WO2024101403A1 - 流体制御バルブ及び流体制御装置 - Google Patents

流体制御バルブ及び流体制御装置 Download PDF

Info

Publication number
WO2024101403A1
WO2024101403A1 PCT/JP2023/040288 JP2023040288W WO2024101403A1 WO 2024101403 A1 WO2024101403 A1 WO 2024101403A1 JP 2023040288 W JP2023040288 W JP 2023040288W WO 2024101403 A1 WO2024101403 A1 WO 2024101403A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid control
valve body
control valve
permanent magnet
core
Prior art date
Application number
PCT/JP2023/040288
Other languages
English (en)
French (fr)
Inventor
繁之 林
和也 赤土
Original Assignee
株式会社堀場エステック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場エステック filed Critical 株式会社堀場エステック
Publication of WO2024101403A1 publication Critical patent/WO2024101403A1/ja

Links

Images

Definitions

  • the present invention relates to a fluid control valve and a fluid control device.
  • This solenoid valve comprises a valve body having a valve seat, a plunger arranged so as to be movable up and down on the valve body, an attractor arranged opposite the plunger, an electromagnetic coil which excites the attractor, a valve body connected to the plunger and arranged so as to be movable up and down relative to the valve seat, and a biasing member which biases the plunger in the valve-opening direction, and when electricity is applied to the electromagnetic coil, the plunger moves in the valve-closing direction against the biasing force of the biasing member.
  • valve body is arranged so as to be movable up and down relative to the valve body arranged below the attractor so as to pass through the attractor, and is connected to the plunger arranged above the attractor, and is constantly biased upward (valve-opening direction) together with the plunger.
  • the above solenoid valves have problems in that they have a complex structure and a large dead volume.
  • it is desirable to reduce the area of contact with the process gas but the above solenoid valves have a large dead volume, making it difficult to reduce the area of contact with the gas.
  • the present invention was made to solve the above problems, and its main objective is to simplify the valve structure, reduce the dead volume, and enable use in semiconductor manufacturing processes.
  • the fluid control valve comprises a flow path block in which an internal flow path is formed, a valve seat member having a valve seat surface, a valve body having a seat surface that seats on the valve seat surface and provided with a permanent magnet, and an actuator unit that acts on the permanent magnet to drive the valve body, and the permanent magnet is sealed with a corrosion-resistant alloy.
  • a corrosion-resistant alloy is, for example, one that has corrosion resistance against gases used in semiconductor manufacturing processes, and specifically, one that has corrosion resistance against halogen gases such as fluorine ( F2 ), chlorine ( Cl2 ), bromine ( Br2 ), iodine ( I2 ), etc., or compounds containing halogen elements, such as halogen-based gases such as HCl.
  • halogen gases such as fluorine ( F2 ), chlorine ( Cl2 ), bromine ( Br2 ), iodine ( I2 ), etc.
  • halogen gases such as fluorine ( F2 ), chlorine ( Cl2 ), bromine ( Br2 ), iodine ( I2 ), etc.
  • halogen gases such as fluorine ( F2 ), chlorine ( Cl2 ), bromine ( Br2 ), iodine ( I2 ), etc.
  • compounds containing halogen elements such as halogen-based gases such as HCl.
  • the corrosion-resistant alloy is a material different from the permanent magnet and has higher corrosion resistance than the permanent magnet, and more preferably has higher corrosion resistance against gases used in semiconductor processes than the permanent magnet, specifically, halogen gases such as fluorine ( F2 ), chlorine ( Cl2 ), bromine ( Br2 ), iodine ( I2 ), etc., or compounds containing halogen elements, such as HCl, etc., than the permanent magnet.
  • halogen gases such as fluorine ( F2 ), chlorine ( Cl2 ), bromine ( Br2 ), iodine ( I2 ), etc.
  • the corrosion-resistant alloy is one that is corrosion-resistant to the above-mentioned gases, and more preferably, one that is corrosion-resistant to aqueous solutions and reaction products (mainly strong acids) generated when a halogen gas or a halogen-based gas reacts with moisture.
  • a permanent magnet is provided on the valve body and acts on the permanent magnet to drive the valve body, thereby making it possible to simplify the valve structure and reduce the dead volume compared to conventional configurations that use plungers.
  • the permanent magnet is sealed with a corrosion-resistant alloy, even when used in a semiconductor manufacturing process, the permanent magnet can be prevented from being corroded by the process gas. Therefore, the fluid control valve of the present invention can be suitably used in a process gas supply line in a semiconductor manufacturing device, and the area in contact with the process gas can be reduced.
  • the actuator unit has a core provided on the opposite side of the valve body from the seating surface, and a solenoid coil wound around the core.
  • the fluid control valve is a so-called energized closed type (normally open type)
  • the solenoid coil when the solenoid coil is not energized, the permanent magnet is attracted to the core and the valve body is in a fully open state, and when the solenoid coil is energized, the core and the permanent magnet repel each other and the valve body moves in the valve closing direction.
  • the valve body As a specific embodiment for sealing the permanent magnet with a corrosion-resistant alloy, it is desirable for the valve body to have a valve body main body made of a corrosion-resistant alloy in which a recess for accommodating the permanent magnet is formed on the surface opposite the seating surface, and a sealing member made of a corrosion-resistant alloy that seals the opening of the recess when the permanent magnet is accommodated in the recess.
  • the permanent magnet can be sealed with the corrosion-resistant alloy simply by accommodating the permanent magnet in the recess of the valve body and sealing it with the sealing member, thereby simplifying the configuration of the valve body.
  • corrosion-resistant alloy examples include stainless steel such as SUS316L.
  • the actuator core is disposed opposite the seating surface of the valve body, and in order not to impede the magnetic coupling between the core and the permanent magnet, it is desirable that the sealing member be made of non-magnetic stainless steel. In addition, in order to make the valve body function as a yoke to further strengthen the magnetic coupling between the core and the permanent magnet, it is desirable that the valve body be made of electromagnetic stainless steel.
  • the fluid control valve according to the present invention further includes a distance adjustment mechanism that adjusts the distance between the core and the valve body.
  • a distance adjustment mechanism that adjusts the distance between the core and the valve body.
  • a specific embodiment of the fluid control valve may be such that the fluid control valve further includes a mounting block attached to the flow path block and accommodating the valve body, the actuator portion having a casing that accommodates the core and the solenoid coil, and the core being fixed to the casing.
  • the actuator unit can be removed together with the valve body by removing the mounting block from the flow passage block, facilitating disassembly and maintenance.
  • the core is provided facing the surface opposite to the seating surface of the valve body.
  • the distance adjustment mechanism is constituted by the casing and the mounting block.
  • a specific embodiment of the distance adjustment mechanism may include a male threaded portion formed on one of the outer peripheral surface of the casing or the mounting block, and a female threaded portion formed on the other of the outer peripheral surface of the casing or the mounting block, into which the male threaded portion screws.
  • the mounting block is provided with a fixing portion that is movable forward and backward relative to the casing and that fixes the casing to the mounting block.
  • the casing has a cylindrical end at the tip portion on the flow path block side
  • the mounting block has a slit for accommodating the cylindrical end
  • the fixing part is provided on the side wall portion of the mounting block that forms the slit
  • the cylindrical end is fixed to the side wall portion of the mounting block that forms the slit by the fixing part.
  • the flow path block In order to facilitate disassembly and assembly of the fluid control valve and facilitate maintenance, it is desirable for the flow path block to have a housing recess for housing the valve seat member.
  • the mounting block be attached to the flow path block to fix the valve seat member accommodated in the accommodation recess.
  • the fluid control device is characterized by comprising the above-mentioned fluid control valve, a fluid sensor that measures the flow rate or pressure of the fluid, and a control unit that controls the opening degree of the fluid control valve based on a measurement value measured by the fluid sensor and a predetermined target value.
  • the present invention configured in this way, simplifies the valve structure, reduces the dead volume, and can be used in semiconductor manufacturing processes.
  • FIG. 1 is a schematic diagram showing a fluid control device according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the fluid control valve of the embodiment.
  • 3A and 3B are a perspective view and a cross-sectional view showing the configuration of a valve body of the embodiment.
  • FIG. 2 is a partially enlarged cross-sectional view of the fluid control valve (open state) of the embodiment.
  • FIG. 2 is a partially enlarged cross-sectional view of the fluid control valve (closed state) of the embodiment.
  • 5A to 5C are partially enlarged cross-sectional views showing states before and after distance adjustment according to the embodiment.
  • FIG. 11 is a partially enlarged cross-sectional view of a fluid control valve (open state) according to a modified embodiment.
  • the fluid control device 100 of this embodiment is used in the semiconductor manufacturing process, for example by being incorporated into a semiconductor manufacturing apparatus, and is provided, for example, in one or more gas supply lines connected to a semiconductor processing chamber to control the flow rate of process gas flowing through each gas supply line.
  • the fluid control device 100 is a so-called differential pressure mass flow controller (differential pressure MFC), and as shown in FIG. 1, it is equipped with a flow path block 2 in which an internal flow path 2R is formed, and a fluid control device 3 including a flow sensor 31 and a fluid control valve 32 mounted on the flow path block 2.
  • differential pressure MFC differential pressure mass flow controller
  • the flow path block 2 is rectangular, and a flow sensor 31 and a fluid control valve 32 are provided on a predetermined surface.
  • a concave accommodating recess 2M for mounting the fluid control valve 32 is also formed on a predetermined surface of the flow path block 2, and the internal flow path 2R is divided into an upstream flow path 2R1 and a downstream flow path 2R2 by the accommodating recess 2M.
  • One end of the upstream flow path 2R1 opens on, for example, the bottom surface of the accommodating recess 2M, and one end of the downstream flow path 2R2 opens on, for example, the bottom surface of the accommodating recess 2M.
  • the fluid control device 3 controls the fluid in the internal flow path 2R, and has a flow sensor 31 that measures the flow rate of the fluid flowing through the internal flow path 2R, and a fluid control valve 32 that is provided upstream of the flow sensor 31.
  • the valve opening of the fluid control valve 32 is feedback-controlled by the control unit 4, which will be described later.
  • the flow sensor 31 is a differential pressure type flow sensor, and has an upstream pressure sensor 31a provided upstream of a fluid resistance element 33 such as a restrictor or orifice provided in the internal flow path 2R, and a downstream pressure sensor 31b provided downstream of the fluid resistance element 33.
  • the upstream pressure sensor 31a and the downstream pressure sensor 31b are attached in a row together with the fluid control valve 32 on a specified surface of the flow path block 2.
  • the flow rate calculation unit 4a of the control unit 4 described later calculates the flow rate Q flowing through the internal flow path 2R using the upstream pressure P1 of the fluid resistance element 33 detected by the upstream pressure sensor 31a and the downstream pressure P2 of the fluid resistance element 33 detected by the downstream pressure sensor 31b.
  • the fluid control valve 32 is provided upstream of the differential pressure flow sensor 31.
  • the fluid control valve 32 is a solenoid valve (electromagnetic valve) that controls the flow rate by moving a valve body toward and away from a valve seat using a solenoid. In this embodiment, it is a so-called normally open type that is fully open when the valve body is not driven.
  • the fluid control valve 32 is controlled by the valve control unit 4b of the control unit 4. The detailed configuration of the fluid control valve 32 will be described later.
  • the control unit 4 has a flow rate calculation unit 4a that calculates the flow rate Q through the internal flow path 2R based on the upstream pressure P1 and the downstream pressure P2, and a valve control unit 4b that controls the fluid control valve 32 based on the flow rate Q calculated by the flow rate calculation unit 4a and the target flow rate (set value).
  • the control unit 4 is a so-called computer equipped with, for example, a CPU, memory, A/D and D/A converters, and input/output means, and performs the functions of the flow rate calculation unit 4a and the valve control unit 4b by executing a flow rate control program stored in the memory and cooperating with various devices.
  • the fluid control valve 32 of the present embodiment includes a valve seat member 5 having a planar valve seat surface 5a, a valve body 6 having a planar seating surface 6a that seats in surface contact with the valve seat surface 5a and is provided with a permanent magnet 60, and an actuator unit 7 that acts on the permanent magnet 60 to drive the valve body 6 by magnetic force.
  • the valve seat member 5 has a generally rotary body shape, and is accommodated in the accommodation recess 2M of the flow path block 2, as shown in Figs. 2 and 3.
  • the valve seat member 5 has an annular valve seat surface 5a formed on the upper surface facing the opening side of the accommodation recess 2M.
  • the valve seat member 5 is made of a non-magnetic material, for example, austenitic stainless steel (non-magnetic stainless steel) such as SUS316L.
  • the valve seat member 5 also has a through hole 51 formed in the center of the inside of the valve seat surface 5a, penetrating from the valve seat surface 5a side to the opposite side of the valve seat surface 5a.
  • This through hole 51 is connected to the upstream flow path 2R1 that opens into the bottom surface of the accommodation recess 2M.
  • a seal member S1 such as an O-ring is provided between the periphery of the through hole 51 and the bottom surface of the accommodation recess 2M, providing a liquid-tight seal.
  • valve seat member 5 is formed with an outlet passage 52 that allows the fluid that has flowed into the interior from the valve seat surface 5a to flow out to the downstream flow passage 2R2.
  • the outlet passage 52 is a through hole that penetrates from the valve seat surface 5a side to the opposite side of the valve seat surface 5a on the outside of the valve seat surface 5a. This outlet passage 52 is connected to the upstream flow passage 2R1 that opens into the bottom surface of the accommodation recess 2M.
  • the valve body 6 is generally shaped like a rotating body, and is disposed opposite the valve seat member 5 housed in the housing recess 2M, as shown in Figs. 2 to 5.
  • the permanent magnet 60 disposed on the valve body 6 is disk-shaped, and is sealed with a corrosion-resistant alloy that is resistant to the gases used in the semiconductor process.
  • the permanent magnet 60 may be, for example, an alloy magnet such as an alnico magnet, a ferrite magnet, or a rare earth magnet such as a neodymium magnet.
  • the valve body 6 has a valve body main body 61 in which a recess 61M for accommodating a permanent magnet 60 is formed on the surface opposite the seating surface 6a, and a sealing member 62 that seals the opening of the recess 61M when the permanent magnet 60 is accommodated in the recess 61M.
  • the permanent magnet 60 in this embodiment is structured to be sealed by the valve body main body 61 and the sealing member 62.
  • the valve body 61 has a generally rotating body shape and has a convex portion 611 with a flat seating surface 6a on the top surface.
  • the valve body 61 has a circular seating surface 6a corresponding to the annular valve seating surface 5a.
  • the recess 61M has a shape corresponding to the permanent magnet 60, and in this embodiment, is a generally circular recess in a plan view.
  • This valve body 61 is made of a corrosion-resistant alloy such as stainless steel that is corrosion-resistant to gases used in semiconductor processes.
  • the valve body 61 is made of a magnetic material such as electromagnetic stainless steel such as KM45 in order to function as a yoke.
  • the sealing member 62 is generally disk-shaped to correspond to the opening shape of the recess 61M. This sealing member 62 seals the opening of the recess 61M to hermetically seal the recess 61M so that the permanent magnet 60 housed in the recess 61M does not corrode.
  • the sealing member 62 is joined to the opening of the recess 61M by welding, such as laser welding.
  • the sealing member 62 may be mechanically or adhesively joined to the opening of the recess 61M.
  • the sealing member 62 is made of a corrosion-resistant alloy, such as stainless steel, that is corrosion-resistant to gases used in semiconductor processes.
  • the sealing member 62 of this embodiment is made of a non-magnetic material, such as austenitic stainless steel (non-magnetic stainless steel) such as SUS316L, so as not to interfere with the magnetic coupling between the core 71 and the permanent magnet 60.
  • austenitic stainless steel non-magnetic stainless steel
  • SUS316L non-magnetic stainless steel
  • the valve body 6 is accommodated in a mounting block 8 that is attached to a predetermined surface (top surface) of the flow path block 2.
  • the mounting block 8 is made of a non-magnetic material, such as austenitic stainless steel (non-magnetic stainless steel) such as SUS316L.
  • the valve body 6 is supported by a support member 9 made of an elastic material, such as a leaf spring, on the mounting block 8.
  • the support member 9 supports the valve body 6 with the seating surface 6a facing the valve seat surface 5a.
  • the support member 9 is annular, and the convex portion 611 of the valve body 6 is inserted into the central opening 91 to support the valve body 6.
  • the support member 9 and the valve body 6 may be integrally formed by welding, such as laser welding.
  • the support member 9 and the valve body 6 may be integrally formed by mechanical joining or adhesive joining.
  • the support member 9 is made of a non-magnetic material, such as austenitic stainless steel such as SUS316L. Furthermore, the support member 9 has spring properties and is made of a corrosion-resistant material that is suitable for semiconductor gas-contacting parts, taking into account magnetic permeability.
  • the mounting block 8 is also attached to the flow path block 2 to fix the valve seat member 5 housed in the accommodation recess 2M. Specifically, the surface (lower surface) of the mounting block 8 facing the flow path block 2 contacts the upper surface of the valve seat member 5, and the lower surface of the valve seat member 5 is pressed and fixed against the bottom surface of the accommodation recess 2M via the seal member S1.
  • a seal member S2 such as a metal seal is provided between the mounting block 8 and the flow path block 2 to provide a liquid-tight seal.
  • the actuator unit 7 has a core 71 that faces the surface 6b of the valve body 6 opposite the seating surface 6a, a solenoid coil 72 that is wound around the core 71, and a casing 73 that houses the core 71 and the solenoid coil 72.
  • the core 71 has a roughly cylindrical shape, with one end (upper end in FIG. 2) connected to the casing 73 and the other end (lower end in FIG. 2) facing the surface 6b opposite the seating surface 6a of the valve body 6. Specifically, the other end of the core 71 faces the opposite surface 6b so as to be coaxial with the permanent magnet 60 provided on the valve body 6.
  • the core 71 is formed from a magnetic material, for example, carbon steel for mechanical structures such as S45C.
  • the solenoid coil 72 is wound around the outer circumferential surface of the core 71, and more specifically, is wound around a bobbin 721 through which the core 71 is inserted.
  • the bobbin 721 is provided so as to be able to slide relative to the core 71.
  • the bobbin 721 is made of a non-magnetic material, for example, austenitic stainless steel such as SUS316L.
  • the casing 73 has a cylindrical shape, and its upper wall portion is connected to the upper end portion of the core 71.
  • An elastic body 74 such as a wave spring is provided between the upper wall portion of the casing 73 and the solenoid coil 72 (specifically, the upper end portion of the bobbin 721) (see FIG. 2).
  • the casing 73 is formed from a magnetic body, for example, carbon steel for mechanical structures such as S45C.
  • the casing 73 and the core 71 may be formed integrally.
  • the casing 73 is attached to the mounting block 8, and by attaching the casing 73 to the mounting block 8, the core 71 connected to the casing 73 is disposed opposite the surface 6b of the valve body 6 opposite the seating surface 6a.
  • the casing 73 extends to a position that surrounds the valve body 6, forming a magnetic path that guides the magnetic flux generated by the solenoid coil 72 to the periphery of the valve body 6.
  • the position that surrounds the periphery of the valve body 6 is a position that faces the outer peripheral surface of the valve body 6 in a direction perpendicular to the direction in which the valve body 6 advances and retreats.
  • the surface 6b (upper surface in Figs. 2 and 3) opposite the seating surface 6a of the valve body 6 is located closer to the core 71 (upper side) than the tip surface (lower surface in Figs. 2 and 3) of the casing 73 on the flow path block 2 side.
  • the casing 73 extends to a position that surrounds at least the upper half of the outer peripheral surface of the valve body 6 around the valve body 6 in the closed valve state, for example.
  • a distance adjustment mechanism 10 is provided that adjusts the distance between the core 71 and the valve body 6. By adjusting the distance between the core 71 and the valve body 6 with the distance adjustment mechanism 10, the distance between the core 71 and the permanent magnet 60 is adjusted.
  • This distance adjustment mechanism 10 adjusts the distance between the opposing surfaces of the core 71 and the valve body 6, and is interposed between the casing 73 and the mounting block 8, and is composed of the casing 73 and the mounting block 8.
  • the opposing surfaces of the core 71 and the valve body 6 are the lower end surface 71a of the core 71 and the surface 6b opposite the seating surface 6a of the valve body 6.
  • the distance adjustment mechanism 10 has a male threaded portion 10a formed on the outer peripheral surface of the casing 73, and a female threaded portion 10b formed on the mounting block 8 into which the male threaded portion 10a screws.
  • the casing 73 is attached to the mounting block 8 by screwing the male threaded portion 10a and the female threaded portion 10b together.
  • the casing 73 advances and retreats in the axial direction relative to the mounting block 8, adjusting the distance between the opposing surfaces of the core 71 and the valve body 6.
  • the mounting block 8 is provided with a set screw 11, which is movable forward and backward relative to the casing 73 and serves as a fixing part for fixing the casing 73 to the mounting block 8, on the side wall part 81 on which the female threaded part 10b is formed.
  • This set screw 11 is movable forward and backward in a direction perpendicular to the direction in which the casing 73 is moved by the distance adjustment mechanism 10.
  • the casing 73 has a cylindrical end 73x at the tip, which is closer to the flow path block than the male thread portion 10a, and the set screw 11 presses against the cylindrical end 73x to fix the casing 73 to the mounting block 8.
  • the cylindrical end 73x has the same diameter as the housing body portion 73y that houses the solenoid coil 72 in the casing 73.
  • the casing 73 does not have a flange portion for mounting to the mounting block 8.
  • the mounting block 8 has an annular slit 8S that accommodates the cylindrical end 73x, and a set screw 11 is provided in a radially outer side wall portion 811 that forms the slit 8S.
  • the radially inner side wall portion 812 that forms the slit 8S is provided so as to surround the outer peripheral surface of the valve body 6.
  • the cylindrical end 73x is pressed and fixed to the radially inner side wall portion 812 that forms the slit 8S by the set screw 11.
  • the solenoid coil 72 is provided so as to be able to slide relative to the core 71 and casing 73. Also, it is configured so that it is pressed toward the mounting block 8 by a wave spring 74 provided between the upper wall of the casing 73 and the solenoid coil 72 (upper end of the bobbin 721). This wave spring 74 fixes the solenoid coil 72 by absorbing dimensional tolerances. Note that if the dimensional precision of each component is sufficient, the wave spring 74 may not be provided.
  • a diaphragm seal 12 is provided between the bottom end surface of the bobbin 721 and the top end surface of the mounting block 8, providing a liquid-tight seal between the bottom end surface of the bobbin 721 and the top end surface of the mounting block 8.
  • the diaphragm seal 12 is made of a non-magnetic material, such as austenitic stainless steel, such as SUS316L.
  • the permanent magnet 60 provided on the valve body 6 is attracted to the core 71, and the valve body 6 is in a fully open state.
  • the core 71 and the permanent magnet 60 are attracted to each other via the sealing member 62 and the diaphragm seal 12.
  • the valve element 6 is provided with a permanent magnet 60, and the valve element 6 is driven by acting on the permanent magnet 60, so that the valve structure can be simplified and the dead volume can be reduced compared to a conventional configuration using a plunger.
  • the permanent magnet 60 is sealed with a corrosion-resistant alloy, so that even when used in a semiconductor manufacturing process, the permanent magnet 60 can be prevented from corroding due to the process gas. Therefore, the fluid control valve 32 of this embodiment can be suitably used in a supply line of a process gas in a semiconductor manufacturing device, and the area in contact with the process gas can be reduced.
  • the sealing member 62 is made of non-magnetic stainless steel, so it is possible to avoid impeding the magnetic coupling between the core 71 and the permanent magnet 60. Furthermore, since the valve body 61 is made of electromagnetic stainless steel, it is possible to make the valve body 61 function as a yoke to further strengthen the magnetic coupling between the core 71 and the permanent magnet 60.
  • this embodiment is provided with a distance adjustment mechanism 10 that adjusts the distance between the core 71 and the valve body 6.
  • a distance adjustment mechanism 10 that adjusts the distance between the core 71 and the valve body 6.
  • the permanent magnet 60 may be configured so that its outer surface is covered with a covering member made of a corrosion-resistant alloy and fixed to the valve body 6. Corrosion of the permanent magnet can also be prevented by covering the permanent magnet 60 separately from the configuration of the valve body 6.
  • valve body 61 In addition to constructing the valve body 61 from magnetic stainless steel, a part or the whole of the valve body 61 may be constructed from non-magnetic stainless steel. With this configuration, the material cost of the valve body 6 can be reduced.
  • the distance adjustment mechanism 10 in the above embodiment is composed of a male thread portion 10a and a female thread portion 10b, but as shown in FIG. 7, it may be composed of a set screw 11.
  • the male threaded portion 10a and the female threaded portion 10b of the distance adjustment mechanism 10 of the above embodiment may be configured inversely, that is, the male threaded portion 10a may be formed on the mounting block 8, and the female threaded portion 10b may be formed on the inner peripheral surface of the casing 73.
  • the fluid control valve 32 of the above embodiment may be of a normally open type, or may be of a so-called normally closed type in which the valve body 6 is fully closed when not being driven.
  • a normally closed type configuration when no current flows through the solenoid coil 72, the valve body 6 is urged against the valve seat member 5 by an elastic body such as the support member 9 to be fully closed. Then, by passing a current through the solenoid coil 72, the core 71 and the permanent magnet 60 are attracted to each other, and the valve body 6 is moved in the valve opening direction.
  • the fluid control valve 32 is configured to be provided upstream of the flow sensor 31, but it may also be configured to be provided downstream of the flow sensor 31.
  • a pressure type flow sensor is used as the flow sensor 31 of the fluid control device 100, but a thermal type flow sensor may also be used. In this case, it is considered to install the thermal type flow sensor upstream of the fluid control valve 32.
  • a fluid sensor such as a pressure sensor may also be used.
  • the fluid control device 100 is not limited to pressure and thermal types, but may be one in which a position sensor is provided in the fluid control valve 32 to measure the relative position between the valve seat surface 5a and the seating surface 6a, and the valve opening degree is feedback-controlled based on the measurement value of the position sensor.
  • the fluid control device of the present invention is not limited to the flow rate control device of the above embodiment, but may also be applied to a pressure control device that controls the pressure of a fluid.
  • the present invention simplifies the valve structure, reduces the dead volume, and can be used in semiconductor manufacturing processes.
  • Fluid control device 2 ... Flow path block 2R... Internal flow path 2M; Accommodating recess 32... Fluid control valve 31... Fluid sensor 4; Valve control unit 5; Valve seat member 5a... Valve seat surface 6... Valve body 6a... Seating surface 60... Permanent magnet 61... Valve body main body 62... Sealing member 7... Actuator portion 71... Core 72... Solenoid coil 73... Casing 73x... Cylinder end portion 8... Mounting block 8S... Annular slit 811... Radially outer side wall portion 812... Radially inner side wall portion 10... Distance adjustment mechanism 10a... Male thread portion 10b... Female thread portion 11... Set screw

Landscapes

  • Magnetically Actuated Valves (AREA)

Abstract

本発明は、バルブ構造を簡単にしつつ、デッドボリュームを小さくするとともに、半導体製造プロセスに用いることができるものであり、内部流路2Rが形成された流路ブロック2と、弁座面5aを有する弁座部材5と、弁座面5aに着座する着座面6aを有し、永久磁石60が設けられた弁体6と、永久磁石60に作用して弁体6を駆動するアクチュエータ部7とを備え、永久磁石60は、耐食合金により封止されている。

Description

流体制御バルブ及び流体制御装置
 本発明は、流体制御バルブ及び流体制御装置に関するものである。
 従来、流体制御バルブとしては、特許文献1に示すように、いわゆる通電閉型(ノーマルオープンタイプ)の電磁弁が考えられている。
 この電磁弁は、弁シートを有する弁本体と、弁本体に昇降可能に配在されたプランジャと、プランジャに対向配置された吸引子と、吸引子を励磁する電磁コイルと、プランジャに連結され、弁シートに対して昇降可能に配在された弁体と、プランジャを開弁方向に付勢する付勢部材とを備え、電磁コイルの通電により付勢部材の付勢力に抗してプランジャが閉弁方向に移動する構成である。具体的に弁体は、吸引子を貫通するようにして、吸引子の下側に設けられた弁本体に対して昇降可能に配在されるとともに、吸引子の上側に設けられたプランジャと連結され、プランジャとともに常時上方(開弁方向)に付勢されている。
特開2020-148255号公報
 しかしながら、上記の電磁弁は構造が複雑であり、且つ、デッドボリュームが大きいという問題がある。特に、電磁弁を半導体製造装置におけるプロセスガスの供給ラインに用いる場合、プロセスガスとの接ガス面積を減少させることが望ましいが、上記の電磁弁ではデッドボリュームが大きく接ガス面積を減少させることが難しい。
 そこで、本発明は、上述した問題を解決すべくなされたものであり、バルブ構造を簡単にしつつ、デッドボリュームを小さくするとともに、半導体製造プロセスに用いることができることをその主たる課題とするものである。
 すなわち、本発明に係る流体制御バルブは、内部流路が形成された流路ブロックと、弁座面を有する弁座部材と、前記弁座面に着座する着座面を有し、永久磁石が設けられた弁体と、前記永久磁石に作用して前記弁体を駆動するアクチュエータ部とを備え、前記永久磁石は、耐食合金により封止されていることを特徴とする。
 本明細書において耐食合金は、例えば、半導体製造プロセスに使用するガスに対して耐食性を有するものであり、具体的には、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)等のハロゲンガス又はハロゲン元素を含む化合物で、例えばHCl等のハロゲン系ガスに対して耐食性を有するものである。
 また、耐食合金は、永久磁石と異なる材質であり、永久磁石よりも耐食性が高いものである。より好ましくは、永久磁石よりも半導体プロセスに使用するガスに対して耐食性を有するものであり、具体的には、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)等のハロゲンガス又はハロゲン元素を含む化合物で、例えばHCl等のハロゲン系ガスに対して永久磁石よりも耐食性を有するものである。
 その他、耐食合金は、上記ガスに耐食性を有するものの他、より好ましくは、ハロゲンガス又はハロゲン系ガスが水分と反応した際に生成される反応生成物(主に強酸)や水溶液に対して耐食性を有するものである。
 このような流体制御バルブによれば、弁体に永久磁石を設け、当該永久磁石に作用して弁体を駆動させているので、従来のプランジャを用いた構成に比べて、バルブ構造を簡単にすることができ、また、デッドボリュームを小さくすることができる。
 特に本発明では、永久磁石が耐食合金により封止されているので、半導体製造プロセスに用いても、そのプロセスガスにより永久磁石が腐食することを防ぐことができる。
 したがって、本発明の流体制御バルブは、半導体製造装置におけるプロセスガスの供給ラインに好適に用いることができ、プロセスガスとの接ガス面積を減少させることができる。
 アクチュエータ部の具体的な実施の態様としては、前記アクチュエータ部は、前記弁体に対して前記着座面とは反対側に設けられたコアと、前記コアに巻回されたソレノイドコイルとを有することが考えられる。
 この構成において、流体制御バルブをいわゆる通電閉型(ノーマルオープンタイプ)の場合には、前記ソレノイドコイルの非通電時には、前記コアに前記永久磁石が吸着して、前記弁体が全開状態となり、前記ソレノイドコイルの通電時には、前記コア及び前記永久磁石が反発して、前記弁体が閉弁方向に向かって移動する構成となる。
 永久磁石を耐食合金で封止するための具体的な実施の態様としては、前記弁体は、前記着座面とは反対側の面に前記永久磁石を収容する凹部が形成された、耐食合金からなる弁体本体と、前記凹部に前記永久磁石が収容された状態で前記凹部の開口部を封止する、耐食合金からなる封止部材とを有することが望ましい。
 この構成であれば、弁体本体の凹部に永久磁石を収容して封止部材で封止するだけで、永久磁石を耐食合金で封止することができ、弁体の構成を簡単にすることができる。
 前記耐食合金の具体例としては、例えばSUS316L等のステンレス鋼を挙げることができる。
 アクチュエータのコアは、弁体における着座面とは反対側の面に対向して設けられており、当該コアと永久磁石との磁気結合を阻害しないためには、前記封止部材は、非磁性ステンレス鋼から形成されていることが望ましい。また、弁体本体を継鉄(ヨーク)として機能させて、コアと永久磁石との磁気結合をより強くするためには、前記弁体本体は、電磁ステンレス鋼から形成されていることが望ましい。
 また、本発明に係る流体制御バルブは、前記コアと前記弁体との距離を調整する距離調整機構をさらに備えることが望ましい。
 この距離調整機構によりコアと弁体との距離を調整することで、最適な磁界(磁束密度)になるように調整(増減)することができる。例えば微小流量を制御したい場合には、コアと弁体との距離を離すことにより、コアと弁体との磁気結合が弱くなり、微小流量の制御が可能となる。
 流体制御バルブの具体的な実施の態様としては、流体制御バルブが、前記流路ブロックに取り付けられ、前記弁体を収容する取付ブロックをさらに備え、前記アクチュエータ部は、前記コア及び前記ソレノイドコイルを収容するケーシングを有し、前記コアは、前記ケーシングに固定されていることが考えられる。
 この構成であれば、流路ブロックに対して取付ブロックを取り外すことによって、弁体とともにアクチュエータ部を取り外すことができ、分解が容易となり、メンテナンスを容易にすることができる。また、前記取付ブロックに前記ケーシングが取り付けられることにより、前記コアが前記弁体の着座面とは反対側の面に対向して設けられることになる。
 この構成において、距離調整機構の具体的な実施の態様としては、前記距離調整機構は、前記ケーシング及び前記取付ブロックにより構成されていることが望ましい。
 距離調整機構の具体的な実施の態様としては、前記ケーシングの外側周面又は前記取付ブロックの一方に形成された雄ねじ部と、前記ケーシングの外側周面又は前記取付ブロックの他方に形成され、前記雄ねじ部が螺合する雌ねじ部とを有することが考えられる。
 この構成であれば、取付ブロックに対してケーシングを回転させるという簡単な操作により、コアと弁体との距離を調整することができる。
 前記取付ブロックには、前記ケーシングに対して進退可能に設けられ、前記取付ブロックに対して前記ケーシングを固定する固定部が設けられていることが望ましい。
 この構成であれば、距離調整機構によりコアと弁体との距離を調整した後に固定部でケーシングを固定することで、コアと弁体との距離を確実に維持することができる。
 固定部によりケーシングを固定するための具体的な実施の態様としては、前記ケーシングは、前記流路ブロック側である先端部に円筒端部を有しており、前記取付ブロックは、前記円筒端部を収容するスリットを有しており、前記取付ブロックにおける前記スリットを形成する側壁部に前記固定部が設けられており、前記円筒端部は、前記固定部によって、前記取付ブロックにおける前記スリットを形成する側壁部に固定されることが望ましい。
 流体制御バルブの分解及び組み立てを容易にしてメンテナンスを容易にするためには、前記流路ブロックは、前記弁座部材を収容する収容凹部を有していることが望ましい。
 また、流体制御バルブの組み立てを容易にするためには、前記取付ブロックは、前記流路ブロックに取り付けられることにより、前記収容凹部に収容された弁座部材を固定するものであることが望ましい。
 また、本発明に係る流体制御装置は、上述した流体制御バルブと、流体の流量又は圧力を測定する流体センサと、前記流体センサで測定される測定値と所定の目標値とに基づいて、前記流体制御バルブの開度を制御する制御部とを備えることを特徴とする。
 このように構成した本発明によれば、バルブ構造を簡単にしつつ、デッドボリュームを小さくするとともに、半導体製造プロセスに用いることができる。
本発明の一実施形態に係る流体制御装置を示す模式図である。 同実施形態の流体制御バルブの断面図である。 同実施形態の弁体の構成を示す斜視図及び断面図である。 同実施形態の流体制御バルブ(開弁状態)の部分拡大断面図である。 同実施形態の流体制御バルブ(閉弁状態)の部分拡大断面図である。 同実施形態の距離調整前後の状態を示す部分拡大断面図である。 変形実施形態の流体制御バルブ(開弁状態)の部分拡大断面図である。
 以下に、本発明に係る流体制御バルブを用いた流体制御装置の一実施形態について、図面を参照して説明する。
 なお、以下に示すいずれの図についても、わかりやすくするために、適宜省略し又は誇張して模式的に描かれている。同一の構成要素については、同一の符号を付して説明を適宜省略する。
<装置構成>
 本実施形態の流体制御装置100は、例えば半導体製造装置に組み込まれることにより半導体製造プロセスに用いられるものであって、例えば半導体処理チャンバに接続された1又は複数のガス供給ラインに設けられて、各ガス供給ラインを流れるプロセスガスの流量を制御するものである。
 具体的に流体制御装置100は、いわゆる差圧式マスフローコントローラ(差圧式MFC)であり、図1に示すように、内部流路2Rが形成された流路ブロック2と、当該流路ブロック2に搭載された流量センサ31及び流体制御バルブ32を含む流体制御機器3と備えている。
 流路ブロック2は、矩形状のものであり、所定面に流量センサ31及び流体制御バルブ32が設けられている。また、流路ブロック2には、所定面に流体制御バルブ32を取り付けるための凹状の収容凹部2Mが形成されており、収容凹部2Mによって内部流路2Rが上流側流路2R1と下流側流路2R2とに分断されている。そして、収容凹部2Mには、例えば底面に上流側流路2R1の一端が開口していると共に、例えば底面に下流側流路2R2の一端が開口している。
 流体制御機器3は、内部流路2Rの流体を制御するものであり、内部流路2Rを流れる流体の流量を測定する流量センサ31と、流量センサ31の上流側に設けられた流体制御バルブ32とを有している。なお、流体制御バルブ32は、後述する制御部4によって、その弁開度がフィードバック制御される。
 流量センサ31は、差圧式流量センサであり、内部流路2Rに設けられたリストリクタ又はオリフィス等の流体抵抗素子33の上流側に設けられた上流側圧力センサ31aと、流体抵抗素子33の下流側に設けられた下流側圧力センサ31bを有している。上流側圧力センサ31a及び下流側圧力センサ31bは、流路ブロック2の所定面において流体制御バルブ32とともに一列に並べて取り付けてある。そして、後述する制御部4の流量算出部4aによって、上流側圧力センサ31aにより検出された流体抵抗素子33の上流側圧力P1、及び、下流側圧力センサ31bにより検出された流体抵抗素子33の下流側圧力P2を用いて、内部流路2Rを流れる流量Qが算出される。
 流体制御バルブ32は、差圧式流量センサ31の上流側に設けられている。具体的に流体制御バルブ32は、ソレノイドにより弁体を弁座に対して進退移動させることにより、流量を制御するソレノイドバルブ(電磁弁)である。本実施形態では、弁体を駆動していない状態で全開状態となる所謂ノーマルオープンタイプのものである。なお、流体制御バルブ32は、制御部4のバルブ制御部4bにより制御される。流体制御バルブ32の詳細構成は後述する。
 制御部4は、上流側圧力P1及び下流側圧力P2に基づいて内部流路2Rを流れる流量Qを算出する流量算出部4aと、流量算出部4aにより算出された流量Q及び目標流量(設定値)に基づいて流体制御バルブ32を制御するバルブ制御部4bとを有している。なお、制御部4は、例えばCPU、メモリ、A/D・D/Aコンバータ、入出力手段を具備するいわゆるコンピュータであって、メモリに格納されている流量制御プログラムが実行されて各種機器が協働することにより、流量算出部4a及びバルブ制御部4b等としての機能を発揮する。
<流体制御バルブ32の詳細構成>
 本実施形態の流体制御バルブ32は、図2~図5に示すように、平面状の弁座面5aを有する弁座部材5と、弁座面5aに面接触して着座する平面状の着座面6aを有し、永久磁石60が設けられた弁体6と、永久磁石60に作用して弁体6を磁力によって駆動するアクチュエータ部7とを備えている。
 弁座部材5は、概略回転体形状をなすものであり、図2及び図3に示すように、流路ブロック2の収容凹部2Mに収容されている。そして、弁座部材5には、収容凹部2Mの開口側を向く上面に円環状の弁座面5aが形成されている。なお、弁座部材5は、例えばSUS316L等のオーステナイト系ステンレス鋼(非磁性ステンレス鋼)といった非磁性体から形成されている。
 また、弁座部材5には、弁座面5aの内側においてその中央部に弁座面5a側から当該弁座面5aとは反対面側に貫通する貫通孔51が形成されている。この貫通孔51は、収容凹部2Mの底面に開口する上流側流路2R1に連通している。なお、貫通孔51の周囲と収容凹部2Mの底面との間には、Oリング等のシール部材S1が設けられており、液密にシールされている。
 さらに、弁座部材5には、弁座面5aから内部に流入した流体を下流側流路2R2に流出する導出路52が形成されている。本実施形態の導出路52は、弁座面5aの外側において弁座面5a側から当該弁座面5aとは反対面側に貫通する貫通孔である。この導出路52は、収容凹部2Mの底面に開口する上流側流路2R1に連通している。
 弁体6は、概略回転体形状をなすものであり、図2~図5に示すように、収容凹部2Mに収容された弁座部材5に対向して設けられている。また、弁体6に設けられた永久磁石60は、円板形状をなすものであり、半導体プロセスに使用するガスに耐食性を有する耐食合金により封止されている。ここで、永久磁石60としては、例えば、アルニコ磁石等の合金磁石、フェライト磁石、又は、ネオジム磁石等の希土類磁石を用いることができる。
 具体的に弁体6は、着座面6aとは反対側の面に永久磁石60を収容する凹部61Mが形成された弁体本体61と、凹部61Mに永久磁石60が収容された状態で凹部61Mの開口部を封止する封止部材62とを有している。本実施形態の永久磁石60は、弁体本体61及び封止部材62により封止される構造である。
 弁体本体61は、概略回転体形状をなすものであり、頂面に平面状の着座面6aを有する凸部611を有している。本実施形態の弁体本体61には、円環状の弁座面5aに対応した円形状の着座面6aが形成されている。また、凹部61Mは、永久磁石60に対応した形状を有しており、本実施形態では、平面視において概略円形状をなす凹部である。この弁体本体61は、半導体プロセスに使用するガスに耐食性を有する例えばステンレス鋼等の耐食合金から形成されている。本実施形態の弁体本体61は、継鉄(ヨーク)として機能するために、例えばKM45等の電磁ステンレス鋼といった磁性体から形成されている。
 封止部材62は、凹部61Mの開口形状に対応して概略円板形状をなすものである。この封止部材62は、凹部61Mの開口部を封止して、凹部61M内に収容された永久磁石60が腐食しないように凹部61Mを密閉するものである。また、封止部材62は、凹部61Mの開口部に対して例えばレーザ溶接などの溶接接合により接合されている。なお、封止部材62は、凹部61Mの開口部に対して機械接合又は接着接合されても良い。この封止部材62は、半導体プロセスに使用するガスに耐食性を有する例えばステンレス鋼等の耐食合金から形成されている。本実施形態の封止部材62は、コア71と永久磁石60との磁気結合を邪魔しないように、例えばSUS316L等のオーステナイト系ステンレス鋼(非磁性ステンレス鋼)といった非磁性体から形成されている。
 この弁体6は、流路ブロック2の所定面(上面)に取り付けられる取付ブロック8に収容されている。なお、取付ブロック8は、例えばSUS316L等のオーステナイト系ステンレス鋼(非磁性ステンレス鋼)といった非磁性体から形成されている。そして、弁体6は、取付ブロック8に対して例えば板バネ等の弾性体からなる支持部材9によって支持されている。この支持部材9は、弁体6の着座面6aが弁座面5a側を向いた状態で支持するものである。具体的に支持部材9は、円環状をなすものであり、その中央開口部91に弁体6の凸部611が挿し通されて、弁体6を支持するものである。また、この支持部材9及び弁体6とは、例えばレーザ溶接などの溶接接合により一体構造としても良い。なお、支持部材9及び弁体6を一体構造にする接合は、機械接合又は接着接合であっても良い。また、支持部材9は、例えばSUS316L等のオーステナイト系ステンレス鋼といった非磁性体から形成されている。さらに、支持部材9は、ばね性を有し、透磁率を考慮した半導体接ガス部に適した耐食性のある材料から形成されている。
 また、取付ブロック8は、流路ブロック2に取り付けられることにより、収容凹部2Mに収容された弁座部材5を固定するものでもある。具体的には、取付ブロック8の流路ブロック2を向く面(下面)が弁座部材5の上面に接触し、弁座部材5の下面を収容凹部2Mの底面に対してシール部材S1を介して押圧固定する。なお、取付ブロック8と流路ブロック2との間には、金属シール等のシール部材S2が設けられており、液密にシールされている。
 アクチュエータ部7は、図2、図4及び図5に示すように、弁体6の着座面6aとは反対側の面6bに対向して設けられたコア71と、コア71に巻回されたソレノイドコイル72と、コア71及びソレノイドコイル72を収容するケーシング73とを有している。
 コア71は、概略円柱形状をなすものであり、その一端部(図2において上端部)がケーシング73に接続されており、他端部(図2において下端部)が弁体6の着座面6aとは反対側の面6bに対向する。具体的にコア71の他端部は、弁体6に設けられた永久磁石60と同軸上となるように、反対側の面6bに対向する。なお、コア71は、例えばS45C等の機械構造用炭素鋼鋼材といった磁性体により形成されている。
 ソレノイドコイル72は、コア71の外側周面を取り囲むように巻回して配置されており、具体的には、コア71が挿し通されるボビン721に巻回されている。ここで、ボビン721は、コア71に対してスライド移動可能に設けられている。なお、ボビン721は、例えばSUS316L等のオーステナイト系ステンレス鋼といった非磁性体から形成されている。
 ケーシング73は、円筒形状をなすものであり、その上壁部がコア71の上端部に接続されている。また、ケーシング73の上壁部とソレノイドコイル72(具体的にはボビン721の上端部)との間には、ウェーブスプリング等の弾性体74が設けられている(図2参照)。なお、ケーシング73は、例えばS45C等の機械構造用炭素鋼鋼材といった磁性体により形成されている。また、ケーシング73及びコア71は一体形成しても良い。
 また、ケーシング73は、取付ブロック8に取り付けられるものであり、当該ケーシング73が取付ブロック8に取り付けられることにより、ケーシング73に接続されたコア71が弁体6の着座面6aとは反対側の面6bに対向して設けられることになる。
 そして、ケーシング73は、弁体6の周囲を取り囲む位置まで延びており、ソレノイドコイル72により発生した磁束を弁体6の周囲に導く磁路を形成している。弁体6の周囲を取り囲む位置は、弁体6の進退方向に直交する方向において弁体6の外側周面に対向する位置である。この構成により、弁体6の着座面6aとは反対側の面6b(図2及び図3において上面)は、ケーシング73における流路ブロック2側の先端面(図2及び図3において下面)よりも、コア71側(上側)に位置している。具体的にケーシング73は、例えば、閉弁状態にある弁体6の周囲において弁体6の外側周面の少なくとも上半分を取り囲む位置まで延びている。
 さらに、本実施形態では、図2、図4及び図5に示すように、コア71と弁体6との距離を調整する距離調整機構10を備えている。なお、距離調整機構10によりコア71と弁体6との距離を調整することにより、コア71と永久磁石60との距離が調整される。
 この距離調整機構10は、コア71と弁体6との対向面間の距離を調整するものであり、ケーシング73及び取付ブロック8の間に介在し、ケーシング73及び取付ブロック8により構成されている。ここで、コア71と弁体6との対向面とは、コア71の下端面71a、及び、弁体6の着座面6aとは反対側の面6bである。
 具体的に距離調整機構10は、ケーシング73の外側周面に形成された雄ねじ部10aと、取付ブロック8に形成され、雄ねじ部10aが螺合する雌ねじ部10bとを有している。この構成により、雄ねじ部10a及び雌ねじ部10bを螺合させることにより、ケーシング73が取付ブロック8に取り付けられる。また、ケーシング73を取付ブロック8に対して回転させることにより、図7に示すように、ケーシング73が取付ブロック8に対して軸方向に進退して、コア71と弁体6との対向面間の距離が調整される。
 ここで、取付ブロック8には、図2、図4~図6に示すように、雌ねじ部10bが形成された側壁部81において、ケーシング73に対して進退可能に設けられ、取付ブロック8に対してケーシング73を固定する固定部である留めねじ11が設けられている。この留めねじ11は、距離調整機構10によるケーシング73の移動方向とは直交する方向に進退可能とされている。
 具体的にケーシング73は、図2、図4~図6に示すように、雄ねじ部10aよりも流路ブロック側である先端部に円筒端部73xを有しており、留めねじ11は当該円筒端部73xに押圧接触して、取付ブロック8に対してケーシング73を固定する。本実施形態の円筒端部73xは、ケーシング73においてソレノイドコイル72を収容している収容本体部73yと同一径を有するものである。つまり、ケーシング73は、取付ブロック8に取り付けるためのフランジ部を有さない構成である。
 より詳細には、取付ブロック8は、図4及び図5に示すように、円筒端部73xを収容する円環状のスリット8Sを有しており、当該スリット8Sを形成する径方向外側の側壁部811に留めねじ11が設けられている。また、当該スリット8Sを形成する径方向内側の側壁部812は、弁体6の外側周面を取り囲むように設けられている。そして、円筒端部73xは、留めねじ11によって、スリット8Sを形成する径方向内側の側壁部812に押圧固定される。
 本実施形態では、上記の距離調整機構10によってケーシング73及びコア71が取付ブロック8に対して移動しても、ソレノイドコイル72と取付ブロック8(弁体6)との相対位置が変化しないように構成されている(図6参照)。具体的には、ソレノイドコイル72がコア71及びケーシング73に対してスライド移動可能に設けられている。また、ケーシング73の上壁部とソレノイドコイル72(ボビン721の上端部)との間に設けられたウェーブスプリング74によって取付ブロック8側に押圧されるように構成されている。このウェーブスプリング74は、寸法公差を吸収してソレノイドコイル72を固定するものである。なお、各部材の寸法精度が出ていれば、ウェーブスプリング74を設けない構成としても良い。
 なお、ボビン721の下端面と取付ブロック8の上端面との間には、図4及び図5に示すように、ダイアフラムシール12が設けられており、ボビン721の下端面と取付ブロック8の上端面との間を液密にシールしている。なお、ダイアフラムシール12は、例えばSUS316L等のオーステナイト系ステンレス鋼といった非磁性体から形成されている。
 次に本実施形態の流体制御バルブ32の動作について簡単に説明する。
 アクチュエータ部7のソレノイドコイル72に電流が流れていない状態(非通電時)において、弁体6に設けられた永久磁石60がコア71に吸着して、弁体6が全開状態である。本実施形態では、コア71と永久磁石60とは、封止部材62及びダイアフラムシール12を介して、互いに吸着する。
 そして、ソレノイドコイル72に電流を流すと、ソレノイドコイル72によって磁束が発生して、コア71が磁化する。ここで、永久磁石60におけるコア側がN極の場合には、コア71の下端部がN極に磁化する構成としてあり、永久磁石60におけるコア側がS極の場合には、コア71の下端部がS極に磁化する構成としてある。これにより、磁化したコア71と永久磁石60とは反発して、弁体6が閉弁方向に移動する。なお、流体制御バルブ32の弁開度は、ソレノイドコイル72に通電する電流を制御することによって調整される。
<本実施形態の効果>
 このように構成した本実施形態の流体制御装置100によれば、弁体6に永久磁石60を設け、当該永久磁石60に作用して弁体6を駆動させているので、従来のプランジャを用いた構成に比べて、バルブ構造を簡単にすることができ、また、デッドボリュームを小さくすることができる。特に本実施形態では、永久磁石60が耐食合金により封止されているので、半導体製造プロセスに用いても、そのプロセスガスにより永久磁石60が腐食することを防ぐことができる。したがって、本実施形態の流体制御バルブ32は、半導体製造装置におけるプロセスガスの供給ラインに好適に用いることができ、プロセスガスとの接ガス面積を減少させることができる。
 また、本実施形態では、封止部材62を非磁性ステンレス鋼から形成しているので、コア71と永久磁石60との磁気結合を阻害しないようにできる。さらに、弁体本体61を電磁ステンレス鋼から形成しているので、弁体本体61を継鉄(ヨーク)として機能させて、コア71と永久磁石60との磁気結合をより強くすることができる。
 さらに、本実施形態では、コア71と弁体6との距離を調整する距離調整機構10を備えているので、距離調整機構10によりコア71と弁体6との距離を調整することで、最適な磁界(磁束密度)になるように調整(増減)することができる。例えば微小流量を制御したい場合には、コア71と弁体6との距離を離すことにより、コア71と弁体6との磁気結合が弱くなり、微小流量の制御が可能となる。
<その他の実施形態>
 例えば、永久磁石60は弁体本体61及び封止部材62により封止する構成の他に、永久磁石60の外面を耐食合金からなる被覆部材で被覆したものを弁体6に固定する構成としても良い。弁体6の構成とは別に永久磁石60を個別に被覆することによっても永久磁石が腐食することを防止できる。
 また、弁体本体61を電磁ステンレス鋼で構成する他に、弁体本体61の一部又は全部を非磁性ステンレス鋼で構成しても良い。この構成であれば、弁体6の材料コストを削減することができる。
 前記実施形態の距離調整機構10は、雄ねじ部10a及び雌ねじ部10bにより構成されているが、図7に示すように、留めねじ11により構成しても良い。この場合、取付ブロック8に円筒端部73xを収容する円環状のスリット8Sを形成し、当該スリット8Sにおいて円筒端部73xを上下方向に調整した後に、留めねじ11で固定する構成とすることが考えられる。
 また、前記実施形態の距離調整機構10の雄ねじ部10a及び雌ねじ部10bを逆の構成、つまり、取付ブロック8に雄ねじ部10aを形成し、ケーシング73の内側周面に雌ねじ部10bを形成しても良い。
 さらに、前記実施形態の流体制御バルブ32は、ノーマルオープンタイプのものの他に、弁体6を駆動していない状態で全閉状態となる所謂ノーマルクローズタイプのものであっても良い。ノーマルクローズタイプの構成では、ソレノイドコイル72に電流が流れていない状態では、例えば支持部材9等の弾性体により弁体6を弁座部材5に付勢して全閉状態とする。そして、ソレノイドコイル72に電流を流すことにより、コア71と永久磁石60とを吸着させて、開弁方向に向かって弁体6を移動させる。
 また、前記実施形態では、流体制御バルブ32は、流量センサ31の上流側に設けられた構成であったが、流量センサ31の下流側に設けられた構成であっても良い。
 また、前記実施形態においては、流体制御装置100の流量センサ31として、圧力式流量センサを使用しているが、熱式流量センサを使用してもよい。この場合には、流体制御バルブ32の上流側に熱式流量センサを設置することが考えられる。また、流量センサの他に圧力センサ等の流体センサを用いても良い。
 また、流体制御装置100としては、圧力式及び熱式のものに限らず、流体制御バルブ32に弁座面5aと着座面6aとの相対位置を測定する位置センサを設け、当該位置センサの測定値に基づき弁開度をフィードバック制御するものであってもよい。また、本発明の流体制御装置は、前記実施形態の流量制御装置に限られず、流体の圧力を制御する圧力制御装置に適用することも可能である。
 その他、本発明の趣旨に反しない限りにおいて様々な実施形態の変形や組み合わせを行っても構わない。
 本発明によれば、バルブ構造を簡単にしつつ、デッドボリュームを小さくするとともに、半導体製造プロセスに用いることができる。
100・・・流体制御装置
2  ・・・流路ブロック
2R ・・・内部流路
2M ・・・収容凹部
32 ・・・流体制御バルブ
31 ・・・流体センサ
4  ・・・バルブ制御部
5  ・・・弁座部材
5a ・・・弁座面
6  ・・・弁体
6a ・・・着座面
60 ・・・永久磁石
61 ・・・弁体本体
62 ・・・封止部材
7  ・・・アクチュエータ部
71 ・・・コア
72 ・・・ソレノイドコイル
73 ・・・ケーシング
73x・・・円筒端部
8  ・・・取付ブロック
8S ・・・円環状のスリット
811・・・径方向外側の側壁部
812・・・径方向内側の側壁部
10 ・・・距離調整機構
10a・・・雄ねじ部
10b・・・雌ねじ部
11 ・・・留めねじ

Claims (13)

  1.  内部流路が形成された流路ブロックと、
     弁座面を有する弁座部材と、
     前記弁座面に着座する着座面を有し、永久磁石が設けられた弁体と、
     前記永久磁石に作用して前記弁体を駆動するアクチュエータ部とを備え、
     前記永久磁石は、耐食合金により封止されている、流体制御バルブ。
  2.  前記アクチュエータ部は、
      前記弁体に対して前記着座面とは反対側に設けられたコアと、
      前記コアに巻回されたソレノイドコイルとを有し、
     前記ソレノイドコイルの非通電時には、前記コアに前記永久磁石が吸着して、前記弁体が全開状態となり、
     前記ソレノイドコイルの通電時には、前記コア及び前記永久磁石が反発して、前記弁体が閉弁方向に向かって移動する、請求項1に記載の流体制御バルブ。
  3.  前記弁体は、
      前記着座面とは反対側の面に前記永久磁石を収容する凹部が形成された、耐食合金からなる弁体本体と、
      前記凹部に前記永久磁石が収容された状態で前記凹部の開口部を封止する、耐食合金からなる封止部材とを有する、請求項1又は2に記載の流体制御バルブ。
  4.  前記耐食合金は、ステンレス鋼である、請求項1乃至3の何れか一項に記載の流体制御バルブ。
  5.  前記弁体本体は、電磁ステンレス鋼から形成されており、
     前記封止部材は、非磁性ステンレス鋼から形成されている、請求項3に記載の流体制御バルブ。
  6.  前記コアと前記弁体との距離を調整する距離調整機構をさらに備える、請求項2に記載の流体制御バルブ。
  7.  前記流路ブロックに取り付けられ、前記弁体を収容する取付ブロックをさらに備え、
     前記アクチュエータ部は、前記コア及び前記ソレノイドコイルを収容するケーシングを有し、
     前記コアは、前記ケーシングに固定されており、
     前記距離調整機構は、前記ケーシング及び前記取付ブロックにより構成されている、請求項6に記載の流体制御バルブ。
  8.  前記距離調整機構は、
      前記ケーシングの外側周面又は前記取付ブロックの一方に形成された雄ねじ部と、
      前記ケーシングの外側周面又は前記取付ブロックの他方に形成され、前記雄ねじ部が螺合する雌ねじ部とを有する、請求項7に記載の流体制御バルブ。
  9.  前記取付ブロックには、前記ケーシングに対して進退可能に設けられ、前記取付ブロックに対して前記ケーシングを固定する固定部が設けられている、請求項8に記載の流体制御バルブ。
  10.  前記ケーシングは、前記流路ブロック側の先端部に円筒端部を有しており、
     前記取付ブロックは、前記円筒端部を収容するスリットを有しており、
     前記取付ブロックにおける前記スリットを形成する側壁部に前記固定部が設けられており、
     前記円筒端部は、前記固定部によって、前記取付ブロックにおける前記スリットを形成する側壁部に固定される、請求項9に記載の流体制御バルブ。
  11.  前記流路ブロックは、前記弁座部材を収容する収容凹部を有している、請求項7乃至10の何れか一項に記載の流体制御バルブ。
  12.  前記取付ブロックは、前記流路ブロックに取り付けられることにより、前記収容凹部に収容された弁座部材を固定するものである、請求項11に記載の流体制御バルブ。
  13.  請求項1乃至12の何れか一項に記載の流体制御バルブと、
     流体の流量又は圧力を測定する流体センサと、
     前記流体センサで測定される測定値と所定の目標値とに基づいて、前記流体制御バルブの開度を制御する制御部と、を備える流体制御装置。
PCT/JP2023/040288 2022-11-10 2023-11-08 流体制御バルブ及び流体制御装置 WO2024101403A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-180351 2022-11-10
JP2022180351 2022-11-10

Publications (1)

Publication Number Publication Date
WO2024101403A1 true WO2024101403A1 (ja) 2024-05-16

Family

ID=91033052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040288 WO2024101403A1 (ja) 2022-11-10 2023-11-08 流体制御バルブ及び流体制御装置

Country Status (1)

Country Link
WO (1) WO2024101403A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013172642A (ja) * 2012-02-21 2013-09-02 Alstom Hydro France 永久磁石を使用した電気機械の中に複数の磁気部材を取り付けるための取付システム
JP2015511366A (ja) * 2012-01-18 2015-04-16 クラリアント・プロドゥクテ・(ドイチュラント)・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 高純度電極材料の製造方法
JP2020003042A (ja) * 2018-06-29 2020-01-09 株式会社Screenホールディングス 開閉弁およびこの開閉弁を備えた基板処理装置
JP2020201630A (ja) * 2019-06-07 2020-12-17 株式会社堀場エステック 流体制御バルブ、流量制御装置、及び、駆動回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015511366A (ja) * 2012-01-18 2015-04-16 クラリアント・プロドゥクテ・(ドイチュラント)・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 高純度電極材料の製造方法
JP2013172642A (ja) * 2012-02-21 2013-09-02 Alstom Hydro France 永久磁石を使用した電気機械の中に複数の磁気部材を取り付けるための取付システム
JP2020003042A (ja) * 2018-06-29 2020-01-09 株式会社Screenホールディングス 開閉弁およびこの開閉弁を備えた基板処理装置
JP2020201630A (ja) * 2019-06-07 2020-12-17 株式会社堀場エステック 流体制御バルブ、流量制御装置、及び、駆動回路

Similar Documents

Publication Publication Date Title
KR101783540B1 (ko) 솔레노이드식 유체 제어밸브
CA2251812C (en) Proportional solenoid-controlled fluid valve assembly
JP5118493B2 (ja) 剛性な着座面を有する弁組立体
JP4296081B2 (ja) 電磁弁
US7290564B2 (en) Solenoid valve
JP2006226457A (ja) 電磁弁
US9163744B2 (en) Solenoid valve
US20050145812A1 (en) Solenoid valve and poppet assembly
WO2024101403A1 (ja) 流体制御バルブ及び流体制御装置
US7246787B2 (en) Solenoid valve assembly
JP2749751B2 (ja) 断熱配管用電磁弁
JP4414269B2 (ja) 電磁比例弁の流量特性調整機構及びそれを用いた流量特性調整方法
JP2009091934A (ja) 負圧応動弁
US20240060573A1 (en) Fluid control valve and fluid control apparatus
JP2009144831A (ja) 電磁弁
JP2002013659A (ja) 電磁弁
JP2006070990A (ja) 電動弁
JP2007010015A (ja) 電動流量制御弁
TW202409771A (zh) 流體控制閥和流體控制裝置
RU2282771C1 (ru) Электромагнитный клапан
JP2024028101A (ja) 流体制御バルブ及び流体制御装置
CN117588596A (zh) 流体控制阀和流体控制装置
JP3796437B2 (ja) マスフローコントローラ
JP2022149913A (ja) 流量制御弁及び流量制御弁の制御方法
JP2886975B2 (ja) 遮断弁