组件23的极耳23a的安全区域的面积,进而提高焊接连接件的优良率。
根据本申请的一些实施例,可选地,请继续参照图4,墩压组件32包括墩压件321和墩压驱动件322,墩压驱动件322与墩压件321连接,用于驱动墩压件321墩压电极组件23。
“墩压件321”是指在墩压组件32墩压电极组件23的过程中与电极组件23接触的部件;例如墩压件321位于电极组件23的上侧。其中,墩压件321可以为墩压板或者墩压块。
“墩压驱动件322”是指在墩压组件32墩压电极组件23的过程中为墩压件321提供压力的部件,墩压驱动件322可以调整墩压件321施加在电极组件23的压力。
可选地,墩压组件32包括连接杆323,连接杆323用于连接墩压驱动件322和墩压件321,墩压驱动件322通过连接杆323驱动墩压件321。
通过墩压驱动件322驱动墩压件321墩压电极组件23,墩压驱动件322能够调整墩压件321对电极组件23施加的压力,提高墩压精度。
根据本申请的一些实施例,可选地,请继续参照图4,墩压装置30包括支撑架33,墩压组件32安装于支撑架33上。
“支撑架33”是指在墩压装置30中用于支撑墩压组件32的部件,墩压驱动件322安装于支撑架33上,墩压件321安装于墩压驱动件322上。
可选地,墩压装置30包括底座36,支撑架33和支撑件31固定于底座36,支撑件31位于墩压驱动件322和墩压件321的下方,以使放置在支撑件31的电极组件23位于墩压件321的下方,墩压驱动件322驱动墩压件321墩压电极组件23。
通过在支撑架33上安装墩压组件32,以使墩压组件32位于电极组件23的上方,便于墩压组件32墩压电极组件23。
根据本申请的一些实施例,可选地,请继续参照图4,墩压装置30包括检测组件34,检测组件34设置于支撑架33上,用于检测电极组件23与检测组件34之间的距离。
可选地,检测组件34可以包括距离传感器或者位移传感器,设置于支撑架33上,用于检测电极组件23与检测组件34之间 的距离。例如,检测组件34用于检测墩压件321和检测组件34之间的距离,并基于检测墩压件321和检测组件34之间的距离计算出电极组件23的高度。
通过在支撑架33上设置检测组件34,以检测电极组件23与检测组件34之间的距离,并基于距离计算出电极组件23的高度;通过电极组件23的高度获取电极组件23的揉平层231的高度,通过监测揉平层231的高度,能够提高墩压组件32墩压电极组件23的精度,提高墩压后的电极组件23的一致性。
根据本申请的一些实施例,可选地,请继续参照图4,墩压装置30包括定位组件35,定位组件35用于将电极组件23定位于支撑件31和墩压组件32之间。
可选地,定位组件35固定于底座36,且与电极组件23相邻设置,用于定位电极组件23,以使电极组件23位于支撑件31和墩压组件32之间。
通过定位组件35将电极组件23定位于支撑件31和墩压组件32之间,能够保持电极组件23在墩压过程中的位置,保证电极组件23在墩压的过程中保持一致性,提升墩压后电极组件23的揉平层231的平行度,提升后续工序的优良率,例如电极组件23的后续工序可以为焊接工序。
根据本申请的一些实施例,可选地,请继续参照图4,定位组件35包括安装座351和夹爪352,夹爪352浮动安装于安装座351上,夹爪352用于夹持电极组件23。
夹爪352可以相对于安装座351移动,以实现夹爪352浮动安装于安装座351上。在墩压组件32墩压电极组件23的过程中,电极组件23的揉平层231的高度减小,以使电极组件23的高度减小,此时夹爪352浮动安装于安装座351上,能够使得夹爪352跟随电极组件23的高度减小而移动,能够保持夹爪352和电极组件23之间相对静止,提高墩压装置30墩压电极组件23的一致性。
根据本申请的一些实施例,可选地,请继续参照图4,定位组件35包括夹爪驱动件353,夹爪352与夹爪驱动件353连接,夹爪驱动件353用于驱动夹爪352夹持电极组件23。
通过夹爪驱动件353驱动夹爪352夹持电极组件23,夹爪驱动件353能够调整夹爪352夹持电极组件23的力度,以提高夹爪352夹持电极组件23的稳定性。
根据本申请的一些实施例,可选地,请参照图4和6,图6是本申请一些实施例的定位组件的结构示意图。定位组件35包括浮动驱动件354,浮动驱动件354安装于安装座351,夹爪驱动件353设置于浮动驱动件354上,浮动驱动件354用于驱动夹爪352和夹爪驱动件353沿墩压组件32的墩压方向移动。
“墩压组件32的墩压方向”是指墩压组件32墩压电极组件23的方向,即墩压驱动件322驱动墩压件321的移动方向;例如墩压组件32墩压电极组件23的方向与电极组件23的高度方向X相同。
夹爪352沿墩压组件32的墩压方向的截面形状呈弧形或方形等,夹爪352沿墩压组件32的墩压方向的截面形状与电极组件23的形状对应设置,以便于夹爪352定位电极组件23。
在墩压组件32墩压电极组件23的过程中,电极组件23的揉平层231的高度减小,以使电极组件23的高度减小;通过浮动 驱动件354驱动夹爪352和夹爪驱动件353沿墩压组件32的墩压方向移动,以保持夹爪352和电极组件23之间相对静止,能够保证夹爪352夹持电极组件23的姿势固定。
根据本申请的一些实施例,可选地,请参照图6-7,图7是本申请一些实施例的定位组件的分解示意图。浮动驱动件354为浮动气缸,其中夹爪352安装于夹爪驱动件353,夹爪驱动件353通过固定件355安装于浮动驱动件354,浮动驱动件354安装于安装座351。
通过浮动气缸驱动夹爪352和夹爪驱动件353沿墩压组件32的墩压方向移动,易于实现。
根据本申请的一些实施例,可选地,请参照图8-9,图8是本申请一些实施例的定位组件的结构示意图,图9是本申请一些实施例的定位组件的分解示意图。浮动驱动件354包括导杆3541、弹性件3542、轴承3543和安装件3544,导杆3541安装于安装座351的导杆安装座3545,弹性件3542套设于对应的导杆3541;轴承3543设置于导杆3541上,且弹性件3542用于支撑轴承3543;安装件3544设置于轴承3543上,安装件3544用于安装夹爪驱动件352。
浮动驱动件354可以包括两个导杆3541、两个弹性件3542和两个轴承3543,两个轴承3543安装于安装件3544的一侧,安装件3544的另一侧安装夹爪驱动件352。其中,弹性件3542可以包括钢板弹簧、螺旋弹簧、扭杆弹簧、气体弹簧或橡胶弹簧;轴承3543可以为直线轴承,以沿导杆3541的延伸方向移动。
通过弹性件3542套设于对应的导杆3541,轴承3543设置于导杆3541上,且弹性件3542用于支撑轴承3543;在墩压组件32墩压电极组件23的过程中,墩压组件32对电极组件23施加压力,轴承3543在压力的作用下压缩弹性件3542,进而沿导杆3541的延伸方向移动,以保持夹爪352和电极组件23之间相对静止,结构简单,降低成本。其中,导杆3541的延伸方向与墩压组件32墩压电极组件23的方向相同。
根据本申请的一些实施例,可选地,请参照图10,图10是本申请一些实施例的夹爪的截面示意图。其中,夹爪352沿墩压组件32的墩压方向的截面形状为V字形。
通过夹爪352沿墩压组件32的墩压方向的截面形状为V字形,即夹爪352组成成多种尺寸的夹持空间,以使夹爪352实现夹持不同尺寸的电极组件23。
根据本申请的一些实施例,可选地,请继续参照图4,墩压组件32的墩压方向为电极组件23的重力方向。其中,电极组件23的重力方向与电极组件23的高度方向X相同。
通过墩压组件32沿电极组件23的重力方向墩压电极组件23,易于实现。
根据本申请的一些实施例,提供一种墩压装置30,揉平后的电极组件23放置于支撑件31,以支撑揉平后的电极组件23。定位组件35的夹爪352用于夹持电极组件23,以使夹爪352对电极组件23具有在电极组件23的重力方向上的导向,进而电极组件23保持竖直方向。通过墩压驱动件322驱动墩压件321墩压电极组件23的上侧,此时夹爪352和夹爪驱动件353相对于浮动驱动件354沿墩压组件32的墩压方向移动,保持夹爪352和电极组件23之间相对静止,保证夹爪352夹持电极组件23的姿势固定,以提升电极组件23的揉平层231的平行度。墩压件321墩压电极组件23至墩压位置,墩压驱动件322驱动墩压件321保持向电极组件23施加压力,并且保持 墩压组件32的墩压时间大于或等于预设时间,能够有效地防止墩压后的电极组件23的揉平层231反弹。在墩压驱动件322驱动墩压件321墩压电极组件23完成后,墩压驱动件322驱动墩压件321返回初始位置,夹爪驱动件353驱动夹爪352张开,以取出墩压后的电极组件23,因此能够减小电极组件23的揉平层231的高度,减少电极组件23的揉平层231占用电池单体20的内部空间,进而提升电池单体20的能量。
根据本申请的一些实施例,本申请还提供了一种电池单体的加工方法,请参照图11,图11是本申请一些实施例的加工方法的流程示意图。该加工方法包括:
S401:将揉平后的电极组件23放置于墩压装置30。
S402:控制墩压装置30对电极组件23进行墩压,以压缩电极组件23的揉平层231的高度。
在步骤S401中,对电极组件23的极耳23a进行揉平处理,得到揉平后的电极组件23,揉平后的电极组件23的极耳23a为揉平层231。将揉平后的电极组件23放置于墩压装置30,例如通过人工或者墩压装置30自动将揉平后的电极组件23放置于墩压装置30的支撑件31。
在步骤S402中,控制墩压装置30对电极组件23进行墩压,以压缩电极组件23的揉平层231的高度。具体地,控制墩压驱动件322驱动墩压件321对电极组件23进行墩压,压缩电极组件23的揉平层231的高度,即减小电极组件23的揉平层231的高度。
通过控制墩压装置30对电极组件23进行墩压,以压缩电极组件23的揉平层231的高度,能够减小电极组件23的揉平层231的高度,减少电极组件23的揉平层231占用电池单体20的内部空间,进而提升电池单体20的能量。此外,支撑件31和墩压件321分别对电极组件23的极耳23a的两侧进行墩压,提高墩压装置30的墩压效率。
可选地,在步骤S401之后,在揉平后的电极组件23的极耳23a设置有安全区域,将连接件与极耳23a的安全区域进行焊接,避免电极组件23的隔离膜产生烫伤;能够增加揉平后的电极组件23的极耳23a的安全区域的面积,进而提高焊接连接件的优良率。
根据本申请的一些实施例,加工方法还包括:在电极组件23墩压时,对电极组件23定位。
通过在电极组件23墩压时对电极组件23定位,能够保证电极组件23在墩压过程中的位置,提升墩压后电极组件23的揉平层231的平行度。
根据本申请的一些实施例,在电极组件23墩压时,对电极组件23定位的步骤包括:控制墩压装置30的定位组件35夹持电极组件23。
定位组件35与电极组件23相邻设置,控制墩压装置30的定位组件35夹持电极组件23,以使电极组件23位于支撑件31和墩压组件32之间;能够保证电极组件23在墩压的过程中保持一致性,提升墩压后电极组件23的揉平层231的平行度,提升后续工序的优良率,例如电极组件23的后续工序可以为焊接工序。
根据本申请的一些实施例,请参照图12,图12是本申请一些实施例的步骤S402的流程示意图。其中,步骤S402包括:
S501:通过墩压装置30的墩压驱动件322控制墩压装置30的墩压件321移动至墩压位置,以使墩压件321对电极组件23进行墩压。
S502:通过墩压驱动件322控制墩压件321在墩压位置的墩压时间大于或等于预设时间。
在步骤S501中,“墩压位置”是指墩压装置30的墩压驱动件322驱动驱动件322墩压电极组件23的位置;通过墩压装置30的墩压驱动件322控制墩压装置30的墩压件321移动至墩压位置,以使墩压驱动件322驱动墩压件321墩压电极组件23。
在步骤S502中,通过墩压驱动件322控制墩压件321在墩压位置的墩压时间大于或等于预设时间。具体地,在墩压驱动件322驱动墩压件321移动至墩压位置时,通过墩压驱动件322控制墩压件321保持向电极组件23施加压力,以对电极组件23持续墩压,其中墩压时间大于或等于预设时间,能够有效地防止墩压后的电极组件23的揉平层231反弹。因此能够减小电极组件23的揉平层231的高度,减少电极组件23的揉平层231占用电池单体20的内部空间,进而提升电池单体20的能量。
根据本申请的一些实施例,请参照图13,图13是本申请一些实施例的加工方法的流程示意图。加工方法包括:
S601:将揉平后的电极组件23放置于墩压装置30。
S602:控制墩压装置30对电极组件23进行墩压,以压缩电极组件23的揉平层231的高度。其中,步骤S601-S602与步骤S401-S402相同,在此不再赘述。
S603:通过墩压驱动件322控制墩压件321从墩压位置移至原始位置。
S604:将墩压后的电极组件23取出。
“原始位置”是指墩压组件32的墩压驱动件322未驱动墩压件321时墩压件321的位置。
在墩压驱动件322控制墩压件321墩压电极组件23完成后,墩压驱动件322控制墩压件321从墩压位置移至原始位置,以将墩压后的电极组件23取出。
通过墩压驱动件322控制墩压件321从墩压位置移至原始位置,能够保证墩压件321位于安全位置后取出电极组件23,提高安全性。
根据本申请的一些实施例,提供一种电池单体的加工方法,加工方法包括:对电极组件23的极耳23a进行揉平处理,得到揉平后的电极组件23;在揉平后的电极组件23的极耳23a设置有安全区域,将连接件与极耳23a的安全区域进行焊接;将揉平后的电极组件23放置于墩压装置30,并控制墩压装置30对电极组件23进行墩压;对墩压后电极组件23的极耳23a进行包胶;请参照图3,将包胶后的电极组件23放置入壳体22,将端盖21盖盒壳体22的开口并焊接。
通过控制墩压装置30对电极组件23进行墩压,以压缩电极组件23的揉平层231的高度,能够减小电极组件23的揉平层231的高度,减少电极组件23的揉平层231占用电池单体20的内部空间,进而提升电池单体20的能量。此外,将连接件与极耳23a的安全区域进行焊接,能够避免电极组件23的隔离膜产生烫伤;由于减少电极组件23的揉平层231占用电池单体20的内部空间,因此能够增加揉平后的电极组件23的极耳23a的安全区域的面积,进而提高焊接连接件的优良率。
根据本申请的一些实施例,提供一种电池单体的加工方法,加工方法包括:将揉平后的电极组件23放置于墩压装置30的支撑件31;控制定位组件35的夹爪352夹持电极组件23,以使夹爪352对电极组件23具有在电极组件23的重力方向上的导向,进而电极组件23保持竖直方向;通过墩压驱动件322控制墩压件321墩压电极组件23的上侧,此时夹爪352沿墩压组件32的墩压方向移动,保 持夹爪352和电极组件23之间相对静止,保证夹爪352夹持电极组件23的姿势固定,以提升电极组件23的揉平层231的平行度;通过墩压驱动件322控制墩压件321在墩压位置的墩压时间大于或等于预设时间,能够有效地防止墩压后的电极组件23的揉平层231反弹;通过墩压驱动件322控制墩压件321从墩压位置移至原始位置,将墩压后的电极组件23取出,通过墩压驱动件322控制墩压件321从墩压位置移至原始位置,以将墩压后的电极组件23取出,提高安全性。
根据本申请的一些实施例,提供一种电池单体20,包括通过上述任一方案的加工方法制备而成的电极组件23。
根据本申请的一些实施例,电极组件23的揉平层231的高度范围为0-4mm,电极组件23的揉平层231的高度可以为0mm、0.5mm、1mm、1.5mm、2mm、2.5mm、3mm、3.5mm或4mm。
通过墩压后的电极组件23的揉平层231的高度范围为0-4mm,实现减小电极组件23的揉平层231的高度,减少电极组件23的揉平层231占用电池单体20的内部空间,进而提升电池单体20的能量。
根据本申请的一些实施例,提供一种电池100,包括上述任一方案的电池单体20。
根据本申请的一些实施例,提供一种电池单体的生产系统,请参照图14,图14是本申请一些实施例的电池单体的生产系统的框架示意图。电池单体的生产系统包括揉平装置70和上述任一方案的墩压装置30,揉平装置70用于对电池单体20的电极组件23进行揉平;墩压装置30用于对揉平后的电极组件23进行墩压。
通过电池单体的生产系统的墩压装置30用于对揉平后的电极组件23进行墩压,能够减小电极组件23的揉平层231的高度,减少电极组件23的揉平层231占用电池单体20的内部空间,进而提升电池单体20的能量。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (21)

  1. 一种墩压装置,其中,用于墩压揉平后的电极组件,所述墩压装置包括:
    支撑件,用于放置所述电极组件;
    墩压组件,用于墩压所述电极组件,所述墩压组件和所述支撑件设置于所述电极组件的极耳的两侧。
  2. 根据权利要求1所述的墩压装置,其中,所述墩压组件包括:
    墩压件,用于墩压所述电极组件;
    墩压驱动件,与所述墩压件连接,用于驱动所述墩压件墩压所述电极组件。
  3. 根据权利要求1或2所述的墩压装置,其中,所述墩压装置包括支撑架,所述墩压组件安装于所述支撑架上。
  4. 根据权利要求3所述的墩压装置,其中,所述墩压装置包括检测组件,设置于所述支撑架上,用于检测所述电极组件与所述检测组件之间的距离。
  5. 根据权利要求1-4任一项所述的墩压装置,其中,所述墩压装置包括定位组件,用于将所述电极组件定位于所述支撑件和所述墩压组件之间。
  6. 根据权利要求5所述的墩压装置,其中,所述定位组件包括:
    安装座;
    夹爪,浮动安装于所述安装座上,所述夹爪用于夹持所述电极组件。
  7. 根据权利要求6所述的墩压装置,其中,所述定位组件包括:
    夹爪驱动件,所述夹爪与所述夹爪驱动件连接,所述夹爪驱动件用于驱动所述夹爪夹持所述电极组件。
  8. 根据权利要求7所述的墩压装置,其中,所述定位组件包括:
    浮动驱动件,安装于所述安装座,所述夹爪驱动件设置于所述浮动驱动件上,所述浮动驱动件用于驱动所述夹爪和所述夹爪驱动件沿所述墩压组件的墩压方向移动。
  9. 根据权利要求8所述的墩压装置,其中,所述浮动驱动件为浮动气缸。
  10. 根据权利要求8所述的墩压装置,其中,所述浮动驱动件包括:
    导杆,安装于所述安装座的导杆安装座;
    弹性件,所述弹性件套设于对应的所述导杆;
    轴承,设置于所述导杆上,且所述弹性件用于支撑所述轴承;
    安装件,设置于所述轴承上,用于安装所述夹爪驱动件。
  11. 根据权利要求6-10任一项所述的墩压装置,其中,所述夹爪沿所述墩压组件的墩压方向的截面形状为V字形。
  12. 根据权利要求1-11任一项所述的墩压装置,其中,所述墩压组件的墩压方向为所述电极组件的重力方向。
  13. 一种电池单体的加工方法,其中,所述加工方法包括:
    将揉平后的电极组件放置于墩压装置;
    控制所述墩压装置对所述电极组件进行墩压,以压缩所述电极组件的揉平层的高度。
  14. 根据权利要求13所述的加工方法,其中,所述加工方法还包括:
    在所述电极组件墩压时,对所述电极组件定位。
  15. 根据权利要求14所述的加工方法,其中,所述在所述电极组件墩压时,对所述电极组件定位的步骤包括:
    控制所述墩压装置的定位组件夹持所述电极组件。
  16. 根据权利要求13-15任一项所述的加工方法,其中,所述控制所述墩压装置对所述电极组件进行墩压的步骤包括:
    通过所述墩压装置的墩压驱动件控制所述墩压装置的墩压件移动至墩压位置,以使所述墩压件对所述电极组件进行墩压;
    通过所述墩压驱动件控制所述墩压件在所述墩压位置的墩压时间大于或等于预设时间。
  17. 根据权利要求13所述的加工方法,其中,在所述控制所述墩压装置对所述电极组件进行墩压的步骤之后,所述加工方法还包括:
    通过所述墩压驱动件控制所述墩压件从所述墩压位置移至原始位置;
    将墩压后的所述电极组件取出。
  18. 一种电池单体,其中,所述电池单体包括通过如权利要求13-15任一项所述的加工方法制备而成的电极组件。
  19. 根据权利要求18所述的电池单体,其中,所述电极组件的揉平层的高度范围为0-4mm。
  20. 一种电池,其中,包括如权利要求18-19任一项所述的电池单体。
  21. 一种电池单体的生产系统,其中,包括:
    揉平装置,用于对所述电池单体的电极组件进行揉平;
    如权利要求1-12任一项所述的墩压装置,所述墩压装置用于对揉平后的所述电极组件进行墩压。
PCT/CN2022/133297 2022-11-21 2022-11-21 墩压装置、电池、电池单体、加工方法及生产系统 WO2024108344A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/133297 WO2024108344A1 (zh) 2022-11-21 2022-11-21 墩压装置、电池、电池单体、加工方法及生产系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/133297 WO2024108344A1 (zh) 2022-11-21 2022-11-21 墩压装置、电池、电池单体、加工方法及生产系统

Publications (1)

Publication Number Publication Date
WO2024108344A1 true WO2024108344A1 (zh) 2024-05-30

Family

ID=91194883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133297 WO2024108344A1 (zh) 2022-11-21 2022-11-21 墩压装置、电池、电池单体、加工方法及生产系统

Country Status (1)

Country Link
WO (1) WO2024108344A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207770520U (zh) * 2018-07-12 2018-08-28 湘潭银河新能源有限公司 圆柱电池极片整平装置
CN209843873U (zh) * 2019-06-28 2019-12-24 武汉逸飞激光设备有限公司 一种电芯揉平装置
CN110676505A (zh) * 2019-10-21 2020-01-10 大同新成新材料股份有限公司 一种锂电池卷芯的智能加工装置及其方法
CN110718665A (zh) * 2019-09-24 2020-01-21 国轩新能源(庐江)有限公司 一种锂电池极耳组合式揉平方法
CN209969236U (zh) * 2019-03-15 2020-01-21 湖南盖亚中科新能源有限公司 圆柱全极耳电池极耳平整装置
CN112331900A (zh) * 2020-11-26 2021-02-05 江苏逸飞激光设备有限公司 一种电池模组生产线
KR102358805B1 (ko) * 2021-01-07 2022-02-08 (주)엔에스 이차전지 제조용 가압 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207770520U (zh) * 2018-07-12 2018-08-28 湘潭银河新能源有限公司 圆柱电池极片整平装置
CN209969236U (zh) * 2019-03-15 2020-01-21 湖南盖亚中科新能源有限公司 圆柱全极耳电池极耳平整装置
CN209843873U (zh) * 2019-06-28 2019-12-24 武汉逸飞激光设备有限公司 一种电芯揉平装置
CN110718665A (zh) * 2019-09-24 2020-01-21 国轩新能源(庐江)有限公司 一种锂电池极耳组合式揉平方法
CN110676505A (zh) * 2019-10-21 2020-01-10 大同新成新材料股份有限公司 一种锂电池卷芯的智能加工装置及其方法
CN112331900A (zh) * 2020-11-26 2021-02-05 江苏逸飞激光设备有限公司 一种电池模组生产线
KR102358805B1 (ko) * 2021-01-07 2022-02-08 (주)엔에스 이차전지 제조용 가압 장치

Similar Documents

Publication Publication Date Title
CN216872217U (zh) 电池单体、电池及用电装置
WO2024007419A1 (zh) 一种隔离组件、电池模组、电池和用电装置
WO2024016451A1 (zh) 顶盖组件、电池单体、电池及用电设备
CN220963563U (zh) 电池单体、电池、用电设备和电池单体的制造装置
WO2023142967A1 (zh) 保险结构、电池及用电装置
US20240204358A1 (en) Battery cell, battery, and electrical device
CN116438709A (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
CN216015476U (zh) 电池单体及与其相关的电池、用电装置和制备装置
CN113300037B (zh) 电池、用电设备及电池的制造方法
WO2024108344A1 (zh) 墩压装置、电池、电池单体、加工方法及生产系统
CN218548747U (zh) 绝缘膜、电池和用电装置
CN217719740U (zh) 电池及用电装置
WO2023201880A1 (zh) 集流体及其制造方法和设备、及集流体预制件
WO2023138416A1 (zh) 电池单体及其制作方法、电池、用电装置
WO2022170493A1 (zh) 电池、用电装置、制备电池的方法和设备
CN116014305A (zh) 电池单体、电池、用电装置及电池单体的制造方法
CN116249652A (zh) 连接部件、电池单体、电池及用电设备
CN217507575U (zh) 电池的连接件组、电池以及用电装置
CN216903255U (zh) 电极组件、电池单体、电池及用电装置
EP4354533A1 (en) Electrode assembly, winding method, device, battery cell, battery, and electrical apparatus
CN221057553U (zh) 电池和用电设备
WO2023065067A1 (zh) 采样组件及其制造方法、电池及用电设备
WO2023130387A1 (zh) 电池、用电装置及电池的制造方法
CN220382281U (zh) 一种电极组件、电池单体、电池及用电装置
CN220492099U (zh) 电池的箱体组件、电池以及用电装置