WO2024103827A1 - 一种多孔有序基体材料及其制备方法和应用 - Google Patents

一种多孔有序基体材料及其制备方法和应用 Download PDF

Info

Publication number
WO2024103827A1
WO2024103827A1 PCT/CN2023/109580 CN2023109580W WO2024103827A1 WO 2024103827 A1 WO2024103827 A1 WO 2024103827A1 CN 2023109580 W CN2023109580 W CN 2023109580W WO 2024103827 A1 WO2024103827 A1 WO 2024103827A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix material
mold
porous
ordered matrix
porous ordered
Prior art date
Application number
PCT/CN2023/109580
Other languages
English (en)
French (fr)
Inventor
王建国
张盈
蒋大跃
王晓斌
黄容基
蒋金峰
Original Assignee
思摩尔国际控股有限公司
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 思摩尔国际控股有限公司, 深圳麦克韦尔科技有限公司 filed Critical 思摩尔国际控股有限公司
Publication of WO2024103827A1 publication Critical patent/WO2024103827A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products

Definitions

  • the present application relates to the technical field of electronic cigarette heating body matrix materials, and specifically to a porous ordered matrix material and a preparation method and application thereof.
  • the electronic cigarette resistive atomization core mainly includes cotton core and ceramic core.
  • the closed small smoke mainly uses porous ceramics as the main oil storage medium of the heating element.
  • Porous ceramics have the advantages of good temperature resistance, fixed shape, easy assembly, and good consistency, and are widely used.
  • the method for preparing porous ceramics generally adopts the method of blending organic pore-forming template particle materials with inorganic skeleton materials, and then removing the organic pore-forming particles by high temperature to form channels.
  • the micro-channel structure is generally complex, the micropore consistency and stability are poor, and the pores are mainly disordered, which is not conducive to the stable and consistent atomization of tobacco oil.
  • the existing technology in order to obtain arrays and through holes with controllable apertures, the existing technology generally adopts laser melting and/or corrosion, or semiconductor lithography, which has complex processes, high environmental assessment requirements, low production efficiency, high production costs, and is difficult to mass produce.
  • the material can only be laser-absorbable materials
  • the strength of the original material needs to be high, and considering the processing limit or processing efficiency of the laser, the thickness of the processed substrate cannot be too thick.
  • the purpose of this application is to overcome the defects of the existing method for preparing porous ceramics, such as the complex micropore structure, disordered pores, poor micropore consistency and stability, such as the use of laser to directly process and etch the ceramics, which has complex processes, low production efficiency, high production costs, and certain limitations on the materials, and thus provide a porous ordered matrix material and its preparation method and application.
  • a method for preparing a porous ordered matrix material comprises the following steps:
  • the present application does not specifically limit the material of the reverse mold template.
  • the columnar reverse mold template is selected from one of an organic sacrificial template, a metal template, and a ceramic template.
  • the present application does not specifically limit the preparation process of the organic sacrificial template, the metal template, and the ceramic template. As long as a reverse mold template of a specific size can be obtained, it can be used.
  • the metal mold can use a photolithography process (preparing a structure with micropores) combined with a micro-electroforming process (filling metal in the hole) to prepare a metal replica mold with micro-columns;
  • the ceramic mold can use a photolithography process (preparing a structure with micropores) to fill ceramic slurry, solidify sintering, and through-hole to obtain a ceramic template with micro-columns.
  • the material forming the columnar reverse mold template can be filled into the holes of the mold in a liquid form (such as a solution, a melt, a monomer or a mixture, etc.), and then solidified, and then the polymer is removed from the mold to obtain an organic sacrificial template.
  • a liquid form such as a solution, a melt, a monomer or a mixture, etc.
  • the step of stripping the metal template can also be included after solidification. It can be understood that the preset straight hole size of the porous ordered matrix material can be designed according to the actual product requirements. The corresponding hole size.
  • step 2) further comprises the step of performing subtractive treatment on the ceramic green body obtained after curing and before the debonding step.
  • step 2) further comprises, after the sintering step, a step of performing subtractive processing on the ceramic material obtained after the sintering step.
  • the purpose of the subtractive treatment in this application is to remove the excess slurry that prevents the ceramic from forming through holes during the filling process, so that the ceramic has micropores on the upper and lower surfaces that are connected, thereby achieving the conduction of the smoke oil.
  • the means of subtractive treatment include but are not limited to grinding, grinding, polishing, etc.
  • the curing means used in the curing step does not specifically limit the curing means used in the curing step.
  • photocuring may be used, or thermal curing, gel pore forming, casting, dry pressing and other ceramic forming processes well known in the industry may be used.
  • the curing method in the curing step is selected from at least one of photocuring, thermal curing and room temperature static curing.
  • the ceramic slurry component can be a slurry mixed with a polymer curing resin monomer (including but not limited to epoxy acrylate, polyurethane acrylate, polyester acrylate, polyether acrylate, amino acrylate, acrylate and other acrylate monomers and mixtures, or other liquid monomers or mixtures that can react to form solid polymers), an initiator (thermal initiator, ultraviolet light initiator and other active substances that can generate free radicals under certain induction conditions), a cross-linking agent (compounds with a functionality greater than 2 that are well known in the industry), ceramic powder (various inorganic ceramic powders well known in the industry, including but not limited to aggregates such as zirconium oxide, aluminum oxide, silicon dioxide and various sintering aids), a diluent and other additives (other additives known in the art), and filled (vacuum negative pressure injection, high pressure pressing
  • a polymer curing resin monomer including but not limited to epoxy acrylate, polyurethane acrylate, polyester
  • the method for preparing ceramic slurry includes the following steps: uniformly mixing 20-50 parts by weight of polymer curing resin monomer, 10-50 parts by weight of cross-linking agent, 0.1-5 parts by weight of thermal initiator, 200-300 parts by weight of ceramic powder, 10-50 parts by weight of dispersing solvent, and 5-20 parts by weight of sintering aid to obtain ceramic slurry.
  • the preparation method of the ceramic slurry comprises the following steps: 30-40 parts by weight of water, 1-10 parts by weight of polyacrylamide dispersion, 10-50 parts by weight of anionic aqueous polyurethane solution, and 30-80 parts by weight of silicon oxide powder are mixed to wet the surface of the ceramic slurry. 0.1-5 weight parts of the agent and 0.1-5 weight parts of the defoaming agent are mixed evenly to obtain the ceramic slurry.
  • the preparation method of ceramic slurry includes the following steps: 100 parts by weight of water, 1-8 parts by weight of polyacrylamide dispersant, 5-20 parts by weight of acrylamide monomer, 1-5 parts by weight of initiator, 300-500 parts by weight of zirconium oxide powder, and 20-50 parts by weight of sintering aid are uniformly mixed to obtain ceramic slurry.
  • vacuum degumming is used in the degumming step, the vacuum degumming temperature is 400° C.-700° C., and the vacuum degumming time is 1 h-48 h;
  • the sintering temperature is 1000°C-1600°C, and the sintering time is 1h-12h;
  • the heat curing temperature is 10-150°C, and the heat curing time is 0.5h-24h;
  • the room temperature curing time is 1 min-24 h.
  • the power during light curing is 10-50mw/cm2 and the curing time is 1-100s.
  • the columnar counter-mold template has a plurality of columnar structures arranged in an array.
  • the holes in the porous ordered matrix material are straight pore structures arranged in an array, with a pore diameter of 5um-100um, a pore spacing of 2.5um-500um, and a thickness of the matrix material of 0.1mm-2.0mm.
  • the pore diameter in this application refers to the diameter of the pore.
  • step 1) according to the preset straight hole size of the porous ordered matrix material, a through-hole mold with corresponding hole size is provided, and then the material forming the columnar reverse mold template is filled into the through-holes of the through-hole mold, and the through-hole mold is peeled off to obtain the columnar reverse mold template.
  • step 1) according to the preset straight hole size of the porous ordered matrix material, a through-hole mold with a corresponding hole size is provided, and then a polymer sheet is placed on the through-hole mold so that the polymer sheet is in contact with the open end of the through-hole in the through-hole mold, the polymer sheet is hot-pressed so that the polymer sheet is filled into the through-holes in the through-hole mold, and the through-hole mold is peeled off to obtain a columnar reverse mold template.
  • the holes of the through-hole mold are a straight hole structure arranged in an array, with a hole diameter of 5um-100um and a hole spacing of 2.5um-500um.
  • the through-hole mold described in the present application can be an existing product, or it can be prepared by an existing conventional process, such as preparing the through-hole mold by a laser + corrosion process.
  • the hole morphology can be designed to be any shape such as circular, square, polygonal, etc., diameter (5um-100um), porosity (5%-60%) and other parameters, and the corresponding mask plate is prepared.
  • the photolithography master mold is prepared, and then the sub-mold is obtained by micro-replication of the sub-mold.
  • the preparation of the metal mold can be adopted in the following ways: electroplating: through the micro-electroplating process, a high-strength and high-stability metal (such as nickel, titanium, chromium and other alloys) is plated on the periphery of the sample until all areas are filled, forming a block of metal wrapped in the above-designed column shape, and then the silicon wafer is peeled off, etched, and polished to obtain the metal mold.
  • the ceramic mold can be obtained in the following way: first, the photolithography master mold is used as a mold, and a curable ceramic slurry is filled in the gap, and it is obtained after curing and sintering.
  • the preparation of a reusable permanent metal template can be carried out in the following manner: first, a photoresist mold is prepared, and then a columnar array metal mold is obtained through the photoresist mold, and the obtained metal mold can be used repeatedly.
  • the method for preparing the through-hole mold comprises the following steps:
  • the laser wavelength is 950-980nm
  • the pulse width is 20-30fs
  • the single pulse energy is 80-150 ⁇ J
  • the laser power is 10-20W
  • the laser frequency is 10-200KHz
  • the scanning speed is 400-600mm/S.
  • the mass fraction of the HF aqueous solution is 10-20%
  • the stirring speed during etching is 400-600 r/min
  • the etching time is 1-5 h.
  • the method for preparing the polymer sheet comprises the following steps: drying the polymer raw material at 100-200° C. for 1-6 hours, and then extruding the polymer raw material at 250-300° C. through an extruder to form a polymer thick sheet.
  • the hot pressing treatment temperature is 120°C-350°C
  • the pressure is 0.01-10MPa
  • the hot pressing treatment time is 1s-60min.
  • the step of preheating the polymer sheet is further included before the hot pressing treatment.
  • the preheating temperature is 150-300° C. and the preheating time is 10s-60s.
  • the temperature is lowered to 5-150° C. under a pressure of 0.01-10 MPa, and then the pressure is released and further cooled.
  • the materials forming the columnar reverse mold template in the present application include, but are not limited to, polymer monomers and their complexes, and polymer materials formed therefrom, and may also be commercially available finished polymer materials.
  • the present application does not specifically limit the type of polymer in the polymer sheet, and optionally, the polymer in the polymer sheet includes a thermoplastic polymer and/or a thermosetting polymer.
  • the polymer in the polymer sheet is selected from at least one of AS (acrylonitrile-styrene copolymer), ABS (acrylonitrile-butadiene-styrene copolymer), PS (polystyrene), PMMA (polymethyl methacrylate), PVC (polyvinyl chloride), PP (polypropylene), PE (polyethylene), EPR (ethylene propylene rubber), POM (polyoxymethylene), PA (polyamide), PC (polycarbonate), PCTG (polyethylene terephthalate-1,4-cyclohexanedimethanol), TPU (thermoplastic polyurethane), PET (polyethylene terephthalate), PBT (polybutylene terephthalate), PEN (polyethylene naphthalate), SBS (styrene-butadiene block copolymer), SPS (para-polystyrene), PPO (polyphenylene oxide), PPA (polypheny
  • the present application also provides a porous ordered matrix material, which is prepared by the above-mentioned preparation method.
  • the present application also provides a heating element, including the porous ordered matrix material described above and a heating film located on the surface of the porous ordered matrix material.
  • the present application does not specifically limit the method of forming the heating film.
  • it can be formed by coating or brushing.
  • a metal film is plated to form a heating film; a heating film can also be obtained by scraping metal slurry and preparing a thick film.
  • other methods known in the industry that can generate resistance can also be used. Mode.
  • the present application also provides an electronic cigarette, comprising the heating element described above.
  • the preparation method of the porous ordered matrix material provided by the present application firstly, a columnar reverse mold template with corresponding size is obtained according to the preset straight hole size of the porous ordered matrix material; then the ceramic slurry is filled into the columnar reverse mold template, solidified, debonded, and sintered to obtain the porous ordered matrix material.
  • the present application adopts a columnar template with a preset straight hole size as a reverse mold template, and then fills the ceramic slurry into the columnar reverse mold template, solidifies, debonds, and sinters to obtain a porous ordered matrix material.
  • the method prepares a porous matrix material, and the shape of the hole can be arbitrarily designed, and the size and diameter of the hole can also be designed and produced within a larger design range.
  • the method is low-cost, high-efficiency, and pollution-free.
  • the substrate material is flexible and diverse, not limited by laser processing, and the production equipment can be universal; the thickness of the matrix can be produced according to the performance requirements, with few restrictions, and the thickest can be up to 2mm or more, and the process of producing holes is post-sintering, the thickness of the product can be made thinner, and compared with the process of sintering first and then forming holes, the strength of the process product of the present application is higher.
  • step 1) according to the preset straight hole size of the porous ordered matrix material, a through-hole mold with a corresponding hole size is provided, and then a polymer sheet is placed on the through-hole mold so that the polymer sheet contacts the open end of the through-hole in the through-hole mold, the polymer sheet is subjected to hot pressing treatment so that the polymer sheet is filled into the through-hole in the through-hole mold, and the through-hole mold is peeled off to obtain a columnar reverse mold template.
  • the present application places a polymer sheet on a through-hole mold, and then performs hot pressing treatment on the polymer sheet to obtain a columnar reverse mold template, fills the ceramic slurry into the above-mentioned columnar reverse mold template, and the porous ordered matrix material obtained after curing, degumming, and sintering can not only achieve a larger aspect ratio, but also improve the strength of the product to a certain extent.
  • FIG1 is a diagram of a through-hole quartz mold prepared in Example 1;
  • FIG2 is a diagram of a columnar reverse mold template prepared in Example 1;
  • FIG3 is a diagram of a porous ordered matrix material prepared in Example 1;
  • FIG4 is a side view of the photoresist mold prepared in Example 2.
  • FIG5 is a top view of the photoresist mold prepared in Example 2.
  • FIG6 is a process flow chart of the porous ordered matrix material prepared in Example 1.
  • FIG. 7 is a process flow chart of the porous ordered matrix material prepared in Example 4.
  • This embodiment provides a method for preparing a porous ordered matrix material, comprising the following steps:
  • Double-sided polished quartz glass was selected and cut into sheets of 30 mm ⁇ 30 mm ⁇ 0.6 mm.
  • the sheets were ultrasonically cleaned with isopropanol and deionized water for 10 min in sequence and dried with dry nitrogen.
  • a femtosecond infrared laser was used to engrave patterns on the quartz glass according to the preset straight hole size (laser wavelength 950 nm, pulse width 25 fs, single pulse energy 100 ⁇ J, laser power 15 W, laser frequency 150 kHz, scanning speed 500 mm/s);
  • the quartz glass with laser engraving pattern was placed in a 15% HF aqueous solution, and etched for 3 hours at a magnetic stirring speed of 500 r/min. After being taken out, it was cleaned with water and air-dried to obtain a through-hole quartz mold with an array-arranged straight hole structure (as shown in FIG. 1 ), with a pore diameter of 50 ⁇ m, a pore spacing of 100 ⁇ m, and a thickness of 0.55 mm;
  • the through-hole quartz mold and the polymer thick sheet obtained in step 2) are stacked into two layers (the polymer thick sheet is in contact with the upper open end of the through-hole in the through-hole quartz mold), and then placed on a plate of a hot press, preheated at 300°C for 30s, and then the polymer thick sheet is hot-pressed to fill the polymer thick sheet into the through-hole in the through-hole mold, the hot-pressing temperature is 300°C, the pressure is 0.5Mpa, and the hot-pressing treatment time is 30s.
  • the temperature is lowered to 120°C under a 0.5Mpa pressure holding state, the pressure is released, the sample is taken out, and after naturally cooling to room temperature, the through-hole quartz mold is peeled off from the polymer sheet to obtain a disposable organic sacrificial template, wherein the sacrificial template has a plurality of columnar structures arranged in an array (columnar reverse mold template, see FIG. 2);
  • step 5) The composite sample obtained in step 4) was subjected to vacuum debonding at 600°C for 18 h, and then sintered at 1400°C for 12 h. Afterwards, the porous ordered matrix material (as shown in FIG3 ) was obtained, wherein the holes were a straight hole structure arranged in an array, the pore diameter was 35 ⁇ m, the pore spacing was 70 ⁇ m, the thickness was 0.42 mm, the aspect ratio (thickness/pore diameter) was 12, and the bending strength was tested according to the GB/T 8411.3-2009 test standard, and the strength value was 230 MPa.
  • This embodiment provides a method for preparing a porous ordered matrix material, comprising the following steps:
  • Spreading glue Use a cleaning solution prepared by deionized water, ammonia water (concentration 28wt%), and hydrogen peroxide (concentration 30wt%) in a volume ratio of 5:1:1 to clean the silicon wafer.
  • SU-8 2150 photoresist manufactured by Kayaku Advanced Materials Co., Ltd.
  • rotate on a spreader at a speed of 800r/min for 30s, then place the silicon wafer on a heating platform, bake at 110°C for 10h, cool to room temperature, and obtain a photoresist silicon wafer with a thickness of 500um for standby use;
  • Exposure Use a 405nm linear light source to expose the above photoresist under the mask, the light intensity is 35mw/ cm2 , the exposure time is 142s, and the total exposure amount is 5J/ cm2 ;
  • Post-baking The samples were baked on a heating platform at 65°C for 1.5 h, 95°C for 3 h, and then cooled to room temperature;
  • Hard baking After heating the sample at 150° C. for 30 min on a heating platform, the sample was cooled to room temperature to complete the preparation of the photoresist mold (as shown in FIGS. 4 and 5 );
  • Ceramic mold 40 g of polymer curing resin monomer (1,6-hexanediol diacrylate HDDA), 40 g of crosslinking agent (triethylene glycol dimethacrylate TEGDMA), 0.5 g of photoinitiator (diphenyl-(2,4,6-trimethylbenzoyl) phosphine oxide-TPO), 200 g of ceramic powder (silicon dioxide powder with a particle size of 300 nm), 15 g of dispersing solvent (phenoxyethanol, POE), and 10 g of sintering aid (cerium oxide, 10 g) were mixed by homogenizer to form a slurry, which was then filled into the photoresist mold prepared above.
  • polymer curing resin monomer (1,6-hexanediol diacrylate HDDA
  • crosslinking agent triethylene glycol dimethacrylate TEGDMA
  • photoinitiator diphenyl-(2,4,6-trimethylbenzoyl) phosphine oxide-T
  • the filled photoresist mold was placed in a UV curing machine and exposed at an exposure intensity of 100 mW/ cm2. After being completely cured under an exposure time of 20s, the sample was taken out and the excess cured slurry was polished to leak out the pillars of the SU-8 photoresist mold, so that the slurry remained in a through-hole state; then the through-hole sample was subjected to vacuum degumming at 600°C for 24h, sintering at 1200°C for 12h, and double-sided polishing to obtain an array porous ceramic mold (i.e., a through-hole mold) with a pore size of 50um, a pore spacing of 100um, regular hexagonal holes, a regular hexagonal stacking arrangement, and a thickness of 0.45mm;
  • a through-hole mold with a pore size of 50um, a pore spacing of 100um, regular hexagonal holes, a regular hexagonal stacking arrangement, and a thickness of 0.45mm;
  • a polystyrene material brand name Chimei PG-22
  • a melt index of 17.5 g/10 min 200° C., 5.0 kg
  • the ceramic mold and the polymer thick sheet are stacked into two layers (the polymer thick sheet is in contact with the open end of the through hole in the ceramic mold), and then placed on the plate of the hot press, preheated at 200°C for 30s, and then the polymer thick sheet is hot-pressed to fill the polymer thick sheet into the through hole in the ceramic mold.
  • the hot pressing temperature is 200°C
  • the pressure is 0.3Mpa
  • the hot pressing time is 30s. After the hot pressing is completed, the temperature is lowered to 80°C under the 0.3Mpa pressure state, the pressure is released, the sample is taken out, and the temperature is naturally lowered.
  • the ceramic mold After reaching room temperature, the ceramic mold is peeled off from the polymer sheet to obtain a disposable organic sacrificial template, wherein the sacrificial template has a plurality of columnar structures (columnar reverse mold template) arranged in an array;
  • step 6) The composite sample obtained in step 5) was subjected to vacuum degumming at 600°C for 36 hours and then sintered at 1200°C for 12 hours to obtain the porous ordered matrix material, which has a straight pore structure arranged in an array, a pore diameter of 45um, a pore spacing of 90um, a thickness of 0.41mm, an opening shape of a regular hexagon, and a thickness-to-diameter ratio (thickness/pore diameter) of 9.1.
  • the bending strength was tested according to the GB/T8411.3-2009 test standard, and the strength value was 54MPa.
  • This embodiment provides a method for preparing a porous ordered matrix material, comprising the following steps:
  • the silicon wafer was cleaned with a cleaning solution prepared by deionized water, ammonia (concentration 28wt%), and hydrogen peroxide (concentration 30wt%) in a volume ratio of 5:1:1. After drying, the silicon wafer was passed through a coating machine at a speed of 2000r/min for 30s, and then a 40nm thick OmniCoat bottom layer (Chemical Advanced Materials Co., Ltd.) was spin-coated on the silicon wafer and baked at 200°C for 2min.
  • a cleaning solution prepared by deionized water, ammonia (concentration 28wt%), and hydrogen peroxide (concentration 30wt%) in a volume ratio of 5:1:1. After drying, the silicon wafer was passed through a coating machine at a speed of 2000r/min for 30s, and then a 40nm thick OmniCoat bottom layer (Chemical Advanced Materials Co., Ltd.) was spin-coated on the silicon wafer and baked at 200°C for 2min.
  • Ti/Cu thin layer is sputtered on the surface of the silicon wafer as a conductive layer with a thickness of 50nm/150nm;
  • Exposure Use a 405nm linear light source to expose the above photoresist under the mask, with a light intensity of 30mw/ cm2 , an exposure time of 250s, and a total exposure of 7.5J/ cm2 ;
  • Post-baking The samples were baked on a heating platform at 65°C for 1.5 h, 95°C for 3 h, and then cooled to room temperature;
  • Hard baking After heating the above sample at 150°C for 30 minutes on a heating platform, the temperature was cooled to room temperature to complete the preparation of the photoresist master mold sample;
  • Electroforming 300g nickel sulfate, 300g nickel sulfamate, 10g nickel chloride, 35g boric acid, o-benzoylsulfonimide 10g, 15g sodium benzenesulfinate, 3g sodium dodecyl sulfate, 10g sodium stannate, 5g magnesium sulfate, 5g potassium sodium tartrate, and 10g sodium chloride are added to 1L of deionized water in the above proportions to prepare an electroforming solution.
  • Degumming Use propylene glycol methyl ether acetate (PGMEA), a SU-8 degumming liquid, to degumming at 80°C for 24 hours, then wash with clean N-methylpyrrolidone (NMP), acetone, and water in turn, and then dry. Then use a plasma etcher to etch for 2 hours (power 200W) in an O2 / SF6 atmosphere to clean the residual SU-8 cross-linking material, and obtain an array porous Ni metal sample with a thickness of about 600um;
  • PMEA propylene glycol methyl ether acetate
  • NMP N-methylpyrrolidone
  • a disposable sacrificial template 100 g of 1,6-hexanediol diacrylate (HDDA), 25 g of ethoxypentaerythritol tetraacrylate (PPTTA), and 1.25 g of a photoinitiator (diphenyl-(2,4,6-trimethylbenzoyl)phosphine oxide-TPO) were fully mixed by a homogenizer to prepare a photocurable resin slurry for a disposable sacrificial template; the array porous Ni metal mold coated with a release agent was placed in a glass container, the photocurable resin slurry was added to submerge the metal mold, and vacuum was used to assist in filling so that the slurry fully infiltrated the Ni metal mold.
  • HDDA 1,6-hexanediol diacrylate
  • PPTTA ethoxypentaerythritol tetraacrylate
  • a photoinitiator diphenyl-(2,4,6
  • the glassware is placed in the cavity of the UV curing machine, and the exposure intensity is 50mW/ cm2 , and the exposure is 20s. After the surface is cured, it is turned over and exposed again at an exposure intensity of 50mW/ cm2 for 20s. After it is completely cured, the sample is taken out; the above sample is taken out from the glassware, and then the metal mold surface that contacts the bottom of the glassware is carefully cleaned of the solidified slurry on the mold surface with a knife, and the mold surface is thoroughly cleaned with a scouring pad; then, the solidified slurry is removed from the Ni metal mold from the other side to obtain a disposable sacrificial template (columnar reverse mold template), and the Ni metal mold can be reused;
  • Ceramic slurry filling and curing 100 g of deionized water, 5 g of polyacrylamide dispersant, 12 g of acrylamide monomer, 1.5 g of ammonium persulfate initiator, 400 g of zirconium oxide powder with a particle size of 250 nm, and 40 g of magnesium oxide as a sintering aid are fully mixed in a homogenizer to prepare a ceramic slurry; the ceramic slurry is added to the disposable sacrificial template, vacuumed to assist in filling, and the sample is allowed to stand at room temperature for 12 hours before curing to obtain a composite sample of a ceramic green body and an organic sacrificial template;
  • This embodiment provides a method for preparing a porous ordered matrix material, comprising the following steps:
  • Mask plate preparation Design the quartz mask pattern: diameter 60um, hole spacing 84um, hole shape is regular hexagonal, and the arrangement method is hexagonal stacking arrangement;
  • the silicon wafer was cleaned with a cleaning solution prepared by deionized water, ammonia (concentration 28wt%), and hydrogen peroxide (concentration 30wt%) in a volume ratio of 5:1:1. After being fully dried, a Ti/Cu thin layer with a thickness of 50nm/150nm was sputtered on the surface of the silicon wafer using a PVD vacuum coating device as a conductive layer;
  • Exposure Use a 405nm linear light source to expose the above photoresist under the mask, with a light intensity of 25mw/ cm2 , an exposure time of 200s, and a total exposure of 5.0J/ cm2 ;
  • Post-baking The samples were baked on a heating platform at 65°C for 1.5 h, 95°C for 3 h, and then cooled to room temperature;
  • Hard baking After heating the above sample at 150°C for 30 minutes on a heating platform, the temperature was cooled to room temperature to complete the preparation of the photoresist master mold sample;
  • the electroforming time was 125 h;
  • Degumming Use propylene glycol methyl ether acetate (PGMEA), a SU-8 degumming liquid, to degumming at 80°C for 24 hours, then wash with clean NMP, acetone, and water in turn and dry, then use a plasma etcher to etch for 2 hours (power 200W) in an O 2 /SF 6 atmosphere to clean the residual SU-8 cross-linking material, and obtain an array porous Ni metal sample with a thickness of about 500um;
  • PMEA propylene glycol methyl ether acetate
  • 340g of deionized water, 5g of polyacrylamide dispersant, 150g of waterborne polyurethane with a solid content of 35%, 5g of 30wt% ammonia water, 1500g of silicon oxide powder with a particle size of 300nm, 200g of boron oxide as a sintering aid, and 20g of magnesium stearate were fully mixed in a homogenizer to prepare a ceramic slurry; the ceramic slurry was cast on a PET film to form a cast slurry with a controlled thickness of about 500um;
  • the array columnar metal mold in step 3) after surface treatment with SiO2 super hydrophilic coating was pressed into the above casting slurry. After the casting slurry was cured at 50°C for 4h, the excess solidified slurry on the periphery of the template was polished off to make it leak out of the column of the template, and the through-hole state was maintained. Then the metal mold was removed, vacuumed and debonded at 600°C for 48h, and sintered at 1150°C.
  • the porous ordered matrix material was obtained, and its holes were a straight hole structure arranged in an array, with a pore diameter of 55um, a pore spacing of 77um, a thickness of 0.45mm, a thickness-to-diameter ratio (thickness/pore diameter) of 8.2, and a hexagonal pore opening arranged in a regular hexagonal stacking.
  • the bending strength was tested according to the GB/T8411.3-2009 test standard, and the strength value was 45MPa.
  • This embodiment provides a method for preparing a porous ordered matrix material, comprising the following steps:
  • Mask preparation Design a quartz mask pattern: 50um diameter, 100um hole spacing, and circular hole shape;
  • S1 uses a cleaning solution prepared by a volume ratio of 5:1:1 of deionized water, ammonia water (concentration 28wt%) and hydrogen peroxide (concentration 30wt%) to deeply clean a silicon wafer with a thickness of about 0.8mm, and repeatedly cleans it with deionized water for multiple times, then fully dries to remove moisture, and cools to room temperature under dry N2 ;
  • S2 used a coating machine to spin-coat positive photoresist AZ4620 (Microchemicals GmbH) at a speed of 600 r/min for 60 s, and then baked at 100 °C for 15 min.
  • S3 uses a UV photolithography machine to expose the silicon wafer with the photoresist AZ4620 spin-coated under the mask for 60 seconds. Then, the exposed silicon wafer is placed in a stirred developer AZ400 solution (Microchemicals GmbH), stirred at room temperature for 5 minutes, and then baked at 100°C on a heating platform for 30 minutes. After cooling to room temperature, a plasma etcher is used to remove the bottom film of the silicon wafer at 200W, and then a step profiler is used to test that the thickness of the glue is 32um.
  • a stirred developer AZ400 solution Microchemicals GmbH
  • S4 is passivated and etched alternately in a deep silicon etcher; passivation process: ICP power 1600W, RF power 25W, gas C 4 H 8 , flow rate 200sccm, pressure 15Pa, reaction time 3s; etching process: ICP power 2200W, RF power 50W, gas SF 6 /O 2 , flow rate 450sccm/50sccm, etching temperature 40°C, pressure 10Pa, reaction time 8S, total reaction time 150min, to obtain a silicon wafer blind hole mold (through hole mold) with a circular hole of 50um in diameter, about 600um in depth, and 100um in hole spacing;
  • a fluorine-containing monomer (methyl trifluoroacrylate) containing a polymerization functional group and a photoinitiator TPO (diphenyl-(2,4,6-trimethylbenzoyl)phosphine oxide) are mixed in a homogenizer at a mass ratio of 20:1 to prepare a UV-curable resin slurry; the resin slurry is added to the above-mentioned silicon wafer blind hole mold, and after vacuuming to assist filling, it is placed in a UV curing machine, and after curing for 20 seconds at a power of 30mw/ cm2 , the sample is taken out, and the cured resin is removed from the silicon wafer blind hole mold to obtain a mother template of a disposable sacrificial template;
  • TPO diphenyl-(2,4,6-trimethylbenzoyl)phosphine oxide
  • a polystyrene material (typical grade Chimei PG-22) with a melt index of 17.5 g/10 min (200° C., 5.0 kg) was dried in a blast drying oven at 80° C. for 2 h, extruded by an extruder at 200° C. to form a polystyrene thick sheet with a thickness of about 1.5 mm, and cut into small sheets of about 40 mm ⁇ 40 mm ⁇ 1.5 mm by a cutting machine for standby use;
  • a blind hole silicone resin mold and a polystyrene resin thick sheet are stacked into two layers (the polystyrene resin thick sheet is in contact with the open end of the through hole in the silicone resin mold), and then placed on a flat plate of a hot press to perform hot pressing on the polystyrene resin thick sheet so that the polystyrene resin thick sheet is filled into the through hole in the silicone resin mold.
  • the hot pressing temperature is 200° C.
  • the pressure is 0.5 MPa
  • the hot pressing time is 30 seconds.
  • the silicone resin mold is peeled off from the polymer sheet to obtain a disposable organic sacrificial template, wherein the sacrificial template has a plurality of columnar structures arranged in an array.
  • a polymer curing resin monomer (2-hydroxyethyl methacrylate HEMA)
  • TEGDMA triethylene glycol dimethacrylate
  • a thermal initiator dibenzoyl peroxide BPO
  • the filled organic sacrificial template is placed in an oven, cured at 85° C. for 2 hours, and then taken out to obtain a composite sample of a ceramic green body and an organic sacrificial template. Then, the excess cured slurry on the periphery of the organic sacrificial template is polished off to leak out of the columns of the sacrificial template, so that the holes in the ceramic green body remain in a through-hole state, and then the sacrificial template is removed from the cured ceramic green body;
  • the above-mentioned ceramic green body with through holes was subjected to vacuum debinding at 600°C for 18 hours and sintering at 1600°C for 12 hours to obtain the porous ordered matrix material, which has a straight hole structure arranged in an array, with a pore diameter of 38um, a pore spacing of 76um, a thickness of 0.47mm, and a thickness-to-diameter ratio (thickness/pore diameter) of 12.4.
  • the opening end of the hole is circular, and its bending strength is tested according to the GB/T 8411.3-2009 test standard, and the strength value is 50MPa.
  • This embodiment provides a method for preparing a porous ordered matrix material, comprising the following steps:
  • Double-sided polished quartz glass was selected and cut into sheets of 30 mm ⁇ 30 mm ⁇ 0.6 mm.
  • the sheets were ultrasonically cleaned with isopropanol and deionized water for 10 min in sequence and dried with dry nitrogen.
  • a femtosecond infrared laser was used to engrave patterns on the quartz glass according to the preset straight hole size (laser wavelength 950 nm, pulse width 25 fs, single pulse energy 100 ⁇ J, laser power 15 W, laser frequency 150 kHz, scanning speed 500 mm/s);
  • the quartz glass with laser engraving pattern was placed in a 15% HF aqueous solution, and etched for 3 hours at a magnetic stirring speed of 500 r/min. After being taken out, it was cleaned with water and air-dried to obtain a through-hole quartz mold with an array-arranged straight hole structure (as shown in FIG. 1 ), with a pore diameter of 50 ⁇ m, a pore spacing of 100 ⁇ m, and a thickness of 0.55 mm;
  • step 3 drying a polycarbonate material (Covestro PC2405) with a melt index of 20 g/10 min (300° C., 1.2 kg) in a blast drying oven at 120° C. for 4 h, then heating to 300° C. to melt, and then filling the molten material into the through-hole quartz mold obtained in step 2) under vacuum-assisted conditions. After the filling is completed, the temperature is cooled to room temperature, and the quartz mold is peeled off to obtain a disposable organic sacrificial template, wherein the sacrificial template has a plurality of columnar structures arranged in an array;
  • step 5) The composite sample obtained in step 4) was subjected to vacuum debonding at 600°C for 18 hours and then sintered at 1400°C for 12 hours to obtain the porous ordered matrix material, which has a straight pore structure arranged in an array, a pore diameter of 35um, a pore spacing of 70um, a thickness of 0.30mm, and an aspect ratio (thickness/pore diameter) of 8.6.
  • the bending strength was tested according to the GB/T 8411.3-2009 test standard, and the strength value was 160MPa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

本申请涉及电子烟加热体基体材料技术领域,具体涉及一种多孔有序基体材料及其制备方法和应用。本申请提供的多孔有序基体材料的制备方法,包括如下步骤:1)根据多孔有序基体材料的预设直孔尺寸获得具有相应尺寸的柱状反模模板;2)将陶瓷浆料填充入所述柱状反模模板内,固化,脱胶,烧结,得到所述多孔有序基体材料。本申请提供的制备方法制备多孔基体材料,其孔的形状可以任意设计,孔的大小、孔径也可以在更大的设计范围内进行设计和生产,同时该方法低成本、高效率、无污染,基材材质灵活多样,不受激光加工的限制,且生产设备可以通配。

Description

一种多孔有序基体材料及其制备方法和应用
相关申请的交叉引用
本申请要求在2022年11月18日提交中国专利局、申请号为202211446370.9、发明名称为“一种多孔有序基体材料及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请涉及电子烟加热体基体材料技术领域,具体涉及一种多孔有序基体材料及其制备方法和应用。
背景技术
目前,电子烟电阻式雾化芯主要有棉芯和陶瓷芯两种。其中封闭式小烟主要是多孔陶瓷作为发热体的主要储油介质,多孔陶瓷具有耐温性好,且形状固定,易于装配,一致性好的优点,受到了广泛的应用。
目前制备多孔陶瓷的方法一般采用将有机造孔模板粒子材料与无机骨架材料的共混后,然后通过高温去除有机造孔粒子而形成孔道,微孔道结构一般比较复杂,微孔一致性和稳定性差,且主要为无序孔,不利于烟油的稳定且一致的雾化。在多孔陶瓷的制备过程中为了获得阵列、孔径可控的通孔,现有技术一般采用激光熔融和/或腐蚀,或者采用半导体光刻的方式实现,工艺复杂,环评要求高,生产效率低,生产成本高,且难以大批量生产,同时由于激光加工有一定的限制条件,如材质只能为激光可吸收的材质,为了保证成品的强度,需要原始材料的强度较高,且考虑激光的加工极限或者加工效率,加工基体的厚度不能太厚。
发明内容
本申请的目的在于克服现有多孔陶瓷的制备方法其获得的微孔道结构复杂,呈无序孔,微孔一致性和稳定性差,如采用激光直接对陶瓷进行加工刻蚀,工艺复杂,生产效率低,生产成本高,且对材料具有一定限制的缺陷,进而提供一种多孔有序基体材料及其制备方法和应用。
为达到上述目的,本申请采用如下技术方案:
一种多孔有序基体材料的制备方法,包括如下步骤:
1)根据多孔有序基体材料的预设直孔尺寸获得具有相应尺寸的柱状反模模板;
2)将陶瓷浆料填充入所述柱状反模模板内,固化,脱胶,烧结,得到所述多孔有序 基体材料。
本申请不对反模模板的材质做具体限定,可选的,所述柱状反模模板选自有机牺牲模板、金属模板、陶瓷模板中的一种。本申请不对有机牺牲模板、金属模板、陶瓷模板的制备工艺做具体限定,只要能够获得特定尺寸的反模模板均可,例如金属模可采用光刻工艺(制备具有微孔的结构)结合微电铸(在孔洞内填充金属)的工艺,制备具有微柱的金属复制模;陶瓷模可采用光刻工艺(制备具有微孔的结构)填充陶瓷浆料,固化烧结、通孔后制得具有微柱的陶瓷模板。对于有机牺牲模板的制备可采用行业内熟知的工艺将形成柱状反模模板的材料以液体形态(例如溶液、熔体、单体或混合物等)填充至模具的孔洞中,然后固化,再将聚合物从模具中脱出,即可获得有机牺牲模板。当反模模板为金属模板时,固化之后还可以包括剥离金属模板的步骤。可以理解的,多孔有序基体材料的预设直孔尺寸可以根据实际产品需求进行设计相应的孔尺寸。
可选的,步骤2)在固化之后脱胶步骤之前还包括对固化后得到的陶瓷生坯进行减材处理的步骤。
可选的,步骤2)在烧结步骤之后还包括对烧结后得到的陶瓷材料进行减材处理的步骤。
本申请中减材处理的目的是为了将填充过程中多余的且使阻碍陶瓷形成贯通孔洞的浆料去除,使陶瓷成上下表面微孔贯通的状态,从而实现烟油的导通。减材处理的手段包括但不限于打磨、研磨、抛光等。
本申请不对固化步骤中所采用的固化手段做具体限定,例如可采用光固化,也可以采用热固化、凝胶成孔、流延、干压等行业内熟知的陶瓷成型工艺,可选的,所述固化步骤中的固化方式选自光固化、热固化、室温静置固化中的至少一种。
本申请不对陶瓷浆料的组成做具体限定,采用现有陶瓷浆料的成分均可。例如陶瓷浆料成分可采用高分子固化树脂单体(包含但不限于环氧丙烯酸酯、聚氨酯丙烯酸酯、聚酯丙烯酸酯、聚醚丙烯酸酯、氨基丙烯酸酯、丙烯酸酯和其他丙烯酸酯单体及混合物,或其他可以反应生成固态聚合物的液态单体或混合物),引发剂(热引发剂、紫外光引发剂等行业熟知的可以在一定诱导条件下可产生自由基的活性物质)、交联剂(行业内熟知的含有官能度大于2的化合物)、陶瓷粉料(行业熟知的各种无机陶瓷粉料,包括但不限于氧化锆、氧化铝、二氧化硅等骨料及各类烧结助剂)、稀释剂等助剂(本领域可知的其他助剂)混合而成的浆料,填充(可采用真空负压注入、高压压入等方式)至反模模板中。
可选的,陶瓷浆料的制备方法包括如下步骤:将高分子固化树脂单体20-50重量份、交联剂10-50重量份、热引发剂0.1-5重量份、陶瓷粉料200-300重量份、分散溶剂10-50重量份、烧结助剂5-20重量份,混合均匀后得到的陶瓷浆料。
可选的,陶瓷浆料的制备方法包括如下步骤:将水30-40重量份,聚丙烯酰胺分散液1-10重量份,阴离子型水性聚氨酯溶液10-50重量份,氧化硅粉30-80重量份,表面润湿 剂0.1-5重量份,消泡剂0.1-5重量份,混合均匀后得到的陶瓷浆料。
可选的,陶瓷浆料的制备方法包括如下步骤:将水100重量份,聚丙烯酰胺分散剂1-8重量份,丙烯酰胺单体5-20重量份,引发剂1-5重量份,氧化锆粉300-500重量份,烧结助剂20-50重量份,混合均匀后得到的陶瓷浆料。
可选的,所述脱胶步骤中采用真空脱胶,真空脱胶温度为400℃-700℃,真空脱胶时间为1h-48h;
所述烧结温度为1000℃-1600℃,烧结时间为1h-12h;
所述热固化温度为10-150℃,热固化时间为0.5h-24h;
所述室温静置固化时间为1min-24h。
可选的,光固化时功率为10-50mw/cm2,固化时间为1-100s。
可选的,所述柱状反模模板具有呈阵列排布的若干柱状结构。
可选的,所述多孔有序基体材料中的孔洞为阵列排布的直孔结构,孔径为5um-100um,孔间距为2.5um-500um,基体材料的厚度为0.1mm-2.0mm。本申请中的孔径指的是孔的直径。
可选的,步骤1)中:根据多孔有序基体材料的预设直孔尺寸,提供具有相应孔尺寸的通孔模具,然后将形成柱状反模模板的材料填充入通孔模具的通孔内,剥离通孔模具,得到柱状反模模板。
可选的,步骤1)中:根据多孔有序基体材料的预设直孔尺寸,提供具有相应孔尺寸的通孔模具,然后将聚合物片材置于通孔模具上以使聚合物片材与通孔模具中的通孔开口端相接触,对聚合物片材进行热压处理以使聚合物片材填充入通孔模具内的通孔中,剥离通孔模具,得到柱状反模模板。
可选的,通孔模具的孔洞为阵列排布的直孔结构,孔径为5um-100um,孔间距为2.5um-500um。
本申请所述通孔模具可为现有产品,也可通过现有常规工艺制备获得,例如采用激光+腐蚀的工艺制备通孔模具。或者首先根据多孔基体材料需求,设计其孔形貌可为圆形、方形、多边形等任意图形、直径(5um-100um)、孔隙率(5%-60%)等参数,制备所对应的掩膜板。并经过行业内熟知的工艺,如光刻胶制备、曝光、后烘、显影、清洗、烘干等工艺,制备光刻主模具,然后经过子模微复制获得子模,例如金属模具的制备可采用如下方式:电镀:通过微电镀工艺,在样品外围镀上高强度、高稳定性的金属(如镍、钛、铬等合金),直至将所有区域填平,形成金属包裹上述设计好形状的柱子的块状物,然后剥离硅片、刻蚀、抛光获得金属模具。陶瓷模具可采用下述方式获得:首先将光刻主模具作为模具,在空隙中填充可固化的陶瓷浆料,经固化、烧结后获得。可反复使用的永久金属模板的制备可采用如下方式:首先制备光刻胶模具,然后通过光刻胶模具获得柱状整列金属模具,得到金属模具可以反复使用。
可选的,所述通孔模具的制备方法,包括如下步骤:
1)选取石英玻璃,依次用异丙醇、水超声清洗,干燥,采用红外激光根据预设直孔尺寸在石英玻璃上刻画图案;
2)将已经激光刻画图案后的石英玻璃置于HF水溶液中进行蚀刻,取出后用水清洗干净,干燥,得到通孔模具。
可选的,所述红外激光刻画时激光波长950-980nm,脉冲宽度为20-30fs,单脉冲能量为80-150μJ,激光功率为10-20W,激光频率为10-200KHz,扫描速度为400-600mm/S。
可选的,HF水溶液的质量分数为10-20%,刻蚀时搅拌速度为400-600r/min,蚀刻时间1-5h。
可选的,聚合物片材的制备方法包括如下步骤:将聚合物原料在100-200℃烘干1-6h,然后通过挤出机在250-300℃下挤出加工成聚合物厚片。
可选的,所述热压处理温度为120℃-350℃,压力为0.01-10MPa,热压处理时间为1s-60min。
可选的,所述热压处理前还包括对聚合物片材进行预热的步骤,可选的,所述预热温度为150-300℃,预热时间为10s-60s;
所述热压处理后还包括在0.01-10MPa压力下,降温至5-150℃,然后释放压力,进一步冷却的步骤。
本申请中形成柱状反模模板的材料包括但不限于聚合物单体及其配合物,以及由此形成的聚合物材料,也可以为市售的成品聚合物材料。本申请不对聚合物片材中的聚合物种类做具体限定,可选的,所述聚合物片材中的聚合物包括热塑性聚合物和/或热固性聚合物。
可选的,所述聚合物片材中的聚合物选自AS(丙烯晴-苯乙烯共聚物)、ABS(丙烯晴-丁二烯-苯乙烯共聚物)、PS(聚苯乙烯)、PMMA(聚甲基丙烯酸甲酯)、PVC(聚氯乙烯)、PP(聚丙烯)、PE(聚乙烯)、EPR(乙丙橡胶)、POM(聚甲醛)、PA(聚酰胺)、PC(聚碳酸酯)、PCTG(聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯)、TPU(热塑性聚氨酯)、PET(聚对苯二甲酸乙二醇酯)、PBT(聚对苯二甲酸丁二醇酯)、PEN(聚萘二甲酸乙二醇酯)、SBS(苯乙烯-丁二烯嵌段共聚物)、SPS(对位聚苯乙烯)、PPO(聚苯醚)、PPA(聚邻苯二酰胺)、PEEK(聚醚醚酮)、COC(环烯烃聚合物)、PPSU(聚苯砜)中的至少一种。可选的,聚苯乙烯可为HIPS(高抗冲聚苯乙烯)。
本申请还提供一种多孔有序基体材料,由上述所述的制备方法制备得到。
本申请还提供一种发热体,包括上述所述的多孔有序基体材料以及位于所述多孔有序基体材料表面的发热膜。本申请不对形成发热膜的方式做具体限定,可选的,可选用镀膜或者刷膜的方式进行。例如在PVD设备中,镀金属薄膜做发热膜;也可采用刮涂金属浆料、制备厚膜的方式制得发热膜,同时还可以为行业内熟知的可产生电阻的其他方 式。
本申请还提供一种电子烟,包括上述所述的发热体。
本申请的有益效果:
1、本申请提供的多孔有序基体材料的制备方法,首先根据多孔有序基体材料的预设直孔尺寸获得具有相应尺寸的柱状反模模板;然后将陶瓷浆料填充入所述柱状反模模板内,固化,脱胶,烧结,得到所述多孔有序基体材料。本申请采用预设直孔尺寸的柱状模板作为反模模板,然后通过将陶瓷浆料填充入所述柱状反模模板内,固化,脱胶,烧结后得到多孔有序基体材料,该方法制备多孔基体材料,其孔的形状可以任意设计,孔的大小、孔径也可以在更大的设计范围内进行设计和生产,同时该方法低成本、高效率、无污染,基材材质灵活多样,不受激光加工的限制,且生产设备可以通配;基体的厚度可以根据性能的需求生产,限制条件少,最厚可以至2mm或以上,且生产孔洞的工艺为后烧结,产品的厚度可以做的更薄,且相比先烧结、后成孔的工艺,本申请的工艺产品的强度更高。
2、本申请提供的多孔有序基体材料的制备方法,进一步的,步骤1)中:根据多孔有序基体材料的预设直孔尺寸,提供具有相应孔尺寸的通孔模具,然后将聚合物片材置于通孔模具上以使聚合物片材与通孔模具中的通孔开口端相接触,对聚合物片材进行热压处理以使聚合物片材填充入通孔模具内的通孔中,剥离通孔模具,得到柱状反模模板。本申请通过将聚合物片材置于通孔模具上,然后对聚合物片材进行热压处理,其获得的柱状反模模板,将陶瓷浆料填充入上述柱状反模模板内,经固化,脱胶,烧结后得到的多孔有序基体材料不仅可实现较大的深宽比,同时产品的强度也得到了一定的提高。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是实施例1制备得到的通孔石英模具图;
图2是实施例1制备得到的柱状反模模板图;
图3是实施例1制备得到的多孔有序基体材料图;
图4是实施例2制备得到的光刻胶模具侧视图;
图5是实施例2制备得到的光刻胶模具俯视图;
图6是实施例1制备得到的多孔有序基体材料的工艺流程图;
图7是实施例4制备得到的多孔有序基体材料的工艺流程图。
具体实施方式
提供下述实施例是为了更好地进一步理解本申请,并不局限于所述最佳实施方式,不对本申请的内容和保护范围构成限制,任何人在本申请的启示下或是将本申请与其他现有技术的特征进行组合而得出的任何与本申请相同或相近似的产品,均落在本申请的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例1
本实施例提供一种多孔有序基体材料的制备方法,包括如下步骤:
1)选取双面抛光的石英玻璃,将其切割成30mm×30mm×0.6mm的片状,依次用异丙醇、去离子水超声清洗10min,并用干燥的氮气吹干,采用飞秒红外激光根据预设直孔尺寸在石英玻璃上刻画图案(激光波长950nm,脉冲宽度为25fs,单脉冲能量为100μJ,激光功率为15W,激光频率为150KHz,扫描速度为500mm/S);
2)在室温下,将已经激光刻画图案后的石英玻璃置于质量分数为15%的HF水溶液中,在磁力搅拌速度为500r/min下进行蚀刻3h,取出后用水清洗干净,风干,得到具有阵列排布直孔结构的通孔石英模具(如图1所示),孔径为50um,孔间距100um,厚度为0.55mm;
3)将熔融指数为20g/10min(300℃,1.2kg)的聚碳酸酯物料(牌号科思创PC2405),在鼓风干燥箱中120℃烘干4h,然后通过挤出机在280℃下挤出加工成厚度为1.0mm的聚合物厚片,用切割机裁成40mm×40mm×1.0mm的小片待用;
将步骤2)得到的通孔石英模具和聚合物厚片叠成两层(聚合物厚片与通孔石英模具中的通孔上开口端接触),然后放置在热压机的平板上,在300℃下预热30s,然后对聚合物厚片进行热压处理以使聚合物厚片填充入通孔模具内的通孔中,热压温度为300℃,压力为0.5Mpa,热压处理时间为30s,热压结束后在0.5Mpa保压状态下降温至120℃,释放压力,取出样品,自然降温至室温后,将通孔石英模具从聚合物片材上剥离,得到一次性有机牺牲模板,所述牺牲模板具有呈阵列排布的若干柱状结构(柱状反模模板,见图2);
4)将高分子固化树脂单体(甲基丙烯酸-2-羟乙酯HEMA)40g、交联剂(二甲基丙烯酸三乙二醇酯TEGDMA)40g、热引发剂(偶氮二异丁腈AIBN)0.75g、陶瓷粉料(粒径为250nm的氧化锆粉)260g、分散溶剂(聚乙二醇-200,PEG-200)20g、烧结助剂(氧化钇,13g),经均质机混合均匀后得到的陶瓷浆料,填充入步骤3)制备得到的有机牺牲模板内,然后将填充满的有机牺牲模板放置在烘箱内,75℃下固化2h后取出,得到陶瓷生坯和有机牺牲模板的复合样品,然后将有机牺牲模板外围多余的固化浆料打磨掉使其漏出牺牲模板的柱子,使陶瓷生坯中的孔洞保持通孔状态;
5)将步骤4)得到的复合样品,经过600℃真空脱胶18h,然后在1400℃下烧结12h 后,制得所述多孔有序基体材料(如图3所示),其孔洞为阵列排布的直孔结构,孔径为35um,孔间距为70um,厚度为0.42mm,厚径比(厚度/孔径)为12,依据GB/T 8411.3-2009测试标准测试其弯曲强度,强度值为230MPa。
实施例2
本实施例提供一种多孔有序基体材料的制备方法,包括如下步骤:
1)设计石英掩模版图案:直径60um、孔间距为120um;
2)光刻胶模具制备:
匀胶:使用去离子水、氨水(浓度28wt%)、双氧水(浓度30wt%)按体积比5:1:1配制得到的清洗溶液清洁硅片,干燥后,加入SU-8 2150光刻胶(生产厂家:化药先进材料有限公司Kayaku Advanced Materials),在匀胶机上转速为800r/min,旋转30s后,将硅片静置在加热平台,110℃烘烤10h,降温至室温,制得厚度为500um的光刻胶硅片,待用;
曝光:采用405nm的线性光源在掩膜版下曝光上述光刻胶,光强为35mw/cm2,曝光时间为142s,总曝光量为5J/cm2
后烘:将上述样品用加热平台在65℃烘烤1.5h,95℃烘烤3h,随后降温至室温;
显影:将样品放置在有丙二醇甲醚醋酸酯(PGMEA)的容器中,显影1h,取出后,依次用洁净的PGMEA、异丙醇、去离子水清洗后,风干;
硬烘:将样品用加热平台在150℃加热30min后,降温至室温,完成光刻胶模具的制备(如图4和图5所示);
3)陶瓷模具的制备:将高分子固化树脂单体(1,6-己二醇二丙烯酸酯HDDA)40g、交联剂(二甲基丙烯酸三乙二醇酯TEGDMA)40g、光引发剂(二苯基-(2,4,6-三甲基苯甲酰)氧磷-TPO)0.5g、陶瓷粉料(粒径为300nm的二氧化硅粉)200g、分散溶剂(苯氧乙醇,POE)15g、烧结助剂(氧化铈,10g)经均质机混合均匀的浆料,填满上述制备的光刻胶模具内,将已填充的光刻胶模具放置在紫外固化机内,在曝光强度为100mW/cm2,曝光时间为20s下完全固化后,取出,将多余的固化浆料打磨,漏出SU-8光刻胶模具的柱子,使浆料保持通孔状态;然后将上述已通孔的样品,经过600℃真空脱胶24h、1200℃烧结12h后,经双面抛光后制得孔径为50um,孔间距为100um,正六边形孔,正六方堆积排布,厚度为0.45mm的阵列多孔陶瓷模具(即通孔模具);
4)一次性牺牲模板的制备:将熔融指数为17.5g/10min(200℃,5.0kg)的聚苯乙烯物料(牌号奇美PG-22),在鼓风干燥箱中80℃烘干2h,通过挤出机在200℃下挤出加工成厚度为1.5mm的聚合物厚片,用切割机裁成尺寸40mm×40mm×1.5mm的小片待用;
将陶瓷模具和聚合物厚片叠成两层(聚合物厚片与陶瓷模具中的通孔上开口端接触),然后放置在热压机的平板上,在200℃下预热30s,然后对聚合物厚片进行热压处理以使聚合物厚片填充入陶瓷模具内的通孔中,热压温度为200℃,压力为0.3Mpa,热压处理时间为30s,热压结束后在0.3Mpa保压状态下降温至80℃,释放压力,取出样品,自然降温 至室温后,将陶瓷模具从聚合物片材上剥离,得到一次性有机牺牲模板,所述牺牲模板具有呈阵列排布的若干柱状结构(柱状反模模板);
5)采用去离子水34g,质量分数为20%聚丙烯酰胺分散液6g,质量分数为30%的阴离子型水性聚氨酯溶液40g,粒径为300nm的氧化硅粉60g,表面润湿剂(陶氏TERGITOL CA-90)1g,消泡剂(道康宁AFE-3168)0.5g,经均质机混合均匀的浆料,填满上述制备的一次性牺牲模板内,并采用抽真空的方式辅助浆料填充;接着,将已填充的一次性牺牲模板放置在烘箱内,80℃下固化4h后取出,得到陶瓷生坯和有机牺牲模板的复合样品,然后将有机牺牲模板外围多余的固化浆料打磨掉使其漏出牺牲模板的柱子,使陶瓷生坯中的孔洞保持通孔状态;
6)将步骤5)得到的复合样品,经过600℃真空脱胶36h,然后在1200℃下烧结12h后,制得所述多孔有序基体材料,其孔洞为阵列排布的直孔结构,孔径为45um,孔间距为90um,厚度为0.41mm,开口形状为正六边形,厚径比(厚度/孔径)为9.1,依据GB/T8411.3-2009测试标准测试其弯曲强度,强度值为54MPa。
实施例3
本实施例提供一种多孔有序基体材料的制备方法,包括如下步骤:
1)掩膜板制备:设计石英掩模版图案:直径30um、孔间距为90um;
2)光刻胶主模具制备:
底涂:使用去离子水、氨水(浓度28wt%)、双氧水(浓度30wt%)按体积比5:1:1配制得到的清洗溶液清洁硅片,干燥后,经过匀胶机转速2000r/min,旋转30s后,在硅片上旋涂40nm厚度的OmniCoat底层(化药先进材料有限公司),并在200℃下烘烤2min;
镀层:采用PVD真空镀膜设备,在上述硅片表面溅射Ti/Cu薄层作为导电层,厚度为50nm/150nm;
匀胶:在上述处理过的硅片上,加SU-8 2150光刻胶,在匀胶机转速为500r/min,旋转60s后,将硅片静置在加热平台,110℃烘烤10h,并降温至室温,制得厚度为800um的光刻胶硅片,待用;
曝光:采用405nm的线性光源在掩膜版下曝光上述光刻胶,在光强为30mw/cm2、曝光时间为250s,总曝光量为7.5J/cm2
后烘:将上述样品用加热平台在65℃烘烤1.5h,95℃烘烤3h,随后降温至室温;
显影:将上述样品放置在有搅拌循环丙二醇甲醚醋酸酯(PGMEA)的容器中,显影1.5h,取出后,依次用洁净的PGMEA、异丙醇、去离子水清洗后,风干;
硬烘:将上述样品用加热平台在150℃加热30min后,降温至室温,完成光刻胶主模具样品的制备;
3)金属模具的制备:
电铸:将硫酸镍300g、氨基磺酸镍300g、氯化镍10g、硼酸35g、邻苯甲酰磺酰亚胺 10g、苯亚磺酸钠15g、十二烷基硫酸钠3g、锡酸钠10g、硫酸镁5g、酒石酸钾钠5g、氯化钠10g按上述比例添加至1L的去离子水中,配制成电铸液,将上述样品放置在电铸液中在频率f=1kHz,温度T=60℃,pH=4.0,旋转搅拌速度=30r/min,占空比为0.5,平均电流密度为2.5mA/cm2的条件下进行电铸,电铸时间144h;
去胶:采用SU-8去胶液丙二醇甲醚乙酸酯(PGMEA)在80℃下进行去胶,持续24h,再依次用洁净的N-甲基吡咯烷酮(NMP)、丙酮、水清洗后烘干,再用等离子刻蚀机在O2/SF6的气氛下刻蚀2h(功率200W),将残余的SU-8交联物质清洗干净,制得厚度约600um的阵列多孔Ni金属样品;
平坦化:将上述阵列多孔Ni金属样品经双面抛光后,制得孔径30um,孔间距90um,圆形孔、六方堆积排布,厚度约600um的阵列多孔Ni金属模具(即通孔模具);
4)一次性牺牲模板的制备:将二丙烯酸-1,6-己二醇酯(HDDA)100g、乙氧基季戊四醇四丙烯酸酯(PPTTA)25g、光引发剂(二苯基-(2,4,6-三甲基苯甲酰)氧磷-TPO)1.25g经均质机充分混合均匀后,配制成一次性牺牲模板的光固化树脂浆料;将上述已表面涂覆有脱模剂的阵列多孔Ni金属模具放置在玻璃器皿中,添加上述光固化树脂浆料使金属模具淹没其中,抽真空辅助填充,使浆料充分浸润Ni金属模具。接着,将玻璃器皿整体放置在紫外固化机腔体内,在曝光强度为50mW/cm2,曝光20s,待表面固化后,翻转再次在曝光强度为50mW/cm2,曝光20s,待完全固化后,取出样品;将上述样品从玻璃器皿中取出,而后将接触玻璃器皿底部的金属模具面用刀具小心清除模具表面的固化浆料,并用百洁布彻底清洁模具表面;随后,从另一面将固化浆料从Ni金属模具中脱出,制得一次性牺牲模板(柱状反模模板),Ni金属模具可重复使用;
5)陶瓷浆料填充、固化:将去离子水100g,聚丙烯酰胺分散剂5g,丙烯酰胺单体12g,过硫酸铵引发剂1.5g,粒径250nm氧化锆粉400g,烧结助剂氧化镁40g,在均质机中充分混合后,配制成陶瓷浆料;将上述陶瓷浆料添加至上述一次性牺牲模板内,抽真空辅助填充,再将该样品室温静置12h后,固化成型,得到陶瓷生坯和有机牺牲模板的复合样品;
6)将上述样品,经过600℃抽真空脱胶36h、1400℃烧结12h后,制得暂未通孔的氧化锆陶瓷片;将上述氧化锆陶瓷双面抛光至约400um,陶瓷可完全通孔,制得所述多孔有序基体材料,其孔洞为阵列排布的直孔结构,孔径为20um,孔间距为60um,厚度为0.40mm,厚径比(厚度/孔径)为20,孔的开口端呈圆形,正六方堆积排布,依据GB/T 8411.3-2009测试标准测试其弯曲强度,强度值为310MPa。
实施例4
本实施例提供一种多孔有序基体材料的制备方法,包括如下步骤:
1)掩膜板制备:设计石英掩模版图案:直径60um、孔间距为84um,孔形状为正六方形,排布方式为六方堆积排布;
2)光刻胶主模具制备:
镀层:使用去离子水、氨水(浓度28wt%)、双氧水(浓度30wt%)按体积比5:1:1配制得到的清洗溶液清洁硅片,充分干燥后,采用PVD真空镀膜设备,在上述硅片表面溅射Ti/Cu薄层作为导电层,厚度为50nm/150nm;
匀胶:在上述处理过的硅片上,加过量的SU-8 2150光刻胶,在匀胶机转速为800r/min,旋转30s后,将硅片静置在加热平台,110℃烘烤10h,并降温至室温,制得厚度为500um的光刻胶硅片,待用;
曝光:采用405nm的线性光源在掩膜版下曝光上述光刻胶,在光强为25mw/cm2、曝光时间为200s,总曝光量为5.0J/cm2
后烘:将上述样品用加热平台在65℃烘烤1.5h,95℃烘烤3h,随后降温至室温;
显影:将上述样品放置在有搅拌循环丙二醇甲醚醋酸酯(PGMEA)的容器中,显影1.5h,取出后,依次用洁净的PGMEA、异丙醇、去离子水清洗后,风干;
硬烘:将上述样品用加热平台在150℃加热30min后,降温至室温,完成光刻胶主模具样品的制备;
3)金属模具的制备:
电铸:将硫酸镍300g、氨基磺酸镍300g、氯化镍10g、硼酸35g、邻苯甲酰磺酰亚胺10g、苯亚磺酸钠15g、十二烷基硫酸钠3g、锡酸钠10g、硫酸镁5g、酒石酸钾钠5g、氯化钠10g按上述比例添加至1L的去离子水中,配制成电铸液,将上述样品放置在电铸液中在频率f=1kHz,温度T=60℃,pH=4.0,旋转搅拌速度=30r/min,占空比为1/3,平均电流密度为5mA/cm2的条件下进行电铸,电铸时间125h;
去胶:采用SU-8去胶液丙二醇甲醚乙酸酯(PGMEA)在80℃下进行去胶,持续24h,再依次用洁净的NMP、丙酮、水清洗后烘干,再用等离子刻蚀机在O2/SF6的气氛下刻蚀2h(功率200W),将残余的SU-8交联物质清洗干净,制得厚度约500um的阵列多孔Ni金属样品;
平坦化:将上述阵列多孔Ni金属样品经双面抛光后,制得直径60um,高度约500um,孔间距84um,正六方柱、六方堆积排布的阵列柱状Ni金属模具;
4)陶瓷浆料、流延
将去离子水340g,聚丙烯酰胺分散剂5g,固含量35%的水性聚氨酯150g,30wt%氨水5g,粒径300nm氧化硅粉1500g,烧结助剂氧化硼200g,硬脂酸镁20g在均质机中充分混合后,配制成陶瓷浆料;将上述陶瓷浆料流延在PET膜片上形成流延浆料,控制厚度约为500um;
5)浆料填充
将已用SiO2超亲水涂料表面处理后步骤3)中的阵列柱状金属模具压入上述流延浆料中,随流延浆料在50℃下4h固化后,然后将模板外围多余的固化浆料打磨掉使其漏出模板的柱子,保持通孔状态,然后将金属模具脱出,经过600℃抽真空脱胶48h、1150℃烧 结12h后,制得所述多孔有序基体材料,其孔洞为阵列排布的直孔结构,孔径为55um,孔间距为77um,厚度为0.45mm,厚径比(厚度/孔径)为8.2,孔开口端为六方形,呈正六方堆积排布,依据GB/T8411.3-2009测试标准测试其弯曲强度,强度值为45MPa。
实施例5
本实施例提供一种多孔有序基体材料的制备方法,包括如下步骤:
1)掩模板制备:设计石英掩模版图案:直径50um、孔间距为100um,孔形状为圆形;
2)硅片模具制备:
S1采用去离子水、氨水(浓度28wt%)、双氧水(浓度30wt%)按体积比5:1:1配制得到的清洗溶液对厚度约0.8mm的硅片进行深度清洁,并用去离子水反复清洗多次后,充分干燥除去水分,在干燥的N2下冷却至室温;
S2采用匀胶机在转速为600r/min,时间为60s的条件下,旋涂正光刻胶AZ4620(微化学有限公司Microchemicals GmbH),随后在100℃下烘烤15min;
S3用紫外光刻机在掩膜版下,对上述旋涂了光刻胶AZ4620的硅片进行曝光60s,随后,将已曝光的硅片放置在搅拌的显影液AZ400溶液(微化学有限公司Microchemicals GmbH)中,室温搅拌5min,接着在加热平台上100℃下烘烤30min,降温至室温后,用等离子刻蚀机在200W下去除硅片底膜后,用台阶仪测试,胶厚32um;
S4在深硅刻蚀机中交替进行钝化、刻蚀;钝化工艺:ICP功率1600W,射频功率25W,气体C4H8,流量200sccm,压力15Pa,反应时间3s;刻蚀工艺:ICP功率2200W,射频功率50W,气体SF6/O2,流量450sccm/50sccm,刻蚀温度40℃,压力10Pa,反应时间8S,总反应时间为150min后,制得孔径50um、深度约600um,孔间距为100um,圆形孔的硅片盲孔模具(通孔模具);
3)一次性牺牲模板的制备
采用含聚合官能团的含氟单体(三氟丙烯酸甲酯)与光引发剂TPO(二苯基-(2,4,6-三甲基苯甲酰)氧磷)以20:1的质量比在均质机中充分混合均匀后,配制成紫外光固化树脂浆料;将该树脂浆料添加至上述硅片盲孔模具内,抽真空辅助填充后,放置在紫外固化机内,在30mw/cm2的功率下固化20s后,取出样品,并将固化的树脂从硅片盲孔模具上脱出,得到一次性牺牲模板的母模板;
采用道康宁Sylgard 184液体硅胶组分A与固化剂B以10:1的质量比在均质机中充分混合均匀后,配制成热固化树脂浆料,将该树脂浆料添加至上述含氟树脂母模板中,并抽真空辅助填充后,在80℃的烘箱中静置2h固化后取出,将二者分离,含氟树脂模具为柱状,可重复使用,硅胶树脂模具为盲孔状;
将熔融指数为17.5g/10min(200℃,5.0kg)的聚苯乙烯物料(典型牌号奇美PG-22),在鼓风干燥箱中80℃烘干2h,通过挤出机在200℃下挤出加工成厚度约1.5mm的聚苯乙烯厚片,用切割机裁成约40mm×40mm×1.5mm的小片待用;
采用盲孔硅胶树脂模具与聚苯乙烯树脂厚片叠成两层,(聚苯乙烯树脂厚片与硅胶树脂模具中的通孔上开口端接触),然后放置在热压机的平板上对聚苯乙烯树脂厚片进行热压处理以使聚苯乙烯树脂厚片填充入硅胶树脂模具内的通孔中,热压温度为200℃,压力为0.5Mpa,热压处理时间为30s,热压结束后自然降温至室温后,将硅胶树脂模具从聚合物片材上剥离,得到一次性有机牺牲模板,所述牺牲模板具有呈阵列排布的若干柱状结构;
4)陶瓷浆料填充、固化、通孔
采用由高分子固化树脂单体(甲基丙烯酸-2-羟乙酯HEMA)40g、交联剂(二甲基丙烯酸三乙二醇酯TEGDMA)40g、热引发剂(过氧化二苯甲酰BPO)1.2g、陶瓷粉料(粒径为200nm的氧化铝粉)260g、分散溶剂(聚乙二醇-200,PEG-200)20g、烧结助剂(氧化铈,13g)经均质机混合均匀的浆料,填满上述制备的一次性牺牲模板内,并采用抽真空的方式辅助浆料填充,接着,然后将填充满的有机牺牲模板放置在烘箱内,85℃下固化2h后取出,得到陶瓷生坯和有机牺牲模板的复合样品,然后将有机牺牲模板外围多余的固化浆料打磨掉使其漏出牺牲模板的柱子,使陶瓷生坯中的孔洞保持通孔状态,随后将牺牲模板从已固化的陶瓷生坯中脱出;
5)脱胶、烧结
将上述已通孔的陶瓷生坯,经过600℃真空脱胶18h、1600℃烧结12h后,制得所述多孔有序基体材料,其孔洞为阵列排布的直孔结构,孔径为38um,孔间距为76um,厚度为0.47mm,厚径比(厚度/孔径)为12.4,孔的开口端呈圆形,依据GB/T 8411.3-2009测试标准测试其弯曲强度,强度值为50MPa。
实施例6
本实施例提供一种多孔有序基体材料的制备方法,包括如下步骤:
1)选取双面抛光的石英玻璃,将其切割成30mm×30mm×0.6mm的片状,依次用异丙醇、去离子水超声清洗10min,并用干燥的氮气吹干,采用飞秒红外激光根据预设直孔尺寸在石英玻璃上刻画图案(激光波长950nm,脉冲宽度为25fs,单脉冲能量为100μJ,激光功率为15W,激光频率为150KHz,扫描速度为500mm/S);
2)在室温下,将已经激光刻画图案后的石英玻璃置于质量分数为15%的HF水溶液中,在磁力搅拌速度为500r/min下进行蚀刻3h,取出后用水清洗干净,风干,得到具有阵列排布直孔结构的通孔石英模具(如图1所示),孔径为50um,孔间距100um,厚度为0.55mm;
3)将熔融指数为20g/10min(300℃,1.2kg)的聚碳酸酯物料(牌号科思创PC2405),在鼓风干燥箱中120℃烘干4h,然后加热至300℃熔融,然后将熔融态物料在真空辅助条件下填充入步骤2)得到的通孔石英模具中,填充完毕后,降温至室温后,剥离石英模具,得到一次性有机牺牲模板,所述牺牲模板具有呈阵列排布的若干柱状结构;
4)将高分子固化树脂单体(甲基丙烯酸-2-羟乙酯HEMA)40g、交联剂(二甲基丙烯酸三乙二醇酯TEGDMA)40g、热引发剂(偶氮二异丁腈AIBN)0.75g、陶瓷粉料(粒径 为250nm的氧化锆粉)260g、分散溶剂(聚乙二醇-200,PEG-200)20g、烧结助剂(氧化钇,13g),经均质机混合均匀后得到的陶瓷浆料,填充入步骤3)制备得到的有机牺牲模板内,然后将填充满的有机牺牲模板放置在烘箱内,75℃下固化2h后取出,得到陶瓷生坯和有机牺牲模板的复合样品,然后将有机牺牲模板外围多余的固化浆料打磨掉使其漏出牺牲模板的柱子,使陶瓷生坯中的孔洞保持通孔状态;
5)将步骤4)得到的复合样品,经过600℃真空脱胶18h,然后在1400℃下烧结12h后,制得所述多孔有序基体材料,其孔洞为阵列排布的直孔结构,孔径为35um,孔间距为70um,厚度为0.30mm,厚径比(厚度/孔径)为8.6,依据GB/T 8411.3-2009测试标准测试其弯曲强度,强度值为160MPa。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (17)

  1. 一种多孔有序基体材料的制备方法,其特征在于,包括如下步骤:
    1)根据多孔有序基体材料的预设直孔尺寸获得具有相应尺寸的柱状反模模板;
    2)将陶瓷浆料填充入所述柱状反模模板内,固化,脱胶,烧结,得到所述多孔有序基体材料。
  2. 根据权利要求1所述的多孔有序基体材料的制备方法,其特征在于,所述柱状反模模板选自有机牺牲模板、金属模板、陶瓷模板中的一种。
  3. 根据权利要求1或2所述的多孔有序基体材料的制备方法,其特征在于,步骤2)在固化之后脱胶步骤之前还包括对固化后得到的陶瓷生坯进行减材处理的步骤。
  4. 根据权利要求1或2所述的多孔有序基体材料的制备方法,其特征在于,步骤2)在烧结步骤之后还包括对烧结后得到的陶瓷材料进行减材处理的步骤。
  5. 根据权利要求1-4任一项所述的多孔有序基体材料的制备方法,其特征在于,所述固化步骤中的固化方式选自光固化、热固化、室温静置固化中的至少一种。
  6. 根据权利要求1-5任一项所述的多孔有序基体材料的制备方法,其特征在于,所述脱胶步骤中采用真空脱胶,真空脱胶温度为400℃-700℃,真空脱胶时间为1h-48h;
    所述烧结温度为1000℃-1600℃,烧结时间为1h-12h;
    所述热固化温度为10-150℃,热固化时间为0.5h-24h;
    所述室温静置固化时间为1min-24h。
  7. 根据权利要求1-6任一项所述的多孔有序基体材料的制备方法,其特征在于,所述柱状反模模板具有呈阵列排布的若干柱状结构。
  8. 根据权利要求1-7任一项所述的多孔有序基体材料的制备方法,其特征在于,所述多孔有序基体材料中的孔洞为阵列排布的直孔结构,孔径为5um-100um,孔间距为2.5um-500um,基体材料的厚度为0.1mm-2.0mm。
  9. 根据权利要求1-8任一项所述的多孔有序基体材料的制备方法,其特征在于,步骤1)中:根据多孔有序基体材料的预设直孔尺寸,提供具有相应孔尺寸的通孔模具,然后将形成柱状反模模板的材料填充入通孔模具的通孔内,剥离通孔模具,得到柱状反模模板。
  10. 根据权利要求9所述的多孔有序基体材料的制备方法,其特征在于,步骤1)中:根据多孔有序基体材料的预设直孔尺寸,提供具有相应孔尺寸的通孔模具,然后将聚合物片材置于通孔模具上以使聚合物片材与通孔模具中的通孔开口端相接触,对聚合物片材进行热压处理以使聚合物片材填充入通孔模具内的通孔中,剥离通孔模具,得到柱状反模模板。
  11. 根据权利要求10所述的多孔有序基体材料的制备方法,其特征在于,所述热压处理温度为120℃-350℃,压力为0.01-10MPa,热压处理时间为1s-60min。
  12. 根据权利要求10或11所述的多孔有序基体材料的制备方法,其特征在于,所述热压处理前还包括对聚合物片材进行预热的步骤,优选的,所述预热温度为150-300℃,预热时间为10s-60s;
    所述热压处理后还包括在0.01-10MPa压力下,降温至5-150℃,然后释放压力,进一步冷却的步骤。
  13. 根据权利要求9-12任一项所述的多孔有序基体材料的制备方法,其特征在于,所述聚合物片材中的聚合物包括热塑性聚合物和/或热固性聚合物。
  14. 根据权利要求13所述的多孔有序基体材料的制备方法,其特征在于,
    所述聚合物片材中的聚合物选自丙烯晴-苯乙烯共聚物、丙烯晴-丁二烯-苯乙烯共聚物、聚苯乙烯、聚甲基丙烯酸甲酯、聚氯乙烯、聚丙烯、聚乙烯、乙丙橡胶、聚甲醛、聚酰胺、聚碳酸酯、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯、热塑性聚氨酯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯、苯乙烯-丁二烯嵌段共聚物、对位聚苯乙烯、聚苯醚、聚邻苯二酰胺、聚醚醚酮、环烯烃聚合物、聚苯砜中的至少一种。
  15. 一种多孔有序基体材料,其特征在于,由权利要求1-14任一项所述的制备方法制备得到。
  16. 一种发热体,其特征在于,包括权利要求15所述的多孔有序基体材料以及位于所述多孔有序基体材料表面的发热膜。
  17. 一种电子烟,其特征在于,包括权利要求16所述的发热体。
PCT/CN2023/109580 2022-11-18 2023-07-27 一种多孔有序基体材料及其制备方法和应用 WO2024103827A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211446370.9A CN118056500A (zh) 2022-11-18 2022-11-18 一种多孔有序基体材料及其制备方法和应用
CN202211446370.9 2022-11-18

Publications (1)

Publication Number Publication Date
WO2024103827A1 true WO2024103827A1 (zh) 2024-05-23

Family

ID=91068635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109580 WO2024103827A1 (zh) 2022-11-18 2023-07-27 一种多孔有序基体材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN118056500A (zh)
WO (1) WO2024103827A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004261456A (ja) * 2003-03-03 2004-09-24 National Institute Of Advanced Industrial & Technology 貫通を有する多孔質リン酸カルシウム高分子ハイドロゲル複合体、その製造方法及びそれを用いた人工骨または薬剤徐放体
CN1875448A (zh) * 2003-10-31 2006-12-06 3M创新有限公司 在基板上形成微结构的方法及其所用的微结构组件
JP2017067968A (ja) * 2015-09-29 2017-04-06 大日本印刷株式会社 透明導電性無機成形体、及びその製造方法、タッチパネル、並びに、帯電防止部材
CN113024231A (zh) * 2021-03-17 2021-06-25 深圳陶陶科技有限公司 一种多孔陶瓷雾化芯的制备方法及电子烟
CN114147892A (zh) * 2021-10-28 2022-03-08 吉林大学 一种仿生型高长径比纤毛的制备方法
CN114497352A (zh) * 2022-04-06 2022-05-13 淄博高新技术产业开发区Mems研究院 具有微结构阵列的压电材料层及其制备方法和应用
CN115708598A (zh) * 2022-11-25 2023-02-24 思摩尔国际控股有限公司 雾化芯、雾化器、电子雾化装置以及雾化芯的制造方法
CN115736374A (zh) * 2022-11-25 2023-03-07 思摩尔国际控股有限公司 一种发热组件、雾化器、电子雾化装置以及制造方法
CN115844061A (zh) * 2022-11-25 2023-03-28 思摩尔国际控股有限公司 一种发热组件、雾化器、电子雾化装置以及制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004261456A (ja) * 2003-03-03 2004-09-24 National Institute Of Advanced Industrial & Technology 貫通を有する多孔質リン酸カルシウム高分子ハイドロゲル複合体、その製造方法及びそれを用いた人工骨または薬剤徐放体
CN1875448A (zh) * 2003-10-31 2006-12-06 3M创新有限公司 在基板上形成微结构的方法及其所用的微结构组件
JP2017067968A (ja) * 2015-09-29 2017-04-06 大日本印刷株式会社 透明導電性無機成形体、及びその製造方法、タッチパネル、並びに、帯電防止部材
CN113024231A (zh) * 2021-03-17 2021-06-25 深圳陶陶科技有限公司 一种多孔陶瓷雾化芯的制备方法及电子烟
CN114147892A (zh) * 2021-10-28 2022-03-08 吉林大学 一种仿生型高长径比纤毛的制备方法
CN114497352A (zh) * 2022-04-06 2022-05-13 淄博高新技术产业开发区Mems研究院 具有微结构阵列的压电材料层及其制备方法和应用
CN115708598A (zh) * 2022-11-25 2023-02-24 思摩尔国际控股有限公司 雾化芯、雾化器、电子雾化装置以及雾化芯的制造方法
CN115736374A (zh) * 2022-11-25 2023-03-07 思摩尔国际控股有限公司 一种发热组件、雾化器、电子雾化装置以及制造方法
CN115844061A (zh) * 2022-11-25 2023-03-28 思摩尔国际控股有限公司 一种发热组件、雾化器、电子雾化装置以及制造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAUSHAL, A. ET AL.: "3D multiscale controlled micropatterning of lead-free piezoelectric electroceramics via Epoxy Gel Casting and lift-off", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 37, no. 9, 28 March 2017 (2017-03-28), XP029987324, DOI: 10.1016/j.jeurceramsoc.2017.03.037 *
OLHERO, S.M. ET AL.: "Microfabrication of high aspect ratio BST pillar arrays by epoxy gel casting from aqueous suspensions with added water soluble epoxy resin", MATERIALS RESEARCH BULLETIN, vol. 60, 28 September 2014 (2014-09-28), XP029114170, DOI: 10.1016/j.materresbull.2014.09.072 *

Also Published As

Publication number Publication date
CN118056500A (zh) 2024-05-21

Similar Documents

Publication Publication Date Title
JP6967969B2 (ja) エンボスラッカー、及び、エンボス加工方法、及び、エンボスラッカーでコーティングされた基板表面
US7465419B1 (en) Method for providing a compliant cantilevered micromold
US20010038803A1 (en) Fabrication of metallic microstructures by micromolding nanoparticles
CN105824190A (zh) 一种纳米压印模板制备方法
CN107428091B (zh) 成型体的逐层生产
US9728802B2 (en) Micromold methods for fabricating perforated substrates and for preparing solid polymer electrolyte composite membranes
CN109650887A (zh) 一种光固化成型的铌酸钾钠系无铅压电陶瓷的制备方法
TWI826477B (zh) 在可撓性基材上製造金屬圖案的方法
CN108314463B (zh) 一种电解铜填充多孔金刚石磨具及其制备方法
TW200902276A (en) Method of molding ultraviolet cured microstructures and molds
CN102060262A (zh) 低压键合制作微纳米流控系统的方法
JP2013531808A (ja) 基板のハイスループット、ミクロンスケールエッチングのためのステンシルならびにその製造方法および使用方法
US7090189B2 (en) Compliant cantilevered micromold
TWI673250B (zh) 水性陶瓷三維積層材料以及使用該材料製造陶瓷件之方法
WO2024103827A1 (zh) 一种多孔有序基体材料及其制备方法和应用
CN107935591B (zh) 一种改性锆钛酸铅粉体、其制备方法及压电陶瓷成型坯体
US11920252B2 (en) SU-8 etching technique using molten salt
KR101575879B1 (ko) 역 임프린트 방식을 이용한 패터닝 방법
CN107500779B (zh) 一种多孔硅基结构陶瓷及其制备方法
CN109016274B (zh) 一种利用数控雕刻技术结合石蜡基片制作微流控芯片模具的方法
CN110475634B (zh) 三维造型物的制造方法
US20220134635A1 (en) 3d printing device, and method for preparing 3d printed structure
CN114554708B (zh) 一种液态金属微纳米电路及其制备方法与应用
JP2008254427A (ja) Pimまたはマイクロpimによって部品を製造する方法
Lu et al. Embossing of high‐aspect‐ratio‐microstructures using sacrificial templates and fast surface heating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23890267

Country of ref document: EP

Kind code of ref document: A1