WO2024103982A1 - 光电器件及其制备方法、显示装置 - Google Patents

光电器件及其制备方法、显示装置 Download PDF

Info

Publication number
WO2024103982A1
WO2024103982A1 PCT/CN2023/122216 CN2023122216W WO2024103982A1 WO 2024103982 A1 WO2024103982 A1 WO 2024103982A1 CN 2023122216 W CN2023122216 W CN 2023122216W WO 2024103982 A1 WO2024103982 A1 WO 2024103982A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hole transport
metal oxide
transport material
layers
Prior art date
Application number
PCT/CN2023/122216
Other languages
English (en)
French (fr)
Inventor
周礼宽
侯文军
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2024103982A1 publication Critical patent/WO2024103982A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the field of optoelectronic technology, and in particular to optoelectronic devices and methods for preparing the same, and display devices.
  • Photoelectric devices refer to devices made based on the photoelectric effect. There are many types of photoelectric devices, including light-emitting diodes, solar cells, photodetectors, etc.
  • the structure of a photoelectric device usually includes a cathode, an electron transport layer, a photofunctional layer, a hole transport layer, and an anode.
  • the electron transport layer has a higher carrier mobility than the hole transport layer. The higher electron mobility leads to the accumulation of excess electrons in the photofunctional layer and the hole transport layer of the light-emitting layer, which increases the non-radiative Auger recombination and thus reduces the efficiency of the device.
  • the present application provides an optoelectronic device and a method for manufacturing the same, and a display device.
  • the present application provides an optoelectronic device, comprising:
  • a functional layer is arranged between the anode and the cathode, the functional layer includes a photofunctional layer and a hole transport layer, the hole transport layer is arranged between the anode and the photofunctional layer, the hole transport layer includes a hole transport material layer and a metal oxide layer, the hole transport material layer and the metal oxide layer are arranged alternately, and the hole transport material layer is arranged adjacent to the photofunctional layer.
  • the hole transport layer includes multiple hole transport material layers and multiple metal oxide layers, the multiple hole transport material layers and the multiple metal oxide layers are alternately arranged, and one of the multiple hole transport material layers is arranged adjacent to the photofunctional layer.
  • the materials of each hole transport material layer are the same and/or different;
  • the HOMO energy level of each hole transport material layer decreases along a first direction, and the first direction is a direction from the anode to the photofunctional layer.
  • the material of each hole transport material layer is independently selected from one or more of aromatic amine, polyaniline, polypyrrole, poly(p-)phenylene vinylene and its derivatives, copper phthalocyanine, aromatic tertiary amine or polynuclear aromatic tertiary amine, 4,4'-bis(p-carbazolyl)-1,1'-biphenyl compound, N,N,N',N'-tetraarylbenzidine, PEDOT:PSS and its derivatives, poly(N-vinylcarbazole) and its derivatives, polymethacrylate and its derivatives, poly(9,9-octylfluorene) and its derivatives, poly(spirofluorene) and its derivatives, N,N'-di(naphthalene-1-yl)-N,N'-diphenylbenzidine, and spiro NPB.
  • aromatic amine polyaniline
  • polypyrrole poly(p-)phenylene vinyl
  • the material of the metal oxide layer is a binary transition metal oxide.
  • the binary transition metal oxide is selected from one or more of MoO 3 , V 2 O 5 , and WO 3 .
  • the number of hole transport material layers and the number of metal oxide layers are both 1;
  • the thickness of the metal oxide layer is 0.5 to 3 nm;
  • the thickness of the hole transport material layer is 8-12 nm.
  • the number of hole transport material layers is m
  • the number of metal oxide layers is m or m-1, wherein 4 ⁇ m>1;
  • each metal oxide layer is 0.5 to 3 nm;
  • each hole transport material layer is 8-12 nm.
  • the photofunctional layer is a quantum dot light-emitting layer
  • the functional layer also includes a hole injection layer and an electron transport layer, the hole injection layer is arranged between the anode and the hole transport layer, and the electron transport layer is arranged between the cathode and the quantum dot light-emitting layer.
  • the material of the anode is selected from one or more of doped or undoped metal oxides, metals, and carbon materials; wherein the doped or undoped metal oxide is selected from one or more of ITO, FTO, IZO, ITZO, ICO, SnO 2 , In 2 O 3 , Cd:ZnO, F:SnO 2 , In:SnO 2 , Ga:SnO 2 , and AZO; the metal is selected from one or more of Ni, Pt, Au, Ag, and Ir; the carbon material is selected from one or more of graphene and carbon nanotubes;
  • the material of the hole injection layer is selected from poly(ethylenedioxythiophene): polystyrene sulfonate, poly[9,9-dioctyl-fluorene-co-N-(4-butylphenyl)-diphenylamine], polyarylamine, poly(N-vinylcarbazole), polyaniline, polypyrrole, N,N,N',N'-tetrakis(4-methoxyphenyl)-benzidine, 4-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl, 4,4',4"-tris[phenyl(m-tolyl)amino] One or more of: triphenylamine, 4,4',4"-tri(N-carbazolyl)-triphenylamine, 1,1-bis[(di-4-tolylamino)phenylcyclohexane, tetrafluor,
  • the material of the quantum dot light-emitting layer is selected from one or more of single structure quantum dots, core-shell structure quantum dots, doped or undoped inorganic perovskite quantum dots, and organic-inorganic hybrid perovskite quantum dots; wherein the single structure quantum dots are selected from one or more of II-VI group compounds, III-V group compounds, II-V group compounds, III-VI group compounds, IV-VI group compounds, I-III-VI group compounds, II-IV-VI group compounds, and IV group simple substances, and the II-VI group compounds are selected from one or more of CdSe, CdS, CdTe, ZnSe, Z One or more of nS, CdTe, ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS, ZnSeTe, ZnTeS, CdSeS, CdSeTe, CdTeS, CdZnSeS, CdZnS,
  • the material of the electron transport layer is selected from one or more of inorganic materials and organic materials ; wherein the inorganic material is selected from one or more of doped or undoped oxides, doped or undoped semiconductor particles, and nitrides; the oxide is selected from one or more of TiO2 , ZnO, ZrO2 , SnO2 , WO3 , NiO, Ta2O3 , HfO2 , Al2O3 , ZrSiO4 , BaTiO3 , BaZrO3 , SrTiO3 , MgTiO3 , TiLiO, ZnAlO, ZnSnO, ZnLiO , and InSnO; the semiconductor particles are selected from one or more of CdS, ZnSe, and ZnS; and the nitride is selected from Si3N4 , the doping elements of the oxide and the semiconductor particles are selected from one or more of Al, Mg, In,
  • the cathode material is selected from one or more of doped or undoped metals, carbon materials, doped or undoped metal oxides, and composite electrode materials; wherein the doped or undoped metal is selected from one or more of Al, Ag, Cu, Mo, Au, Ba, Ca, Mg, Ca:Al, LiF:Ca, LiF:Al, BaF2 :Al, CsF:Al, CaCO3 :Al, BaF2 :Ca:Al, Au:Mg, and Ag:Mg; the carbon material is selected from one or more of graphite, carbon nanotubes, graphene, and carbon fibers; the doped or undoped metal oxide is selected from one or more of ITO, FTO, ATO, AZO, GZO, IZO, MZO, and AMO; and the composite electrode material is selected from one or more of AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, I
  • a method for preparing a photoelectric device comprises:
  • the hole transport layer comprises a metal oxide layer and a hole transport material layer which are alternately arranged;
  • a second electrode is formed on the hole transport layer to obtain a photoelectric device.
  • the hole transport layer includes multiple metal oxide layers and multiple hole transport material layers that are alternately arranged.
  • the first electrode is an anode and the second electrode is a cathode;
  • a metal oxide layer and a hole transport material layer are alternately formed on the anode, and a light functional layer and a cathode are sequentially formed on the hole transport material layer to obtain a photoelectric device.
  • the first electrode is a cathode and the second electrode is an anode
  • a photofunctional layer is formed on the cathode, a hole transport material layer and a metal oxide layer are alternately formed on the photofunctional layer, and an anode is formed on the hole transport material layer or the metal oxide layer to obtain a photoelectric device.
  • the number of hole transport material layers and the number of metal oxide layers are both 1;
  • the thickness of the metal oxide layer is 0.5 to 3 nm;
  • the thickness of the hole transport material layer is 8-12 nm.
  • the number of hole transport material layers is m
  • the number of metal oxide layers is m or m-1, wherein 4 ⁇ m>1;
  • each metal oxide layer is 0.5 to 3 nm;
  • each hole transport material layer is 8-12 nm.
  • the materials of each hole transport material layer are the same and/or different;
  • the HOMO energy level of each hole transport material layer decreases along a first direction, and the first direction is a direction from the anode to the photofunctional layer;
  • each hole transport material layer are independently selected from one or more of aromatic amine, polyaniline, polypyrrole, poly(p-)phenylene vinylene and its derivatives, copper phthalocyanine, aromatic tertiary amine or polynuclear aromatic tertiary amine, 4,4'-bis(p-carbazolyl)-1,1'-biphenyl compound, N,N,N',N'-tetraarylbenzidine, PEDOT:PSS and its derivatives, poly(N-vinylcarbazole) and its derivatives, polymethacrylate and its derivatives, poly(9,9-octylfluorene) and its derivatives, poly(spirofluorene) and its derivatives, N,N'-di(naphthalene-1-yl)-N,N'-diphenylbenzidine, and spiro NPB.
  • aromatic amine polyaniline
  • polypyrrole poly(p-)phenylene vinylene and
  • the material of the metal oxide layer is a binary transition metal oxide.
  • the material of the metal oxide layer is selected from one or more of MoO 3 , V 2 O 5 , and WO 3 .
  • a display device includes an optoelectronic device, wherein the optoelectronic device includes:
  • a functional layer disposed between the anode and the cathode comprising a photofunctional layer and a hole transport layer, the hole transport layer being disposed between the anode and the photofunctional layer, the hole transport layer comprising a hole transport material layer and a metal oxide layer, the hole transport material layer and the metal oxide layer being disposed alternately, and the hole transport material layer being disposed adjacent to the photofunctional layer;
  • the optoelectronic device is a light emitting diode
  • the optical functional layer is a light emitting layer
  • the hole transport layer of the present application includes an alternately arranged hole transport material layer and a metal oxide layer.
  • the hole transport material layer can select appropriate materials to achieve an improvement in the hole injection level.
  • the arrangement of the metal oxide layer forms an interface junction in the hole transport layer and increases the resistance to vertical hole transport, thereby increasing the lateral current diffusion. In this way, not only current crowding is avoided, but also the hole transport capacity of the hole transport material layer is improved, and the charge injection balance of the device is improved, thereby achieving better device performance.
  • the hole transport material layer and the metal oxide layer are alternately arranged, and the operation is simple during preparation.
  • the structural layer adjacent to the optical functional layer such as the light-emitting layer is the hole transport material layer, which also avoids the adverse effects of metal ions on the optical functional layer.
  • FIG1 is a schematic diagram of the structure of an optoelectronic device provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of the structure of another optoelectronic device provided in an embodiment of the present application.
  • FIG3 is a flow chart of the method for preparing the optoelectronic device of the present application.
  • FIG4 is a schematic diagram of the device structure of a quantum dot light-emitting diode provided in Example 2 of the present application;
  • FIG5 is a schematic diagram showing a hole transport layer structure provided in Example 2 of the present application.
  • FIG6 is a schematic diagram of hole current enhancement in a hole transport layer provided in Example 2 of the present application.
  • Anode 10 a hole injection layer 20; Hole transport layer 30; hole transport material layer 310; first transport material layer 311; second transport material layer 312; third transport material layer 313; metal oxide layer 320; first oxide layer 321; second oxide layer 322; A light emitting layer 40; an electron transport layer 50; Cathode 60.
  • the embodiments of the present application provide optoelectronic devices and methods for preparing the same, and display devices.
  • the following are detailed descriptions. It should be noted that the order of description of the following embodiments does not limit the preferred order of the embodiments.
  • the term “including” means “including but not limited to”.
  • the terms first, second, third, etc. are used only as labels and do not impose numerical requirements or establish an order.
  • a and/or B may represent: A exists alone, A and B exist at the same time, and B exists alone.
  • a and B may be singular or plural.
  • expressions such as “one or more” refer to one or more of the listed items, and “more than one” refers to any combination of two or more of these items, including any combination of single items or plural items.
  • “at least one of a, b or c” or “at least one of a, b and c” can all mean: a, b, c, a-b (i.e., a and b), a-c, b-c, or a-b-c, where a, b and c can be single or plural, respectively.
  • an embodiment of the present application provides a photoelectric device, including:
  • a functional layer is arranged between the anode 10 and the cathode 60, and the functional layer includes a photofunctional layer and a hole transport layer 30.
  • the hole transport layer 30 is arranged between the anode 10 and the photofunctional layer.
  • the hole transport layer 30 includes a hole transport material layer 310 and a metal oxide layer 320.
  • the hole transport material layer 310 and the metal oxide layer 320 are alternately arranged, and the hole transport material layer 310 is arranged adjacent to the photofunctional layer.
  • the anode 10, cathode 60 and functional layer are stacked, and the optical functional layer and hole transport layer 30 of the functional layer are also stacked.
  • the optical functional layer is the light emitting layer 40; when the optoelectronic device is a solar cell, the optical functional layer is the light absorbing layer.
  • the hole transport layer 30 includes a plurality of hole transport material layers 310 and a plurality of metal oxide layers 320 , the plurality of hole transport material layers 310 and the plurality of metal oxide layers 320 are alternately arranged, and one layer of the hole transport material layers 310 is arranged adjacent to the photo-functional layer.
  • each hole transport material layer 310 are the same and/or different. That is, each hole transport material layer 310 of the hole transport layer 30 can be made of the same material; each hole transport material layer 310 can also be made of different materials; in each hole transport material layer 310, some hole transport material layers 310 can be made of the same material, while other hole transport material layers 310 can be made of different materials. Similarly, each metal oxide layer 320 can also be made of the same and/or different materials.
  • two layers of hole transport material structures (with the same or different materials) are arranged adjacent to each other, they can also be regarded as a layer of hole transport material layer 310 containing different materials, and two layers of metal oxide structures (with the same or different materials) arranged adjacent to each other can also be regarded as a layer of metal oxide layer 320.
  • the HOMO energy level of each hole transport material layer 310 decreases along the first direction, and the first direction is the direction from the anode 10 to the optical function layer. This limitation is conducive to reducing the hole injection barrier and promoting hole transport.
  • the material of the metal oxide layer 320 is a binary transition metal having semiconductor properties. Metal oxide. Further, the binary transition metal oxide is selected from one or more of MoO 3 , V 2 O 5 , and WO 3 , which have good electronic properties and low light absorption characteristics in the visible light band. Among them, the film-forming process of the metal oxide layer 320 corresponding to the MoO 3 , V 2 O 5 , and WO 3 materials can be evaporation or solution method (sol-gel method synthesized nanoparticles).
  • the alternating starting layer of the hole transport layer 30 in the first direction from the anode 10 to the optical functional layer can be a hole transport material layer 310 or a metal oxide layer 320.
  • the total number of layers of the hole transport material layer 310 is one more than the total number of layers of the metal oxide layer 320; when the alternating starting layer is a metal oxide layer 320, the total number of layers of the hole transport material layer 310 is equal to the total number of layers of the metal oxide layer 320.
  • the number of layers of the hole transport material layer 310 and the number of layers of the metal oxide layer 320 are both 1; or the number of layers of the hole transport material layer 310 is m, and the number of layers of the metal oxide layer 320 is m or m-1, wherein 4 ⁇ m>1.
  • m can be, for example, 2, 3, or 4.
  • the metal oxide layer 320 and the hole transport material layer 310 are sequentially arranged in the first direction, and the side of the hole transport material layer 310 away from the metal oxide layer 320 is adjacent to the optical functional layer.
  • the metal oxide layer 320 is arranged at the interface between the hole injection layer 20 and the hole transport material layer 310.
  • the metal oxide layer 320 and the hole transport material layer 310 are alternately arranged in the first direction.
  • the multiple metal oxide layers 320 are arranged at the interface between the hole injection layer 20 and the hole transport material layer 310, and between the hole transport material layer 310 and the hole transport material layer 310.
  • each metal oxide layer 320 is disposed between two adjacent hole transport material layers 310.
  • the multiple metal oxide layers 320 are disposed at the interfaces between the hole transport material layers 310 and the hole transport material layers 310, respectively.
  • each hole transport material layer 310 are independently selected from aromatic amines, such as 4,4'-N,N'-dicarbazolyl-biphenyl (CBP), N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4"-diamine ( ⁇ -NPD), N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)- phenyl)-4,4'-diamine (TPD), N,N'-bis(3-methylphenyl)-N,N'-bis(phenyl)-spiro(spiro-TPD), N,N'-bis(4-(N,N'-diphenyl-amino)phenyl)-N,N'-diphenylbenzidine (DNTPD), 4,4',4'-tri(N-carbazolyl)-
  • CBP 4,4'
  • the material of the hole transport material layer 310 is preferably one or more of PVK, Poly-TPD, CBP, TCTA, and TFB. According to the material properties, solution spin coating, printing or evaporation film forming process conditions can be selected.
  • the relevant performance parameters (energy level position, mobility) of the above materials are as follows: PVK (5.8/2.2eV, 2.5 ⁇ 10-6 cm -2 V -1 S -1 ), Poly-TPD (5.2/2.3eV, 1 ⁇ 10-4 cm -2 V -1 S -1 ), CBP (6.0/2.9eV, 1 ⁇ 10-3 cm -2 V -1 S -1 ), TCTA (5.7/2.4eV, 1 ⁇ 10-5 cm -2 V -1 S- 1 ), TFB (5.3/2.3eV, 1 ⁇ 10-2 cm -2 V -1 S -1 ).
  • the thickness of each metal oxide layer 320 is 0.5 to 3 nm, for example, 1 to 3 nm, 0.5 to 2 nm, and 1 to 2 nm.
  • This film thickness can produce a more appropriate vertical resistance effect to obtain an improvement in the lateral hole current, while avoiding the problem of reduced transmittance caused by excessive thickness of the film layer, and avoiding high current density-induced device performance degradation, such as electric field-assisted dissociation, Coulomb degradation, Joule heating, etc.
  • the thickness of the metal oxide layer 320 is preferably 1 to 2 nm. At this film thickness, the current density of the device increases, accompanied by a higher device brightness. This situation also shows that the relatively thick metal oxide layer 320 in the hole transport layer 30 can enhance hole injection and promote better carrier balance.
  • each hole transport material layer 310 is 8-12 nm, for example, 8-9 nm, 9-10 nm, or 10.5-12 nm.
  • the hole transport material layer 310 and the metal oxide layer 320 include a hole transport material layer 310 and a metal oxide layer 320.
  • the film thickness of the transport layer 30 can be set to 20 to 50 nm.
  • the optoelectronic device may be one of a light emitting diode, a solar cell, and a photodetector.
  • the light emitting diode may be one of a quantum dot light emitting diode (QLED), an organic light emitting diode (OLED), a sub-millimeter light emitting diode ( Mini LED ), and a micrometer light emitting diode ( Micro LED ).
  • QLED quantum dot light emitting diode
  • OLED organic light emitting diode
  • Mini LED sub-millimeter light emitting diode
  • Micro LED micrometer light emitting diode
  • the types of optoelectronic devices are not limited to double-layer devices, three-layer devices, multi-layer devices, top emitter devices, bottom emitter devices, double-sided emitter devices, rigid devices, flexible devices, upright structure devices, inverted structure devices, etc.
  • the optoelectronic device includes a cathode 60 and an anode 10, and its functional layers may also include a hole injection layer 20 (HIL), an electron blocking layer (EBL), a hole blocking layer (HBL), an electron transport layer 50 (ETL), an electron injection layer (EIL), etc.
  • HIL hole injection layer 20
  • EBL electron blocking layer
  • HBL hole blocking layer
  • ETL electron transport layer 50
  • EIL electron injection layer
  • the optoelectronic device is a quantum dot light emitting diode
  • the optical functional layer is a quantum dot light emitting layer 40
  • the functional layer also includes a hole injection layer 20 and an electron transport layer 50, the hole injection layer 20 is arranged between the anode 10 and the hole transport layer 30, and the electron transport layer 50 is arranged between the cathode 60 and the quantum dot light emitting layer 40.
  • the material of the anode 10 is selected from one or more of doped or undoped metal oxides, metals, and carbon materials; wherein the doped or undoped metal oxide is selected from one or more of ITO, FTO, IZO, ITZO, ICO, SnO 2 , In 2 O 3 , Cd:ZnO, F:SnO 2 , In:SnO 2 , Ga:SnO 2 , and AZO; the metal is selected from one or more of Ni, Pt, Au, Ag, and Ir; and the carbon material is selected from one or more of graphene and carbon nanotubes.
  • the “:” in the aforementioned expressions such as Cd:ZnO indicates doping.
  • the material of the hole injection layer 20 is selected from poly(ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), poly[9,9-dioctyl-fluorene-co-N-(4-butylphenyl)-diphenylamine] (TFB), polyarylamine, poly(N-vinylcarbazole) (PVK), polyaniline (Pan), polypyrrole (PPY), N,N,N',N'-tetrakis(4-methoxyphenyl)-benzidine (TPD), 4-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl ( ⁇ -NPD), 4,4',4"-tris[phenyl(m-tolyl)amino]triphenylamine (m-MTDATA), 4, One or more of 4',4"-tri(N-carbazolyl)-triphenylamine
  • the quantum dot light-emitting layer 40 may include red, green, and blue quantum dot light-emitting layers 40.
  • the material of the quantum dot light-emitting layer 40 is selected from one or more of single-structure quantum dots, core-shell structure quantum dots, doped or undoped inorganic perovskite quantum dots, and organic-inorganic hybrid perovskite quantum dots; wherein the single-structure quantum dots are selected from one or more of II-VI group compounds, III-V group compounds, II-V group compounds, III-VI group compounds, IV-VI group compounds, I-III-VI group compounds, II-IV-VI group compounds, and IV group simple substances, and the II-VI group compounds are selected from one or more of CdSe, CdS, CdTe, ZnSe, and Zn
  • the group III-V compound is selected from one or more of InP, InAs, GaP, GaAs, GaSb, AlN, AlP, InAsP, InNP, InNSb, GaA
  • the specific materials corresponding to the single structure quantum dots and core-shell structure quantum dots can also be selected from materials known to technicians in the optoelectronic field, and they are not listed here one by one.
  • the general structural formula of inorganic perovskite quantum dots is AMX 3 , where A is a Cs + ion; M is a divalent metal cation, including but not limited to Pb 2+ , Sn 2+ , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn 2+ , Co 2+ , Fe 2+ , Ge 2+ , Yb 2+ , Eu 2+ ; X is a halogen anion, including but not limited to Cl - , Br - , I - .
  • the material of the electron transport layer 50 is selected from one or more inorganic materials and organic materials.
  • the inorganic material can be selected from doped or undoped oxides, doped or undoped semiconductor particles, nitrides, Further, the oxide may be selected from but not limited to TiO2 , ZnO, ZrO2 , SnO2, WO3, NiO, Ta2O3, HfO2 , Al2O3 , ZrSiO4 , BaTiO3 , BaZrO3, SrTiO3 , MgTiO3 , TiLiO , ZnAlO , ZnSnO , ZnLiO, InSnO ; the semiconductor particles may be selected from but not limited to CdS, ZnSe, ZnS; the nitride may be Si3N4 ; the doping elements of the oxide and the semiconductor particles may be selected from but not limited to Al, Mg , In, Li, Ga, Cd, Cs, Cu
  • the organic material can be selected from one or more of oxazole compounds, isoxazole compounds, triazole compounds, isothiazole compounds, oxadiazole compounds, thiadiazole compounds, perylene compounds, and aluminum complexes. Further, it can be selected from but not limited to one or more of Alq3, Almq3, DVPBi, TAZ, OXD, PBD, BND, and PV.
  • the material of cathode 60 is selected from one or more of doped or undoped metals, carbon materials, doped or undoped metal oxides, and composite electrode materials; wherein the doped or undoped metal is selected from one or more of Al, Ag, Cu, Mo, Au, Ba, Ca, Mg, Ca:Al, LiF:Ca, LiF:Al, BaF2 :Al, CsF:Al, CaCO3 :Al, BaF2 :Ca:Al, Au:Mg, and Ag:Mg; the carbon material is selected from one or more of graphite, carbon nanotubes, graphene, and carbon fibers; the doped or undoped metal oxide is selected from one or more of ITO, FTO, ATO, AZO, GZO, IZO, MZO, and AMO; the composite electrode material is selected from one or more of AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/
  • Some embodiments of the present application propose a multi-layer stacked hole transport layer 30 structure, in which thin layers of transition metal oxide are inserted at intervals in the hole transport layer 30.
  • the hole transport material layer 310 of the hole transport layer 30 can be selected from materials with high hole mobility and energy level matching to achieve an improvement in the hole injection level;
  • the inserted metal oxide layer 320 forms an interface junction in the hole transport material layer 310 and appropriately increases the resistance to vertical hole transport, thereby increasing the lateral current diffusion. In this way, not only current crowding is avoided, but also the hole transport capacity of the hole transport layer 30 is improved, the charge injection balance of the quantum dot light-emitting diode is improved, and better device performance is achieved.
  • the metal oxide layer 320 is inserted into the hole transport layer 30, and a band-to-band tunneling process occurs.
  • the tunnel junction appropriately increases the vertical resistance of the hole transport layer 30, helps to balance the conductivity of the electron transport layer 50 and the hole transport layer 30, and improves the diffusion of the lateral current in the hole transport layer 30.
  • the optimized setting of the tunnel junction can also ensure appropriate vertical resistance, avoid adverse effects on the current diffusion effect, and thus avoid hindering the carrier injection efficiency.
  • the hole transport material layer 310 and the metal oxide layer 320 are stacked alternately instead of being mixed, which can avoid the problem that the organic material for hole transport and the metal oxide solvent have a large difference in polarity or the co-evaporation operation is difficult.
  • the structural layer adjacent to the light-emitting layer 40 is the hole transport material layer 310, which also avoids the quenching of quantum dot fluorescence caused by the introduction of heavy metal ions at the interface between the quantum dots and the hole transport material layer 310.
  • an embodiment of the present application further provides a method for preparing the above-mentioned optoelectronic device, comprising:
  • hole transport layer 30 includes a metal oxide layer 320 and a hole transport material layer 310 which are alternately arranged;
  • the hole transport layer 30 includes multiple metal oxide layers 320 and multiple hole transport material layers 310 that are alternately arranged.
  • the first electrode is an anode 10
  • the second electrode is a cathode 60
  • the method for preparing the optoelectronic device includes:
  • a metal oxide layer 320 and a hole transport material layer 310 are alternately formed on the anode 10;
  • a photo-functional layer and a cathode 60 are sequentially formed on the hole transport material layer 310 to obtain a photoelectric device.
  • the above preparation method is a preparation method for an upright structure device; when the optoelectronic device is a solar cell, the above preparation method is a preparation method for an inverted structure device.
  • the metal oxide layer 320 and the hole transport material layer 310 are alternately formed on the anode 10.
  • the alternate formation means that the metal oxide layer 320 and the hole transport material layer 310 are formed in turn, but it does not limit the starting layer of the alternate formation. That is, the alternately formed starting layer can be the metal oxide layer 320 or the hole transport material layer 310; but before the photofunctional layer is formed, the alternately formed ending layer should be the hole transport material layer 310, and the photofunctional layer is formed on the hole transport material layer 310.
  • the first electrode is a cathode 60
  • the second electrode is an anode 10
  • the photoelectric device The preparation method comprises:
  • a hole transport material layer 310 and a metal oxide layer 320 are alternately formed on the optical function layer;
  • the anode 10 is formed on the hole transport material layer 310 or the metal oxide layer 320 .
  • the above preparation method is a preparation method for an inverted structure device; when the optoelectronic device is a solar cell, the above preparation method is a preparation method for an upright structure device.
  • the hole transport material layer 310 and the metal oxide layer 320 are alternately formed on the photofunctional layer in sequence, and the alternately formed starting layer is the hole transport material layer 310, that is, the hole transport material layer 310 is formed on the photofunctional layer; and the alternately formed ending layer is not limited and can be the hole transport material layer 310 or the metal oxide layer 320.
  • the term "on" is a broad concept and is not limited to the adjacent arrangement of structural layers, but also includes the case where there is a spacer layer between the structural layers.
  • forming a photofunctional layer on the hole transport material layer 310 may refer to the formed photofunctional layer being adjacent to the hole transport material layer 310; and forming a cathode 60 on the photofunctional layer, an electron transport layer 50 may be disposed between the photofunctional layer and the cathode 60.
  • each hole transport solution may be the same or different, and the solvents may be the same or different; similarly, the solutes and solvents of each inorganic solution may also be selected as needed.
  • each structural layer of the optoelectronic device can be achieved by technical means well known in the art, including chemical or physical methods.
  • chemical methods include chemical vapor deposition, continuous ion layer adsorption and reaction, anodization, electrolytic deposition, and co-precipitation.
  • Physical methods can choose physical plating or solution processing.
  • physical plating methods include thermal evaporation, electron beam evaporation, magnetron sputtering, multi-arc ion plating, physical vapor deposition, atomic layer deposition, and pulsed laser deposition; solution processing methods include spin coating, printing, inkjet printing, doctor blade coating, printing, dip-pull, immersion, spraying, roll coating, casting, slit coating, and strip coating.
  • solution processing methods include spin coating, printing, inkjet printing, doctor blade coating, printing, dip-pull, immersion, spraying, roll coating, casting, slit coating, and strip coating.
  • the present application also provides a display device, including the above-mentioned optoelectronic device, wherein the optoelectronic device is a light emitting diode, and the optical functional layer is a light emitting layer 40.
  • This embodiment provides a quantum dot light emitting diode, and the device structure is ITO/PEDOT:PSS/MoO 3 (1nm)/Ploy-TPD (30nm)/RQDs/ZnO/Ag.
  • This embodiment also provides a method for preparing the above quantum dot light-emitting diode, comprising:
  • Comparative Example 1 provides a quantum dot light-emitting diode, the hole transport layer of the device is only Ploy-TPD (30nm), and the device structure is ITO/PEDOT:PSS/Ploy-TPD (30nm)/RQDs/ZnO/Ag. Except that the MoO3 metal oxide layer is not provided, the other structural layer materials and corresponding processes are the same as those in Example 1.
  • this embodiment provides a quantum dot light emitting diode, the device structure of which is ITO/PEDOT:PSS/TFB(10nm)/WO 3 (1nm)/PVK(10nm)/WO 3 (1nm)/CBP(10nm)/BQ Ds/ZnMgO/Al.
  • This embodiment also provides a method for preparing the quantum dot light-emitting diode, comprising:
  • the structure of the formed hole transport layer 30 is shown in FIG5 ;
  • FIG6 The schematic diagram of hole current enhancement in the hole transport layer 30 of the quantum dot light-emitting diode provided in this embodiment is shown in FIG6 .
  • Comparative Example 2 provides a quantum dot light-emitting diode, the hole transport layer of which is only TFB (10nm) / PVK (10nm) / CBP (10nm), and the device structure is ITO / PEDOT: PSS / TFB (10nm) / PVK (10nm) / CBP (10nm) / BQDs / ZnMgO / Al. Except that the WO 3 metal oxide layer is not provided, the other structural layer materials and corresponding processes are the same as those in Example 2.
  • the photoelectric performance and life of the quantum dot light-emitting diode devices of Examples 1 to 2 and Comparative Examples 1 to 2 were tested, and the test results are shown in Table 1.
  • the device life test adopts the 128-channel life test system of Guangzhou New Vision Company.
  • the system architecture is a constant voltage and constant current source to drive QLED, test the change of voltage or current; a photodiode detector and a test system to test the brightness (photocurrent) change of QLED; and a brightness meter to test and calibrate the brightness (photocurrent) of QLED.
  • Example 1 Compared with Example 1 and Comparative Example 1, since there are more electrons than holes in the device of Comparative Example 1, resulting in carrier imbalance, the maximum external quantum efficiency (EQE) of the device is only 12%, and the turn-on voltage is 1.65V; while Example 1 benefits from the lateral current diffusion effect of the MoO3 layer, which enhances hole injection, and the carrier recombination efficiency in the quantum dot light-emitting layer is higher, the external quantum efficiency can reach 20%, and the turn-on voltage is correspondingly reduced to 1.4V.
  • EQE maximum external quantum efficiency
  • Example 2 Since the valence band energy level of the blue quantum dots is deeper, the hole injection barrier is relatively more obvious, and the imbalance problem of holes and electrons in QLED devices is more prominent.
  • the insertion of the WO 3 layer in Example 2 increases the vertical resistance of hole transmission, thereby increasing the diffusion of the lateral current in the hole transport layer, which helps to balance the conductivity of the electron transport layer and the hole transport layer.
  • the maximum external quantum efficiency (EQE) of the device in Comparative Example 2 is 6%, and the turn-on voltage is 2.85V;

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供一种光电器件及其制备方法、显示装置。光电器件包括:阳极、空穴传输层、光功能层和阴极;空穴传输层包括空穴传输材料层和金属氧化物层,空穴传输材料层和金属氧化物层交替设置,并且空穴传输材料层与光功能层相邻设置。本申请提供的光电器件的电荷注入平衡情况得到改善,且器件性能佳。

Description

光电器件及其制备方法、显示装置
本申请要求于2022年11月15日在中国专利局提交的、申请号为202211428183.8、申请名称为“光电器件及其制备方法、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光电技术领域,具体涉及光电器件及其制备方法、显示装置。
背景技术
光电器件是指根据光电效应制作的器件,光电器件的种类很多,包括发光二极管、太阳能电池、光电探测器等。光电器件的结构通常包括阴极、电子传输层、光功能层、空穴传输层和阳极,其中,电子传输层比空穴传输层具有更高的载流子迁移率,较高的电子迁移率导致了例如发光层的光功能层和空穴传输层上过量电子的积累,增大了非辐射俄歇复合,从而导致器件效率降低。
为了改善以上问题,光电领域的技术人员提出在光功能层和电子传输层之间插入聚(甲基丙烯酸甲酯)(PMMA)、聚乙烯亚胺(PEI)、氧化铝和Cs2CO3等电荷缓冲层,以作为光功能层和电子传输层之间的电子阻挡层,从而获得更好的器件效率,该方法是平衡电荷注入的常用方法,然而,该方法在改善器件性能的同时却会产生抑制电子、升高器件系统电阻的不良影响。该领域技术人员提出的另一个方法是通过材料提高空穴注入/传输能力,以促进电荷平衡,但是受限于空穴注入/传输材料的特性,该方法对空穴能力的改善作用较小,难以满足电荷平衡的需求。
技术解决方案
本申请提供一种光电器件及其制备方法、显示装置。
本申请提供一种光电器件,包括:
阳极;
阴极;以及
设置于阳极和阴极之间的功能层,功能层包括光功能层和空穴传输层,空穴传输层设置于阳极和光功能层之间,空穴传输层包括空穴传输材料层和金属氧化物层,空穴传输材料层和金属氧化物层交替设置,并且空穴传输材料层与光功能层相邻设置。
可选地,在本申请的一些实施例中,空穴传输层包括多层空穴传输材料层和多层金属氧化物层,多层空穴传输材料层和多层金属氧化物层交替设置,并且多层空穴传输材料层中的一层与光功能层相邻设置。
可选地,在本申请的一些实施例中,各层空穴传输材料层的材料相同和/或不同;
和/或,各层空穴传输材料层的HOMO能级沿第一方向递减,第一方向为阳极至光功能层的方向。
可选地,在本申请的一些实施例中,各层空穴传输材料层的材料分别独立的选自芳基胺、聚苯胺、聚吡咯、聚(对)亚苯基亚乙烯基及其衍生物、铜酞菁、芳香族叔胺或多核芳香叔胺、4,4'-双(对咔唑基)-1,1'-联苯化合物、N,N,N',N'-四芳基联苯胺、PEDOT:PSS及其衍生物、聚(N-乙烯基咔唑)及其衍生物、聚甲基丙烯酸酯及其衍生物、聚(9,9-辛基芴)及其衍生物、聚(螺芴)及其衍生物、N,N'-二(萘-1-基)-N,N'-二苯基联苯胺、螺NPB中的一种或多种。
可选地,在本申请的一些实施例中,金属氧化物层的材料为二元过渡金属氧化物。
可选地,在本申请的一些实施例中,二元过渡金属氧化物选自MoO3、V2O5、WO3中的一种或多种。
可选地,在本申请的一些实施例中,空穴传输材料层的层数和金属氧化物层的层数均为1;
和/或,金属氧化物层的厚度为0.5~3nm;
和/或,空穴传输材料层的厚度为8~12nm。
可选地,在本申请的一些实施例中,空穴传输材料层的层数为m,金属氧化物层的层数为m或m-1,其中,4≥m>1;
和/或,每层金属氧化物层的厚度分别为0.5~3nm;
和/或,每层空穴传输材料层的厚度分别为8~12nm。
可选地,在本申请的一些实施例中,光功能层为量子点发光层;功能层还包括空穴注入层和电子传输层,空穴注入层设置于阳极和空穴传输层之间,电子传输层设置于阴极和量子点发光层之间。
可选地,在本申请的一些实施例中,阳极的材料选自掺杂或非掺杂的金属氧化物、金属、碳材料中的一种或多种;其中,掺杂或非掺杂的金属氧化物选自ITO、FTO、IZO、ITZO、ICO、SnO2、In2O3、Cd:ZnO、F:SnO2、In:SnO2、Ga:SnO2、AZO中的一种或多种;金属选自Ni、Pt、Au、Ag、Ir中的一种或多种;碳材料选自石墨烯、碳纳米管中的一种或多种;
和/或,空穴注入层的材料选自聚(亚乙基二氧噻吩):聚苯乙烯磺酸盐、聚[9,9-二辛基-芴-共-N-(4-丁基苯基)-二苯基胺]、多芳基胺、聚(N-乙烯基咔唑)、聚苯胺、聚吡咯、N,N,N',N'-四(4-甲氧基苯基)-联苯胺、4-双[N-(1-萘基)-N-苯基-氨基]联苯、4,4',4”-三[苯基(间-甲苯基)氨基]三苯基胺、4,4',4”-三(N-咔唑基)-三苯基胺、1,1-双[(二-4-甲苯基氨基)苯基环己烷、四氟-四氰基-醌二甲烷掺杂的4,4',4”-三(二苯基氨基)三苯胺、p-掺杂酞菁、F4-TCNQ掺杂的N,N′-二苯基-N,N′-二(1-萘基)-1,1′-联苯-4,4″-二胺、六氮杂苯并菲-己腈中的一种或多种;
和/或,量子点发光层的材料选自单一结构量子点、核壳结构量子点、掺杂或非掺杂的无机钙钛矿型量子点、有机-无机杂化钙钛矿型量子点中的一种或多种;其中,单一结构量子点选自II-VI族化合物、III-V族化合物、II-V族化合物、III-VI化合物、IV-VI族化合物、I-III-VI族化合物、II-IV-VI族化合物、IV族单质中的一种或多种,II-VI族化合物选自CdSe、CdS、CdTe、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe、CdZnSTe中的一种或多种,III-V族化合物选自InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP、InAlNP中的一种或多种,I-III-VI族化合物选自CuInS2、CuInSe2、AgInS2中的一种或多种;核壳结构量子点的核选自单一结构量子点中的任意一种,核壳结构量子点的壳层材料选自CdS、CdTe、CdSe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnTe、ZnSeS、ZnS中的一种或多种;无机钙钛矿型量子点的结构通式为AMX3,其中A为Cs+,M选自Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、 Co2+、Fe2+、Ge2+、Yb2+、Eu2+中的一种或多种,X选自Cl-、Br-、I-中的一种或多种;有机-无机杂化钙钛矿型量子点的结构通式为BMX3,其中B选自CH3(CH2)n-2NH3+、NH3(CH2)nNH3 2+中的一种或多种,其中n≥2,M选自Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+、Eu2+中的一种或多种,X选自Cl-、Br-、I-中的一种或多种;
和/或,电子传输层的材料选自无机材料、有机材料中的一种或多种;其中,无机材料选自掺杂或非掺杂的氧化物、掺杂或非掺杂的半导体颗粒、氮化物中的一种或多种,氧化物选自TiO2、ZnO、ZrO2、SnO2、WO3、NiO、Ta2O3、HfO2、Al2O3、ZrSiO4、BaTiO3、BaZrO3、SrTiO3、MgTiO3、TiLiO、ZnAlO、ZnSnO、ZnLiO、InSnO中的一种或多种,半导体颗粒选自CdS、ZnSe、ZnS中的一种或多种,氮化物选自Si3N4,氧化物和半导体颗粒的掺杂元素分别选自Al、Mg、In、Li、Ga、Cd、Cs、Cu、Sn中的一种或多种;有机材料选自Alq3、Almq3、DVPBi、TAZ、OXD、PBD、BND、PV中的一种或多种;
和/或,阴极的材料选自掺杂或非掺杂的金属、碳材料、掺杂或非掺杂的金属氧化物、复合电极材料中的一种或多种;其中,掺杂或非掺杂的金属选自Al、Ag、Cu、Mo、Au、Ba、Ca、Mg、Ca:Al、LiF:Ca、LiF:Al、BaF2:Al、CsF:Al、CaCO3:Al、BaF2:Ca:Al、Au:Mg、Ag:Mg中的一种或多种;碳材料选自石墨、碳纳米管、石墨烯、碳纤维中的一种或多种;掺杂或非掺杂的金属氧化物选自ITO、FTO、ATO、AZO、GZO、IZO、MZO、AMO中的一种或多种;复合电极材料选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS、ZnS/Al/ZnS、TiO2/Ag/TiO2、TiO2/Al/TiO2中的一种或多种。
另外,一种光电器件的制备方法,包括:
提供第一电极;
在第一电极上形成空穴传输层,空穴传输层包括交替设置的金属氧化物层和空穴传输材料层;
在空穴传输层上形成第二电极,得到光电器件。
可选地,在本申请的一些实施例中,空穴传输层包括交替设置的多层金属氧化物层和多层空穴传输材料层。
可选地,在本申请的一些实施例中,第一电极为阳极,第二电极为阴极;
在阳极上交替形成金属氧化物层和空穴传输材料层,在空穴传输材料层上依次形成光功能层和阴极,得到光电器件。
可选地,在本申请的一些实施例中,第一电极为阴极,第二电极为阳极;
在阴极上形成光功能层,在光功能层上交替形成空穴传输材料层和金属氧化物层,在空穴传输材料层或金属氧化物层上形成阳极,得到光电器件。
可选地,在本申请的一些实施例中,空穴传输材料层的层数和金属氧化物层的层数均为1;
和/或,金属氧化物层的厚度为0.5~3nm;
和/或,空穴传输材料层的厚度为8~12nm。
可选地,在本申请的一些实施例中,空穴传输材料层的层数为m,金属氧化物层的层数为m或m-1,其中,4≥m>1;
和/或,每层金属氧化物层的厚度分别为0.5~3nm;
和/或,每层空穴传输材料层的厚度分别为8~12nm。
可选地,在本申请的一些实施例中,各层空穴传输材料层的材料相同和/或不同;
和/或,各层空穴传输材料层的HOMO能级沿第一方向递减,第一方向为阳极至光功能层的方向;
和/或,各层空穴传输材料层的材料分别独立的选自芳基胺、聚苯胺、聚吡咯、聚(对)亚苯基亚乙烯基及其衍生物、铜酞菁、芳香族叔胺或多核芳香叔胺、4,4'-双(对咔唑基)-1,1'-联苯化合物、N,N,N',N'-四芳基联苯胺、PEDOT:PSS及其衍生物、聚(N-乙烯基咔唑)及其衍生物、聚甲基丙烯酸酯及其衍生物、聚(9,9-辛基芴)及其衍生物、聚(螺芴)及其衍生物、N,N'-二(萘-1-基)-N,N'-二苯基联苯胺、螺NPB中的一种或多种。
可选地,在本申请的一些实施例中,金属氧化物层的材料为二元过渡金属氧化物。
可选地,在本申请的一些实施例中,金属氧化物层的材料选自MoO3、V2O5、WO3中的一种或多种。
另外,一种显示装置,其中,包括光电器件,光电器件包括:
阳极;
阴极;以及
设置于阳极和阴极之间的功能层,功能层包括光功能层和空穴传输层,空穴传输层设置于阳极和光功能层之间,空穴传输层包括空穴传输材料层和金属氧化物层,空穴传输材料层和金属氧化物层交替设置,并且空穴传输材料层与光功能层相邻设置;
其中,光电器件为发光二极管,光功能层为发光层。
相对现有技术,本申请的空穴传输层包括交替设置的空穴传输材料层和金属氧化物层,一方面,空穴传输材料层可以选择适当的材料,以实现空穴注入水平的提升,另一方面,金属氧化物层的设置在空穴传输层中形成界面结,并且增加了空穴垂直传输的阻力,使得横向电流扩散增大,如此,不仅避免了电流拥挤,而且提高了空穴传输材料层的空穴传输能力,改善了器件的电荷注入平衡,从而实现了更好的器件性能。此外,空穴传输材料层与金属氧化物层交替设置,制备时操作简单,而与例如发光层的光功能层相邻的结构层为空穴传输材料层,也避免了金属离子对光功能层的不良影响。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的光电器件的结构示意图;
图2是本申请实施例提供的又一光电器件的结构示意图;
图3是本申请光电器件的制备方法流程图;
图4是本申请实施例2提供的量子点发光二极管的器件结构示意图;
图5是本申请实施例2提供的示出空穴传输层结构的示意图;
图6是本申请实施例2提供的空穴传输层中空穴电流增强的示意图。
其中,附图标记汇总如下:
阳极10;
空穴注入层20;
空穴传输层30;空穴传输材料层310;第一传输材料层311;第二传输材
料层312;第三传输材料层313;金属氧化物层320;第一氧化物层321;第二氧化物层322;
发光层40;
电子传输层50;
阴极60。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请实施例提供光电器件及其制备方法、显示装置。以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。另外,在本申请的描述中,术语“包括”是指“包括但不限于”。用语第一、第二、第三等仅仅作为标示使用,并没有强加数字要求或建立顺序。
本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。
本申请中“一种或多种”等表述,是指所列举多项中的一种或者多种,“多种”是指这些项中两种或两种以上的任意组合,包括单项(种)或复数项(种)的任意组合,例如,“a、b或c中的至少一项(种)”或“a、b和c中的至少一项(种)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
本申请的各种实施例可以以一个范围的型式存在;应当理解,以一范围型式的描述仅仅是因为方便及简洁,不应理解为对本申请范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从0.04到0.1的范围描述已经具体公开子范围,例如 从0.04到0.05,从0.05到0.06,从0.06到0.07,从0.07到0.09等,以及所数范围内的单一数字,例如0.04、0.05及0.06,此不管范围为何皆适用。另外,每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。
第一方面,请参阅图1,本申请实施例提供一种光电器件,包括:
阳极10;
阴极60;以及
设置于阳极10和阴极60之间的功能层,功能层包括光功能层和空穴传输层30,空穴传输层30设置于阳极10和光功能层之间,空穴传输层30包括空穴传输材料层310和金属氧化物层320,空穴传输材料层310和金属氧化物层320交替设置,并且空穴传输材料层310与光功能层相邻设置。
其中,阳极10、阴极60和功能层层叠设置,功能层的光功能层和空穴传输层30也层叠设置。在光电器件为发光二极管的情况下,光功能层为发光层40;在光电器件为太阳能电池的情况下,光功能层为吸光层。
在一些实施例中,请参阅图2,空穴传输层30包括多层空穴传输材料层310和多层金属氧化物层320,多层空穴传输材料层310和多层金属氧化物层320交替设置,并且空穴传输材料层310中的一层与光功能层相邻设置。
在一些实施例中,各层空穴传输材料层310的材料相同和/或不同。即,空穴传输层30的各空穴传输材料层310可以选用相同的材料;各空穴传输材料层310也可以选用不同的材料;各空穴传输材料层310中,也可以部分空穴传输材料层310选用相同的材料,而其他的空穴传输材料层310选用不同的材料。同样的,各金属氧化物层320也可以选用相同和/或不同的材料。若两层(材料相同或不同的)空穴传输材料结构相邻设置,也可以将其视作一层包含不同材料的空穴传输材料层310,两层(材料相同或不同的)相邻设置的金属氧化物结构同样也可以视作一层金属氧化物层320。
在一些实施例中,各层空穴传输材料层310的HOMO能级沿第一方向递减,第一方向为阳极10至光功能层的方向。此种限定有利于减小空穴注入势垒,促进空穴传输。
在一些实施例中,金属氧化物层320的材料为具有半导体特性的二元过渡 金属氧化物。进一步的,二元过渡金属氧化物选自MoO3、V2O5、WO3中的一种或多种,这些氧化物具备良好的电子性能和可见光波段的低光吸收特性。其中,MoO3、V2O5、WO3材料对应的金属氧化物层320的成膜制作工艺可以是蒸镀或溶液法(溶胶凝胶法合成的纳米颗粒)。
空穴传输层30在阳极10至光功能层的第一方向上的交替起始层可以为空穴传输材料层310或金属氧化物层320。一般而言,在交替起始层为空穴传输材料层310的情况下,空穴传输材料层310的总层数比金属氧化物层320的总层数多一层;在交替起始层为金属氧化物层320的情况下,空穴传输材料层310的总层数与金属氧化物层320的总层数相等。基于此,在一些实施例中,空穴传输材料层310的层数和金属氧化物层320的层数均为1;或者空穴传输材料层310的层数为m,金属氧化物层320的层数为m或m-1,其中,4≥m>1。m可以例如为2、3、4。
进一步的,在空穴传输材料层310和金属氧化物层320的层数均为1的情况下,金属氧化物层320、空穴传输材料层310在第一方向上依次设置,并且空穴传输材料层310的远离金属氧化物层320的一侧相邻于光功能层。在例如存在空穴注入层20的情况下,金属氧化物层320即设置在空穴注入层20与空穴传输材料层310的界面处。
在空穴传输材料层310的层数为m、金属氧化物层320的层数也为m的情况下,金属氧化物层320、空穴传输材料层310在第一方向上依次交替设置。在例如存在空穴注入层20的情况下,多层金属氧化物层320即分别设置在空穴注入层20与空穴传输材料层310、以及空穴传输材料层310与空穴传输材料层310界面处。
在空穴传输材料层310的层数为m、金属氧化物层320的层数为m-1的情况下,每层金属氧化物层320均设置于相邻的两层空穴传输材料层310之间。在例如存在空穴注入层20的情况下,多层金属氧化物层320即分别设置在空穴传输材料层310与空穴传输材料层310界面处。
在一些实施例中,各层空穴传输材料层310的材料分别独立的选自芳基胺,例如4,4'-N,N'-二咔唑基-联苯(CBP)、N,N'-二苯基-N,N'-双(1-萘基)-1,1'-联苯-4,4”-二胺(α-NPD)、N,N'-二苯基-N,N'-双(3-甲基苯基)-(1,1'-联苯 基)-4,4'-二胺(TPD)、N,N'-双(3-甲基苯基)-N,N'-双(苯基)-螺(螺-TPD)、N,N'-二(4-(N,N'-二苯基-氨基)苯基)-N,N'-二苯基联苯胺(DNTPD)、4,4',4'-三(N-咔唑基)-三苯胺(TCTA)、三(3-甲基苯基苯基氨基)-三苯胺(m-MTDATA)、聚[(9,9'-二辛基芴-2,7-二基)-co-(4,4'-(N-(4-仲丁基苯基)二苯胺))](TFB)和聚(4-丁基苯基-二苯基胺)(聚-TPD);聚苯胺;聚吡咯;聚(对)亚苯基亚乙烯基及其衍生物,例如聚(亚苯基亚乙烯基)(PPV)、聚[2-甲氧基-5-(2-乙基己氧基)-1,4-亚苯基亚乙烯基](MEH-PPV)和聚[2-甲氧基-5-(3',7'-二甲基辛氧基)-1,4-亚苯基亚乙烯基](MOMO-PPV);铜酞菁;芳香族叔胺或多核芳香叔胺;4,4'-双(对咔唑基)-1,1'-联苯化合物;N,N,N',N'-四芳基联苯胺;PEDOT:PSS及其衍生物;聚(N-乙烯基咔唑)(PVK)及其衍生物;聚甲基丙烯酸酯及其衍生物;聚(9,9-辛基芴)及其衍生物;聚(螺芴)及其衍生物;N,N'-二(萘-1-基)-N,N'-二苯基联苯胺(NPB);螺NPB;以及前述化合物的组合。
其中,空穴传输材料层310的材料优选PVK、Poly-TPD、CBP、TCTA、TFB中的一种或多种。根据材料特性,可以选择溶液法旋涂、印刷或蒸镀成膜工艺条件。前述材料相关性能参数(能级位置、迁移率)如下:PVK(5.8/2.2eV,2.5×10-6cm-2V-1S-1)、Ploy-TPD(5.2/2.3eV,1×10-4cm-2V-1S-1)、CBP(6.0/2.9eV,1×10-3cm-2V-1S-1)、TCTA(5.7/2.4eV,1×10-5cm-2V-1S-1)、TFB(5.3/2.3eV,1×10-2cm-2V-1S-1)。
在一些实施例中,每层金属氧化物层320的厚度分别为0.5~3nm,例如可以为1~3nm、0.5~2nm、1~2nm。此种膜厚能够产生较合适的垂直电阻作用,以获得横向空穴电流的改善,同时又能避免膜层过厚导致的透光率降低的问题,避免高电流密度诱导器件性能退化,例如电场辅助解离、库仑退化、焦耳热等。进一步的,金属氧化物层320的厚度优选为1~2nm,此种膜厚下,器件的电流密度增加,并伴随着更高的器件亮度,此种情况也表明了空穴传输层30中相对较厚的金属氧化物层320可以增强空穴注入,促进更好的载流子平衡。
在一些实施例中,每层空穴传输材料层310的厚度分别为8~12nm,例如可以为8~9nm、9~10nm、10.5~12nm。
在一些实施例中,包括空穴传输材料层310和金属氧化物层320的空穴传 输层30(HTL)的膜厚可以设置为20~50nm。
本申请中,光电器件可以为发光二极管、太阳能电池、光电探测器中的一种。进一步的,发光二极管可以为量子点发光二极管(QLED)、有机发光二极管(OLED)、次毫米发光二极管(Mini LED)、微米发光二极管(Micro LED)中的一种。光电器件的类型不限于双层器件、三层器件、多层器件、顶发射极器件、底发射极器件、双面发射器件、刚性器件、柔性器件、正置结构器件、倒置结构器件等。
此外,本申请的实施例中,包括了阴极60、阳极10的光电器件,其功能层还可以包括空穴注入层20(HIL)、电子阻挡层(EBL)、空穴阻挡层(HBL)、电子传输层50(ETL)、电子注入层(EIL)等。
在一些实施例中,光电器件为量子点发光二极管,光功能层为量子点发光层40;功能层还包括空穴注入层20和电子传输层50,空穴注入层20设置于阳极10和空穴传输层30之间,电子传输层50设置于阴极60和量子点发光层40之间。
在一些实施例中,阳极10的材料选自掺杂或非掺杂的金属氧化物、金属、碳材料中的一种或多种;其中,掺杂或非掺杂的金属氧化物选自ITO、FTO、IZO、ITZO、ICO、SnO2、In2O3、Cd:ZnO、F:SnO2、In:SnO2、Ga:SnO2、AZO中的一种或多种;金属选自Ni、Pt、Au、Ag、Ir中的一种或多种;碳材料选自石墨烯、碳纳米管中的一种或多种。前述Cd:ZnO等表述中的“:”表示掺杂。
空穴注入层20的材料选自聚(亚乙基二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)、聚[9,9-二辛基-芴-共-N-(4-丁基苯基)-二苯基胺](TFB)、多芳基胺、聚(N-乙烯基咔唑)(PVK)、聚苯胺(Pan)、聚吡咯(PPY)、N,N,N',N'-四(4-甲氧基苯基)-联苯胺(TPD)、4-双[N-(1-萘基)-N-苯基-氨基]联苯(α-NPD)、4,4',4”-三[苯基(间-甲苯基)氨基]三苯基胺(m-MTDATA)、4,4',4”-三(N-咔唑基)-三苯基胺(TCTA)、1,1-双[(二-4-甲苯基氨基)苯基环己烷(TAPC)、掺杂四氟-四氰基-醌二甲烷(F4-TCNQ)的4,4',4”-三(二苯基氨基)三苯胺(TDATA)、p-掺杂酞菁(例如,F4-TCNQ-掺杂的锌酞菁(ZnPc))、F4-TCNQ掺杂的N,N′-二苯基-N,N′-二(1-萘基)-1,1′-联苯-4,4″-二胺(α-NPD)、六氮杂苯并菲-己腈(HAT-CN)中的一种或多种。空穴注入层20的溶液优选水相PEDOT:PSS溶液。
量子点发光层40可以包括红、绿、蓝量子点发光层40。量子点发光层40的材料选自单一结构量子点、核壳结构量子点、掺杂或非掺杂的无机钙钛矿型量子点、有机-无机杂化钙钛矿型量子点中的一种或多种;其中,单一结构量子点选自II-VI族化合物、III-V族化合物、II-V族化合物、III-VI化合物、IV-VI族化合物、I-III-VI族化合物、II-IV-VI族化合物、IV族单质中的一种或多种,II-VI族化合物选自CdSe、CdS、CdTe、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe、CdZnSTe中的一种或多种,III-V族化合物选自InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP、InAlNP中的一种或多种,I-III-VI族化合物选自CuInS2、CuInSe2、AgInS2中的一种或多种;核壳结构量子点的核选自单一结构量子点中的任意一种,核壳结构量子点的壳层材料选自CdS、CdTe、CdSe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnTe、ZnSeS、ZnS中的一种或多种。单一结构量子点以及核壳结构量子点对应的具体材料还可以选用光电领域的技术人员所知悉的材料,在此不再一一列举。而无机钙钛矿型量子点的结构通式为AMX3,其中A为Cs+离子;M为二价金属阳离子,包括但不限于Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+、Eu2+;X为卤素阴离子,包括但不限于Cl-、Br-、I-。有机-无机杂化钙钛矿型量子点的结构通式为BMX3,其中B为有机胺阳离子,包括但不限于CH3(CH2)n-2NH3+(n≥2)、NH3(CH2)nNH3 2+(n≥2),当n=2时,无机金属卤化物八面体MX6 4-通过共顶的方式连接,金属阳离子M位于卤素八面体的体心,有机胺阳离子B填充在八面体间的空隙内,形成无限延伸的三维结构,当n>2时,以共顶的方式连接的无机金属卤化物八面体MX6 4-在二维方向延伸形成层状结构,层间插入有机胺阳离子双分子层(质子化单胺)或有机胺阳离子单分子层(质子化双胺),有机层与无机层相互交叠形成稳定的二维层状结构;M为二价金属阳离子,包括但不限于Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+、Eu2+;X为卤素阴离子,包括但不限于Cl-、Br-、I-
电子传输层50的材料选自无机材料、有机材料中的一种或多种。其中,无机材料可以选自掺杂或非掺杂的氧化物、掺杂或非掺杂的半导体颗粒、氮化 物中的一种或多种。进一步地,氧化物可以选自但不限于TiO2、ZnO、ZrO2、SnO2、WO3、NiO、Ta2O3、HfO2、Al2O3、ZrSiO4、BaTiO3、BaZrO3、SrTiO3、MgTiO3、TiLiO、ZnAlO、ZnSnO、ZnLiO、InSnO;半导体颗粒可以选自但不限于CdS、ZnSe、ZnS;氮化物可以选择Si3N4;氧化物以及半导体颗粒的掺杂元素可以分别选自但不限于Al、Mg、In、Li、Ga、Cd、Cs、Cu、Sn。而有机材料可以选自噁唑类化合物、异噁唑类化合物、三唑类化合物、异噻唑类化合物、噁二唑类化合物、噻二唑类化合物、苝类化合物、铝络合物中的一种或多种,进一步的,可以选自但不限于Alq3、Almq3、DVPBi、TAZ、OXD、PBD、BND、PV中的一种或多种。
阴极60的材料选自掺杂或非掺杂的金属、碳材料、掺杂或非掺杂的金属氧化物、复合电极材料中的一种或多种;其中,掺杂或非掺杂的金属选自Al、Ag、Cu、Mo、Au、Ba、Ca、Mg、Ca:Al、LiF:Ca、LiF:Al、BaF2:Al、CsF:Al、CaCO3:Al、BaF2:Ca:Al、Au:Mg、Ag:Mg中的一种或多种;碳材料选自石墨、碳纳米管、石墨烯、碳纤维中的一种或多种;掺杂或非掺杂的金属氧化物选自ITO、FTO、ATO、AZO、GZO、IZO、MZO、AMO中的一种或多种;复合电极材料选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS、ZnS/Al/ZnS、TiO2/Ag/TiO2、TiO2/Al/TiO2中的一种或多种,即,阴极60可以为例如AZO/Ag/AZO、AZO/Al/AZO的复合电极。
本申请的一些实施例提出了多层堆叠的空穴传输层30结构,在空穴传输层30内间隔的插入薄层过渡金属氧化物,一方面,空穴传输层30的空穴传输材料层310可以选择高空穴迁移率、能级匹配的材料进行配合,实现空穴注入水平的提升;另一方面,插入的金属氧化物层320在空穴传输材料层310形成界面结,并且适当的增加了空穴垂直传输的阻力,使得横向电流扩散增大,如此,不仅避免了电流拥挤,而且提高了空穴传输层30的空穴传输能力,改善了量子点发光二极管的电荷注入平衡,实现了更好的器件性能。
具体的,空穴传输层30中插入金属氧化物层320,会发生带间隧穿过程,隧道结适当地增加了空穴传输层30的垂直电阻,有助于平衡电子传输层50和空穴传输层30的电导率,提高空穴传输层30中横向电流的扩散。而本申请 中关于隧道结的优化设置,也能够保证适当的垂直阻力,避免对电流扩散效应产生不良影响,从而避免对载流子注入效率的阻碍。
此外,空穴传输材料层310与金属氧化物层320采用了交替堆叠、而非共混的方式,能够避免空穴传输的有机材料和金属氧化物的溶剂极性相差较大、或共蒸发操作困难的问题。而与发光层40相邻的结构层为空穴传输材料层310,也避免了在量子点与空穴传输材料层310界面处引入重金属离子导致的量子点荧光的猝灭。
另外,请参阅图3,本申请的实施例还提供了上述光电器件的制备方法,包括:
S11、提供第一电极;
S12、在第一电极上形成空穴传输层30,空穴传输层30包括交替设置的金属氧化物层320和空穴传输材料层310;
S13、在空穴传输层30上形成第二电极,得到光电器件。
在一些实施例中,空穴传输层30包括交替设置的多层金属氧化物层320和多层空穴传输材料层310。
在一些实施例中,第一电极为阳极10,第二电极为阴极60;光电器件的制备方法包括:
提供阳极10;
在阳极10上交替形成金属氧化物层320和空穴传输材料层310;
在空穴传输材料层310上依次形成光功能层和阴极60,得到光电器件。
在光电器件为发光二极管的情况下,上述制备方法为正置结构器件的制备方法;在光电器件为太阳能电池的情况下,上述制备方法为倒置结构器件的制备方法。
需要说明的是,在阳极10上交替形成金属氧化物层320和空穴传输材料层310,交替形成表明轮流形成金属氧化物层320和空穴传输材料层310,但并不限制交替形成的起始层。即,交替形成的起始层可以是金属氧化物层320,也可以是空穴传输材料层310;但在形成光功能层之前,交替形成的结束层应为空穴传输材料层310,在空穴传输材料层310上再形成光功能层。
在另一些实施例中,第一电极为阴极60,第二电极为阳极10,光电器件 的制备方法包括:
提供阴极60;
在阴极60上形成光功能层;
在光功能层上依次交替形成空穴传输材料层310和金属氧化物层320;
在空穴传输材料层310或金属氧化物层320上形成阳极10。
在光电器件为发光二极管的情况下,上述制备方法为倒置结构器件的制备方法;在光电器件为太阳能电池的情况下,上述制备方法为正置结构器件的制备方法。
需要说明的是,在光功能层上依次交替形成空穴传输材料层310和金属氧化物层320,交替形成的起始层为空穴传输材料层310,即,在光功能层上形成空穴传输材料层310;而交替形成的结束层不作限制,可以是空穴传输材料层310,也可以是金属氧化物层320。
上述两种制备方法中,其中所提到的“在……上”为广义概念,并不限于结构层相邻设置,也包括结构层相互之间存在间隔层的情况。例如,在空穴传输材料层310上形成光功能层,可以指代形成的光功能层与空穴传输材料层310相邻设置;而在光功能层上形成阴极60,则光功能层与阴极60之间还可以设置有电子传输层50等。
可以存在多份空穴传输溶液和多份无机溶液,以分别形成至少一层空穴传输材料层310和至少一层金属氧化物层320。各空穴传输溶液的溶质可以相同,也可以不相同,溶剂可以相同,也可以不相同;同样的,各无机溶液的溶质和溶剂也可以根据需要进行选择。
光电器件的各结构层的沉积/制备可采用本领域熟知的技术手段实现,包括利用化学法或物理法实现。其中,化学法例如为化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法、共沉淀法。物理法可以选择物理镀膜法或溶液加工法。具体的,物理镀膜法例如为热蒸发镀膜法、电子束蒸发镀膜法、磁控溅射法、多弧离子镀膜法、物理气相沉积法、原子层沉积法、脉冲激光沉积法;溶液加工法例如为旋涂法、印刷法、喷墨打印法、刮涂法、打印法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法、条状涂布法。具体的处理方式与处理条件可参考本领域中的常见方式,在此不再赘 述。
另外,本申请还提供了一种显示装置,包括上述的光电器件,其中,光电器件为发光二极管,光功能层为发光层40。
实施例1
本实施例提供了一种量子点发光二极管,该器件结构为ITO/PEDOT:PSS/MoO3(1nm)/Ploy-TPD(30nm)/RQDs/ZnO/Ag。
本实施例还提供了上述量子点发光二极管的制备方法,包括:
S1:在阳极ITO上旋涂空穴注入层PEDOT:PSS材料,然后100℃退火15min;
S2:通过蒸镀方式形成1nm MoO3的金属氧化物层,然后在其上通过蒸镀方式形成30nm Ploy-TPD的空穴传输材料层,100℃退火15min;
S3:在空穴传输材料层上形成CdZnSe/ZnSe/ZnS红色量子点的发光层;
S4:在发光层上沉积ZnO的乙醇溶液,在80℃热板上进行热退火10min,得到电子传输层;
S5:通过蒸镀Ag形成阴极,封装得到量子点发光二极管器件。
对比例1
对比例1提供了一种量子点发光二极管,该器件的空穴传输层仅为Ploy-TPD(30nm),该器件结构为ITO/PEDOT:PSS/Ploy-TPD(30nm)/RQDs/ZnO/Ag。除了不设置MoO3金属氧化物层,其余结构层材料及对应工艺均与实施例1相同。
实施例2
参见图4,本实施例提供了一种量子点发光二极管,该器件结构为ITO/PEDOT:PSS/TFB(10nm)/WO3(1nm)/PVK(10nm)/WO3(1nm)/CBP(10nm)/BQ Ds/ZnMgO/Al。
本实施例还提供了上述量子点发光二极管的制备方法,包括:
S1:在ITO阳极10上旋涂PEDOT:PSS材料,然后100℃退火15min,形成空穴注入层20;
S2:在空穴注入层20上形成空穴传输层30,空穴传输层30由以下功能层堆叠形成:
旋涂TFB材料,形成10nm的第一传输材料层311;
蒸镀WO3材料,形成1nm的第一氧化物层321;
旋涂PVK材料,形成10nm的第二传输材料层312;
蒸镀WO3材料,形成1nm的第二氧化物层322;
蒸镀CBP材料,形成10nm的第三传输材料层313;
形成的空穴传输层30的结构参见图5;
S3:在第三传输材料层313上形成CdZnSe/ZnS蓝色量子点的发光层40;
S4:在发光层40上沉积ZnMgO的乙醇溶液,在80℃热板上进行热退火10min,得到电子传输层50;
S5:通过蒸镀Al形成阴极60,封装得到量子点发光二极管器件。
本实施例提供的量子点发光二极管的空穴传输层30中空穴电流增强的示意图参见图6。
对比例2
对比例2提供了一种量子点发光二极管,该器件的空穴传输层仅为TFB(10nm)/PVK(10nm)/CBP(10nm),该器件结构为ITO/PEDOT:PSS/TFB(10nm)/PVK(10nm)/CBP(10nm)/BQDs/ZnMgO/Al。除了不设置WO3金属氧化物层,其余结构层材料及对应工艺均与实施例2相同。
对实施例1~2、对比例1~2的量子点发光二极管器件的光电性能和寿命进行测试,测试结果参见表1。其中,器件的寿命测试采用广州新视界公司的128路寿命测试系统。系统架构为恒压恒流源驱动QLED,测试电压或电流的变化;光电二极管探测器和测试系统,测试QLED的亮度(光电流)变化;亮度计测试校准QLED的亮度(光电流)。
表1器件测试数据

从表1可以看出,实施例1与对比例1之间,由于对比例1的器件中电子多于空穴,导致载流子不平衡,器件的最大外量子效率(EQE)仅为12%,启亮电压为1.65V;而实施例1得益于MoO3层的横向电流扩散作用,增强了空穴注入,量子点发光层中的载流子复合效率更高,外量子效率可达20%,启亮电压相应地降低到1.4V。基于载流子性能的提高,插入MoO3层的实施例1提供的器件工作寿命(T95@1000nit=4500h)相比于对比例1提供的器件(T95@1000nit=2100h)有较大幅度提高。
由于在蓝色量子点的价带能级更深,导致空穴注入势垒相对更明显,在QLED器件中表现为空穴、电子的不平衡问题更为突出。实施例2与对比例2之间,实施例2中WO3层的插入,产生的隧道结增加了空穴传输的垂直电阻,从而提高了空穴传输层中横向电流的扩散,有助于平衡电子传输层和空穴传输层的电导率。根据测试结果,对比例2器件的最大外量子效率(EQE)为6%,启亮电压为2.85V;实施例2得益于两层WO3的横向电流扩散作用,增强了空穴注入,量子点发光层中的载流子复合效率更高,外量子效率可达18%,启亮电压相应地降低至2.2V。由于电荷平衡的改善,以及运行过程中过量电子的损伤降低,插入WO3层的实施例2提供的器件工作寿命(T95@1000nit=160h)相比于对比例2提供的器件(T95@1000nit=30h)有较大幅度提高。
以上对本申请实施例所提供的光电器件及其制备方法、显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 光电器件,其中,包括:
    阳极;
    阴极;以及
    设置于所述阳极和所述阴极之间的功能层,所述功能层包括光功能层和空穴传输层,所述空穴传输层设置于所述阳极和所述光功能层之间,所述空穴传输层包括空穴传输材料层和金属氧化物层,所述空穴传输材料层和所述金属氧化物层交替设置,并且所述空穴传输材料层与所述光功能层相邻设置。
  2. 根据权利要求1所述的光电器件,其中,所述空穴传输层包括多层空穴传输材料层和多层金属氧化物层,多层所述空穴传输材料层和多层所述金属氧化物层交替设置,并且多层所述空穴传输材料层中的一层与所述光功能层相邻设置。
  3. 根据权利要求2所述的光电器件,其中,各层所述空穴传输材料层的材料相同和/或不同;
    和/或,各层所述空穴传输材料层的HOMO能级沿第一方向递减,所述第一方向为所述阳极至所述光功能层的方向。
  4. 根据权利要求2所述的光电器件,其中,各层所述空穴传输材料层的材料分别独立的选自芳基胺、聚苯胺、聚吡咯、聚(对)亚苯基亚乙烯基及其衍生物、铜酞菁、芳香族叔胺或多核芳香叔胺、4,4'-双(对咔唑基)-1,1'-联苯化合物、N,N,N',N'-四芳基联苯胺、PEDOT:PSS及其衍生物、聚(N-乙烯基咔唑)及其衍生物、聚甲基丙烯酸酯及其衍生物、聚(9,9-辛基芴)及其衍生物、聚(螺芴)及其衍生物、N,N'-二(萘-1-基)-N,N'-二苯基联苯胺、螺NPB中的一种或多种。
  5. 根据权利要求1所述的光电器件,其中,所述金属氧化物层的材料为二元过渡金属氧化物。
  6. 根据权利要求5所述的光电器件,其中,所述二元过渡金属氧化物选自MoO3、V2O5、WO3中的一种或多种。
  7. 根据权利要求1所述的光电器件,其中,所述空穴传输材料层的层数和所述金属氧化物层的层数均为1;
    和/或,所述金属氧化物层的厚度为0.5~3nm;
    和/或,所述空穴传输材料层的厚度为8~12nm。
  8. 根据权利要求2所述的光电器件,其中,所述空穴传输材料层的层数为m,所述金属氧化物层的层数为m或m-1,其中,4≥m>1;
    和/或,每层所述金属氧化物层的厚度分别为0.5~3nm;
    和/或,每层所述空穴传输材料层的厚度分别为8~12nm。
  9. 根据权利要求1所述的光电器件,其中,所述光功能层为量子点发光层;所述功能层还包括空穴注入层和电子传输层,所述空穴注入层设置于所述阳极和所述空穴传输层之间,所述电子传输层设置于所述阴极和所述量子点发光层之间。
  10. 根据权利要求9所述的光电器件,其中,所述阳极的材料选自掺杂或非掺杂的金属氧化物、金属、碳材料中的一种或多种;其中,所述掺杂或非掺杂的金属氧化物选自ITO、FTO、IZO、ITZO、ICO、SnO2、In2O3、Cd:ZnO、F:SnO2、In:SnO2、Ga:SnO2、AZO中的一种或多种;所述金属选自Ni、Pt、Au、Ag、Ir中的一种或多种;所述碳材料选自石墨烯、碳纳米管中的一种或多种;
    和/或,所述空穴注入层的材料选自聚(亚乙基二氧噻吩):聚苯乙烯磺酸盐、聚[9,9-二辛基-芴-共-N-(4-丁基苯基)-二苯基胺]、多芳基胺、聚(N-乙烯基咔唑)、聚苯胺、聚吡咯、N,N,N',N'-四(4-甲氧基苯基)-联苯胺、4-双[N-(1-萘基)-N-苯基-氨基]联苯、4,4',4”-三[苯基(间-甲苯基)氨基]三苯基胺、4,4',4”-三(N-咔唑基)-三苯基胺、1,1-双[(二-4-甲苯基氨基)苯基环己烷、四氟-四氰基-醌二甲烷掺杂的4,4',4”-三(二苯基氨基)三苯胺、p-掺杂酞菁、F4-TCNQ掺杂的N,N′-二苯基-N,N′-二(1-萘基)-1,1′-联苯-4,4″-二胺、六氮杂苯并菲-己腈中的一种或多种;
    和/或,所述量子点发光层的材料选自单一结构量子点、核壳结构量子点、掺杂或非掺杂的无机钙钛矿型量子点、有机-无机杂化钙钛矿型量子点中的一种或多种;其中,所述单一结构量子点选自II-VI族化合物、III-V族化合物、II-V族化合物、III-VI化合物、IV-VI族化合物、I-III-VI族化合物、II-IV-VI族化合物、IV族单质中的一种或多种,所述II-VI族化合物选自CdSe、CdS、CdTe、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、 ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe、CdZnSTe中的一种或多种,所述III-V族化合物选自InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP、InAlNP中的一种或多种,所述I-III-VI族化合物选自CuInS2、CuInSe2、AgInS2中的一种或多种;所述核壳结构量子点的核选自所述单一结构量子点中的任意一种,所述核壳结构量子点的壳层材料选自CdS、CdTe、CdSe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnTe、ZnSeS、ZnS中的一种或多种;所述无机钙钛矿型量子点的结构通式为AMX3,其中A为Cs+,M选自Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+、Eu2+中的一种或多种,X选自Cl-、Br-、I-中的一种或多种;所述有机-无机杂化钙钛矿型量子点的结构通式为BMX3,其中B选自CH3(CH2)n-2NH3+、NH3(CH2)nNH3 2+中的一种或多种,其中n≥2,M选自Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+、Eu2+中的一种或多种,X选自Cl-、Br-、I-中的一种或多种;
    和/或,所述电子传输层的材料选自无机材料、有机材料中的一种或多种;其中,所述无机材料选自掺杂或非掺杂的氧化物、掺杂或非掺杂的半导体颗粒、氮化物中的一种或多种,所述氧化物选自TiO2、ZnO、ZrO2、SnO2、WO3、NiO、Ta2O3、HfO2、Al2O3、ZrSiO4、BaTiO3、BaZrO3、SrTiO3、MgTiO3、TiLiO、ZnAlO、ZnSnO、ZnLiO、InSnO中的一种或多种,所述半导体颗粒选自CdS、ZnSe、ZnS中的一种或多种,所述氮化物选自Si3N4,所述氧化物和所述半导体颗粒的掺杂元素分别选自Al、Mg、In、Li、Ga、Cd、Cs、Cu、Sn中的一种或多种;所述有机材料选自Alq3、Almq3、DVPBi、TAZ、OXD、PBD、BND、PV中的一种或多种;
    和/或,所述阴极的材料选自掺杂或非掺杂的金属、碳材料、掺杂或非掺杂的金属氧化物、复合电极材料中的一种或多种;其中,所述掺杂或非掺杂的金属选自Al、Ag、Cu、Mo、Au、Ba、Ca、Mg、Ca:Al、LiF:Ca、LiF:Al、BaF2:Al、CsF:Al、CaCO3:Al、BaF2:Ca:Al、Au:Mg、Ag:Mg中的一种或多种;所述碳材料选自石墨、碳纳米管、石墨烯、碳纤维中的一种或多种;所述掺杂或非掺杂的金属氧化物选自ITO、FTO、ATO、AZO、GZO、IZO、MZO、AMO中的一种或多种;所述复合电极材料选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS、 ZnS/Al/ZnS、TiO2/Ag/TiO2、TiO2/Al/TiO2中的一种或多种。
  11. 一种光电器件的制备方法,其中,包括:
    提供第一电极;
    在所述第一电极上形成空穴传输层,所述空穴传输层包括交替设置的金属氧化物层和空穴传输材料层;
    在所述空穴传输层上形成第二电极,得到光电器件。
  12. 根据权利要求11所述的制备方法,其中,所述空穴传输层包括交替设置的多层金属氧化物层和多层空穴传输材料层。
  13. 根据权利要求11所述的制备方法,其中,所述第一电极为阳极,所述第二电极为阴极;
    在所述阳极上交替形成金属氧化物层和空穴传输材料层,在所述空穴传输材料层上依次形成光功能层和阴极,得到光电器件。
  14. 根据权利要求11所述的制备方法,其中,所述第一电极为阴极,所述第二电极为阳极;
    在所述阴极上形成光功能层,在所述光功能层上交替形成空穴传输材料层和金属氧化物层,在所述空穴传输材料层或所述金属氧化物层上形成阳极,得到光电器件。
  15. 根据权利要求11所述的制备方法,其中,所述空穴传输材料层的层数和所述金属氧化物层的层数均为1;
    和/或,所述金属氧化物层的厚度为0.5~3nm;
    和/或,所述空穴传输材料层的厚度为8~12nm。
  16. 根据权利要求12所述的制备方法,其中,所述空穴传输材料层的层数为m,所述金属氧化物层的层数为m或m-1,其中,4≥m>1;
    和/或,每层所述金属氧化物层的厚度分别为0.5~3nm;
    和/或,每层所述空穴传输材料层的厚度分别为8~12nm。
  17. 根据权利要求12所述的制备方法,其中,各层所述空穴传输材料层的材料相同和/或不同;
    和/或,各层所述空穴传输材料层的HOMO能级沿第一方向递减,所述第一方向为所述阳极至所述光功能层的方向;
    和/或,各层所述空穴传输材料层的材料分别独立的选自芳基胺、聚苯胺、聚吡咯、聚(对)亚苯基亚乙烯基及其衍生物、铜酞菁、芳香族叔胺或多核芳香叔胺、4,4'-双(对咔唑基)-1,1'-联苯化合物、N,N,N',N'-四芳基联苯胺、PEDOT:PSS及其衍生物、聚(N-乙烯基咔唑)及其衍生物、聚甲基丙烯酸酯及其衍生物、聚(9,9-辛基芴)及其衍生物、聚(螺芴)及其衍生物、N,N'-二(萘-1-基)-N,N'-二苯基联苯胺、螺NPB中的一种或多种。
  18. 根据权利要求11所述的制备方法,其中,所述金属氧化物层的材料为二元过渡金属氧化物。
  19. 根据权利要求18所述的制备方法,其中,所述金属氧化物层的材料选自MoO3、V2O5、WO3中的一种或多种。
  20. 一种显示装置,其中,包括光电器件,所述光电器件包括:
    阳极;
    阴极;以及
    设置于所述阳极和所述阴极之间的功能层,所述功能层包括光功能层和空穴传输层,所述空穴传输层设置于所述阳极和所述光功能层之间,所述空穴传输层包括空穴传输材料层和金属氧化物层,所述空穴传输材料层和所述金属氧化物层交替设置,并且所述空穴传输材料层与所述光功能层相邻设置;
    其中,所述光电器件为发光二极管,所述光功能层为发光层。
PCT/CN2023/122216 2022-11-15 2023-09-27 光电器件及其制备方法、显示装置 WO2024103982A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211428183.8A CN118055632A (zh) 2022-11-15 2022-11-15 光电器件及其制备方法、显示装置
CN202211428183.8 2022-11-15

Publications (1)

Publication Number Publication Date
WO2024103982A1 true WO2024103982A1 (zh) 2024-05-23

Family

ID=91050780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122216 WO2024103982A1 (zh) 2022-11-15 2023-09-27 光电器件及其制备方法、显示装置

Country Status (2)

Country Link
CN (1) CN118055632A (zh)
WO (1) WO2024103982A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040437A (ja) * 2009-08-06 2011-02-24 Panasonic Electric Works Co Ltd 有機エレクトロルミネッセンス素子
CN103427031A (zh) * 2012-05-14 2013-12-04 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN103594651A (zh) * 2012-08-17 2014-02-19 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN103855313A (zh) * 2012-11-30 2014-06-11 海洋王照明科技股份有限公司 含有量子阱结构的有机电致发光装置及其制备方法
CN110120456A (zh) * 2018-02-06 2019-08-13 星宸光电股份有限公司 电子器件
CN115347126A (zh) * 2021-05-14 2022-11-15 Tcl科技集团股份有限公司 复合空穴传输薄膜及使用其的量子点发光二极管和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040437A (ja) * 2009-08-06 2011-02-24 Panasonic Electric Works Co Ltd 有機エレクトロルミネッセンス素子
CN103427031A (zh) * 2012-05-14 2013-12-04 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN103594651A (zh) * 2012-08-17 2014-02-19 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN103855313A (zh) * 2012-11-30 2014-06-11 海洋王照明科技股份有限公司 含有量子阱结构的有机电致发光装置及其制备方法
CN110120456A (zh) * 2018-02-06 2019-08-13 星宸光电股份有限公司 电子器件
CN115347126A (zh) * 2021-05-14 2022-11-15 Tcl科技集团股份有限公司 复合空穴传输薄膜及使用其的量子点发光二极管和显示装置

Also Published As

Publication number Publication date
CN118055632A (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
CN109713098B (zh) 发光二极管以及包括该发光二极管的发光设备
EP3471162B1 (en) Light emitting diode and light emitting display device including the same
CN109585623B (zh) 发光二极管以及包括其的发光装置
US11228013B2 (en) Anisotropic nanorod-applied light-emitting diode and light-emitting device including the same
CN110416421B (zh) 一种量子点薄膜及量子点发光二极管
WO2024103982A1 (zh) 光电器件及其制备方法、显示装置
TWI791164B (zh) 發光二極體及包含該發光二極體的發光裝置
US11502267B2 (en) Inorganic light emitting diode and inorganic light emitting device including the same
CN112331787B (zh) 金属四苯基卟啉复合物在电子传输材料中的应用、量子点发光器件及其制备方法和发光装置
CN110544746B (zh) 发光二极管及其制备方法
CN114079012A (zh) 复合材料、电荷产生材料、发光二极管、显示器件及应用
CN112331788A (zh) 发光器件及其制作方法
CN113169289A (zh) 通过喷墨印刷制造钙钛矿发光器件的方法
CN118265334A (zh) 电致发光器件及其制备方法、显示装置
CN118119204A (zh) 复合薄膜、光电器件及其制备方法、显示装置
WO2023051461A1 (zh) 氧化钼纳米材料及制备方法、光电器件
CN113258010B (zh) 发光器件及其制作方法
CN118265321A (zh) 光电器件及其制备方法、显示装置
CN116437687A (zh) 光电器件及其制备方法、光电装置
CN118265320A (zh) 发光二极管及其制备方法、显示装置
CN116997237A (zh) 一种光电器件及其制备方法、显示装置
CN117998886A (zh) 一种发光器件及其制备方法、显示装置
CN116940146A (zh) 一种发光器件及其制备方法、显示装置
CN117580386A (zh) 一种光电器件及其制备方法、显示装置
CN116437683A (zh) 量子点发光二极管及其制备方法、光电装置