WO2024101173A1 - 電力変換装置、車両用駆動システム、ノイズ抑制方法 - Google Patents

電力変換装置、車両用駆動システム、ノイズ抑制方法 Download PDF

Info

Publication number
WO2024101173A1
WO2024101173A1 PCT/JP2023/038757 JP2023038757W WO2024101173A1 WO 2024101173 A1 WO2024101173 A1 WO 2024101173A1 JP 2023038757 W JP2023038757 W JP 2023038757W WO 2024101173 A1 WO2024101173 A1 WO 2024101173A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
return line
noise return
power conversion
conversion device
Prior art date
Application number
PCT/JP2023/038757
Other languages
English (en)
French (fr)
Inventor
忠彦 千田
浩史 小暮
健志 篠宮
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024101173A1 publication Critical patent/WO2024101173A1/ja

Links

Images

Definitions

  • the present invention relates to a power conversion device, a vehicle drive system, and a noise suppression method.
  • Power conversion devices that use power semiconductor elements such as IGBTs (Insulated Gate Bipolar Transistors) are energy-efficient and easy to control, and are therefore widely used not only in general industrial fields but also in a variety of fields such as railways and automobiles.
  • IGBTs Insulated Gate Bipolar Transistors
  • the sudden changes in current and voltage caused by the switching operation of power semiconductor elements contain high-frequency noise components and can cause electromagnetic interference in surrounding equipment.
  • SiC Silicon Carbide
  • MOSFET Metal Oxide Semiconductor Field Effect Transistors
  • Patent Documents 1 and 2 are known as conventional techniques for suppressing noise caused by common mode currents in motor-inverter systems.
  • Patent Document 1 discloses a method for reducing noise by connecting the earth terminal of an inverter device or the like to the earth terminal of a load device such as a motor with a lead wire, thereby changing the ratio of noise current flowing back to the inverter side and noise current flowing out to the ground side.
  • Patent Document 2 discloses a method for suppressing high-frequency noise interference caused by common mode currents by connecting the ground wire on the power supply side of a power conversion device to the ground wire on the load side via a common mode current return wire, and winding the output power line of the power conversion device and the common mode current return wire around the same magnetic core.
  • Patent Documents 1 and 2 are effective in reducing noise in the relatively low frequency range (for example, a frequency band of 100 kHz or less), but may not be effective enough in reducing noise in the relatively high frequency range (for example, a frequency band of 1 MHz or more), such as the noise generated by inverters that use SiC-MOSFETs.
  • the present invention was made in consideration of the above points, and its main purpose is to suppress high-frequency electromagnetic radiation noise caused by common-mode currents in a power conversion device and a vehicle drive system using the same.
  • a power conversion device includes an inverter circuit having positive and negative wiring connected to its input side, converting an input current flowing through the positive and negative wiring into an output current and outputting the output current to a load device, an output power line connected between the inverter circuit and the load device and through which the output current including a noise current flows, a magnetic core through which the output power line passes, and a first noise return line and a second noise return line for respectively returning the noise current, the first noise return line and the second noise return line being laid so as to run parallel to the output power line, one end of the first noise return line and the second noise return line being electrically connected to a ground on the load device side, the other end of the first noise return line and the second noise return line being electrically connected to the negative wiring, and the first noise return line passing through the magnetic core.
  • the vehicle drive system includes a power conversion device and a motor connected to the power conversion device via the output power line, and uses the output current output from the power conversion device to generate a driving force in the motor, and uses the driving force to drive the vehicle.
  • a noise suppression method is a method for suppressing noise current contained in an output current from a power conversion device to a load device, comprising the steps of: passing an output power line through a magnetic core; laying a first noise return line and a second noise return line running parallel to the output power line; passing the first noise return line through the magnetic core; electrically connecting one end of the first noise return line and the second noise return line to a ground on the load device side; and electrically connecting the other end of the first noise return line and the second noise return line to negative wiring connected to the input side of the power conversion device.
  • the present invention makes it possible to suppress high-frequency electromagnetic radiation noise caused by common-mode currents in a power conversion device and a vehicle drive system using the same.
  • FIG. 1 is a diagram showing a circuit configuration of a vehicle drive system according to a first embodiment of the present invention
  • FIG. 4 is an explanatory diagram of a noise current in a vehicle drive system.
  • 4A to 4C are explanatory diagrams illustrating the noise suppression effect of the present invention.
  • FIG. 11 is a diagram showing a simulation result of the noise suppression effect of the present invention.
  • FIG. 5 is a diagram showing a circuit configuration of a vehicle drive system according to a second embodiment of the present invention.
  • FIG. 11 is a diagram showing a circuit configuration of a vehicle drive system according to a third embodiment of the present invention.
  • FIG. 13 is a diagram showing a circuit configuration of a vehicle drive system according to a fourth embodiment of the present invention.
  • FIG. 13 is a diagram showing a circuit configuration of a vehicle drive system according to a fifth embodiment of the present invention.
  • First Embodiment 1 is a diagram showing a circuit configuration of a vehicle drive system according to a first embodiment of the present invention.
  • the vehicle drive system 1 of this embodiment is a system for driving a vehicle such as a railroad car or an automobile, and is configured with a motor 101 and a power conversion device 200.
  • the motor 101 acts as a load device for the power conversion device 200, and is driven to rotate in response to the output current output from the power conversion device 200.
  • the driving force generated by the rotational driving of this motor 101 can be used to drive a vehicle equipped with the vehicle drive system 1.
  • the power conversion device 200 includes an inverter circuit 202, a filter reactor 201, a filter capacitor 203, and a magnetic core 206.
  • Inverter circuit 202 has positive wiring 204 and negative wiring 205 connected to the input side. A direct current input current flows to the input side of inverter circuit 202 via positive wiring 204 and negative wiring 205.
  • Inverter circuit 202 has switching elements such as IGBTs and SiC-MOSFETs, and converts the direct current input current into an alternating current output current by switching and driving these switching elements.
  • the power conversion device 200 and the motor 101 are connected via an output power line 301, and the output current from the power conversion device 200 flows through the output power line 301 and is input to the motor 101. This causes AC power to be supplied from the power conversion device 200 to the motor 101, driving the motor 101 to rotate.
  • the output current flowing through the output power line 301 includes a noise current generated by the switching operation of the inverter circuit 202 in the power conversion device 200. If this noise current leaks to the outside, it may adversely affect other devices. Therefore, in this embodiment, in order to return the output current flowing through the output power line 301 to the power conversion device 200 and suppress the leakage of the noise current, noise return lines 302 and 303 are provided between the power conversion device 200 and the motor 101 in addition to the output power line 301.
  • the noise return lines 302 and 303 are laid so as to run parallel to the output power line 301.
  • One end of the noise return lines 302 and 303 is electrically connected to the ground (earth potential) 401 on the motor 101 side via the housing of the motor 101.
  • the connection points of the noise return lines 302 and 303 and the housing of the motor 101 do not necessarily have to be the same, and may be separated from each other.
  • the ground 401 corresponds to, for example, the body of the vehicle on which the vehicle drive system 1 is mounted, or the rails on which the railway vehicle runs.
  • the other end of the noise return lines 302 and 303 is electrically connected to the negative wiring 205.
  • the noise return line 302 and the output power line 301 pass through a common magnetic core 206.
  • the noise return line 303 does not pass through the magnetic core 206.
  • FIG. 2 is an explanatory diagram of the noise current in the vehicle drive system 1. Note that in FIG. 2, the magnetic core 206 and the noise return lines 302 and 303 are omitted from the illustration.
  • a common mode current is generated as the noise current mentioned above.
  • the motor 101 has a stray capacitance with respect to the ground 401, and a portion of the common mode current (leakage noise current Inoise) leaks from the motor 101 to the ground 401 via this stray capacitance.
  • the electromagnetic radiation noise generated by this leakage noise current Inoise causes problems such as induction interference.
  • a magnetic core 206 and noise return lines 302, 303 are provided. This is to suppress leakage of common mode current.
  • Common mode currents generally contain a mixture of low frequency components (mainly on the order of kHz) and high frequency components (mainly on the order of MHz).
  • the output current flowing through the output power line 301 and the current flowing through the noise return line 302 each experience magnetic coupling (mutual inductance) through the magnetic core 206, so the impedance of the path returning from the output power line 301 to the noise return line 302 becomes smaller.
  • the magnetic core 206 has the effect of increasing the noise current passing through the noise return line 302.
  • the effect of the magnetic core 206 is effective for low frequency components, it has little effect on high frequency components. This is because the leakage inductance of the magnetic core 206 increases in the high frequency range, which increases the impedance of the current path passing through the noise return line 302.
  • a noise return line 303 that does not pass through the magnetic core 206 is introduced, providing a current path for passing the high-frequency components of the noise current. Because the noise return line 303 does not pass through the magnetic core 206, unlike the noise return line 302, there is no increase in impedance due to the leakage inductance of the magnetic core 206. Therefore, it is possible to return the high-frequency noise current through the noise return line 303.
  • FIG. 3 is an explanatory diagram that shows a schematic diagram of the noise suppression effect of the present invention.
  • a current path as shown in FIG. 3 is formed for the common mode current. That is, the low frequency components of the common mode current flowing through the output power line 301 return to the inverter circuit 202 through the noise return line 302 and the negative wiring 205. Also, the high frequency components of the common mode current flowing through the output power line 301 return to the inverter circuit 202 through the noise return line 303 and the negative wiring 205. As a result, it is possible to suppress the leakage noise current Inoise that leaks from the motor 101 to the ground 401.
  • connection points between the noise return lines 302, 303 and the negative wiring 205 are located outside the filter capacitor 203 with respect to the inverter circuit 202.
  • the reason is as follows. That is, when the switching element in the inverter circuit 202 is driven, a rectangular wave-shaped current is generated between the filter capacitor 203 and the inverter circuit 202. This may cause high-frequency voltage oscillations in the wiring between the filter capacitor 203 and the inverter circuit 202. Therefore, if the noise return lines 302, 303 are connected between the filter capacitor 203 and the inverter circuit 202, there is a risk that the noise current caused by this high-frequency voltage oscillation will leak to the outside via the noise return lines 302, 303. To avoid this, it is preferable to connect the noise return lines 302, 303 to the negative wiring 205, avoiding the area between the inverter circuit 202 and the filter capacitor 203.
  • FIG. 4 shows the results of a simulation verifying the noise suppression effect of the present invention by circuit simulation.
  • the dotted line graph shows the simulation results of the leakage noise current Inoise when only the noise return line 302 is provided, without providing the magnetic core 206 and the noise return line 303.
  • the dashed line graph shows the simulation results of the leakage noise current Inoise when the magnetic core 206 and the noise return line 302 are provided, without providing the noise return line 303.
  • the solid line graph shows the simulation results of the leakage noise current Inoise when the magnetic core 206 and the noise return lines 302 and 303 are provided.
  • Second Embodiment A second embodiment of the present invention will be described below.
  • the noise return lines 302 and 303 are directly connected to the negative wiring 205 .
  • the noise return lines 302 and 303 are each connected to the negative wiring 205 via a resistor.
  • FIG. 5 is a diagram showing the circuit configuration of a vehicle drive system according to a second embodiment of the present invention.
  • the power conversion device 200A further includes resistors 304 and 305 provided between the noise return lines 302 and 303 and the negative wiring 205, in addition to the components of the power conversion device 200 described in the first embodiment. That is, in the power conversion device 200A of this embodiment, the noise return lines 302 and 303 are connected to the negative wiring 205 via the resistors 304 and 305, respectively.
  • the input current to the inverter circuit 202 normally flows from the positive wiring 204 through the filter reactor 201 into the inverter circuit 202, and flows out through the negative wiring 205 to the ground system.
  • a current path that connects to the ground system through the noise return lines 302 and 303 may be formed, and the input current to the inverter circuit 202 may flow out of this current path to the ground system, causing a large current to flow. To avoid this, it is necessary to increase the impedance of the noise return path by the noise return lines 302 and 303 to a certain extent.
  • the noise return lines 302 and 303 are connected to the negative wiring 205 via resistors 304 and 305, respectively.
  • This increases the impedance of the noise return path through the noise return lines 302 and 303 compared to the first embodiment, preventing a large current from flowing out to the ground system through the noise return lines 302 and 303.
  • the resistance values of the resistors 304 and 305 be, for example, about several ohms.
  • FIG. 6 is a diagram showing the circuit configuration of a vehicle drive system according to a third embodiment of the present invention.
  • the power conversion device 200B in addition to the components of the power conversion device 200 described in the first embodiment, the power conversion device 200B further includes capacitors 306 and 307 provided between the noise return lines 302 and 303 and the negative wiring 205, respectively. That is, in the power conversion device 200B of this embodiment, the noise return lines 302 and 303 are connected to the negative wiring 205 via the capacitors 306 and 307, respectively.
  • the noise return lines 302 and 303 are connected to the negative wiring 205 via capacitors 306 and 307, respectively. This increases the impedance of the noise return path through the noise return lines 302 and 303 compared to the first embodiment, preventing a large current from flowing out to the ground system through the noise return lines 302 and 303.
  • the capacitors 306 and 307 have a large impedance in the low frequency range. Therefore, the method of connecting the noise return lines 302 and 303 as in this embodiment is an effective method for preventing the inflow of the input current of the inverter circuit 202, which is a low frequency.
  • the capacitors 306 and 307 have a small impedance in the high frequency range. Therefore, they do not impede the high frequency leakage noise current Inoise caused by the noise return lines 302 and 303. Therefore, the leakage noise current Inoise can be effectively collected while preventing the inflow of the input current of the inverter circuit 202.
  • FIG. 7 is a diagram showing the circuit configuration of a vehicle drive system according to a fourth embodiment of the present invention.
  • the power conversion device 200C in addition to the components of the power conversion device 200 described in the first embodiment, the power conversion device 200C further includes resistors 304, 305 and capacitors 306, 307 provided between the noise return lines 302, 303 and the negative wiring 205.
  • the resistor 304 is connected in series to the capacitor 306, and the resistor 305 is connected in series to the capacitor 307.
  • the noise return lines 302, 303 are connected to the negative wiring 205 via the resistors 304, 305 and the capacitors 306, 307 connected in series.
  • connecting the noise return lines 302 and 303 to the negative wiring 205 via the capacitors 306 and 307 is an effective method for preventing the inflow of the input current of the inverter circuit 202, which is a low frequency.
  • resonance occurs between the capacitors 306 and 307 and the inductance of the noise return lines 302 and 303, and there is a possibility that an unintended resonant current will occur. Therefore, in this embodiment, as shown in FIG. 7, in the power conversion device 200C, the noise return lines 302 and 303 are connected to the negative wiring 205 via resistors 304 and 305 in addition to the capacitors 306 and 307. This prevents resonance from occurring in the noise return lines 302 and 303.
  • FIG. 8 is a diagram showing the circuit configuration of a vehicle drive system according to a fifth embodiment of the present invention.
  • the power conversion device 200D further includes a noise return line 310 in addition to the components of the power conversion device 200 described in the first embodiment.
  • the noise return line 310 like the noise return line 303, is connected between the housing of the motor 101 and the negative wiring 205 without passing through the magnetic core 206. That is, the power conversion device 200D of this embodiment has two noise return lines 303, 310 that are laid in parallel with the output power line 301, one end of which is electrically connected to the ground 401 on the motor 101 side, and the other end of which is electrically connected to the negative wiring 205. This reduces the impedance of the noise return path, increases the noise return effect, and further reduces the leakage noise current Inoise.
  • a noise return line 310 is added that is connected between the housing of the motor 101 and the negative wiring 205 without passing through the magnetic core 206, similar to the noise return line 303.
  • a noise return line may be added that passes through the magnetic core 206 and is connected between the housing of the motor 101 and the negative wiring 205, similar to the noise return line 302.
  • two or more of each of these noise return lines may be added.
  • the vehicle drive system 1D of this embodiment can have at least one of a noise return line that passes through the magnetic core 206 and is connected between the housing of the motor 101 and the negative wiring 205, and a noise return line that does not pass through the magnetic core 206 and is connected between the housing of the motor 101 and the negative wiring 205.
  • the power conversion devices 200 to 200D include an inverter circuit 202 to which positive wiring 204 and negative wiring 205 are connected on the input side, which converts the input current flowing through the positive wiring 204 and negative wiring 205 into an output current and outputs the output current to the motor 101, which is a load device, an output power line 301 connected between the inverter circuit 202 and the motor 101 and through which an output current including a noise current flows, a magnetic core 206 through which the output power line 301 passes, and a noise return line 302 and a noise return line 303 for respectively returning the noise current.
  • the noise return line 302 and the noise return line 303 are laid so as to run parallel to the output power line 301, and one end of the noise return line 302 and the noise return line 303 is electrically connected to the ground 401 on the motor 101 side, and the other end of the noise return line 302 and the noise return line 303 is electrically connected to the negative wiring 205.
  • the noise return line 302 passes through the magnetic core 206. This configuration allows the power conversion devices 200-200D and the vehicle drive systems 1-1D that use them to suppress electromagnetic radiation noise in the high frequency range caused by common mode currents.
  • the output power line 301 through which the output current flows is passed through the magnetic core 206, and the noise return line 302 and the noise return line 303 are laid so as to run parallel to the output power line 301, and the noise return line 302 is passed through the magnetic core 206, and one end of the noise return line 302 and the noise return line 303 is electrically connected to the ground 401 on the motor 101 side, and the other end of the noise return line 302 and the noise return line 303 is electrically connected to the negative wiring 205 connected to the input side of the power conversion devices 200 to 200D.
  • electromagnetic radiation noise in the high frequency range due to common mode current can be suppressed in the power conversion devices 200 to 200D and the vehicle drive systems 1 to 1D using them.
  • the present invention is not limited to the above-described embodiments and modifications, and can be implemented using any components without departing from the spirit of the invention.
  • Each embodiment and modification may be used alone, or multiple embodiments and modifications may be used in any combination.
  • the present invention can achieve the above-described effects by combining the features of each embodiment in any combination.
  • Vehicle drive system 101 Motor 200, 200A, 200B, 200C, 200D: Power conversion device 201: Filter reactor 202: Inverter circuit 203: Filter capacitor 204: Positive wiring 205: Negative wiring 206: Magnetic core 301: Output power line 302, 303: Noise return line 304, 305: Resistor 306, 307: Capacitor 310: Noise return line 401: Ground

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

電力変換装置は、入力側に正極配線および負極配線が接続され、前記正極配線および前記負極配線を介して流れる入力電流を出力電流に変換して負荷装置へ出力するインバータ回路と、前記インバータ回路と前記負荷装置の間に接続され、ノイズ電流を含む前記出力電流が流れる出力電力線と、前記出力電力線が貫通される磁気コアと、前記ノイズ電流をそれぞれ還流させるための第一のノイズ還流線および第二のノイズ還流線と、を備え、前記第一のノイズ還流線および前記第二のノイズ還流線は、前記出力電力線とそれぞれ並走するように敷設され、前記第一のノイズ還流線および前記第二のノイズ還流線の一端は、前記負荷装置側のグランドとそれぞれ電気的に接続され、前記第一のノイズ還流線および前記第二のノイズ還流線の他端は、前記負極配線とそれぞれ電気的に接続され、前記第一のノイズ還流線は、前記磁気コアを貫通している。

Description

電力変換装置、車両用駆動システム、ノイズ抑制方法
 本発明は、電力変換装置、車両用駆動システムおよびノイズ抑制方法に関する。
 IGBT(Insulated Gate Bipolar Transistor)などのパワー半導体素子を応用した電力変換装置は、省エネルギー性や制御性が良いため、一般産業分野だけでなく、鉄道・自動車などの様々な分野に広く普及している。しかし、パワー半導体素子のスイッチング動作による電流・電圧の急峻な変化は、高い周波数のノイズ成分を含んでおり、周辺機器に電磁障害を引き起す場合がある。
 例えば、鉄道システムでは、車両に搭載された駆動用インバータなどの電力変換装置に由来する電磁放射ノイズが、軌道上に配置している地上信号保安装置などに誘導障害を引き起すことが知られており、対策を講じておく必要がある。近年、鉄道車両の駆動用インバータでは省エネルギー化のために、パワー半導体素子として、IGBTよりスイッチング速度が速いSiC(Silicon Carbide)-MOSFET(Metal Oxide Semiconductor Field Effect Transistor)を採用する場合が増加している。しかしながら、SiC-MOSFETの採用に伴うスイッチング高速化は、高周波域の電磁放射ノイズ増加の要因となるため、鉄道車両用駆動システムでは、このノイズの抑制が課題となっている。
 鉄道車両用駆動システムに代表されるモータ・インバータシステムでは、パワー半導体素子のスイッチング動作によってコモンモード電流が生じ、この電流によって電磁放射ノイズが発生する。インバータに接続されているモータは、接地系(鉄道システムでは車体やレールに対応)に対して浮遊容量を持っており、この浮遊容量を介して、接地系にコモンモード電流が漏洩する。この漏洩したコモンモード電流によって生じる電磁放射ノイズが誘導障害などの問題を引き起こす。
 モータ・インバータシステムにおけるコモンモード電流によるノイズを抑制する従来技術として、例えば特許文献1、2が知られている。特許文献1には、インバータ装置等のアース端子とモータ等の負荷装置のアース端子をリード線で接続することで、インバータ側に還流するノイズ電流と接地側へ流出するノイズ電流の比率を変え、ノイズを低減する方法が開示されている。また特許文献2には、電力変換装置の電源側の接地線と負荷側の接地線との間をコモンモード電流還流線を介して接続するとともに、電力変換装置の出力電力線とコモンモード電流還流線とを同一の磁気コアに巻回することで、コモンモード電流による高周波ノイズ障害を抑制する方法が開示されている。
日本国特開平5-22985号公報 日本国特開2001-86734号公報
 特許文献1,2の従来技術は、比較的低周波域(例えば100kHz以下の周波数帯)のノイズ低減には効果があるが、SiC-MOSFETを採用したインバータで生じるノイズのように、比較的高周波域(例えば1MHz以上の周波数帯)のノイズについては、十分にノイズ低減効果が得られない場合がある。
 本発明は上述の点に鑑みてなされたものであり、その主な目的は、電力変換装置とそれを用いた車両用駆動システムにおいて、コモンモード電流による高周波域の電磁放射ノイズを抑制することにある。
 本発明による電力変換装置は、入力側に正極配線および負極配線が接続され、前記正極配線および前記負極配線を介して流れる入力電流を出力電流に変換して負荷装置へ出力するインバータ回路と、前記インバータ回路と前記負荷装置の間に接続され、ノイズ電流を含む前記出力電流が流れる出力電力線と、前記出力電力線が貫通される磁気コアと、前記ノイズ電流をそれぞれ還流させるための第一のノイズ還流線および第二のノイズ還流線と、を備え、前記第一のノイズ還流線および前記第二のノイズ還流線は、前記出力電力線とそれぞれ並走するように敷設され、前記第一のノイズ還流線および前記第二のノイズ還流線の一端は、前記負荷装置側のグランドとそれぞれ電気的に接続され、前記第一のノイズ還流線および前記第二のノイズ還流線の他端は、前記負極配線とそれぞれ電気的に接続され、前記第一のノイズ還流線は、前記磁気コアを貫通している。
 本発明による車両用駆動システムは、電力変換装置と、前記電力変換装置と前記出力電力線を介して接続されるモータと、を備え、前記電力変換装置から出力される前記出力電流を用いて前記モータに駆動力を発生させ、前記駆動力を用いて車両を駆動させる。
 本発明によるノイズ抑制方法は、電力変換装置から負荷装置への出力電流に含まれるノイズ電流を抑制するための方法であって、前記出力電流が流れる出力電力線を磁気コアに貫通させ、前記出力電力線とそれぞれ並走するように第一のノイズ還流線および第二のノイズ還流線を敷設するとともに、前記第一のノイズ還流線を前記磁気コアに貫通させ、前記第一のノイズ還流線および前記第二のノイズ還流線の一端を、前記負荷装置側のグランドとそれぞれ電気的に接続し、前記第一のノイズ還流線および前記第二のノイズ還流線の他端を、前記電力変換装置の入力側に接続された負極配線とそれぞれ電気的に接続する。
 本発明によれば、電力変換装置とそれを用いた車両用駆動システムにおいて、コモンモード電流による高周波域の電磁放射ノイズを抑制できる。
本発明の第1の実施形態に係る車両用駆動システムの回路構成を示す図である。 車両用駆動システムにおけるノイズ電流の説明図である。 本発明のノイズ抑制効果を模式的に示した説明図である。 本発明のノイズ抑制効果のシミュレーション結果を示す図である。 本発明の第2の実施形態に係る車両用駆動システムの回路構成を示す図である。 本発明の第3の実施形態に係る車両用駆動システムの回路構成を示す図である。 本発明の第4の実施形態に係る車両用駆動システムの回路構成を示す図である。 本発明の第5の実施形態に係る車両用駆動システムの回路構成を示す図である。
 以下では、図面を参照して、本発明の実施形態を説明する。
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る車両用駆動システムの回路構成を示す図である。本実施形態の車両用駆動システム1は、例えば鉄道車両や自動車等の車両を駆動するためのシステムであり、モータ101と電力変換装置200を備えて構成される。
 モータ101は、電力変換装置200に対する負荷装置として作用し、電力変換装置200から出力される出力電流に応じて回転駆動する。このモータ101の回転駆動によって発生する駆動力を用いて、車両用駆動システム1が搭載された車両を駆動させることができる。
 電力変換装置200は、インバータ回路202、フィルタリアクトル201、フィルタコンデンサ203および磁気コア206を備える。
 インバータ回路202は、入力側に正極配線204および負極配線205が接続されている。インバータ回路202の入力側には、正極配線204および負極配線205を介して直流の入力電流が流れる。インバータ回路202は、例えばIGBTやSiC-MOSFET等のスイッチング素子を有し、このスイッチング素子をスイッチング駆動させることにより、直流の入力電流を交流の出力電流に変換する。
 電力変換装置200とモータ101は出力電力線301を介して接続されており、電力変換装置200からの出力電流は出力電力線301を流れてモータ101に入力される。これにより、電力変換装置200からモータ101に交流電力が供給されてモータ101が回転駆動する。
 なお、出力電力線301を流れる出力電流には、電力変換装置200におけるインバータ回路202のスイッチング動作等により発生したノイズ電流が含まれる。このノイズ電流が外部へ漏洩すると、他の装置へ悪影響を及ぼすおそれがある。そこで本実施形態では、出力電力線301を流れる出力電流を電力変換装置200に還流させてノイズ電流の漏洩を抑制するために、電力変換装置200とモータ101の間に、出力電力線301に加えてノイズ還流線302,303が設けられている。
 ノイズ還流線302,303は、出力電力線301とそれぞれ並走するように敷設されている。ノイズ還流線302,303の一端は、モータ101の筐体を介して、モータ101側のグランド(接地電位)401とそれぞれ電気的に接続される。なお、ノイズ還流線302,303とモータ101の筐体との接続点は必ずしも一致する必要はなく、互いに離れていてもよい。グランド401は、例えば車両用駆動システム1が搭載されている車両の車体や、鉄道車両が走行するレールなどに対応する。ノイズ還流線302,303の他端は、負極配線205とそれぞれ電気的に接続される。ノイズ還流線302と出力電力線301は、共通の磁気コア206を貫通している。一方、ノイズ還流線303は磁気コア206を貫通していない。
 次に、車両用駆動システム1におけるノイズ電流について、以下に図2を参照して説明する。図2は、車両用駆動システム1におけるノイズ電流の説明図である。なお図2では、磁気コア206およびノイズ還流線302,303の図示を省略している。
 車両用駆動システム1では、前述のノイズ電流としてのコモンモード電流が生じる。モータ101は、グランド401に対して浮遊容量を持っており、この浮遊容量を介して、モータ101からグランド401にコモンモード電流の一部(漏洩ノイズ電流Inoise)が漏出する。この漏洩ノイズ電流Inoiseによって生じる電磁放射ノイズが誘導障害などの問題を引き起こす。
 本実施形態の車両用駆動システム1では、図1に示したように、磁気コア206およびノイズ還流線302,303が設けられている。これにより、コモンモード電流の漏洩を抑制するようにしている。
 コモンモード電流には、一般的に低周波成分(主にkHzオーダー)と高周波成分(主にMHzオーダー)が混在している。出力電力線301に流れる出力電流とノイズ還流線302に流れる電流には、磁気コア206の磁気結合(相互インダクタンス)がそれぞれ生じるため、出力電力線301からノイズ還流線302に戻る経路のインピーダンスは小さくなる。すなわち、磁気コア206には、ノイズ還流線302を通るノイズ電流を大きくする効果がある。しかしながら、このような磁気コア206の効果は、低周波成分には有効であるが、高周波成分には効果が小さい。その理由は、高周波域では磁気コア206の漏れインダクタンスが大きくなり、これによってノイズ還流線302を通る電流経路のインピーダンスが増加するためである。
 そこで本実施形態の車両用駆動システム1では、ノイズ還流線302に加えて、磁気コア206を貫通しないノイズ還流線303を導入することで、ノイズ電流の高周波成分を通すための電流経路を設けている。ノイズ還流線303は磁気コア206を貫通していないため、ノイズ還流線302とは異なり、磁気コア206の漏れインダクタンスによるインピーダンス増加が生じない。そのため、ノイズ還流線303を通って高周波のノイズ電流を戻すことが可能となる。
 図3は、本発明のノイズ抑制効果を模式的に示した説明図である。本実施形態の車両用駆動システム1では、図1のような構成を採用することにより、コモンモード電流に対して図3に示すような電流経路が形成される。すなわち、出力電力線301を流れるコモンモード電流のうち低周波成分は、ノイズ還流線302と負極配線205を通ってインバータ回路202に戻る。また、出力電力線301を流れるコモンモード電流のうち高周波成分は、ノイズ還流線303と負極配線205を通ってインバータ回路202に戻る。その結果、モータ101からグランド401に漏出する漏洩ノイズ電流Inoiseを抑制することが可能となる。
 なお、ノイズ還流線302,303と負極配線205との接続点は、インバータ回路202に対してフィルタコンデンサ203よりも外側にあることが好ましい。その理由は、次の通りである。すなわち、インバータ回路202においてスイッチング素子が駆動すると、フィルタコンデンサ203とインバータ回路202の間に矩形波状の電流が生じる。これにより、フィルタコンデンサ203とインバータ回路202の間の配線に高周波の電圧振動が生じる場合がある。そのため、フィルタコンデンサ203とインバータ回路202の間にノイズ還流線302,303を接続してしまうと、この高周波の電圧振動に起因するノイズ電流が、ノイズ還流線302,303を介して外部に漏出するおそれがある。これを避けるため、インバータ回路202とフィルタコンデンサ203の間を避けて、ノイズ還流線302,303を負極配線205に接続することが好ましい。
 図4は、本発明のノイズ抑制効果を回路シミュレーションにより検証したシミュレーション結果を示す図である。図4において、図中の点線で示したグラフは、磁気コア206とノイズ還流線303を設けずに、ノイズ還流線302のみを設けた場合の漏洩ノイズ電流Inoiseのシミュレーション結果を表す。また、図中の破線で示したグラフは、ノイズ還流線303を設けずに磁気コア206とノイズ還流線302を設けた場合の漏洩ノイズ電流Inoiseのシミュレーション結果を表す。さらに、図中の実線で示したグラフは、磁気コア206とノイズ還流線302,303を設けた場合の漏洩ノイズ電流Inoiseのシミュレーション結果を表す。
 図4の各シミュレーション結果から、本実施形態の車両用駆動システム1では、ノイズ還流線303を設けることにより、ノイズ還流線302のみを用いた場合や、ノイズ還流線302と磁気コア206を併用した場合と比較して、グランド401に漏出する漏洩ノイズ電流Inoiseが小さくなっていることを確認できる。
(第2の実施形態)
 以下に本発明の第2の実施形態について説明する。前述の第1の実施形態では、ノイズ還流線302,303が負極配線205に直接接続される例を説明したが、本実施形態では、ノイズ還流線302,303が抵抗を介して負極配線205にそれぞれ接続される例を説明する。
 図5は、本発明の第2の実施形態に係る車両用駆動システムの回路構成を示す図である。本実施形態の車両用駆動システム1Aにおいて、電力変換装置200Aは、第1の実施形態で説明した電力変換装置200の各構成に加えて、ノイズ還流線302,303と負極配線205の間にそれぞれ設けられた抵抗304,305をさらに備える。すなわち、本実施形態の電力変換装置200Aにおいて、ノイズ還流線302,303は抵抗304,305を介して負極配線205にそれぞれ接続されている。
 インバータ回路202の入力電流は、通常は正極配線204からフィルタリアクトル201を介してインバータ回路202に流れ込み、負極配線205を通って接地系に流れ出る。しかしながら、第1の実施形態で説明した図1の電力変換装置200の構成では、こうした電流経路だけでなく、ノイズ還流線302,303を通って接地系につながる電流経路が形成される場合があり、インバータ回路202の入力電流がこの電流経路から接地系へ流れ出ることにより、大電流が流れる可能性がある。これを避けるためには、ノイズ還流線302,303によるノイズ還流経路のインピーダンスをある程度大きくする必要がある。
 本実施形態では図5に示すように、電力変換装置200Aにおいて、抵抗304,305を介してノイズ還流線302,303を負極配線205にそれぞれ接続している。これにより、第1の実施形態と比べて、ノイズ還流線302,303によるノイズ還流経路のインピーダンスを大きくし、ノイズ還流線302,303を通って接地系へ大電流が流れ出るのを防いでいる。なお、抵抗304,305の抵抗値は、例えば数オーム程度とすることが望ましい。
(第3の実施形態)
 以下に本発明の第3の実施形態について説明する。本実施形態では、ノイズ還流線302,303がコンデンサを介して負極配線205にそれぞれ接続される例を説明する。
 図6は、本発明の第3の実施形態に係る車両用駆動システムの回路構成を示す図である。本実施形態の車両用駆動システム1Bにおいて、電力変換装置200Bは、第1の実施形態で説明した電力変換装置200の各構成に加えて、ノイズ還流線302,303と負極配線205の間にそれぞれ設けられたコンデンサ306,307をさらに備える。すなわち、本実施形態の電力変換装置200Bにおいて、ノイズ還流線302,303はコンデンサ306,307を介して負極配線205にそれぞれ接続されている。
 第2の実施形態で説明したように、インバータ回路202の入力電流がノイズ還流線302,303を通って接地系に流れ出ることによる大電流を防止するために、ノイズ還流線302,303によるノイズ還流経路のインピーダンスはある程度大きくする必要がある。そこで本実施形態では図6に示すように、電力変換装置200Bにおいて、コンデンサ306,307を介してノイズ還流線302,303を負極配線205にそれぞれ接続している。これにより、第1の実施形態と比べて、ノイズ還流線302,303によるノイズ還流経路のインピーダンスを大きくし、ノイズ還流線302,303を通って接地系へ大電流が流れ出るのを防いでいる。
 コンデンサ306,307は、低周波域において大きなインピーダンスを持つ。そのため、本実施形態のようなノイズ還流線302,303の接続方法は、低周波であるインバータ回路202の入力電流の流れ込み防止に対して有効な方法である。一方、コンデンサ306,307は、高周波域ではインピーダンスが小さい。そのため、ノイズ還流線302,303による高周波の漏洩ノイズ電流Inoiseに対する妨げとはならない。したがって、インバータ回路202の入力電流の流れ込みを防ぎつつ、漏洩ノイズ電流Inoiseを効果的に回収することができる。
(第4の実施形態)
 以下に本発明の第4の実施形態について説明する。本実施形態では、ノイズ還流線302,303が、直列接続されたコンデンサと抵抗を介して負極配線205にそれぞれ接続される例を説明する。
 図7は、本発明の第4の実施形態に係る車両用駆動システムの回路構成を示す図である。本実施形態の車両用駆動システム1Cにおいて、電力変換装置200Cは、第1の実施形態で説明した電力変換装置200の各構成に加えて、ノイズ還流線302,303と負極配線205の間にそれぞれ設けられた抵抗304,305およびコンデンサ306,307をさらに備える。抵抗304はコンデンサ306と、抵抗305はコンデンサ307とそれぞれ直列に接続されている。すなわち、本実施形態の電力変換装置200Cにおいて、ノイズ還流線302,303は直列接続された抵抗304,305とコンデンサ306,307を介して負極配線205にそれぞれ接続されている。
 第3の実施形態で説明したように、コンデンサ306,307を介してノイズ還流線302,303を負極配線205にそれぞれ接続することは、低周波であるインバータ回路202の入力電流の流れ込み防止に対して有効な方法である。しかしながら、第3の実施形態で説明した図6の回路構成では、コンデンサ306,307とノイズ還流線302,303が有するインダクタンスとの間に共振が発生し、意図しない共振電流が発生する可能性がある。そこで本実施形態では図7に示すように、電力変換装置200Cにおいて、コンデンサ306,307に加えて抵抗304,305を介してノイズ還流線302,303を負極配線205にそれぞれ接続している。これにより、ノイズ還流線302,303において共振が発生するのを防いでいる。
(第5の実施形態)
 以下に本発明の第5の実施形態について説明する。本実施形態では、磁気コア206を貫通しないノイズ還流線を複数設けた例を説明する。
 図8は、本発明の第5の実施形態に係る車両用駆動システムの回路構成を示す図である。本実施形態の車両用駆動システム1Dにおいて、電力変換装置200Dは、第1の実施形態で説明した電力変換装置200の各構成に加えて、ノイズ還流線310をさらに備える。ノイズ還流線310は、ノイズ還流線303と同様に、磁気コア206を貫通せずにモータ101の筐体と負極配線205の間に接続されている。すなわち、本実施形態の電力変換装置200Dは、出力電力線301と並走するように敷設され、一端がモータ101側のグランド401と電気的に接続され、他端が負極配線205と電気的に接続された2つのノイズ還流線303,310を有している。これにより、ノイズ還流経路のインピーダンスを下げてノイズ還流効果を増大させ、漏洩ノイズ電流Inoiseをより一層低減することができる。
 なお、図8の回路構成では、ノイズ還流線303と同様に、磁気コア206を貫通せずにモータ101の筐体と負極配線205の間に接続されたノイズ還流線310を追加した例を示したが、ノイズ還流線302と同様に、磁気コア206を貫通してモータ101の筐体と負極配線205の間に接続されたノイズ還流線を追加してもよい。また、これらのノイズ還流線をそれぞれ2本以上追加してもよい。すなわち、本実施形態の車両用駆動システム1Dは、磁気コア206を貫通してモータ101の筐体と負極配線205の間に接続されたノイズ還流線と、磁気コア206を貫通せずにモータ101の筐体と負極配線205の間に接続されたノイズ還流線との少なくともいずれか一方を、複数有することができる。
 以上説明した本発明の実施形態によれば、以下の作用効果を奏する。
(1)電力変換装置200~200Dは、入力側に正極配線204および負極配線205が接続され、正極配線204および負極配線205を介して流れる入力電流を出力電流に変換して負荷装置であるモータ101へ出力するインバータ回路202と、インバータ回路202とモータ101の間に接続され、ノイズ電流を含む出力電流が流れる出力電力線301と、出力電力線301が貫通される磁気コア206と、ノイズ電流をそれぞれ還流させるためのノイズ還流線302およびノイズ還流線303とを備える。ノイズ還流線302およびノイズ還流線303は、出力電力線301とそれぞれ並走するように敷設され、ノイズ還流線302およびノイズ還流線303の一端は、モータ101側のグランド401とそれぞれ電気的に接続され、ノイズ還流線302およびノイズ還流線303の他端は、負極配線205とそれぞれ電気的に接続される。ノイズ還流線302は、磁気コア206を貫通している。このようにしたので、電力変換装置200~200Dとそれを用いた車両用駆動システム1~1Dにおいて、コモンモード電流による高周波域の電磁放射ノイズを抑制できる。
(2)電力変換装置200~200Dから負荷装置であるモータ101への出力電流に含まれるノイズ電流を抑制するための方法として、出力電流が流れる出力電力線301を磁気コア206に貫通させ、出力電力線301とそれぞれ並走するようにノイズ還流線302およびノイズ還流線303を敷設するとともに、ノイズ還流線302を磁気コア206に貫通させ、ノイズ還流線302およびノイズ還流線303の一端を、モータ101側のグランド401とそれぞれ電気的に接続し、ノイズ還流線302およびノイズ還流線303の他端を、電力変換装置200~200Dの入力側に接続された負極配線205とそれぞれ電気的に接続することができる。このようにすれば、電力変換装置200~200Dとそれを用いた車両用駆動システム1~1Dにおいて、コモンモード電流による高周波域の電磁放射ノイズを抑制できる。
 なお、本発明は上記実施形態や変形例に限定されるものではなく、その要旨を逸脱しない範囲内で、任意の構成要素を用いて実施可能である。また、各実施形態や変形例は単独で採用してもよいし、複数を任意に組み合わせて採用することも可能である。すなわち、本発明では各実施形態の特徴同士を任意に組み合わせることで、上述した効果を奏することが可能である。
 上記の実施形態や変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 1,1A,1B,1C,1D:車両用駆動システム
 101:モータ
 200,200A,200B,200C,200D:電力変換装置
 201:フィルタリアクトル
 202:インバータ回路
 203:フィルタコンデンサ
 204:正極配線
 205:負極配線
 206:磁気コア
 301:出力電力線
 302,303:ノイズ還流線
 304,305:抵抗
 306,307:コンデンサ
 310:ノイズ還流線
 401:グランド

Claims (11)

  1.  入力側に正極配線および負極配線が接続され、前記正極配線および前記負極配線を介して流れる入力電流を出力電流に変換して負荷装置へ出力するインバータ回路と、
     前記インバータ回路と前記負荷装置の間に接続され、ノイズ電流を含む前記出力電流が流れる出力電力線と、
     前記出力電力線が貫通される磁気コアと、
     前記ノイズ電流をそれぞれ還流させるための第一のノイズ還流線および第二のノイズ還流線と、を備え、
     前記第一のノイズ還流線および前記第二のノイズ還流線は、前記出力電力線とそれぞれ並走するように敷設され、
     前記第一のノイズ還流線および前記第二のノイズ還流線の一端は、前記負荷装置側のグランドとそれぞれ電気的に接続され、
     前記第一のノイズ還流線および前記第二のノイズ還流線の他端は、前記負極配線とそれぞれ電気的に接続され、
     前記第一のノイズ還流線は、前記磁気コアを貫通している電力変換装置。
  2.  請求項1に記載の電力変換装置であって、
     前記第一のノイズ還流線および前記第二のノイズ還流線の前記他端は、抵抗を介して前記負極配線とそれぞれ電気的に接続されている電力変換装置。
  3.  請求項1または2に記載の電力変換装置であって、
     前記第一のノイズ還流線および前記第二のノイズ還流線の前記他端は、コンデンサを介して前記負極配線とそれぞれ電気的に接続されている電力変換装置。
  4.  請求項1から請求項3のいずれか一項に記載の電力変換装置であって、
     前記第一のノイズ還流線および前記第二のノイズ還流線の前記他端は、直列接続されたコンデンサと抵抗を介して前記負極配線とそれぞれ電気的に接続されている電力変換装置。
  5.  請求項1から請求項4のいずれか一項に記載の電力変換装置であって、
     前記第一のノイズ還流線および前記第二のノイズ還流線の少なくともいずれか一方を複数有する電力変換装置。
  6.  請求項1から請求項5のいずれか一項に記載の電力変換装置と、
     前記電力変換装置と前記出力電力線を介して接続されるモータと、を備え、
     前記電力変換装置から出力される前記出力電流を用いて前記モータに駆動力を発生させ、前記駆動力を用いて車両を駆動させる車両用駆動システム。
  7.  電力変換装置から負荷装置への出力電流に含まれるノイズ電流を抑制するための方法であって、
     前記出力電流が流れる出力電力線を磁気コアに貫通させ、
     前記出力電力線とそれぞれ並走するように第一のノイズ還流線および第二のノイズ還流線を敷設するとともに、前記第一のノイズ還流線を前記磁気コアに貫通させ、
     前記第一のノイズ還流線および前記第二のノイズ還流線の一端を、前記負荷装置側のグランドとそれぞれ電気的に接続し、
     前記第一のノイズ還流線および前記第二のノイズ還流線の他端を、前記電力変換装置の入力側に接続された負極配線とそれぞれ電気的に接続するノイズ抑制方法。
  8.  請求項7に記載のノイズ抑制方法であって、
     前記第一のノイズ還流線および前記第二のノイズ還流線の前記他端を、抵抗を介して前記負極配線とそれぞれ電気的に接続するノイズ抑制方法。
  9.  請求項7または8に記載のノイズ抑制方法であって、
     前記第一のノイズ還流線および前記第二のノイズ還流線の前記他端を、コンデンサを介して前記負極配線とそれぞれ電気的に接続するノイズ抑制方法。
  10.  請求項7から請求項9のいずれか一項に記載のノイズ抑制方法であって、
     前記第一のノイズ還流線および前記第二のノイズ還流線の前記他端を、直列接続されたコンデンサと抵抗を介して前記負極配線とそれぞれ電気的に接続するノイズ抑制方法。
  11.  請求項7から請求項10のいずれか一項に記載のノイズ抑制方法であって、
     前記第一のノイズ還流線および前記第二のノイズ還流線の少なくともいずれか一方を複数設けるノイズ抑制方法。
PCT/JP2023/038757 2022-11-09 2023-10-26 電力変換装置、車両用駆動システム、ノイズ抑制方法 WO2024101173A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022179798 2022-11-09
JP2022-179798 2022-11-09

Publications (1)

Publication Number Publication Date
WO2024101173A1 true WO2024101173A1 (ja) 2024-05-16

Family

ID=91032706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038757 WO2024101173A1 (ja) 2022-11-09 2023-10-26 電力変換装置、車両用駆動システム、ノイズ抑制方法

Country Status (1)

Country Link
WO (1) WO2024101173A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086734A (ja) * 1999-09-14 2001-03-30 Hitachi Ltd 電力変換システム
JP2003348818A (ja) * 2002-05-28 2003-12-05 Hitachi Ltd 電力変換システム及び、それに用いるフィルタ
JP5362139B1 (ja) * 2012-10-25 2013-12-11 三菱電機株式会社 コモンモードノイズ低減装置
JP2015012650A (ja) * 2013-06-27 2015-01-19 東芝シュネデール・インバータ株式会社 電力変換装置
JP2019115223A (ja) * 2017-12-26 2019-07-11 公益財団法人鉄道総合技術研究所 電気車用電力変換装置
WO2021048892A1 (ja) * 2019-09-09 2021-03-18 日立ジョンソンコントロールズ空調株式会社 電気回路体及び冷凍サイクル装置
US20220014178A1 (en) * 2019-03-28 2022-01-13 Em Coretech Co., Ltd. Divided active electromagnetic interference filter module and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086734A (ja) * 1999-09-14 2001-03-30 Hitachi Ltd 電力変換システム
JP2003348818A (ja) * 2002-05-28 2003-12-05 Hitachi Ltd 電力変換システム及び、それに用いるフィルタ
JP5362139B1 (ja) * 2012-10-25 2013-12-11 三菱電機株式会社 コモンモードノイズ低減装置
JP2015012650A (ja) * 2013-06-27 2015-01-19 東芝シュネデール・インバータ株式会社 電力変換装置
JP2019115223A (ja) * 2017-12-26 2019-07-11 公益財団法人鉄道総合技術研究所 電気車用電力変換装置
US20220014178A1 (en) * 2019-03-28 2022-01-13 Em Coretech Co., Ltd. Divided active electromagnetic interference filter module and manufacturing method thereof
WO2021048892A1 (ja) * 2019-09-09 2021-03-18 日立ジョンソンコントロールズ空調株式会社 電気回路体及び冷凍サイクル装置

Similar Documents

Publication Publication Date Title
US7928597B2 (en) Power system and method for driving an electromotive traction system and auxiliary equipment through a common power bus
JP6416250B2 (ja) 電力変換装置
JP5240215B2 (ja) 回路基板及びそれを用いた電力変換装置
US11398772B2 (en) Circuit device for reducing common-mode interference of a power converter
WO2024101173A1 (ja) 電力変換装置、車両用駆動システム、ノイズ抑制方法
JP2011166968A (ja) 車両用電力変換装置の誘導障害施策
US9271432B2 (en) Power conversion device with reduced noise source current, reduced high frequency current and reduced resonance current
US11398773B2 (en) Filter for power train
WO2023246481A1 (zh) 具有emi抑制的驱动电路及汽车电机驱动系统
JP3650314B2 (ja) 変換器のノイズ低減装置
CN112838750A (zh) 有源共模抵消
WO2018028988A1 (de) Verschienung für einen stromrichter
WO2020085007A1 (ja) 電力変換装置
Yamada et al. Filtering techniques for matrix converters to achieve environmentally harmonious drives
JPH099412A (ja) 交流電気車用電力変換装置
JP5721772B2 (ja) 電力変換装置
JP2017055584A (ja) 三相ノイズフィルタ、並びにそれを用いる交流電動機駆動システム
US20210058053A1 (en) Noise filter
Qing-yu et al. EMC design for HEV drive system
JP2015061397A (ja) 主回路装置及び鉄道車両
US11575310B2 (en) Powered system with passive filter for an energy storage device
WO2024105813A1 (ja) 鉄道車両用の電力変換装置
US11565595B2 (en) Filter circuit arrangement, an electric vehicle and a method of operating an electric vehicle
JP7257820B2 (ja) 電鉄用アクティブフィルタおよびその制御方法並びにそれを具備する電力変換装置および鉄道車両
JP2022071857A (ja) コンデンサモジュールおよび電力変換装置