WO2024100863A1 - 光伝送システム及び光伝送方法 - Google Patents

光伝送システム及び光伝送方法 Download PDF

Info

Publication number
WO2024100863A1
WO2024100863A1 PCT/JP2022/042009 JP2022042009W WO2024100863A1 WO 2024100863 A1 WO2024100863 A1 WO 2024100863A1 JP 2022042009 W JP2022042009 W JP 2022042009W WO 2024100863 A1 WO2024100863 A1 WO 2024100863A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
unit
irradiation
optical fiber
Prior art date
Application number
PCT/JP2022/042009
Other languages
English (en)
French (fr)
Inventor
亜弥子 岩城
聖 成川
誉人 桐原
勝久 田口
和秀 中島
隆 松井
千里 深井
悠途 寒河江
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/042009 priority Critical patent/WO2024100863A1/ja
Publication of WO2024100863A1 publication Critical patent/WO2024100863A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • This disclosure relates to an optical transmission system and method that uses an optical fiber bundle consisting of multiple optical fibers as an optical transmission path.
  • Non-Patent Document 1 Mobile sterilization robot
  • the product of Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light.
  • the robot can irradiate ultraviolet light while moving around a room in a building such as a hospital room, thereby automatically sterilizing a wide area without human intervention.
  • Non-Patent Document 2 Freestanding Air Purifier
  • the product in Non-Patent Document 2 is a device that is installed on the ceiling or a predetermined location in a room and circulates the air in the room while sterilizing, etc.
  • Non-Patent Document 3 is a portable device equipped with an ultraviolet light source. A user can take the device to a desired area and irradiate ultraviolet light. Therefore, the device can be used in various places.
  • Non-Patent Document 1 irradiates high-power ultraviolet light, so the device is large-scale and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
  • the product of Non-Patent Document 2 sterilizes the circulated indoor air, and therefore cannot irradiate the location where sterilization is desired with ultraviolet light directly.
  • Non-Patent Document 3 cannot irradiate ultraviolet light onto, for example, narrow pipes or areas where people cannot enter.
  • the products described in non-patent literature have a problem in that they lack the versatility to irradiate ultraviolet light anywhere.
  • (3) Operability The product of Non-Patent Document 3 is portable and can irradiate ultraviolet light in various locations. However, in order to obtain sufficient sterilization effects at the target location, the user is required to have skills and knowledge, and there are problems with operability.
  • an ultraviolet light irradiation system 300 using optical fibers as shown in FIG. 1 can be considered.
  • ultraviolet light is transmitted from the ultraviolet light source unit 11a using a thin and easily bendable optical fiber, and the ultraviolet light output from the tip of the optical fiber 14 is irradiated to the irradiation target area AR where pinpoint sterilization is desired. Since ultraviolet light can be irradiated to any location simply by moving the irradiation unit 13 at the tip of the optical fiber 14, the versatility of the above problem (2) can be resolved. In addition, since there is no need to move or set up the ultraviolet light source, and no skill or knowledge is required of the user, the operability of the above problem (3) can also be resolved.
  • an optical distribution unit 12 such as an optical splitter in the optical transmission path 16 and configuring a system of P-MP (Point to Multipoint) such as FTTH (Fiber To The Home), a single light source can be shared and multiple locations can be sterilized. Therefore, the economics of the above problem (1) can also be resolved.
  • P-MP Point to Multipoint
  • FTTH Fiber To The Home
  • Deep ultraviolet light which is used in systems for sterilization using ultraviolet light, can cause cataracts and skin cancer when it is irradiated onto the eyes or skin of humans and other animals. For this reason, in living spaces and other spaces where people and animals are constantly present, measures are required such as not irradiating ultraviolet light onto objects to be avoided, such as people and animals, or using ultraviolet light with a low illuminance that is not harmful to such objects.
  • ultraviolet light is delivered uniquely to all irradiation target areas. In other words, ultraviolet light of the same power as that of the irradiation target area requiring inactivation is delivered to irradiation target areas where the necessity for inactivation is low or where there are objects to be avoided.
  • P-MP UV light irradiation systems do not specifically include a mechanism for detecting objects to be avoided, or a mechanism for controlling the UV light irradiation of each irradiation target area based on the detection results.
  • the present invention aims to solve the above problems by providing an optical transmission system and method with a P-MP configuration that can increase the number of irradiation target areas and reduce power consumption, and can control the light irradiation to each irradiation target area depending on the presence or absence of an object to be avoided.
  • the energy of ultraviolet light taking into account the time to supply to each route and the energy of ultraviolet light taking into account the time to irradiate the irradiation target area AR are referred to as an integrated light amount (unit J)
  • the energy of the ultraviolet light per unit time is referred to as power (unit W)
  • the power per unit area of the ultraviolet light irradiated to the irradiation target area AR is referred to as illuminance (W/ m2 ).
  • the energy per unit area in the irradiation target area AR is referred to as an ultraviolet light amount (unit J/ m2 or W ⁇ s/ m2 ).
  • the optical transmission system of the present invention is equipped with a sensor unit that detects objects to be avoided for each irradiation target area, and adjusts the state of light irradiated to each irradiation target area based on the detection results.
  • the optical transmission system comprises: A light source unit that outputs light; an optical transmission line that propagates the light from one end to the other end through a plurality of cores of an optical bundle formed by bundling a plurality of single-core optical fibers; N irradiation units that irradiate the light propagated through the optical transmission path onto N irradiation target areas (N is a natural number equal to or greater than 2); a sensor unit that detects whether or not an object to be avoided from being exposed to the light is present in an area including the irradiation object area and outputs sensor information; A control unit that adjusts a state of the light to be transmitted to the irradiation unit based on the sensor information from the sensor unit; Equipped with.
  • the light output from the light source unit is propagated from one end to the other end through multiple cores of a bundle optical fiber which is an optical transmission path and is a bundle of multiple single-core optical fibers; Irradiating N irradiation target areas (N is a natural number equal to or greater than 2) with the light propagated through the optical transmission path using N irradiation units; generating sensor information indicating whether or not an object to be avoided from being exposed to the light is present in an area including the irradiation object area; adjusting a state of the light to be transmitted to the irradiation unit based on the sensor information; I do.
  • N is a natural number equal to or greater than 2
  • This optical transmission system detects the presence or absence of an object to be avoided using a sensor unit installed near the irradiation target area, and adjusts the state of light irradiated to each irradiation target area based on the result.
  • adjusting the state of light irradiated to each irradiation target area means irradiating light of a desired power to irradiation target areas where there is no object to be avoided, and stopping or reducing the irradiation of light to irradiation target areas where there is an object to be avoided or an object to be avoided is about to enter.
  • multiple cores of an optical fiber bundle refers to the cores of single-core optical fibers bundled into an optical fiber bundle.
  • the present invention can provide an optical transmission system and method with a P-MP configuration that can increase the number of irradiation target areas and reduce power consumption, and can control the light irradiation to each irradiation target area depending on the presence or absence of an object to be avoided.
  • the control unit adjusts the relative position between the light source unit and one end of the bundle optical fiber, thereby changing the coupling state in which the light output by the light source unit is incident on the core of the bundle optical fiber, and adjusts the state of the light transmitted to the irradiation unit.
  • the optical transmission system further includes an optical coupling unit that irradiates the light output from the light source unit onto one end of the optical fiber bundle,
  • the control unit changes the spot shape at one end of the bundle optical fiber with respect to the optical coupling unit, thereby changing the coupling state at which the light output by the light source unit enters the core, and adjusts the state of the light transmitted to the irradiation unit.
  • the optical transmission system further includes a separation unit that separates the single-core optical fibers bundled in the bundle optical fiber at the other end of the optical transmission line, and transmits or blocks the light from the optical transmission line for each of the separated single-core optical fibers,
  • the control unit adjusts the state of the light to be transmitted to the irradiation unit by instructing the separation unit to transmit or block the light for each single-core optical fiber.
  • the optical transmission system further includes an optical branching unit that branches the light propagated through the optical transmission path into a plurality of output ports at an arbitrary branching ratio, and paths that propagate the light from each of the output ports of the optical branching unit to each of the irradiation units,
  • the control unit adjusts the state of the light to be transmitted to the irradiation unit by changing the branching ratio of the optical branching unit.
  • the path is a bundle optical fiber in which multiple optical fibers are bundled
  • the power of the light propagated to the path is discrete
  • the number of discrete points is the number of the optical fibers bundled in the bundle optical fiber of the path.
  • the present invention can provide an optical transmission system and method with a P-MP configuration that can increase the number of irradiation target areas and reduce power consumption, and can control the light irradiation to each irradiation target area depending on the presence or absence of an object to be avoided.
  • FIG. 1 is a diagram illustrating a problem to be solved by the present invention.
  • 1 is a diagram illustrating an optical transmission system according to the present invention
  • 1 is a diagram illustrating an optical transmission system according to the present invention
  • 1 is a diagram illustrating an optical transmission system according to the present invention
  • 1 is a diagram illustrating an optical transmission system according to the present invention
  • 5A and 5B are diagrams illustrating adjustment of a coupling state performed by an optical coupling unit of the optical transmission system according to the present invention.
  • 1 is a diagram illustrating an optical transmission system according to the present invention
  • FIG. 4 is a diagram for explaining control over a demultiplexer in the optical transmission system according to the present invention.
  • 1 is a diagram illustrating an optical transmission system according to the present invention
  • 1 is a diagram illustrating an optical branching unit of an optical transmission system according to the present invention
  • 1 is a diagram illustrating an optical branching unit of an optical transmission system according to the present invention
  • 1A and 1B are diagrams illustrating the effect of an optical branching unit of an optical transmission system according to the present invention
  • 11A and 11B are diagrams illustrating the effect of a control unit in the optical transmission system according to the present invention.
  • 5 is a diagram illustrating the operation of a control unit of the optical transmission system according to the present invention.
  • FIG. 4 is a flowchart illustrating an optical transmission method according to the present invention.
  • FIG. 2 is a diagram illustrating an optical transmission system according to the present embodiment.
  • a light source unit 11 that outputs light L1; an optical transmission line 26 that propagates light L1 from one end to the other end through a plurality of cores of a bundle optical fiber 36 in which a plurality of single-core optical fibers 51a are bundled; N irradiation units 13 that irradiate N irradiation target areas AR (N is a natural number of 2 or more) with the light L2 propagated through the optical transmission path 26; a sensor unit 13 that outputs sensor information indicating whether or not an avoidance target H that should be avoided from exposure to the light L2 is present in an area including the irradiation target area AR; A control unit 15 that adjusts the state of the light L2 to be transmitted to the irradiation unit 13 based on the sensor information from the sensor unit 13; Equipped with.
  • FIG. 17 is a flow chart for explaining an optical transmission method performed by the optical transmission system.
  • Propagating light output from the light source unit 11 from one end T1 to the other end T2 through multiple cores of a bundle optical fiber 36 which is an optical transmission path 26 and which is a bundle of multiple single-core optical fibers 55 step S01
  • Irradiating the light propagated through the optical transmission path 26 to N irradiation target areas AR by N irradiation units 13 step S02
  • generating sensor information indicating whether or not an avoidance target H that should be avoided from being exposed to the light is present in an area including the irradiation target area AR (step S03); Adjusting the state of the light to be transmitted to the irradiation unit 13 based on the sensor information (step S04); I do.
  • the light source unit 11 is an LED (Light Emitting Diode) that outputs ultraviolet light, visible light, or infrared light L1.
  • the light source unit 11 is not limited to an LED, and may be a light source (for example, an incandescent lamp or a discharge lamp) having the following optical characteristics. - There is variation in wavelength, amplitude, or phase. ⁇ Light is scattered. ⁇ It is a natural release.
  • an optical system 11c is present to couple the light L1 from the light source unit 11 to one end T1 of the bundle optical fiber 36.
  • the optical system 11c may not be necessary depending on the beam diameter of the light L1 output by the light source unit 11 and the diameter of one end T1 of the bundle optical fiber 36.
  • the bundle optical fiber 36 is a bundle of multiple single-core optical fibers 51a.
  • Light L1 from the light source unit 11 is irradiated to one end T1.
  • the single-core optical fibers 51a are disassembled by a separation unit 12c described below, and the individual single-core optical fibers 51a are wired as paths 14 to their respective irradiation target areas AR.
  • the paths 14, which are optical fibers 55 are connected to the other end T2 via an optical branching unit 12b described below.
  • the irradiation unit 13 irradiates the light propagating through the path 14 onto each irradiation target area AR as light L2.
  • the sensor unit 31 detects the presence and movement of each irradiation target area AR and an avoidance target (such as a person or an animal) H in the vicinity thereof.
  • the sensor unit 31 acquires temperature using a thermometer, infrared rays using an infrared sensor, images using a camera, and light using LiDAR (Light Detection and Ranging), and performs information processing (shape, face, fingerprint, veins, iris, etc.) to detect the presence and movement of an avoidance target.
  • the sensor unit 31 notifies the control unit 15 of the detection result as sensor information.
  • the notification to the control unit 15 may be made by wire or wirelessly.
  • the control unit 15 adjusts the state of light transmitted to the irradiation unit 13 based on the sensor information from the sensor unit 13.
  • Adjusting the state of light means, for example, blocking the delivery of light to the irradiation target area AR where the avoidance target H exists, or reducing the power of the light. The excess power of light generated by blocking the light or reducing the light power may be distributed to other irradiation target areas AR.
  • This optical transmission system has the following advantages. (1) If the propagating light is ultraviolet light, irradiation of the object to be avoided H with ultraviolet light can be avoided. (2) For safety reasons, it is not necessary to always operate at such low power that exposure to the avoidance target H can be ignored, and light of the power required by each irradiation target area can be supplied, and light processing (e.g., inactivation) can be completed in a short period of time. (3) Since it is possible to supply light of the power required for each irradiation target area, (a) Even if there is an upper limit to the power that can be output from the light source unit, the number of irradiation target areas to which light can be delivered can be increased. (b) The delivery of light to areas of the illumination target that have little or no need for light can be reduced or stopped, thereby reducing the power consumption of the light source unit.
  • FIG. 4 is a specific example of how the "adjustment of the state of light” is achieved by adjusting the coupling state of the light L1 to each core of the bundle optical fiber 36.
  • the control unit 15 adjusts the relative position between the light source unit 11 and one end T1 of the bundle optical fiber 36, thereby changing the coupling state in which the light L1 output by the light source unit 11 enters the core, and adjusts the state of the light transmitted to the irradiation unit 13.
  • the position of the light source unit 11 is adjusted to couple light L1 to a specific core (single-core optical fiber 51a) or a group of cores.
  • a separation unit 12c is disposed at the other end T2 of the bundle optical fiber 36, and the bundled single-core optical fibers 51a are separated.
  • the control unit 15 transmits a signal to the light source unit 11 to control the spot of the light L1.
  • the light source unit 11 adjusts the x, y and z directions of the light source holding jig such as an LED according to the control signal received from the control unit 15.
  • the z direction is the optical axis direction of the light L1
  • the x and y directions are mutually orthogonal and perpendicular to the optical axis of the light L1.
  • the size of the spot of the light L1 at one end T1 of the bundle optical fiber 36 can be changed.
  • the control unit 15 couples the light L1 to the desired core (single-core optical fiber 51a) or its core group by changing the size and center position of the spot of the light L1 with respect to the light source unit 11.
  • the control unit 15 can change the size and center position of the spot of the light L1 in the light source unit 11 so that the light L1 is not coupled to the core (single-core optical fiber 51a) in the irradiation target area AR where the avoidance target H exists.
  • FIG. 5 shows another specific example of how the "adjustment of the state of light” is achieved by adjusting the coupling state of the light L1 to each core of the bundle optical fiber 36.
  • This example is an example in which the light L1 is coupled to a specific core (single-core optical fiber 51a) or a group of cores by adjusting the coupling state of the light L1 between the light source unit 11 and the bundle optical fiber 36. Also in this example, a separation unit 12c is disposed at the other end T2 of the bundle optical fiber 36, and the bundled single-core optical fibers 51a are separated.
  • the control unit 15 transmits a signal to the fiber coupling axis adjustment unit 11f to control the amount of coupling to each single-core optical fiber 51a bundled in the bundle optical fiber 36.
  • the fiber coupling axis adjustment unit 11f adjusts the x, y, and z directions of the coupling axis position according to the control signal received from the control unit 15.
  • the z direction is the optical axis direction of the light L1
  • the x and y directions are mutually orthogonal and perpendicular to the optical axis of the light L1.
  • the fiber coupling axis adjustment unit 11f moves one end T1 of the light source unit 11 or the bundle optical fiber 36 in the z direction, the size of the spot of the light L1 at one end T1 of the bundle optical fiber 36 can be changed. Also, when the fiber coupling axis adjustment unit 11f moves one end T1 of the light source unit 11 or the bundle optical fiber 36 in the x and y directions, the center position of the spot of the light L1 at one end T1 of the bundle optical fiber 36 can be shifted.
  • control unit 15 adjusts the coupling axis position of the fiber coupling axis adjustment unit 11f to change the size and center position of the spot of the light L1, thereby coupling the light L1 to the desired core (single-core optical fiber 51a) or its core group.
  • control unit 15 can change the size and center position of the spot of the light L1 in the light source unit 11 so that the light L1 is not coupled to the core (single-core optical fiber 51a) in the irradiation target area AR where the avoidance target H exists.
  • FIG. 6 is a specific example of how the "adjustment of the state of light” is achieved by adjusting the coupling state of the light L1 to each core of the bundle optical fiber 36.
  • the optical transmission system further includes an optical coupling unit 11d, which irradiates the light L1 output from the light source unit 11 to one end T1 of the optical fiber bundle 36, as an alternative to the optical system 11c described above.
  • the control unit 15 changes the spot shape at one end T1 of the bundle optical fiber 36 for the optical coupling unit 11d, thereby changing the coupling state at which the light L1 outputted by the light source unit 11 enters the core, and adjusts the state of the light transmitted to the irradiation unit 13.
  • the control unit 15 transmits a signal to the optical coupling unit 11d to control the spot of the light L1 based on the sensor information received from the sensor unit 31.
  • the optical coupling unit 11d adjusts the focal length and spot shape of the optical system according to the control signal received from the control unit 15.
  • the optical coupling unit 11d adjusts the size of the spot shape of the light L1 from the light source unit 11 and irradiates one end T1 of the bundle optical fiber 36.
  • the size of the spot shape of the light L1 at one end T1 of the bundle optical fiber 36 is indicated by "Lc.”
  • the optical coupling unit 11d adjusts the size Lc of the spot shape to adjust the coupling state of the light L1 coupled to the core of each single-core optical fiber 51a.
  • the optical coupling section 11d is arranged to eliminate the power deviation of the light L1 at one end T1 and to achieve the effect of fairly coupling the light L1 to the cores of each single-core optical fiber 51a (realizing fairness of power).
  • the optical coupling section 11d intentionally creates a power deviation of the light L1 at one end T1 in order to adjust the coupling state.
  • the optical coupling section 11d can obtain the following effects. (1) The light L1 is coupled to the core of each single-core optical fiber 51 a so as to satisfy the power required by the irradiation target area by utilizing the power deviation of the light L1 at one end T1 (realizing fairness of requirements); (2) Reducing the light L1 that is not coupled to the core of the single-core optical fiber 51a (reducing waste and saving power); (3) The light L1 is prevented from being coupled to the single-core optical fiber 51a in the irradiation target area where the object to be avoided H exists (ensuring safety).
  • Figure 7 is a diagram explaining the adjustment of the coupling state performed by the optical coupling unit 11d. All of Figures 7 show the state of the size Lc of the spot shape of the light L1 at one end T1 of the bundle optical fiber 36.
  • Figures 7(A) to 7(C) are diagrams that explain how the optical coupling unit 11d adjusts the coupling state (adjusts the size Lc of the spot shape) while aligning the optical axis of the light L1 with the central axis of the bundle optical fiber 36.
  • the optical coupling unit 11d widens the size Lc of the spot shape as shown in FIG. 7A to obtain the general effect described above, uniform power can be coupled to each single-core optical fiber 51a, except for the single-core optical fiber 51a on the outer periphery of the bundle optical fiber 36.
  • the optical coupling unit 11d adjusts the size Lc of the spot shape as shown in FIG. 7A, the uniformity and fairness of the power of the light irradiated to the irradiation target area can be improved.
  • the optical coupling unit 11d narrows the size Lc of the spot shape to an extent that only one single-core optical fiber 51a is included as shown in Fig. 7(B)
  • the light L1 outputted from the light source unit 11 can be concentrated on the core of the single-core optical fiber 51a, and strong power light can be supplied to the irradiation target area corresponding to the single-core optical fiber 51a.
  • the light L1 is ultraviolet light
  • the inactivation of the irradiation target area can be completed in a short time. It is also possible to prevent the spot of the light L1 from being irradiated onto the single-core optical fiber 51a corresponding to the irradiation target area in which the object to be avoided H exists.
  • the optical coupling section 11d can narrow the size Lc of the spot shape to an extent that includes multiple single-core optical fibers 51a located near the center of the bundle optical fiber 36, as shown in Figure 7(C).
  • the optical coupling unit 11d can change the size Lc of the spot shape according to the requirements of the irradiation target area.
  • the optical coupling unit 11d can know the requirements of the irradiation target area by some means (for example, a light request signal from the irradiation target area, an instruction signal from an operator, etc.).
  • the optical coupling unit 11d changes the size Lc of the spot shape according to an instruction from the control unit 15 based on the sensor information output by the sensor unit 13.
  • the optical coupling portion 11d may periodically change the positional relationship as shown in FIG. 7(A) to (B), (B) to (C), and (C) to (A).
  • Figures 7 (D1) to 7 (D3) are diagrams explaining how the optical coupling unit 11d adjusts the coupling state (adjusts the positional relationship) while shifting the optical axis of the light L1 from the central axis of the bundle optical fiber 36.
  • the optical coupling unit 11d narrows the size Lc of the spot shape of the light L1 to the extent that only one single-core optical fiber 51a or a plurality of single-core optical fibers 51a are included. Then, the optical coupling unit 11d adjusts the positional relationship between the optical axis of the light L1 and the central axis of the bundle optical fiber 36 so that the single-core optical fiber 51a corresponding to the irradiation target area requesting light is included within the size Lc of the spot shape. If the irradiation target area requesting light changes, the optical coupling unit 11d changes the positional relationship accordingly, such as from FIG. 7 (D1) to (D2) or from FIG. 7 (D1) to (D3).
  • the optical coupling unit 11d can know that the irradiation target area requesting light has changed by some means (for example, a light request signal from the irradiation target area or an instruction signal from the operator). Specifically, the optical coupling unit 11d changes the position of the spot according to an instruction from the control unit 15 based on the sensor information output by the sensor unit 13. In addition, the optical coupling portion 11d may rotate the spot of the light L1 clockwise as shown in FIG. 7 from (D1) to (D2), (D2) to (D3), and (D3) to (D1). In addition, the optical coupling unit 11d can know the irradiation target area where the avoidance target H exists by a signal from the control unit 15.
  • the optical coupling unit 11d adjusts the positional relationship between the optical axis of the light L1 and the central axis of the bundle optical fiber 36 so that the single-core optical fiber 51a corresponding to the irradiation target area where the avoidance target H exists falls outside the size Lc of the spot shape. If the irradiation target area where the avoidance target H exists changes, the optical coupling unit 11d can change the positional relationship accordingly, such as from (D1) in FIG. 7 to (D2) or from (D1) in FIG. 7 to (D3).
  • the optical coupling section 11d having the above-mentioned function may be mechanically controlled or optically controlled.
  • the optical coupling unit 11d when adjusting the size Lc of the spot shape as shown in Figures 7(A) to 7(C), the optical coupling unit 11d adjusts the distance between the light source unit 11 and one end T1 of the bundle optical fiber 36.
  • the optical coupling unit 11d when adjusting the coupling position of the light as shown in Figures 7(D1) to 7(D3), the optical coupling unit 11d adjusts the positional relationship between the optical axis of the light L1 and the central axis of the bundle optical fiber 36.
  • the optical coupling unit 11d is an optical control unit
  • the optical coupling unit 11d adjusts the optical components provided (condenser lens, wide-angle lens, beam splitter, prism, mirror, etc.).
  • FIG. 8 shows a specific example of how "adjusting the state of light” is achieved by transmitting/blocking each light L1 propagating through each core of the bundle optical fiber 36 to the path 14 using a shutter.
  • the optical transmission system includes, as an alternative to the above-mentioned separation unit 12c, a separation unit 12d that separates the single-core optical fibers 51a bundled into the bundle optical fiber 36 at the other end T2 of the optical transmission path 26, and transmits or blocks the light from the optical transmission path 26 for each of the separated single-core optical fibers 51a.
  • the control unit 15 adjusts the state of the light to be transmitted to the irradiation unit 13 by instructing the separation unit 12d to transmit or block the light for each single-core optical fiber 51a.
  • the control unit 15 transmits a signal to the separation unit 12d to control ON/OFF of the light propagating through each single-core optical fiber 51a.
  • the separation unit 12d connects each single-core optical fiber 51a obtained by disassembling the bundle optical fiber 36 to the optical fiber 55 which is the path 14 via a shutter 141 (the shutter 141 will be described in FIG. 9).
  • the separation unit 12d closes the shutter 141 corresponding to the path 14 to the irradiation target area where light irradiation is not performed (for example, the irradiation target area where the avoidance target H exists), and blocks the light from the bundle optical fiber 36.
  • the optical transmission system of this configuration "adjusts the state of the light transmitted to the irradiation unit 13" by opening and closing the shutter 141 attached to each single-core optical fiber 51a.
  • FIG. 9 is a diagram illustrating the structure of the optical separation unit 12d.
  • the optical separation unit 12d includes a core separation adapter 121, a shutter 141, and an output port 132.
  • the shutter 141 transmits/blocks light according to instructions from the control unit 15.
  • a shutter 141 is placed on each of the single-core optical fibers 51a disassembled by the core separation adapter 121.
  • each single-core optical fiber 51a on which a shutter 141 is placed is connected to an output port 132.
  • a path 14 of a single optical fiber 55 is connected to each output port 132. Note that if the single-core optical fiber 51a is used as the path 14 as is, the output port 132 is not necessary, and the single-core optical fiber 51a is wired to each irradiation target area.
  • each single-core optical fiber 51a of the bundle optical fiber 36 Light from the light source unit 11 propagates through each single-core optical fiber 51a of the bundle optical fiber 36 as a unit.
  • the single-core optical fibers 51a are separated by the core separation adapter 121, and each light that has propagated through the single-core optical fiber 51a is input to the shutter 141.
  • the control unit 15 controls the transmission/blocking of each shutter 141, and the light input to a shutter 141 set to transmission is output to the output port 132 and output to the path 14. On the other hand, the light input to a shutter 141 set to blocking is terminated there.
  • FIG. 10 shows a specific example in which the "state of light is adjusted" by distributing the light L1 propagating through each core of the bundle optical fiber 36 to each path 14 at an arbitrary branching ratio.
  • the optical transmission system includes an optical branching unit 12b that branches the light propagated through the optical transmission path to a plurality of output ports 132 at an arbitrary branching ratio, as an alternative to the above-mentioned separation unit 12c.
  • the path 14 propagates the light from each output port 132 of the optical branching unit 12b to each irradiation unit 13.
  • the path 14 may be a single optical fiber 55 (FIG. 10A) or a bundle optical fiber 37 (FIG. 10B).
  • the control unit 15 adjusts the state of the light to be transmitted to the irradiation unit 13 by changing the branching ratio of the optical branching unit 12b.
  • the control unit 15 transmits a signal to the optical branching unit 12b to control the branching ratio based on the sensor information received from the sensor unit 31.
  • the optical branching unit 12b adjusts the branching ratio according to the control signal received from the control unit 15.
  • the branching ratio is, for example, a branching ratio that reduces or makes zero the optical power to the irradiation target areas where the avoidance target H exists, distributes the surplus optical power for those irradiation target areas to other irradiation target areas, or sets the optical power according to the requirements of each irradiation target area.
  • the optical branching unit 12b further includes a core separation adapter 121 , an optical fiber 123 , and an optical fiber 125 .
  • the core separation adapter 121 disassembles and separates the multiple (I) single-core optical fibers 51a bundled into the bundle optical fiber 36.
  • the optical switch 131 is a 1 ⁇ (N+1) optical switch with one input port and N+1 output ports. Each single-core optical fiber (51a-1 to 51a-I) disassembled by the core separation adapter 121 is connected to the input port of the optical switch 131. N of the output ports of each optical switch 131 are connected to the corresponding input port of the multiplexer 133 via the optical fiber 123.
  • a termination unit 135 is connected to one of the output ports of each optical switch 131 (the one not connected to the optical fiber 123).
  • the output port of each multiplexer 133 is connected to the output port 132 via the optical fiber 125.
  • a route 14 is connected to each output port 132.
  • each single-core optical fiber 51a of the bundle optical fiber 36 Light from the light source unit 11 propagates through each single-core optical fiber 51a of the bundle optical fiber 36 as a unit.
  • Each single-core optical fiber 51a is separated by the core separation adapter 121, and each light propagating through the single-core optical fiber 51a is input to the optical switch 131.
  • the control unit 15 controls the switching of each optical switch 131, and the light is output to one of the optical fibers 123 or to the terminal unit 135.
  • the light output to the terminal unit 135 is terminated there.
  • the light output to the optical fiber 123 is multiplexed with light from other optical switches 131 in the multiplexing unit 133.
  • the light multiplexed in each multiplexing unit 133 is output to the path 14 via the optical fiber 125.
  • the optical branching unit 12b is a diagram for explaining the structure of the optical branching unit 12b when the optical transmission system has the configuration as shown in FIG. 10B (when the path 14 is a bundle optical fiber 37 in which a plurality of optical fibers 55 are bundled).
  • the optical branching unit 12b of FIG. 12 does not include a multiplexer 133, and the optical fibers 55 bundled in the bundle optical fiber 37 are directly connected to an output port other than the terminal unit 135 of the optical switch 131.
  • the number of optical fibers 55 bundled in the bundle optical fiber 37 is J (J is a natural number of 2 or more), and they are disassembled by a core separation adapter 139.
  • J I
  • the core separation adapter 139 becomes the output port of the optical branching unit 12b.
  • the light output from the output port of the optical switch 131 to the optical fiber 55 propagates as a single beam through the bundle optical fiber 37 , which is the path 14 , to the irradiation unit 13 .
  • the optical branching unit 12b may also have a structure as shown in FIG. 13.
  • the optical branching unit 12b in FIG. 13 further includes an optical fiber 123, a multiplexer 133, an optical fiber 125, and a demultiplexer 134 in addition to the optical branching unit 12b in FIG. 12.
  • the optical fiber 123, the multiplexer 133, and the optical fiber 125 are the same as those described in FIG. 11.
  • the demultiplexer 134 is disposed between the multiplexer 133 and the output port (core separation adapter 139 in this configuration), and couples the light output by the multiplexer 133 to J single optical fibers (single-core optical fibers 55) bundled in the bundle optical fiber 37 of the path 14. In the case of the configuration in FIG. 13, J ⁇ I can be satisfied.
  • each optical fiber 125 The light propagating through each optical fiber 125 is split into J single-core optical fibers 55 by the splitter 134.
  • the J single-core optical fibers 55 are bundled by the core separation adapter 139 to become the bundle optical fiber 37.
  • the light propagating through each optical fiber 125 propagates as a single light through each single-core optical fiber 55 of the bundle optical fiber 37, which is the path 14, to the irradiation unit 13.
  • FIG. 14(A) is a diagram illustrating a cross section of a bundle optical fiber 37 in the case where the multiplexer 133 and the demultiplexer 134 are not provided and the optical fibers 123 corresponding to each path 14 are bundled as a single-core optical fiber 55.
  • FIG. 14(B) is a diagram illustrating a cross section of a bundle optical fiber 37 in the configuration of the optical branching unit 12b of FIG. 13.
  • the color of the core of the optical fiber through which light is propagating in Figure 14(A) is darker than the color of the core of the optical fiber through which light is propagating in Figure 14(B).
  • the color of the core represents the strength of the light power.
  • the light is biased and concentrated in a specific single-core optical fiber 55, so the power of the light propagating through that optical fiber is strong.
  • the light is evenly distributed and leveled out to all single-core optical fibers 55, so the power of the light propagating through the optical fiber is weaker than the optical power in Figure 14(A).
  • the branching ratio of the optical branching unit 12b is adjusted by the control unit 15 issuing a switching instruction to each optical switch 131 as to which output port the light from the single-core optical fiber 51a should be output to.
  • the control unit 15 outputs a switching instruction to the optical switch 131 so as to obtain a branching ratio that reduces or makes zero the optical power to the irradiation target area where the avoidance target H exists, distributes the surplus optical power for those irradiation target areas to other irradiation target areas, or provides optical power according to the requirements of each irradiation target area.
  • the power of light propagated to the path 14 is discrete.
  • the discrete number is the number (J+1) of optical fibers 55 bundled in the bundle optical fiber 37.
  • the optical branching unit 12b can output/stop light to each optical fiber 55 bundled in the bundle optical fiber 37 by switching the optical switch 131.
  • the optical branching unit 12b can switch the optical switch 131 so as to output light to only three optical fibers 55 for any bundle optical fiber 37. If an avoidance target H exists in the irradiation target area, the optical branching unit 12b outputs light to only one optical fiber 55 for the bundle optical fiber 37 to the irradiation target area, thereby reducing the power of light irradiated to the irradiation target area.
  • the output of light to all optical fibers 55 may be stopped.
  • the optical branching unit 12b outputs light to all optical fibers 55, maximizing the power of light irradiated to the irradiation target area.
  • the optical branching unit 12b can adjust the intensity of the light L2 irradiated onto the irradiation target area corresponding to each path 14 in J+1 steps.
  • control unit 15 can perform control as shown in FIG. 15 for the optical branching unit 12b in FIG. 12 and FIG. 13.
  • FIG. 15 is a diagram showing a schematic diagram of the power of light propagating to the path 14. The horizontal axis shows time, and the vertical axis shows the power of light for each path 14.
  • FIG. 15A shows basic control.
  • the optical branching unit 12b outputs light with a power level of level 2 to the paths 14-1 and 14-2, . . . , and with a power level of level 3 to the path 14-N.
  • the sensor unit 31 detects an avoidance target H in the irradiation target area AR1 at time t1, and that the avoidance target H leaves the irradiation target area AR1 at time t2.
  • the control unit 15 controls the optical branching unit 12b to stop optical output to the path 14-1 leading to the irradiation target area AR1 (set to level 0) from time t1 to time t2.
  • the optical output to the other irradiation target areas is maintained at the power before time t1.
  • FIG. 15B shows control for performing scheduling. 15A to each path 14. Then, assume that the sensor unit 31 detects an avoidance object H in the irradiation target area AR1 at time t1, and that the avoidance object H leaves the irradiation target area AR1 at time t2. Based on the sensor information from the sensor unit 31, the control unit 15 controls the optical branching unit 12b to stop outputting light to the path 14-1 leading to the irradiation target area AR1 from time t1 to time t2 (set to level 0).
  • the control unit 15 instructs the optical branching unit 12b to redirect the two levels of excess power light that was stopped in path 14-1 from time t1 to time t2 to paths 14-2 and 14-N, one level at a time. In other words, from time t1 to time t2, light with level 3 power is output to path 14-2, and light with level 4 power is output to path 14-N.
  • the path 14 to which the surplus power light is to be output from time t1 to time t2 is determined by the following algorithm.
  • [Reassignment algorithm] Set the parameters as follows: I: number of cores (single-core optical fibers 51a) of the bundle optical fiber 36 N: number of irradiation target areas AR n: identifier of irradiation target area AR (integer from 1 to N) P in : Power of light propagating through the bundle optical fiber 36 as a whole and input to the optical branching unit 12b
  • E n Integrated power required by the irradiation target area ARn
  • P max,n Upper limit value of the irradiation light power of the irradiation target area ARn
  • E′ n (t) Integrated power of the irradiation target area ARn at time t expressed by equation (1)
  • G a set of irradiation target areas AR
  • G active (t) A set of irradiation target areas AR that are irradiated with light at time t (G active (t) ⁇ G) n t : Identifier of the irradiation target area AR irradiated with light at time t (n t ⁇ G active (t))
  • E n , P max,n , P n (t) and E′ n (t) are values of the output port of the optical branching unit 12 b.
  • the “output port of the optical branching unit 12 b” is the output port 132 in the configuration of Fig. 11 and the core separation adapter 139 in the configurations of Figs. 12 and 13 (the same applies in the following explanations).
  • the loss of the optical branching section 12b is set to 0 dB.
  • the control formula for allocating optical output to each output port of the optical branching unit 12b so as to fairly satisfy the optical power required by each irradiation target area ARnt is as follows:
  • the time t-1 is the time t1 relative to the above-mentioned time t2, and refers to the time when the optical power was measured last time.
  • the above control equation may be calculated mathematically using mathematical programming or the like, or may be calculated procedurally using a computer program or the like.
  • Fig. 16 is a flowchart for explaining the operation of the control unit 15 of the optical transmission system described in the embodiment 1. It is assumed that the ultraviolet light has already been irradiated onto each irradiation target area at the start of Fig. 16.
  • the control unit 15 Detecting whether or not there is an avoidance target H that should be avoided from exposure to the ultraviolet light in an area including the irradiation target area AR (step S02), and if there is an avoidance target H in the irradiation target area AR, performing appropriate irradiation control on the irradiation of the ultraviolet light from the irradiation unit 13 to the irradiation target area AR (steps S03 and subsequent steps). It is characterized by:
  • the optical transmission system works in conjunction with the sensor unit 31 as shown in the flowchart of FIG. 16, and based on the detection information of the avoidance target H, the control unit 15 performs feedback control of the branching ratio of the optical branching unit 12 based on the control algorithm described above.
  • Step S01 Sensor information on the presence and movement of an object to be avoided H in the irradiation target area AR and its surroundings is obtained.
  • Step S02 If there is no sensor information, step S01 is repeated until sensor information is obtained. If sensor information is obtained, it is determined which control algorithm to use for control as follows.
  • Step S03 Based on the sensor information, it is determined whether or not to perform the basic control described above. The criteria for this determination are, for example, the number of avoidance targets H (if the number is less than a threshold, the basic control is performed), the type of avoidance target H (if no specific avoidance target is detected, the basic control is performed), the time period (if the basic control is performed outside the set time period), etc., and are set in advance.
  • Step S03a Light is delivered under basic control.
  • Step S04 Based on the sensor information, it is determined whether or not to perform the above-mentioned fairness control. Criteria for determining in what cases the fairness control should be performed are set in advance. The criteria are, for example, the bias in the number and types of avoidance targets H in the irradiation target area.
  • Step S04a Light is delivered under fairness control. In this step, for example, when the power of ultraviolet light to the irradiation target area where the avoidance target H exists is reduced, the surplus power is transferred to other irradiation target areas as described in Fig. 15.
  • Step S05 Based on the sensor information, it is determined whether or not to perform the above-mentioned shortening control. Criteria for determining when to perform the shortening control are set in advance. The criteria are, for example, fluctuations (time transitions) in the number and type of avoidance targets H in the irradiation target area.
  • Step S05a Light is delivered under short-time control.
  • Step S05b If none of the above controls are performed, light is delivered using the efficiency control described above. Step S06: These steps are repeated.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本発明は、照射対象域数の増加や低消費電力化が可能であり、且つ回避対象の存否結果に応じて各照射対象域への光照射を制御できるP-MP構成の光伝送システム及び光伝送方法を提供することを目的とする。 本発明に係る光伝送システムは、光伝送システムは、光L1を出力する光源部11と、複数の単一コア光ファイバ51aを束ねたバンドル光ファイバ36の複数のコアで光L1を一端から他端へ伝搬する光伝送路26と、光伝送路26が伝搬した光L2をN個(Nは2以上の自然数)の照射対象域ARに照射するN個の照射部13と、照射対象域ARを含む領域に光L2の被ばくを回避すべき回避対象Hが存在するか否かを検知したセンサ情報を出力するセンサ部13と、センサ部13からの前記センサ情報に基づいて、照射部13へ伝送する光L2の状態を調整する制御部15と、を備える。

Description

光伝送システム及び光伝送方法
 本開示は、複数の光ファイバを束ねたバンドル光ファイバを光伝送路とした光伝送システム、及びその方法に関する。
 感染症予防などの目的から、紫外光を用いた殺菌やウィルスの不活化を行うシステムの需要が高まっている。当該システムには、大きく3つのカテゴリの製品がある。なお、本明細書では、「殺菌等」と記載する場合、殺菌とウィルスの不活化を意味するものとする。
(I)移動型殺菌ロボット
 非特許文献1の製品は、紫外光を照射する自律移動型のロボットである。当該ロボットは、病室などの建物内の部屋の中を移動しながら紫外光を照射することで、人手を介さず、自動で広い範囲の殺菌等を実現できる。
(II)据え置き型空気清浄機
 非特許文献2の製品は、天井や室内の所定の場所に設置され、室内の空気を循環しながら殺菌等する装置である。当該装置は、直接紫外光を照射せず、人体への影響がないため、安全性の高い殺菌等が可能である。
(III)ポータブル型殺菌装置
 非特許文献3の製品は、紫外光源を搭載したポータブル型の装置である。ユーザが当該装置を所望のエリアに持って行って紫外光を照射できる。このため、当該装置は様々な場所で使用可能である。
カンタム・ウシカタ株式会社ウェブサイト(https://www.kantum.co.jp/product/sakkin_robot/sakkinn_robot/UVD_robot)、2020年6月22日検索 岩崎電気株式会社ウェブサイト(https://www.iwasaki.co.jp/optics/ARrilization/air/air03.html)、2020年6月22日検索 フナコシ株式会社ウエブサイト(https://www.funakoshi.co.jp/contents/68182)、2020年6月22日検索
 しかし、非特許文献に記載される装置には次のような課題がある。
(1)経済性
 非特許文献1の製品は、高出力の紫外光を照射するため、装置が大掛かりとなり高価となる。このため、非特許文献1の製品には経済的なシステムの実現が困難という課題がある。
(2)汎用性
 非特許文献1の製品は、紫外光照射箇所にロボットが移動/進入できる場所に限定されるため、細かい場所や奥まった場所などへの紫外光の照射が困難である。
 非特許文献2の製品は、循環させた室内の空気を殺菌等するため、殺菌等をしたい場所に直接紫外光を照射することができない。
 非特許文献3の製品は、例えば、細い管路や人が入られないエリアについては紫外光を照射することができない。
 このように、非特許文献の製品には、任意の場所に紫外光を照射できるという汎用性に課題がある。
(3)操作性
 非特許文献3の製品は、可搬性であり様々な場所で紫外光の照射が可能である。しかし、対象箇所で十分な殺菌等の効果が得られるためには、ユーザにスキルや知識を要求しており、操作性に課題がある。
 これらの課題に対して、図1のような光ファイバを用いた紫外光照射システム300が考えられる。この紫外光照射システムは、細くて曲げやすい光ファイバを用いて紫外光源部11aから紫外光を伝送し、光ファイバ14の先端から出力される紫外光をピンポイントで殺菌等したい照射対象域ARへ照射する。光ファイバ14の先端の照射部13を移動させるだけで任意の場所に紫外光を照射できるため上記課題(2)の汎用性を解消できる。また、紫外光光源の移動や設定が不要でユーザにスキルや知識を求めないため、上記課題(3)の操作性も解消できる。さらに、光スプリッタのような光分配部12を光伝送路16に設け、FTTH(Fiber To The Home)のようなP-MP(Point to MultiPoint)のシステム構成とすることで、単一の光源をシェアすることができ複数の箇所を殺菌等できる。このため、上記課題(1)の経済性も解消できる。
 一方、紫外光照射システムとしてのP-MP構成の実現には次のような課題がある。
 紫外光を用いた殺菌等のシステムに使用される深紫外の光に関しては、人をはじめとする動物の目や皮膚に照射した場合、白内障や皮膚がんの原因となる。このため、居住空間等、常時人や動物などが滞在する空間においては、人や動物などの回避対象に対して紫外光を照射しない、あるいは回避対象に対して害のない程度の弱い照度の紫外光としておく、などの対策が求められる。
 ここで、回避対象への紫外光の被ばくを回避するために、非常に小さなパワーで照射した場合、不活化の完了までに長時間を要することになり、短時間での不活化が求められるような箇所への適用が困難となる。
 さらに、P-MP構成の場合、各照射対象域の不活化の必要性が異なっていたとしても、全ての照射対象域へ一意に紫外光をデリバリする。つまり、不活化の必要性が低い、あるいは回避対象が存在する照射対象域へも、不活化を要求している照射対象域と同じパワーの紫外光がデリバリされることになる。このようにP-MPシステムで全ての照射対象域へ一意に紫外光をデリバリすると、
(a)光源部から出力できるパワーには上限があるので、紫外光をデリバリできる照射対象域の数が制限される、
(b)不活化の必要性が低い(不要な)照射対象域へも紫外光がデリバリされてしまい、光源部の消費電力がその分増大する、
ことになる。
 しかし、P-MP構成の紫外光照射システムにおいて、回避対象を検知する仕組みや、検知結果に応じて各照射対象域への紫外光照射を制御する仕組みが具体的にされていないという課題がある。また、照射対象域数の増加や低消費電力化が困難という課題もある。
 そこで、本発明は、上記課題を解決するために、照射対象域数の増加や低消費電力化が可能であり、且つ回避対象の存否結果に応じて各照射対象域への光照射を制御できるP-MP構成の光伝送システム及び光伝送方法を提供することを目的とする。
 なお、本明細書では、各方路へ供給する時間を考慮した紫外光のエネルギー及び照射対象域ARに照射する時間を考慮した紫外光のエネルギーを積算光量(単位J)とし、それら紫外光の単位時間あたりのエネルギーをパワー(単位W)とし、照射対象域ARに照射する紫外光の単位面積当たりのパワーを照度(W/m)として説明する。また、照射対象域ARにおける単位面積当たりのエネルギーを紫外光量(単位J/m又はW・s/m)として説明する。
 上記目的を達成するために、本発明に係る光伝送システムは、照射対象域毎に回避対象を検出するセンサ部を備え、その検出結果に基づいて、各照射対象域へ照射する光の状態を調整することとした。これにより、紫外光被ばくの危険性がある、または不活化の必要性の低い照射対象域への光照射を抑制でき、抑制できた光パワー分だけ照射対象域の増加や低消費電力化を可能とできる。
 具体的には、本発明に係る光伝送システムは、
 光を出力する光源部と、
 複数の単一コア光ファイバを束ねたバンドル光ファイバの複数のコアで前記光を一端から他端へ伝搬する光伝送路と、
 前記光伝送路が伝搬した前記光をN個(Nは2以上の自然数)の照射対象域に照射するN個の照射部と、
 前記照射対象域を含む領域に前記光の被ばくを回避すべき回避対象が存在するか否かを検知したセンサ情報を出力するセンサ部と、
 前記センサ部からの前記センサ情報に基づいて、前記照射部へ伝送する前記光の状態を調整する制御部と、
を備える。
 具体的には、本発明に係る光伝送方法、
 光源部が出力した光を、光伝送路である複数の単一コア光ファイバを束ねたバンドル光ファイバの複数のコアで一端から他端へ伝搬すること、
 前記光伝送路が伝搬した前記光をN個(Nは2以上の自然数)の照射対象域にN個の照射部で照射すること、
 前記照射対象域を含む領域に前記光の被ばくを回避すべき回避対象が存在するか否かを検知したセンサ情報を発生すること、
 前記センサ情報に基づいて、前記照射部へ伝送する前記光の状態を調整すること、
を行う。
 本光伝送システムは、照射対象域付近に設置したセンサ部で回避対象の存否を検知し、その結果をもって各照射対象域へ照射する光の状態を調整する。ここで、各照射対象域へ照射する光の状態の調整とは、回避対象が不在の照射対象域へは所望のパワーの光を照射し、回避対象が存在する、あるいは回避対象が進入しようとしている照射対象域へは光の照射を停止又は低減することである。各照射対象域へ照射する光の状態の調整が可能なことで、回避対象への光照射を回避でき、且つ光照射を抑制できた光パワー分だけ照射対象域の増加や低消費電力化を可能とできる。
 なお、「バンドル光ファイバの複数のコア」とは、バンドル光ファイバに束ねられている単一コア光ファイバのコアを意味する。
 従って、本発明は、照射対象域数の増加や低消費電力化が可能であり、且つ回避対象の存否結果に応じて各照射対象域への光照射を制御できるP-MP構成の光伝送システム及び光伝送方法を提供することができる。
 各照射対象域へ照射する光の状態を調整する手法は次のようなものがある。
(手法1)
 前記制御部は、前記光源部と前記バンドル光ファイバの一端との相対位置を調整することで、前記光源部が出力した前記光が前記バンドル光ファイバのコアに入射する結合状態を変化させ、前記照射部へ伝送する前記光の状態を調整する。
(手法2)
 本光伝送システムは、前記光源部が出力した前記光を前記バンドル光ファイバの一端に照射する光結合部をさらに備えており、
 前記制御部は、前記光結合部に対して前記バンドル光ファイバの一端におけるスポット形状を変化させることで、前記光源部が出力した前記光が前記コアに入射する結合状態を変化させ、前記照射部へ伝送する前記光の状態を調整する。
(手法3)
 本光伝送システムは、前記光伝送路の他端において前記バンドル光ファイバに束ねられていた前記単一コア光ファイバを解体すること、及び解体された前記単一コア光ファイバ毎に前記光伝送路からの前記光を透過又は遮断することを行う分離部をさらに備えており、
 前記制御部は、前記分離部に対して前記単一コア光ファイバ毎に前記光の透過又は遮断を指示することで、前記照射部へ伝送する前記光の状態を調整する。
(手法4)
 本光伝送システムは、前記光伝送路が伝搬した前記光を任意の分岐比で複数の出力ポートに分岐する光分岐部と、前記光分岐部のそれぞれの前記出力ポートからそれぞれの前記照射部へ前記光を伝搬する方路と、をさらに備えており、
 前記制御部は、前記光分岐部に対して前記分岐比を変化させることで、前記照射部へ伝送する前記光の状態を調整する。
 なお、手法4において、前記方路が複数の光ファイバを束ねたバンドル光ファイバである場合、前記方路に伝搬させる光のパワーは離散的であり、離散数は前記方路のバンドル光ファイバに束ねられている前記光ファイバの数である。
 なお、上記各発明は、可能な限り組み合わせることができる。
 本発明は、照射対象域数の増加や低消費電力化が可能であり、且つ回避対象の存否結果に応じて各照射対象域への光照射を制御できるP-MP構成の光伝送システム及び光伝送方法を提供することができる。
本発明の課題を説明する図である。 本発明に係る光伝送システムを説明する図である。 本発明に係る光伝送システムを説明する図である。 本発明に係る光伝送システムを説明する図である。 本発明に係る光伝送システムを説明する図である。 本発明に係る光伝送システムを説明する図である。 本発明に係る光伝送システムの光結合部が行う結合状態の調整を説明する図である。 本発明に係る光伝送システムを説明する図である。 本発明に係る光伝送システムの分離部に対する制御を説明する図である。 本発明に係る光伝送システムを説明する図である。 本発明に係る光伝送システムの光分岐部を説明する図である。 本発明に係る光伝送システムの光分岐部を説明する図である。 本発明に係る光伝送システムの光分岐部を説明する図である。 本発明に係る光伝送システムの光分岐部の効果を説明する図である。 本発明に係る光伝送システムの制御部の効果を説明する図である。 本発明に係る光伝送システムの制御部の動作を説明する図である。 本発明に係る光伝送方法を説明するフローチャートである。
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(実施形態1)
 図2は、本実施形態の光伝送システムを説明する図である。本光伝送システムは、
 光L1を出力する光源部11と、
 複数の単一コア光ファイバ51aを束ねたバンドル光ファイバ36の複数のコアで光L1を一端から他端へ伝搬する光伝送路26と、
 光伝送路26が伝搬した光L2をN個(Nは2以上の自然数)の照射対象域ARに照射するN個の照射部13と、
 照射対象域ARを含む領域に光L2の被ばくを回避すべき回避対象Hが存在するか否かを検知したセンサ情報を出力するセンサ部13と、
 センサ部13からの前記センサ情報に基づいて、照射部13へ伝送する光L2の状態を調整する制御部15と、
を備える。
 また、図17は、本光伝送システムが行う光伝送方法を説明するフローチャートである。本光伝送方法は、
 光源部11が出力した光を、光伝送路26である複数の単一コア光ファイバ55を束ねたバンドル光ファイバ36の複数のコアで一端T1から他端T2へ伝搬すること(ステップS01)、
 光伝送路26が伝搬した前記光をN個の照射対象域ARにN個の照射部13で照射すること(ステップS02)、
 照射対象域ARを含む領域に前記光の被ばくを回避すべき回避対象Hが存在するか否かを検知したセンサ情報を発生すること(ステップS03)、
 前記センサ情報に基づいて、照射部13へ伝送する前記光の状態を調整すること(ステップS04)、
を行う。
 光源部11は、紫外光、可視光、又は赤外光の光L1を出力するLED(Light Emitting Diode)である。なお、光源部11がLEDに限らず次のような光学特性を持つ光源(例えば、白熱ランプ、または放電ランプ)であってもよい。
・波長、振幅、又は位相にばらつきがある。
・光が散乱する。
・自然放出である。
 なお、本実施形態では、光源部11からの光L1をバンドル光ファイバ36の一端T1に結合する光学系11cが存在するが、光源部11が出力する光L1のビーム径やバンドル光ファイバ36の一端T1の直径によっては光学系11cを不要とすることもできる。
 バンドル光ファイバ36は、図3での説明のように、複数の単一コア光ファイバ51aを束ねたものである。一端T1に光源部11からの光L1が照射される。一方、他端T2で、後述する分離部12cで解体され、ばらばらになった単一コア光ファイバ51aがそれぞれの照射対象域ARまで方路14として配線される。あるいは、他端T2で後述する光分岐部12bを介して光ファイバ55である方路14が接続される。
 照射部13は、方路14を伝搬してきた光を各照射対象域ARに光L2として照射する。
 センサ部31は、それぞれの照射対象域ARとその周辺にある回避対象(人や動物など)Hの存否や動きを検知する。例えば、センサ部31は、温度計による温度取得、赤外線センサによる赤外線取得、カメラによる画像取得、LiDAR(Light Detection and Ranging)による光取得等を行い、情報処理(形、顔、指紋、静脈、虹彩など)を施し、回避対象の存否や動きを検知する。
 そして、センサ部31は、その検知結果をセンサ情報として制御部15へ通知する。制御部15への通知は有線でも無線でもよい。
 制御部15は、センサ部13からの前記センサ情報に基づいて、照射部13へ伝送する光の状態を調整する。「光の状態を調整する」とは、例えば、回避対象Hが存在する照射対象域ARへの光のデリバリを遮断、あるいは光のパワーを低減することを意味する。光の遮断あるいは光パワーの低減により発生した余剰パワーの光を他の照射対象域ARへ振り分けてもよい。
 本光伝送システムは、次のような効果がある。
(1)伝搬する光が紫外光であれば、回避対象Hに対する紫外光の照射を回避することができる。
(2)安全のため回避対象Hへの被ばくを無視できるほどの低パワーで常に動作させる必要がなく、各照射対象域が要求するパワーの光を供給でき、光による処理(例えば不活化)を短時間で完了させることができる。
(3)各照射対象域が要求するパワーの光を供給できるので、
 (a)光源部から出力できるパワーに上限があっても、光をデリバリできる照射対象域の数を増やすことができる、
 (b)光の要求が少ないあるいは不要な照射対象域への光のデリバリを低減あるいは停止でき、光源部の消費電力を削減できる。
(具体的な制御例1)
 図4は、バンドル光ファイバ36の各コアへの光L1の結合状態を調整することで「光の状態を調整する」を実現する具体例である。
 制御部15は、光源部11とバンドル光ファイバ36の一端T1との相対位置を調整することで、光源部11が出力した光L1が前記コアに入射する結合状態を変化させ、照射部13へ伝送する前記光の状態を調整する。
 本例は、光源部11の位置を調整することで光L1を特定のコア(単一コア光ファイバ51a)もしくはそのコア群に結合する例である。また、本例は、バンドル光ファイバ36の他端T2には分離部12cが配置され、束ねられている単一コア光ファイバ51aが解体される。
 制御部15は、センサ部31から受け取ったセンサ情報に基づいて、光源部11へ光L1のスポットを制御する信号を送信する。光源部11は、制御部15から受け取った制御信号に応じて、LED等の光源保持治具のxyz方向を調整する。ここで、z方向は光L1の光軸方向、x方向及びy方向は互いに直交し、光L1の光軸に垂直な方向である。例えば、光源保持治具が光源をz方向に移動させるとバンドル光ファイバ36の一端T1における光L1のスポットの大きさを変化させることができる。また、光源保持治具が光源をxy方向に移動させるとバンドル光ファイバ36の一端T1における光L1のスポットの中心位置をずらすことができる。つまり、制御部15は、光源部11に対し、光L1のスポットの大きさ及び中心位置を変化させることで、所望のコア(単一コア光ファイバ51a)もしくはそのコア群に光L1を結合させる。換言すれば、制御部15は、光源部11に対し、回避対象Hが存在する照射対象域ARへのコア(単一コア光ファイバ51a)に光L1が結合しないように、光L1のスポットの大きさ及び中心位置を変化させることができる。
(具体的な制御例2)
 図5は、バンドル光ファイバ36の各コアへの光L1の結合状態を調整することで「光の状態を調整する」を実現する他の具体例である。
 本例は、光源部11とバンドル光ファイバ36との間における光L1の結合状態を調整することで光L1を特定のコア(単一コア光ファイバ51a)もしくはそのコア群に結合する例である。また、本例も、バンドル光ファイバ36の他端T2には分離部12cが配置され、束ねられている単一コア光ファイバ51aが解体される。
 制御部15は、センサ部31から受け取ったセンサ情報に基づいて、ファイバ結合軸調整部11fへ、バンドル光ファイバ36に束ねられたそれぞれの単一コア光ファイバ51aへの結合量を制御する信号を送信する。ファイバ結合軸調整部11fは、制御部15から受け取った制御信号に応じて、結合軸位置のxyz方向を調整する。ここで、z方向は光L1の光軸方向、x方向及びy方向は互いに直交し、光L1の光軸に垂直な方向である。例えば、ファイバ結合軸調整部11fが光源部11又はバンドル光ファイバ36の一端T1をz方向に移動させるとバンドル光ファイバ36の一端T1における光L1のスポットの大きさを変化させることができる。また、ファイバ結合軸調整部11fが光源部11又はバンドル光ファイバ36の一端T1をxy方向に移動させるとバンドル光ファイバ36の一端T1における光L1のスポットの中心位置をずらすことができる。つまり、制御部15は、ファイバ結合軸調整部11fに対し、結合軸位置を調整させ、光L1のスポットの大きさ及び中心位置を変化させることで、所望のコア(単一コア光ファイバ51a)もしくはそのコア群に光L1を結合させる。換言すれば、制御部15は、光源部11に対し、回避対象Hが存在する照射対象域ARへのコア(単一コア光ファイバ51a)に光L1が結合しないように、光L1のスポットの大きさ及び中心位置を変化させることができる。
(具体的な制御例3)
 図6は、バンドル光ファイバ36の各コアへの光L1の結合状態を調整することで「光の状態を調整する」を実現する具体例である。
 本光伝送システムは、前述した光学系11cの代替として、光源部11が出力した光L1をバンドル光ファイバ36の一端T1に照射する光結合部11dをさらに備え、
 制御部15は、光結合部11dに対してバンドル光ファイバ36の一端T1におけるスポット形状を変化させることで、光源部11が出力した光L1が前記コアに入射する結合状態を変化させ、照射部13へ伝送する前記光の状態を調整する。
 制御部15は、センサ部31から受け取ったセンサ情報に基づいて、光結合部11dへ光L1のスポットを制御する信号を送信する。光結合部11dは、制御部15から受け取った制御信号に応じて、光学系の焦点距離やスポット形状等を調整する。
 光結合部11dは、光源部11からの光L1のスポット形状の大きさを調整してバンドル光ファイバ36の一端T1に照射する。バンドル光ファイバ36の一端T1における光L1のスポット形状の大きさを“Lc”で示している。光結合部11dは、スポット形状の大きさLcを調整することで、それぞれの単一コア光ファイバ51aのコアへ結合する光L1の結合状態を調整する。
 一般的には、光結合部11dは、一端T1における光L1のパワー偏差を解消して光L1を各単一コア光ファイバ51aのコアへ公平に結合する(パワーの公平を実現)という効果を得るために配置される。
 しかし、本発明では、光結合部11dは、結合状態の調整のため、あえて一端T1における光L1のパワー偏差を作り出す。光結合部11dは、結合状態を調整することで、次のような効果を得ることができる。
(1)一端T1における光L1のパワー偏差を利用して照射対象域が要求するパワーを満たすように光L1を各単一コア光ファイバ51aのコアへ結合する(要求の公平を実現)、
(2)単一コア光ファイバ51aのコアへ結合されない光L1を低減する(無駄を低減して省電力化)、
(3)回避対象Hが存在する照射対象域への単一コア光ファイバ51aに光L1が結合しないようにする(安全性確保)。
 図7は、光結合部11dが行う結合状態の調整を説明する図である。図7は、いずれもバンドル光ファイバ36の一端T1における光L1のスポット形状の大きさLcの状態を示している。
 図7(A)から図7(C)は、光結合部11dが、光L1の光軸とバンドル光ファイバ36の中心軸とを合わせた状態で前記結合状態の調整(スポット形状の大きさLcの調整)を行うことを説明する図である。
 例えば、前述した一般的な効果を得るために、光結合部11dが、図7(A)のようにスポット形状の大きさLcを広げれば、バンドル光ファイバ36の外周部の単一コア光ファイバ51aを除けば、均一なパワーを各単一コア光ファイバ51aに結合することができる。つまり、光結合部11dが図7(A)のようにスポット形状の大きさLcを調整すれば、照射対象域へ照射する光のパワーの均一性や公平性を高めることができる。また、光源部11が出力する光L1のパワーに無駄が発生するが、スポット形状の大きさLcをバンドル光ファイバ36の直径より広げることで外周部の単一コア光ファイバ51aまでも均一なパワーを結合することができる。
 一方、本発明の効果を得るためには、例えば、光結合部11dが、図7(B)のようにスポット形状の大きさLcを1つの単一コア光ファイバ51aのみが含まれる程度に絞れば、光源部11が出力した光L1を当該単一コア光ファイバ51aのコアに集中させることができ、当該単一コア光ファイバ51aに対応する照射対象域に強いパワーの光を供給することができる。例えば、光L1が紫外光ならば、当該照射対象域の不活化を短時間で終了させることができる。
 また、回避対象Hが存在する照射対象域に対応する単一コア光ファイバ51aに光L1のスポットが照射しないようにすることもできる。
 また、図7(A)と(B)で説明した効果を折衷した効果を得るように、光結合部11dが、図7(C)のようにスポット形状の大きさLcをバンドル光ファイバ36の中心付近にある複数の単一コア光ファイバ51aが含まれる程度に絞ることもできる。
 光結合部11dは、照射対象域の要求に応じてスポット形状の大きさLcを変化させることができる。光結合部11dは、照射対象域の要求を、何らかの手段(例えば、照射対象域からの光の要求信号や、作業者の指示信号など)で知ることができる。具体的には、光結合部11dは、センサ部13が出力したセンサ情報を基にした制御部15からの指示でスポット形状の大きさLcを変化させる。
 また、光結合部11dは、図7(A)から(B)、(B)から(C)、(C)から(A)のように、定期的に当該位置関係を変化させていってもよい。
 図7(D1)から図7(D3)は、光結合部11dが、光L1の光軸をバンドル光ファイバ36の中心軸からずらせた状態で前記結合状態の調整(位置関係の調整)を行うことを説明する図である。
 光結合部11dは、光L1のスポット形状の大きさLcを1つの単一コア光ファイバ51aのみ、あるいは複数の単一コア光ファイバ51aが含まれる程度に絞る。そして、光結合部11dは、光を要求している照射対象域に対応する単一コア光ファイバ51aがスポット形状の大きさLcの中に入るように光L1の光軸とバンドル光ファイバ36の中心軸との位置関係を調整する。光を要求している照射対象域が変われば、光結合部11dはそれに応じて当該位置関係を図7(D1)から(D2)へ、あるいは図7(D1)から(D3)へ、のように変化させる。光結合部11dは、光を要求している照射対象域が変わったことを、何らかの手段(例えば、照射対象域からの光の要求信号や、作業者の指示信号など)で知ることができる。具体的には、光結合部11dは、センサ部13が出力したセンサ情報を基にした制御部15からの指示でスポットの位置を変化させる。
 また、光結合部11dは、図7(D1)から(D2)、(D2)から(D3)、(D3)から(D1)のように時計回りで光L1のスポットを回転させていってもよい。
 また、光結合部11dは、回避対象Hが存在する照射対象域を制御部15からの信号で知ることができる。このため、光結合部11dは、回避対象Hが存在している照射対象域に対応する単一コア光ファイバ51aがスポット形状の大きさLcから外れるように光L1の光軸とバンドル光ファイバ36の中心軸との位置関係を調整する。回避対象Hが存在する照射対象域が変われば、光結合部11dはそれに応じて当該位置関係を図7(D1)から(D2)へ、あるいは図7(D1)から(D3)へ、のように変化させればよい。
 上述したような機能を有する光結合部11dは、機械的な制御であっても、光学的な制御であってもよい。
 例えば、光結合部11dが機械的な制御である場合、図7(A)から(C)のようにスポット形状の大きさLcを調整するとき、光結合部11dは光源部11とバンドル光ファイバ36の一端T1との距離を調整する。また、図7(D1)から(D3)のように光の結合位置を調整するとき、光結合部11dは光L1の光軸とバンドル光ファイバ36の中心軸との位置関係を調整する。
 一方、光結合部11dが光学的な制御である場合、図7(A)から(C)のようにスポット形状の大きさLcを調整するとき、備えられているレンズの焦点位置を調整する。また、図7(D1)から(D3)のように光の結合位置を調整するとき、光結合部11dは備えられている光学部材(集光レンズ、広角レンズ、ビームスプリッタ、プリズム、ミラー等)を調整する。
(具体的な制御例4)
 図8は、バンドル光ファイバ36の各コアを伝搬するそれぞれの光L1をシャッタで方路14へ透過する/遮断することで「光の状態を調整する」を実現する具体例である。
 本光伝送システムは、前述した分離部12cの代替として、光伝送路26の他端T2においてバンドル光ファイバ36に束ねられていた単一コア光ファイバ51aを解体すること、及び解体された単一コア光ファイバ51a毎に光伝送路26からの前記光を透過又は遮断することを行う分離部12dを備え、
 制御部15は、分離部12dに対して単一コア光ファイバ51a毎に前記光の透過又は遮断を指示することで、照射部13へ伝送する前記光の状態を調整する。
 制御部15は、センサ部31から受け取ったセンサ情報に基づいて、分離部12dへ各単一コア光ファイバ51aを伝搬する光のON/OFFを制御する信号を送信する。分離部12dは、バンドル光ファイバ36を解体した各単一コア光ファイバ51aと方路14である光ファイバ55とをシャッタ141を介して接続する(シャッタ141については図9にて説明する。)。分離部12dは、制御部15から受け取った制御信号に応じて、光照射を行わない照射対象域(例えば、回避対象Hが存在する照射対象域)への方路14に対応するシャッタ141を閉じ、バンドル光ファイバ36からの光を遮断する。つまり、本構成の光伝送システムは、単一コア光ファイバ51a毎に付されたシャッタ141をそれぞれ開閉することで「照射部13へ伝送する前記光の状態を調整する」ことを行う。
 図9は、光分離部12dの構造を説明する図である。光分離部12dは、コア分離アダプタ121、シャッタ141、及び出力ポート132を備える。
 シャッタ141は、制御部15の指示により光の透過/遮断を行う。コア分離アダプタ121で解体されたそれぞれの単一コア光ファイバ51aのそれぞれにシャッタ141が配置される。つまり、シャッタ141はバンドル光ファイバ36に束ねられた単一コア光ファイバ51aの数(I個)存在する。また、シャッタ141が配置された各単一コア光ファイバ51aは出力ポート132と接続される。各出力ポート132には単一の光ファイバ55の方路14が接続される。なお、単一コア光ファイバ51aをそのまま方路14として利用する場合は、出力ポート132は不要であり、単一コア光ファイバ51aが各照射対象域へ配線される。
 光源部11からの光は、バンドル光ファイバ36の各単一コア光ファイバ51aを一体となって伝搬する。コア分離アダプタ121で各単一コア光ファイバ51aはバラバラになり、単一コア光ファイバ51aを伝搬したそれぞれの光はシャッタ141に入力する。制御部15は各シャッタ141の透過/遮断を制御しており、透過設定のシャッタ141に入力された当該光は出力ポート132へ出力され、方路14へ出力される。一方、遮断設定のシャッタ141に入力された当該光はそこで終端される。
(具体的な制御例5)
 図10は、バンドル光ファイバ36の各コアを伝搬するそれぞれの光L1を任意の分岐比で各方路14へ振り分けることで「光の状態を調整する」を実現する具体例である。
 本光伝送システムは、前述した分離部12cの代替として、前記光伝送路が伝搬した前記光を任意の分岐比で複数の出力ポート132に分岐する光分岐部12bを備える。方路14は、光分岐部12bのそれぞれの出力ポート132からそれぞれの照射部13へ前記光を伝搬する。なお、方路14は単一の光ファイバ55(図10(A))でも、バンドル光ファイバ37(図10(B))であってもよい。制御部15は、光分岐部12bに対して前記分岐比を変化させることで、照射部13へ伝送する前記光の状態を調整する。
 制御部15は、センサ部31から受け取ったセンサ情報に基づいて、光分岐部12bへ分岐比を制御する信号を送信する。光分岐部12bは、制御部15から受け取った制御信号に応じた分岐比に調整する。当該分岐比は、例えば、回避対象Hが存在する照射対象域への光パワーを低減あるいはゼロとする、それらの照射対象域分の余剰光パワーを他の照射対象域へ振り分ける、又は各照射対象域の要求に応じた光パワーとなるようにする分岐比である。
 図11は、光伝送システムが図10(A)のような構成である場合の光分岐部12bの構造を説明する図である。光分岐部12bは、
 出力ポート132の数(N個)と同数であり、対応する出力ポート132のそれぞれへ前記光を出力する合波器133と、
 バンドル光ファイバ36に束ねられている単一の光ファイバ(単一コア光ファイバ51a)の数(I本)と同数であり、対応する単一の光ファイバからの前記光を合波器133のいずれか又は終端部135に出力する光スイッチ131と、
を有する。
 光分岐部12bは、コア分離アダプタ121、光ファイバ123、及び光ファイバ125をさらに備える。
 コア分離アダプタ121は、バンドル光ファイバ36に束ねられている複数(I本)の単一コア光ファイバ51aを解体してバラバラにする。光スイッチ131は、入力ポートが1個、出力ポートがN+1個の1×(N+1)の光スイッチである。コア分離アダプタ121で解体されたそれぞれの単一コア光ファイバ(51a-1~51a-I)は光スイッチ131の入力ポートに接続される。各光スイッチ131の出力ポートのうちN個は光ファイバ123を介してそれぞれ対応する合波器133の入力ポートと接続される。また、各光スイッチ131の出力ポートのうち1個(光ファイバ123に接続されないもの)には、終端部135が接続される。各合波器133の出力ポートは、光ファイバ125を介して出力ポート132と接続される。各出力ポート132には方路14が接続される。
 光源部11からの光は、バンドル光ファイバ36の各単一コア光ファイバ51aを一体となって伝搬する。コア分離アダプタ121で各単一コア光ファイバ51aはバラバラになり、単一コア光ファイバ51aを伝搬したそれぞれの光は光スイッチ131に入力する。制御部15は各光スイッチ131の切り替えを制御しており、当該光は光ファイバ123のいずれか、又は終端部135へ出力する。終端部135へ出力された光はそこで終端される。光ファイバ123へ出力された光は合波部133で他の光スイッチ131からの光と合波される。各合波部133で合波された光は光ファイバ125を介して方路14へ出力される。
 図12は、光伝送システムが図10(B)のような構成である場合(方路14が複数の光ファイバ55を束ねたバンドル光ファイバ37である場合)の光分岐部12bの構造を説明する図である。図11の光分岐部12bに対し、図12の光分岐部12bは、合波器133を備えず、光スイッチ131の終端部135以外の出力ポートに直接バンドル光ファイバ37に束ねられた光ファイバ55が接続している。なお、バンドル光ファイバ37に束ねられた光ファイバ55の数はJ本であり(Jは2以上の自然数)、それらはコア分離アダプタ139で解体される。本構成では、J=Iであり、コア分離アダプタ139が光分岐部12bの出力ポートとなる。
 光スイッチ131の出力ポートから光ファイバ55へ出力された光は、方路14であるバンドル光ファイバ37を一体の光として照射部13まで伝搬する。
 また、光分岐部12bは、図13のような構造であってもよい。図13の光分岐部12bは、図12の光分岐部12bに対し、光ファイバ123、合波器133、光ファイバ125、及び分波器134をさらに備える。光ファイバ123、合波器133、光ファイバ125については、図11の説明と同じである。分波器134は、合波器133と出力ポート(本構成ではコア分離アダプタ139)との間に配置され、合波器133が出力した前記光を方路14のバンドル光ファイバ37に束ねられるJ本の単一の光ファイバ(単一コア光ファイバ55)へ結合する。図13の構成の場合、J≠Iとすることができる。
 それぞれの光ファイバ125を伝搬した光は分波器134でJ本の単一コア光ファイバ55に分波される。J本の単一コア光ファイバ55はコア分離アダプタ139でバンドル化され、バンドル光ファイバ37となる。つまり、それぞれの光ファイバ125を伝搬した光は方路14であるバンドル光ファイバ37の各単一コア光ファイバ55を一体の光として照射部13まで伝搬する。
 ここで、図13の光分岐部12bにおいて合波器133と分波器134を備える効果を図14で説明する。図14(A)は、合波器133と分波器134を備えず、方路14毎に対応する光ファイバ123を単一コア光ファイバ55としてバンドル化した場合のバンドル光ファイバ37の断面を説明する図である。図14(B)は、図13の光分岐部12bの構成におけるバンドル光ファイバ37の断面を説明する図である。
 図14(A)のように、合波器133と分波器134を備えない場合、光スイッチ131からの光が結合される単一コア光ファイバ55と、そうでない単一コア光ファイバ55が発生することになる。このように、単一コア光ファイバ55において光の有無の差が生じ、照射部13から出射される光L2に照度むらが発生する。
 一方、図14(B)のように、合波器133と分波器134を備える場合、合波器133は各光スイッチ131からの光を合波して一つにまとめ、分波器134はその光をパワーが均等になるようにバンドル光ファイバ37のJ本の単一コア光ファイバ55へ分配する。単一コア光ファイバ55間のパワー偏差が解消されるため、照射部13から出射される光L2に照度むらは発生しにくい。
 なお、図14(A)において光が伝搬している光ファイバのコアの色を、図14(B)において光が伝搬している光ファイバのコアの色より濃くしている。コアの色は光のパワーの強さを表わしている。図14(A)では光が偏っており、特定の単一コア光ファイバ55に集中しているのでその光ファイバを伝搬する光のパワーが強い。一方、図14(B)では光が全ての単一コア光ファイバ55に均等に振り分けられ、平準化したため、光ファイバを伝搬する光のパワーが図14(A)の光パワーより弱くなっている。
 図11、図12及び図13で説明したように、光分岐部12bは、制御部15が各光スイッチ131に対し、単一コア光ファイバ51aからの光をいずれの出力ポートに出力させるかの切り替え指示を行うことで分岐比が調整される。図10の光伝送システムであれば、制御部15は、回避対象Hが存在する照射対象域への光パワーを低減あるいはゼロとする、それらの照射対象域分の余剰光パワーを他の照射対象域へ振り分ける、又は各照射対象域の要求に応じた光パワーとなるようにするような分岐比になるように光スイッチ131へ切り替え指示を出力する。
 なお、図12及び図13の光分岐部12bは、方路14に伝搬させる光のパワーが離散的である。その離散数は、いずれもバンドル光ファイバ37に束ねられている光ファイバ55の数(J+1)である。光分岐部12bは、光スイッチ131を切り替えることで、バンドル光ファイバ37に束ねられているそれぞれの光ファイバ55に光を出力する/停止するを行うことができる。例えば、光分岐部12bは、任意のバンドル光ファイバ37に対し、3本の光ファイバ55のみに光を出力するように光スイッチ131を切り替えることができる。照射対象域に回避対象Hが存在していれば、光分岐部12bは、当該照射対象域へのバンドル光ファイバ37に対し、1本の光ファイバ55のみに光を出力し、照射対象域へ照射される光のパワーを低減する。あるいは、全ての光ファイバ55に光の出力を停止してもよい。また、光分岐部12bは、照射対象域に回避対象Hが存在せず、大きな光パワーを要求している照射対象域へのバンドル光ファイバ37に対しては、全ての光ファイバ55に光を出力し、照射対象域へ照射される光のパワーを最大化する。
 つまり、光分岐部12bは、各方路14に対応する照射対象域へ照射する光L2の強度をJ+1段階で調整できる。
 また、図12及び図13の光分岐部12bに対し、制御部15は図15のような制御を行うことができる。図15は、方路14に伝搬する光のパワーを模式的に示した図である。横軸は時間、縦軸は方路14毎の光のパワーを示している。図15では、光パワーの段階が5(J=4)である例を示している。
 図15(A)は基本制御である。
 光分岐部12bは、方路14-1と方路14-2へレベル2のパワーで、・・・、方路14-Nへレベル3のパワーで光を出力している。
 時刻t1にて照射対象域AR1でセンサ部31が回避対象Hを検出し、時刻t2で回避対象Hが照射対象域AR1から退出したとする。制御部15は、センサ部31からのセンサ情報により、光分岐部12bに対し、時刻t1から時刻t2まで、照射対象域AR1へ繋がる方路14-1への光出力を停止させる(レベル0とする)。一方、他の照射対象域へは時刻t1以前のパワーの光出力を維持させている。
 図15(B)はスケジューリングを行う制御である。
 この場合も、光分岐部12bは、定常時に図15(A)と同様のレベルのパワーで光を各方路14へ出力している。そして、時刻t1にて照射対象域AR1でセンサ部31が回避対象Hを検出し、時刻t2で回避対象Hが照射対象域AR1から退出したとする。制御部15は、制御部15は、センサ部31からのセンサ情報により、光分岐部12bに対し、時刻t1から時刻t2まで、照射対象域AR1へ繋がる方路14-1への光出力を停止させる(レベル0とする)。
 図15(A)の基本制御の場合、時刻t1から時刻t2の間に方路14-1へ照射される予定だった光は、どの方路14へも出力されずそのパワーが無駄になる。ここで、無駄になってしまう光のパワーを「余剰パワー」とする。しかし、図15(B)の制御では、余剰パワーの光を他の方路14へ振り替えることができる。具体的には、制御部15は、光分岐部12bに対し、時刻t1から時刻t2まで、方路14-1で停止された2レベル分の余剰パワーの光を、1レベルずつ方路14-2と方路14-Nに振り替えるように指示する。つまり、時刻t1から時刻t2まで方路14-2にはレベル3のパワーの光が、方路14-Nにはレベル4のパワーの光が出力される。
 ここで、時刻t1から時刻t2まで、余剰パワーの光をいずれの方路14へ出力させるかは次のアルゴリズムによって決定する。
[振り替えアルゴリズム]
 パラメータを次のように設定する。
I:バンドル光ファイバ36のコア(単一コア光ファイバ51a)の数
N:照射対象域ARの数
n:照射対象域ARの識別子(1からNまでの整数)
in:バンドル光ファイバ36を一体として伝搬し、光分岐部12bに入力される光のパワー
:照射対象域ARnが要求する積算パワー
max,n:照射対象域ARnの照射光パワーの上限値
(t):時刻tにおける照射対象域ARnの光パワー
E’(t):式(1)で表される時刻tにおける照射対象域ARnの積算パワー
Figure JPOXMLDOC01-appb-M000001
G:照射対象域ARの集合(n∈G)、要素数はNである。
active(t):時刻tにおいて光照射されている照射対象域ARの集合(Gactive(t)⊂G)
:時刻tにおいて光照射されている照射対象域ARの識別子(n∈Gactive(t))
 なお、E、Pmax,n、P(t)及びE’(t)は、光分岐部12bの出力ポートの値とする。「光分岐部12bの出力ポート」とは、具体的には、図11の構成であれば出力ポート132、図12及び図13の構成であればコア分離アダプタ139である(以下の説明において同様)。
 また、簡単のために、光分岐部12bの損失を0dBとする。
(公平性制御)
 光分岐部12bの各出力ポートに対し、各照射対象域ARnが要求する光パワーを公平に満たすように光出力を割り当てるための制御式は次の通りである。
Figure JPOXMLDOC01-appb-M000002
 なお、時刻t-1とは、上述した時刻t2に対する時刻t1のことであり、前回、光パワーを測定した時刻を意味する。
 上記の制御式は、数理計画法等によって数学的に算出してもよいし、コンピュータプログラム等によって手続的に算出してもよい。
(短時間化制御及び効率化制御)
 n∈Gactive(t)のうち対象となる照射対象域ARnに下記の優先フラグを設定し、優先フラグの照射対象域から順に、Pinを全て割り当て終わるまで、式(c)及び(e)の範囲で、式(d)を割り当てる。
<優先フラグの付け方>
短時間化制御の場合:
過去のスケジュールやセンサ部の監視状況、およびそれらの情報からの学習に基づき、優先制御の必要度を判定し、優先フラグを設定する。
効率化制御の場合:
センサ部が検知する照射対象域の回避対象の情報に基づき、当該照射対象域に対する殺菌等の必要性を判定し、優先フラグを設定する。
[ここまで振り替えアルゴリズムの説明]
(実施形態2)
 図16は、実施形態1で説明した光伝送システムの制御部15の動作を説明するフローチャートである。なお、図16の開始時点で既に紫外光が各照射対象域へ照射されているものとする。
 制御部15は、
 照射対象域ARを含む領域に前記紫外光の被ばくを回避すべき回避対象Hが存在するか否かを検知すること(ステップS02)、及び
 照射対象域ARに回避対象Hが存在する場合に、照射部13から照射対象域ARへの紫外光照射について然るべき照射制御を行うこと(ステップS03以降)
を特徴とする。
 光伝送システムは、図16のフローチャートのようにセンサ部31と連携し、回避対象Hの検知情報に基づき、制御部15が光分岐部12に対して前述したような制御アルゴリズムに基づいて分岐比のフィードバック制御を行う。
 具体的には、次のように設計する。
 ステップS01:照射対象域ARとその周辺について回避対象Hの存否及び動きのセンサ情報を入手する。
 ステップS02:センサ情報が無ければ、センサ情報を入手するまでステップS01を繰り返す。センサ情報を入手した場合、以下のようにいずれの制御アルゴリズムで制御するかを決定する。
 ステップS03:センサ情報に基づき、前述した基本制御を行うか否かを判断する。その判断基準は、例えば、回避対象Hの数(閾値より少なければ基本制御を行う)、回避対象Hの種類(特定の回避対象を検知しなければ基本制御を行う)、時間帯(設定された時間帯以外は基本制御を行う)等であり、予め設定しておく。
 ステップS03a:基本制御で光のデリバリを行う。
 ステップS04:センサ情報に基づき、前述した公平性制御を行うか否かを判断する。どのような場合に公平性制御を行うかの判断基準は予め設定しておく。判断基準は、例えば、照射対象域の回避対象Hの数や種類の偏りである。
 ステップS04a:公平性制御で光のデリバリを行う。本ステップでは、例えば、回避対象Hが存在する照射対象域への紫外光のパワーを低下させた場合、他の照射対象域へ図15で説明した余剰パワーの振り替えを行う。この際、他の照射対象域へ振り替える紫外光のパワーの分配比率を、各照射対象域の、殺菌等に要する積算光量と、現時点までの積算光量との比が同じ値に近づくように決定する。
 ステップS05:センサ情報に基づき、前述した短時間化制御を行うか否かを判断する。どのような場合に短時間化制御を行うかの判断基準は予め設定しておく。判断基準は、例えば、照射対象域の回避対象Hの数や種類の変動(時間推移)である。
 ステップS05a:短時間化制御で光のデリバリを行う。本ステップでは、例えば、照射対象域毎に回避対象Hが存在しそうな時間を予測しておき、その時間に対象の照射対象域に前述したような優先フラグを付けて振り替えアルゴリズムを実行する。
 ステップS05b:上記のいずれの制御でもない場合、前述した効率化制御で光のデリバリを行う。
 ステップS06:これらのステップを繰り返す。
11:光源部
11a:紫外光源部
11c:光学系
11d:光結合部
11f:ファイバ結合軸調整部
12:光分岐部(等分岐)
12b:光分岐部
12c、12d:分離部
13、13-1、・・・、13-n、・・・、13-N:照射部
14:方路
15:制御部
16:光伝送路
26:光伝送路
36:バンドル光ファイバ
37:方路のバンドル光ファイバ
51a:単一コア光ファイバ
55:方路の単一コア光ファイバ
121:コア分離アダプタ
123:光ファイバ
125:光ファイバ
131:光スイッチ
132:出力ポート
133:合波器
134:分波器
135:終端器
139:コア分離アダプタ
141:シャッタ
300:光伝送システム
L1、L2:光
Lc:光スポットの大きさ
AR1、AR2、・・・、ARn、・・・、ARN:照射対象域

Claims (7)

  1.  光を出力する光源部と、
     複数の単一コア光ファイバを束ねたバンドル光ファイバの複数のコアで前記光を一端から他端へ伝搬する光伝送路と、
     前記光伝送路が伝搬した前記光をN個(Nは2以上の自然数)の照射対象域に照射するN個の照射部と、
     前記照射対象域を含む領域に前記光の被ばくを回避すべき回避対象が存在するか否かを検知したセンサ情報を出力するセンサ部と、
     前記センサ部からの前記センサ情報に基づいて、前記照射部へ伝送する前記光の状態を調整する制御部と、
    を備える光伝送システム。
  2.  前記制御部は、前記光源部と前記バンドル光ファイバの一端との相対位置を調整することで、前記光源部が出力した前記光が前記コアに入射する結合状態を変化させ、前記照射部へ伝送する前記光の状態を調整することを特徴とする請求項1に記載の光伝送システム。
  3.  前記光源部が出力した前記光を前記バンドル光ファイバの一端に照射する光結合部をさらに備え、
     前記制御部は、前記光結合部に対して前記バンドル光ファイバの一端におけるスポット形状を変化させることで、前記光源部が出力した前記光が前記コアに入射する結合状態を変化させ、前記照射部へ伝送する前記光の状態を調整することを特徴とする請求項1に記載の光伝送システム。
  4.  前記光伝送路の他端において前記バンドル光ファイバに束ねられていた前記単一コア光ファイバを解体すること、及び解体された前記単一コア光ファイバ毎に前記光伝送路からの前記光を透過又は遮断することを行う分離部をさらに備え、
     前記制御部は、前記分離部に対して前記単一コア光ファイバ毎に前記光の透過又は遮断を指示することで、前記照射部へ伝送する前記光の状態を調整することを特徴とする請求項1に記載の光伝送システム。
  5.  前記光伝送路が伝搬した前記光を任意の分岐比で複数の出力ポートに分岐する光分岐部と、
     前記光分岐部のそれぞれの前記出力ポートからそれぞれの前記照射部へ前記光を伝搬する方路と、
    をさらに備え、
     前記制御部は、前記光分岐部に対して前記分岐比を変化させることで、前記照射部へ伝送する前記光の状態を調整することを特徴とする請求項1に記載の光伝送システム。
  6.  前記方路が複数の光ファイバを束ねたバンドル光ファイバである場合、前記方路に伝搬させる光のパワーは離散的であり、離散数は前記方路のバンドル光ファイバに束ねられている前記光ファイバの数であることを特徴とする請求項5に記載の光伝送システム。
  7.  光源部が出力した光を、光伝送路である複数の単一コア光ファイバを束ねたバンドル光ファイバの複数のコアで一端から他端へ伝搬すること、
     前記光伝送路が伝搬した前記光をN個(Nは2以上の自然数)の照射対象域にN個の照射部で照射すること、
     前記照射対象域を含む領域に前記光の被ばくを回避すべき回避対象が存在するか否かを検知したセンサ情報を発生すること、
     前記センサ情報に基づいて、前記照射部へ伝送する前記光の状態を調整すること、
    を行う光伝送方法。
PCT/JP2022/042009 2022-11-10 2022-11-10 光伝送システム及び光伝送方法 WO2024100863A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042009 WO2024100863A1 (ja) 2022-11-10 2022-11-10 光伝送システム及び光伝送方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042009 WO2024100863A1 (ja) 2022-11-10 2022-11-10 光伝送システム及び光伝送方法

Publications (1)

Publication Number Publication Date
WO2024100863A1 true WO2024100863A1 (ja) 2024-05-16

Family

ID=91032253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042009 WO2024100863A1 (ja) 2022-11-10 2022-11-10 光伝送システム及び光伝送方法

Country Status (1)

Country Link
WO (1) WO2024100863A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593410A (ja) * 1982-06-30 1984-01-10 Alps Electric Co Ltd 光分岐器
JPH0577811U (ja) * 1992-03-25 1993-10-22 東陶機器株式会社 光ファイバ照明装置
JPH06298003A (ja) * 1993-04-16 1994-10-25 Mitsubishi Rayon Co Ltd 座席照明装置
JPH0854514A (ja) * 1994-08-10 1996-02-27 Kiruto Planning Off:Kk 光ファイバー照明システム
JPH08327826A (ja) * 1995-05-31 1996-12-13 Moritetsukusu:Kk 光源装置
US5838865A (en) * 1997-06-05 1998-11-17 Clarity Visual Systems, Inc. Fiber optic light homogenizer for use in projection displays
JP2000199864A (ja) * 1999-01-06 2000-07-18 Asahi Optical Co Ltd 内視鏡照明装置
JP2002231008A (ja) * 2001-02-05 2002-08-16 Matsushita Electric Works Ltd 照明装置
JP2011143350A (ja) * 2010-01-14 2011-07-28 Fujikura Ltd 光照射装置
JP2015108825A (ja) * 2013-11-20 2015-06-11 クリスティ デジタル システムズ カナダ インコーポレイテッド 光の可変分配システム
CN112516462A (zh) * 2020-11-24 2021-03-19 深圳罗兹曼国际转化医学研究院 光电联合器械和光动力治疗仪
US20210113373A1 (en) * 2018-07-02 2021-04-22 Belkin Laser Ltd. Avoiding blood vessels during direct selective laser trabeculoplasty

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593410A (ja) * 1982-06-30 1984-01-10 Alps Electric Co Ltd 光分岐器
JPH0577811U (ja) * 1992-03-25 1993-10-22 東陶機器株式会社 光ファイバ照明装置
JPH06298003A (ja) * 1993-04-16 1994-10-25 Mitsubishi Rayon Co Ltd 座席照明装置
JPH0854514A (ja) * 1994-08-10 1996-02-27 Kiruto Planning Off:Kk 光ファイバー照明システム
JPH08327826A (ja) * 1995-05-31 1996-12-13 Moritetsukusu:Kk 光源装置
US5838865A (en) * 1997-06-05 1998-11-17 Clarity Visual Systems, Inc. Fiber optic light homogenizer for use in projection displays
JP2000199864A (ja) * 1999-01-06 2000-07-18 Asahi Optical Co Ltd 内視鏡照明装置
JP2002231008A (ja) * 2001-02-05 2002-08-16 Matsushita Electric Works Ltd 照明装置
JP2011143350A (ja) * 2010-01-14 2011-07-28 Fujikura Ltd 光照射装置
JP2015108825A (ja) * 2013-11-20 2015-06-11 クリスティ デジタル システムズ カナダ インコーポレイテッド 光の可変分配システム
US20210113373A1 (en) * 2018-07-02 2021-04-22 Belkin Laser Ltd. Avoiding blood vessels during direct selective laser trabeculoplasty
CN112516462A (zh) * 2020-11-24 2021-03-19 深圳罗兹曼国际转化医学研究院 光电联合器械和光动力治疗仪

Similar Documents

Publication Publication Date Title
JP7556102B2 (ja) 多重入力結合照光式マルチスポットレーザプローブ
HUP0301300A2 (en) Method and apparatus for photobiostimulation of biological tissue, biostimulation device and method for the treatment of tissue
WO2022009406A1 (ja) 紫外光照射システム
WO2024100863A1 (ja) 光伝送システム及び光伝送方法
WO2024100864A1 (ja) 光伝送システム及び光伝送方法
WO2023058144A1 (ja) 紫外光照射システム及び紫外光照射方法
WO2024105874A1 (ja) 光伝送システム、光分岐部及び光伝送方法
WO2024100862A1 (ja) 光伝送システム
WO2024105875A1 (ja) 光伝送システム及び光伝送方法
WO2022085123A1 (ja) 紫外光照射システム及び紫外光照射方法
WO2022085142A1 (ja) 紫外光照射システム及び方法
WO2023084669A1 (ja) 紫外光照射システム及び照射方法
WO2024084562A1 (ja) バンドル光ファイバ
WO2023084675A1 (ja) 紫外光照射システム
WO2024084561A1 (ja) 光伝送システムの設計方法及び設計装置
WO2023073774A1 (ja) 紫外光照射システム
WO2023084668A1 (ja) 紫外光照射システム及び制御方法
WO2023084666A1 (ja) 紫外光照射システム
WO2022024303A1 (ja) 紫外光照射システム及び制御方法
WO2023073771A1 (ja) 紫外光照射システム
WO2023276148A1 (ja) 紫外光照射システム及び制御方法
WO2023084665A1 (ja) 紫外光照射システム
US20230270898A1 (en) Ultraviolet light irradiation system and decontamination method
WO2023073884A1 (ja) 紫外光照射システム
WO2024105873A1 (ja) 光スポット整形器及び光伝送システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22965187

Country of ref document: EP

Kind code of ref document: A1