WO2024084562A1 - バンドル光ファイバ - Google Patents

バンドル光ファイバ Download PDF

Info

Publication number
WO2024084562A1
WO2024084562A1 PCT/JP2022/038675 JP2022038675W WO2024084562A1 WO 2024084562 A1 WO2024084562 A1 WO 2024084562A1 JP 2022038675 W JP2022038675 W JP 2022038675W WO 2024084562 A1 WO2024084562 A1 WO 2024084562A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
light
core
bundle
core optical
Prior art date
Application number
PCT/JP2022/038675
Other languages
English (en)
French (fr)
Inventor
誉人 桐原
聖 成川
勝久 田口
亜弥子 岩城
和秀 中島
隆 松井
千里 深井
悠途 寒河江
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/038675 priority Critical patent/WO2024084562A1/ja
Publication of WO2024084562A1 publication Critical patent/WO2024084562A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/40Mechanical coupling means having fibre bundle mating means

Definitions

  • This disclosure relates to a bundle optical fiber that bundles multiple optical fibers.
  • Non-Patent Document 1 Mobile sterilization robot
  • the product of Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light.
  • the robot can irradiate ultraviolet light while moving around a room in a building such as a hospital room, thereby automatically sterilizing a wide area without human intervention.
  • Non-Patent Document 2 Freestanding Air Purifier
  • the product in Non-Patent Document 2 is a device that is installed on the ceiling or a predetermined location in a room and circulates the air in the room while sterilizing, etc.
  • Non-Patent Document 3 is a portable device equipped with an ultraviolet light source. A user can take the device to a desired area and irradiate ultraviolet light. Therefore, the device can be used in various places.
  • Non-Patent Document 1 irradiates high-power ultraviolet light, so the device is large-scale and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
  • the product of Non-Patent Document 2 sterilizes the circulated indoor air, and therefore cannot irradiate the location where sterilization is desired with ultraviolet light directly.
  • Non-Patent Document 3 cannot irradiate ultraviolet light onto, for example, narrow pipes or areas where people cannot enter.
  • the products described in non-patent literature have a problem in that they lack the versatility to irradiate ultraviolet light anywhere.
  • (3) Operability The product of Non-Patent Document 3 is portable and can irradiate ultraviolet light in various locations. However, in order to obtain sufficient sterilization effects at the target location, the user is required to have skills and knowledge, and there are problems with operability.
  • an ultraviolet light irradiation system 300 using optical fibers as shown in FIG. 1 can be considered.
  • ultraviolet light is transmitted from the ultraviolet light source unit 11a using a thin and easily bendable optical fiber, and the ultraviolet light output from the tip of the optical fiber 14 is irradiated to the irradiation target area AR where pinpoint sterilization is desired. Since ultraviolet light can be irradiated to any location simply by moving the irradiation unit 13 at the tip of the optical fiber 14, the versatility of the above issue (2) can be resolved. In addition, since there is no need to move or set up the ultraviolet light source, and no skill or knowledge is required of the user, the operability of the above issue (3) can also be resolved.
  • an optical distribution unit 12 such as an optical splitter in the optical transmission path 16 and configuring a system of P-MP (Point to Multipoint) such as FTTH (Fiber To The Home), multiple locations can be sterilized by sharing a single light source. Therefore, the economics of the above issue (1) can also be resolved.
  • P-MP Point to Multipoint
  • FTTH Fiber To The Home
  • Coupled efficiency means the ratio of the power input to the optical fiber (optically coupled to the optical fiber core) to the output power of the light source.
  • Figure 2(A) Since the light-emitting surface of an LED is larger than that of a laser, even if you try to couple the light output from the LED to a single-core optical fiber, the core area in the cross section is narrow, and most of the light is not coupled, resulting in low coupling efficiency ( Figure 2(A)).
  • FIG. 3A is a diagram for explaining how the light L1 from the light source unit 11 is irradiated onto one end of the bundle optical fiber 36, how the bundle optical fiber 36 is separated into each single-core optical fiber 51a at the other end to become the path 14, and how the light propagating through it is emitted (the irradiation target area ARn is located at the end of the emitted light).
  • the bundle optical fiber 36 is a bundle of multiple single-core optical fibers 51a.
  • the light L1 from the light source unit 11 is irradiated onto one end (the coupling portion) of the bundle optical fiber 36, but the illuminance is not uniform on the irradiation surface (light spot) (there is a power deviation). Specifically, the illuminance is high near the center of the light spot, and low around the light spot.
  • the light spot may only partially hit the core of the outer peripheral optical fiber 51a of the bundle optical fiber 36.
  • the present invention aims to provide an optical fiber bundle that can transmit light even if a power deviation occurs at the connection point, and can output the desired power from multiple irradiation points after separation.
  • the optical fiber bundle according to the present invention is designed so that the coupling rates of the single-core optical fibers at the coupling section are not the same.
  • the bundle optical fiber according to the present invention is a bundle optical fiber in which a plurality of single-core optical fibers are bundled together, and is characterized in that the coupling rate at which external light is coupled to the single-core optical fibers at one end is different between at least some of the single-core optical fibers and the other single-core optical fibers.
  • each single-core optical fiber By adjusting the coupling coefficient of each single-core optical fiber at the coupling section, it is possible to transmit uniform power to each single-core optical fiber, or light of the desired power to each single-core optical fiber, even if there is a power deviation in the light from the light source at the coupling section.
  • the present invention can provide an optical fiber bundle that can transmit light even if a power deviation occurs at the joint, and can output the desired power from multiple irradiation sections after separation.
  • the coupling rate is varied by varying the core diameter of the single-core optical fiber or the numerical aperture of the single-core optical fiber at the one end.
  • the bundle optical fiber according to the present invention is characterized in that the single-core optical fibers are arranged in layers from the center to the outer periphery in a cross section, and the coupling ratio differs for each layer.
  • the bundle optical fiber according to the present invention is characterized in that the coupling ratio is varied so that the intensity of the external light coupled to the one end is equal in all of the single-core optical fibers.
  • the bundle optical fiber according to the present invention is characterized in that the coupling ratio is varied so that a desired power deviation is obtained when the external light coupled to each of the single-core optical fibers at one end is output from each of the single-core optical fibers at the other end.
  • the present invention can provide an optical fiber bundle that can transmit light even if a power deviation occurs at the connection point, and can output the desired power from multiple irradiation points after separation.
  • FIG. 1 is a diagram illustrating a problem to be solved by the present invention.
  • FIG. 1 is a diagram illustrating a problem to be solved by the present invention.
  • FIG. 1 is a diagram illustrating a problem to be solved by the present invention.
  • 1 is a diagram illustrating an optical fiber bundle according to the present invention;
  • 1 is a diagram illustrating an optical fiber bundle according to the present invention;
  • 1A to 1C are diagrams illustrating the effects of an optical fiber bundle according to the present invention.
  • 1A to 1C are diagrams illustrating the effects of an optical fiber bundle according to the present invention.
  • 1A to 1C are diagrams illustrating a method for designing an optical fiber bundle according to the present invention.
  • 1 is a diagram illustrating an optical transmission system including an optical fiber bundle according to the present invention.
  • the bundle optical fiber 36 bundles a plurality of single-core optical fibers 51a, and is characterized in that the coupling ratio at which light from the outside is coupled to the single-core optical fibers 51a at one end is different between at least some of the single-core optical fibers 51a and the other single-core optical fibers 51a.
  • the diameter of the core 52 of the single-core optical fiber 51a is made different to make the coupling ratio different.
  • the term “coupling rate” refers to the ratio of the power of light that can be expected to be coupled to each single-core optical fiber 51a when light of ideal uniform illuminance is irradiated onto the surface of one end of the bundle optical fiber 36, relative to the power of that light.
  • the “coupling efficiency” refers to the ratio of the power of light coupled to each single-core optical fiber 51 a included in the bundle optical fiber 36 to the output power of the light source unit 11 .
  • the bundle optical fiber 36 in FIG. 4 bundles 17 single-core optical fibers 51a.
  • An identifier is given to identify each single-core optical fiber 51a. Any identifier may be used, but in this embodiment, identifiers r l,m (l is a layer number, 1, 2, ..., l from the center, and m is an address in the same layer, 1, 2, ..., m clockwise) are given.
  • the single-core optical fiber 51a-r 1,1 in the first layer is arranged at the center, six single-core optical fibers (51a-r 2,1 to 51a-r 2,6 ) are arranged around it as the second layer, and ten single-core optical fibers (51a-r 3,1 to 51a-r 3,10 ) are arranged around it as the third layer.
  • the bundle optical fiber 36 has the diameter of the core 52 of the single-core optical fiber 51a increasing in the order of the first layer, the second layer, and the third layer, and the coupling rate increasing in the order of the first layer, the second layer, and the third layer.
  • Fig. 4 shows three layers, it may have four or more layers.
  • the diameter R-r l,m of the core 52 of the single-core optical fiber 51a is set to satisfy the following formula.
  • the single-core optical fiber 51a-r 1,1 in the first layer is arranged in the center
  • six single-core optical fibers (51a-r 2,1 to 51a-r 2,6 ) in the second layer are arranged around it
  • 12 single-core optical fibers (51a-r 3,1 to 51a-r 3,12 ) in the third layer are arranged around it.
  • the bundle optical fiber 36 has the same diameter of the core 52 of the single-core optical fiber 51a in the first and second layers, and the diameter of the core 52 of the single-core optical fiber 51a in the outermost third layer is larger than those, and the coupling rate of the third layer is larger than those of the first and second layers.
  • three layers are shown in Fig. 5, four or more layers may be used.
  • the diameter R-r l,m of the core 52 of the single-core optical fiber 51a is set to satisfy the following formula.
  • FIG. 6 is a diagram for explaining the effect of the bundle optical fiber 36.
  • the light source unit 11 is, for example, an LED, and outputs light L1.
  • the light L1 is ultraviolet light, visible light, infrared light, or modulated light obtained by modulating any of these lights.
  • the bundle optical fiber 36 is an optical transmission path in which a plurality of single-core optical fibers 51a are bundled together as described in Fig. 4 or Fig. 5.
  • the light L1 outputted from the light source unit 11 is inputted to one end T1 of the bundle optical fiber 36.
  • Each single-core optical fiber 51a included in the bundle optical fiber 36 propagates the inputted light L1 to a separation unit T2 at the other end.
  • the separation section T2 is a section for separating each of the single-core optical fibers 51a bundled in the bundle optical fiber 36. That is, each of the single-core optical fibers 51a is separated at the separation section T2 and becomes a route 14 to each irradiation target area.
  • An irradiation unit 13 is disposed at the tip of each of the separated paths 14. The light L1 propagated to the irradiation unit 13 is irradiated from each irradiation unit 13 to an irradiation target area (shown as irradiated light L2 in FIG. 6).
  • Light L1 emitted from the light source unit 11 illuminates one end T1 of the bundle optical fiber 36.
  • Symbol Lc is the spot area of light L1 at one end T1.
  • the spot area Lc may be larger or smaller than the diameter of the bundle optical fiber 36 at one end T1.
  • the light L1 has a high illuminance in the center and a low illuminance in the outer periphery, and the spot area Lc is smaller than the diameter of the bundle optical fiber 36.
  • the diameter of the single-core optical fiber 51a-r 1,1 in the first layer is the smallest, and the diameter of the single-core optical fibers (51a-r 3,1 to 51a-r 3,10 ) in the third layer is the largest, so that the power of light coupled to each single-core optical fiber 51a is uniform.
  • the bundle optical fiber 36 adjusts the size of the cores 52 of the single-core optical fibers 51a to be bundled, thereby making the coupled optical power uniform and ensuring fairness.
  • an optical system 11c that reduces the spot diameter of the light L1 may be disposed between the light source unit 11 and the bundle optical fiber 36.
  • each single-core optical fiber 51a of the bundle optical fiber 36 Since the power of the light coupled from the light source unit 11 to each single-core optical fiber 51a of the bundle optical fiber 36 is uniform as in the configurations of Figures 6 and 7, the energy of the light L2 irradiated by the irradiation unit 13 is also uniform.
  • the light emission power of the light source unit 11 is P in .
  • the number of cores I of the single-core optical fiber 51a included in the bundle optical fiber 36 (the identifier i for identifying each core may be expressed as the location r l,m (l is the number of layers, m is the address)), Coupling efficiency C i to the core of each single-core optical fiber 51a Let us assume that.
  • the coupling efficiency Ci is set so that P cou,Ci is equal for all the single-core optical fibers 51a, that is, the core diameter of each single-core optical fiber 51a is adjusted.
  • each irradiation target area it becomes possible to allocate power equitably to each irradiation target area.
  • the light L1 output from the light source unit 11 is ultraviolet light, it is possible to inactivate each irradiation target area ARn equally.
  • the bundle optical fiber 36 does not cause a power deviation, it is possible to shorten the time for each irradiation target area ARn, and since power is not wasted, it is possible to reduce power consumption and, ultimately, to reduce costs.
  • the coupling rate is adjusted by the core diameter of the single-core optical fiber 51a to obtain the desired coupling efficiency Ci , but the coupling rate may also be adjusted by the numerical aperture (NA) of the core of each single-core optical fiber 51a at one end T1.
  • NA numerical aperture
  • Embodiment 2 In embodiment 1, a design has been described in which, by adjusting the core diameter of each single-core optical fiber 51a and the numerical aperture at one end T1, the magnitude of the coupled power can be made uniform in each single-core optical fiber 51a even if there is a difference in the cross-sectional area of the bundle optical fiber 36 relative to the spot area Lc at one end T1, thereby maintaining fairness.
  • the coupling rate (core diameter or numerical aperture) of the bundle optical fiber 36 of this embodiment is adjusted according to the length of the single-core optical fiber 51a or the energy desired by the irradiation target area ARn. For example, as shown in FIG. 8, when the irradiation target area AR1 requires large energy and the irradiation target area ARn requires small energy, the core diameter or numerical aperture is adjusted so that the light L1 is coupled more to the single-core optical fiber 51a -r1,1 at one end T1 and the light L1 is coupled less to the single-core optical fiber 51a -r3,m .
  • the bundle optical fiber 36 to provide a power deviation of the light coupled to the single-core optical fiber 51a according to the length of the single-core optical fiber 51a and the requirements of the irradiation target area ARn, it is possible to achieve a reduction in time in each irradiation target area ARn, low power consumption because no power is wasted, and ultimately cost reduction effects.
  • the light source unit 11 is an LED.
  • the light source unit 11 is not limited to an LED, and may be a light source (for example, an incandescent lamp or a discharge lamp) having the following optical characteristics. - There is variation in wavelength, amplitude, or phase. ⁇ Light is scattered. ⁇ It is a natural release.
  • the bundle optical fiber 36 can propagate light of the same power through each of the single-core optical fibers 51a, or can propagate light with a power deviation. This appendix describes the design method.
  • This design method calculates the parameters of the optical transmission system including the bundle optical fiber 36 according to this design policy. In other words, this design method adjusts the parameters so that the power of the light L2 output by each irradiation unit 13, calculated using the parameters of the optical transmission system, becomes a value that takes into account the energy required for each of the irradiation target areas.
  • the parameters are: The power P in of the light L1 output from the light source unit 11, The number I of optical fibers 51a bundled into the optical fiber bundle 36; Coupling efficiency C i of the light L1 coupled to each of the optical fibers 51 a bundled in the optical fiber bundle 36 (i is an identifier for identifying the optical fiber 51 a); the number n of irradiation units 13 (n is an integer from 1 to N); and the distance L n of the optical path from one end T 1 of the bundle optical fiber 36 to which the light L 1 is coupled, through the paths 14 , to each of the irradiation units 13 .
  • FIG. 9 is a flow chart illustrating this design method.
  • This design method is for an optical transmission system 301 (see FIG. 10) having a light source unit 11 which is an LED, an optical fiber bundle 36, a path 14 after the bundle is separated, and an irradiation unit 13, and includes the following processes.
  • Step S01 A design policy is established (performed by the designer).
  • the design policy may be, for example, a policy to make the intensity of light propagating through the optical fibers 51a included in the bundle optical fiber 36 uniform, to have a certain degree of deviation (the intensity of light propagating through the optical fibers 51a on the periphery is smaller than the intensity of light propagating through the optical fibers 51a near the center), or to propagate light through some of the optical fibers 51a.
  • Step S02 The next parameter is set.
  • the output power (P in ) of the LED light source unit 11 is set.
  • the number of cores (the number of optical fibers 51a) I of the bundle optical fiber 36 is set.
  • the coupling efficiency (C i ) of the light L1 to each optical fiber 51 a at one end T1 of the bundle optical fiber 36 is acquired.
  • “i” is an identifier for identifying each optical fiber 51 a at one end T1.
  • the identifier i can be expressed by the coordinates or location r l,m (l: number of layers, m: address) of the core.
  • the coupling efficiency (C i ) can be adjusted, for example, by the core diameter and numerical aperture of the optical fiber 51 a.
  • the coupling efficiency (C i ) can also be adjusted by the spot diameter and illuminance distribution of the light L1 from the light source unit 11.
  • the total number (N) of irradiation target areas ARn is set.
  • the distances (L n ) to the irradiation unit 13 of the bundle optical fiber 36 and the paths 14 after the separation unit T2 are set.
  • C Loss 0.3 may be used.
  • the energy E n is, for example, an estimated cumulative energy value required for inactivating the irradiation target area, and is set taking into account the area of the irradiation target area and the irradiation time T n .
  • Step S03 Perform numerical calculations using equation (1).
  • Step S04 It is confirmed whether the calculation result is in accordance with the design guidelines. Specifically, it is whether the desired energy E n is irradiated to the irradiation target area. Note that the energy irradiated to the irradiation target area does not necessarily have to be equal to the energy E n , and may be an energy that is close to the energy E n . The degree of approximation is determined according to the design guidelines. If the calculation result does not comply with the design policy ("No" in step S04), the parameters are changed and the process is repeated from step S02. On the other hand, if the calculation result complies with the design policy ("Yes" in step S04), step S05 is carried out.
  • Step S05 Determine each parameter, assign a single path 14 to each irradiation unit 13, and complete the optical transmission system 301.
  • E n P outn ⁇ T n
  • E n P in ⁇ C i ⁇ L n ⁇ C Loss It can be expressed as:
  • the calculation is performed taking into consideration the weighting of the power deviation according to the state of the bundle optical fiber 36, the path 14, and the irradiation target area AR that each irradiation unit 13 is responsible for.
  • step S03 becomes a complex system calculation having multiple parameters (P in , C i , N, L n , C Loss , E n ), and it is possible to obtain results that satisfy the desired design policy (desired effect).
  • the algorithm may utilize any prior art, for example, a multi-objective optimization method.
  • Optical system 11 Light source unit 11a: Ultraviolet light source unit 11c: Optical system 12: Light distribution unit (equal branching) 13, 13-1, ..., 13-n, ..., 13-N: Irradiation unit 14: Path (each single-core optical fiber 51a bundled in the bundle optical fiber 36) 16: Optical transmission path 36: Bundle optical fiber 51a: Single-core optical fiber 301: Optical transmission system L1, L2: Light Lc: Size of optical spot AR1, AR2, ..., ARn, ..., ARN: Irradiation target area

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

本発明は、結合部においてパワー偏差が生じていても光伝送し、分離した先の複数の照射部から所望のパワーを出力できるバンドル光ファイバを提供することを目的とする。 本発明に係るバンドル光ファイバ36は、複数の単一コア光ファイバ51aを束ねており、一端において外部からの光を単一コア光ファイバ51aに結合する結合率が、少なくとも一部の単一コア光ファイバ51aと他の単一コア光ファイバ51aとで異なっていることを特徴とする。バンドル光ファイバ36は、単一コア光ファイバ51aのコア52の径又は開口数を違えることで前記結合率を異ならせている。

Description

バンドル光ファイバ
 本開示は、複数の光ファイバを束ねたバンドル光ファイバに関する。
 感染症予防などの目的から、紫外光を用いた殺菌やウィルスの不活化を行うシステムの需要が高まっている。当該システムには、大きく3つのカテゴリの製品がある。なお、本明細書では、「殺菌等」と記載する場合、殺菌とウィルスの不活化を意味するものとする。
(I)移動型殺菌ロボット
 非特許文献1の製品は、紫外光を照射する自律移動型のロボットである。当該ロボットは、病室などの建物内の部屋の中を移動しながら紫外光を照射することで、人手を介さず、自動で広い範囲の殺菌等を実現できる。
(II)据え置き型空気清浄機
 非特許文献2の製品は、天井や室内の所定の場所に設置され、室内の空気を循環しながら殺菌等する装置である。当該装置は、直接紫外光を照射せず、人体への影響がないため、安全性の高い殺菌等が可能である。
(III)ポータブル型殺菌装置
 非特許文献3の製品は、紫外光源を搭載したポータブル型の装置である。ユーザが当該装置を所望のエリアに持って行って紫外光を照射できる。このため、当該装置は様々な場所で使用可能である。
カンタム・ウシカタ株式会社ウェブサイト(https://www.kantum.co.jp/product/sakkin_robot/sakkinn_robot/UVD_robot)、2020年6月22日検索 岩崎電気株式会社ウェブサイト(https://www.iwasaki.co.jp/optics/ARrilization/air/air03.html)、2020年6月22日検索 フナコシ株式会社ウェブサイト(https://www.funakoshi.co.jp/contents/68182)、2020年6月22日検索
 しかし、非特許文献に記載される装置には次のような課題がある。
(1)経済性
 非特許文献1の製品は、高出力の紫外光を照射するため、装置が大掛かりとなり高価となる。このため、非特許文献1の製品には経済的なシステムの実現が困難という課題がある。
(2)汎用性
 非特許文献1の製品は、紫外光照射箇所がロボットが移動/進入できる場所に限定されるため、細かい場所や奥まった場所などへの紫外光の照射が困難である。
 非特許文献2の製品は、循環させた室内の空気を殺菌等するため、殺菌等をしたい場所に直接紫外光を照射することができない。
 非特許文献3の製品は、例えば、細い管路や人が入られないエリアについては紫外光を照射することができない。
 このように、非特許文献の製品には、任意の場所に紫外光を照射できるという汎用性に課題がある。
(3)操作性
 非特許文献3の製品は、可搬性であり様々な場所で紫外光の照射が可能である。しかし、対象箇所で十分な殺菌等の効果が得られるためには、ユーザにスキルや知識を要求しており、操作性に課題がある。
 これらの課題に対して、図1のような光ファイバを用いた紫外光照射システム300が考えられる。この紫外光照射システムは、細くて曲げやすい光ファイバを用いて紫外光源部11aから紫外光を伝送し、光ファイバ14の先端から出力される紫外光をピンポイントで殺菌等したい照射対象域ARへ照射する。光ファイバ14の先端の照射部13を移動させるだけで任意の場所に紫外光を照射できるため上記課題(2)の汎用性を解消できる。また、紫外光光源の移動や設定が不要でユーザにスキルや知識を求めないため、上記課題(3)の操作性も解消できる。さらに、光スプリッタのような光分配部12を光伝送路16に設け、FTTH(Fiber To The Home)のようなP-MP(Point to MultiPoint)のシステム構成とすることで、単一の光源をシェアすることで複数の箇所を殺菌等できる。このため、上記課題(1)の経済性も解消できる。
 さらに紫外光照射システムにおいて、光ファイバへの結合効率が高いレーザではなく安価なLED(Light-Emitting Diode)を光源に用いてシステムコストの低減を図ることが提案されている。ここで、「結合効率」とは、光源の出力パワーに対する光ファイバへ入力された(光ファイバコアに光結合された)パワーの比を意味する。
 この提案の課題を図2に示す。LEDは発光面がレーザに比べて広いため、LEDが出力した光を1本の単一コアの光ファイバに結合しようとしてもその断面におけるコア面積が狭く、ほとんどが結合されないため結合効率が低い(図2(A))。これは、レンズなどの光学系でLEDが出力した光を絞ったとしても同じである(図2(B))。つまり、光源にLEDを使用した場合、光源の出力パワーの大半が有効活用できないという課題がある。
 なお、この課題は紫外光を伝送する光伝送システムに限らず、赤外光や可視光を伝送する光伝送システムに共通する課題である。
 ここで、マルチコア光ファイバ(MCF)や複数の単一コア光ファイバを束ねたバンドル光ファイバのように、断面に存在する複数のコアに光を結合すれば、結合効率が向上し、光源の出力パワーの無駄を低減することができる(図2(C))。
 このように光源の出力パワーの無駄を低減することができるバンドル光ファイバであるが、図3に示すような課題もある。
 図3(A)は、光源部11からの光L1がバンドル光ファイバ36の一端に照射される様子と、バンドル光ファイバ36が他端で各単一コア光ファイバ51aに分離され方路14となり、それを伝搬した光が放射される様子を説明する図である(放射された先には照射対象域ARnがある。)。バンドル光ファイバ36は複数の単一コア光ファイバ51aが束ねられたものである。光源部11からの光L1はバンドル光ファイバ36の一端(結合部)に照射されるが、その照射面(光スポット)において照度は均一ではない(パワー偏差がある。)。具体的には、光スポットの中心付近は照度が高く、光スポットの周辺は照度が低い。
 さらに、図3(A)のようにバンドル光ファイバ36の一端の大きさが光スポットの大きさLcより大きい場合、バンドル光ファイバ36の外周の光ファイバ51aのコアには一部にしか光スポットが当たらないこともある。このような状態で光L1がバンドル光ファイバ36に結合されると、バンドル光ファイバ36の外周の光ファイバ51aには中央の光ファイバ51aより小さいパワーの光が伝搬することになる。
 このような状態であると、バンドル光ファイバ36の他端(分離部)において、各光ファイバ51aをそれぞれの照射対象域へ分離した場合、バンドル光ファイバ36の外側の光ファイバ51aが出射する光は、バンドル光ファイバ36の中心付近の光ファイバ51aが出射する光よりパワーが小さくなる。
 この課題は、光学系11cで光L1を絞ったとしても同様である(図3(B))。
 また、上記のパワー偏差を生じさせないようにするためには、結合部での光スポットの面積をバンドル光ファイバ36の一端の面積より大きくする必要がある(図3(C))。しかし、そのようにするとバンドル光ファイバ36に結合できない光が発生し、パワー損失が大きくなり、光源部11のパワーが無駄になる。これは、その無駄になっている分、照射可能な時間分だけ短時間化が困難、照射している光源の駆動時間分の低消費電力化が困難、結果低コスト化が困難となる。
 つまり、バンドル化の特徴を生かして単一コア光ファイバに分離して送受信するPoint-to-MultiPoint構成の紫外光照射システムには、
(課題1)光源からバンドル光ファイバへの結合部においてパワー偏差が生じるため、それぞれの照射部に対して公平にパワーを送受信することが困難、及び
(課題2)パワー偏差を無くそうとすれば、低コスト化や低消費電力化が困難、
という課題がある。
 本発明は、これらの課題を解決するために、結合部においてパワー偏差が生じていても光伝送し、分離した先の複数の照射部から所望のパワーを出力できるバンドル光ファイバを提供することを目的とする。
 上記目的を達成するために、本発明に係るバンドル光ファイバは、結合部における各単一コア光ファイバの結合率を同一にしないこととした。
 具体的には、本発明に係るバンドル光ファイバは、複数の単一コア光ファイバを束ねたバンドル光ファイバであって、一端において外部からの光を前記単一コア光ファイバに結合する結合率が、少なくとも一部の前記単一コア光ファイバと他の前記単一コア光ファイバとで異なっていることを特徴とする。
 結合部におけるそれぞれの単一コア光ファイバの結合係数を調整することで、結合部において光源からの光にパワー偏差があっても、各単一コア光ファイバに均一なパワーを、あるいはそれぞれの単一コア光ファイバに所望のパワーの光を伝搬させることができる。
 従って、本発明は、結合部においてパワー偏差が生じていても光伝送し、分離した先の複数の照射部から所望のパワーを出力できるバンドル光ファイバを提供することができる。
 例えば、前記単一コア光ファイバのコア径又は前記一端における前記単一コア光ファイバの開口数を違えることで前記結合率を異ならせている。
 本発明に係るバンドル光ファイバは、断面において中心から外周に向けて前記単一コア光ファイバが層状に配置されており、前記層毎に前記結合率が異なることを特徴とする。
 本発明に係るバンドル光ファイバは、前記一端に結合した前記外部からの光の強度が全ての前記単一コア光ファイバで等しくなるように前記結合率を異ならせていることを特徴とする。
 本発明に係るバンドル光ファイバは、前記一端でそれぞれの前記単一コア光ファイバに結合した前記外部からの光が他端においてそれぞれの前記単一コア光ファイバから出力するときに、所望のパワー偏差となるように前記結合率を異ならせていることを特徴とする。
 なお、上記各発明は、可能な限り組み合わせることができる。
 本発明は、結合部においてパワー偏差が生じていても光伝送し、分離した先の複数の照射部から所望のパワーを出力できるバンドル光ファイバを提供することができる。
本発明の課題を説明する図である。 本発明の課題を説明する図である。 本発明の課題を説明する図である。 本発明に係るバンドル光ファイバを説明する図である。 本発明に係るバンドル光ファイバを説明する図である。 本発明に係るバンドル光ファイバの効果を説明する図である。 本発明に係るバンドル光ファイバの効果を説明する図である。 本発明に係るバンドル光ファイバの効果を説明する図である。 本発明に係るバンドル光ファイバの設計方法を説明する図である。 本発明に係るバンドル光ファイバを備える光伝送システムを説明する図である。
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(実施形態1)
 図4及び図5は、本実施形態のバンドル光ファイバ36の断面を説明する図である。バンドル光ファイバ36は、複数の単一コア光ファイバ51aを束ねており、一端において外部からの光を単一コア光ファイバ51aに結合する結合率が、少なくとも一部の単一コア光ファイバ51aと他の単一コア光ファイバ51aとで異なっていることを特徴とする。
 本実施形態のバンドル光ファイバ36の場合、単一コア光ファイバ51aのコア52の径を違えることで前記結合率を異ならせている。
 なお、本明細書において「結合率」とは、バンドル光ファイバ36の一端の面に理想的な均一照度の光を照射した場合に、その光のパワーに対し、それぞれの単一コア光ファイバ51aに結合が期待できる光のパワー比を意味する。
 一方、「結合効率」とは、光源部11の出力パワーに対し、バンドル光ファイバ36に含まれるそれぞれの単一コア光ファイバ51aに結合された光のパワーの比を意味する。
 具体的には、図4のバンドル光ファイバ36は、17本の単一コア光ファイバ51aを束ねている。それぞれの単一コア光ファイバ51aを識別するために識別子を付与する。どのような識別子でもよいが、本実施形態ではrl,m(lは層番号で中心部から1,2,・・・,lとし、mは同じ層内の番地で時計回りに1,2,・・・,mとする)という識別子を付与している。つまり、中心に1層目の単一コア光ファイバ51a-r1,1を配置し、その周りに2層目として6本の単一コア光ファイバ(51a-r2,1~51a-r2,6)を配置し、さらにその周りに3層目として10本の単一コア光ファイバ(51a-r3,1~51a-r3,10)を配置している。
 例えば、図4のように、バンドル光ファイバ36は、単一コア光ファイバ51aのコア52の径を1層目、2層目、3層目の順で大きくし、結合率を1層目、2層目、3層目の順で大きくしている。図4では3層であるが、4層以上であってもよい。この場合、単一コア光ファイバ51aのコア52の径R-rl,mが次式となるように設定する。
Figure JPOXMLDOC01-appb-M000001
 また、図5のバンドル光ファイバ36は、19本の単一コア光ファイバ51aを束ねている。つまり、中心に1層目の単一コア光ファイバ51a-r1,1を配置し、その周りに2層目として6本の単一コア光ファイバ(51a-r2,1~51a-r2,6)を配置し、さらにその周りに3層目として12本の単一コア光ファイバ(51a-r3,1~51a-r3,12)を配置している。
 例えば、図5のように、バンドル光ファイバ36は、1層目と2層目の単一コア光ファイバ51aのコア52の径を等しくし、最外層の3層目の単一コア光ファイバ51aのコア52の径をそれらより大きくし、3層目の結合率を1層目及び2層目のそれより大きくしている。図5では3層であるが、4層以上であってもよい。この場合、単一コア光ファイバ51aのコア52の径R-rl,mが次式となるように設定する。
Figure JPOXMLDOC01-appb-M000002
 図4及び図5のようにバンドル光ファイバ36を設計することで、図6のような効果を得ることができる。
 図6は、バンドル光ファイバ36の効果を説明する図である。
 光源部11は、例えば、LEDであり、光L1を出力する。光L1は、紫外光、可視光、赤外光、あるいはこれらの光が変調された変調光である。
 バンドル光ファイバ36は、図4又は図5で説明したような複数の単一コア光ファイバ51aを束ねた光伝送路である。光源部11が出力した光L1は、バンドル光ファイバ36の一端T1に入射される。バンドル光ファイバ36に含まれる各単一コア光ファイバ51aは入射された光L1を他端にある分離部T2まで伝搬する。
 分離部T2は、バンドル光ファイバ36に束ねられた各単一コア光ファイバ51aをそれぞれに解体している部分である。つまり、各単一コア光ファイバ51aは、分離部T2で分離され、各照射対象域への方路14となる。
 分離された各方路14の先端には照射部13が配置されている。照射部13まで伝搬された光L1は、それぞれの照射部13から光の照射対象域へ照射される(図6では、照射光L2で示している。)。
 光源部11から出射した光L1は、バンドル光ファイバ36の一端T1を照射する。符号Lcは一端T1における光L1のスポット域である。スポット域Lcは、一端T1におけるバンドル光ファイバ36の直径より大きい場合もあるし、小さい場合もある。例えば、図6のような場合、光L1は、中心部分の照度が高く、外周部の照度が低い上、スポット域Lcがバンドル光ファイバ36の直径より小さい。
 ここで、バンドル光ファイバ36は、1層目の単一コア光ファイバ51a-r1,1の直径を最小とし、3層目の単一コア光ファイバ(51a-r3,1~51a-r3,10)の直径を最大としているので、各単一コア光ファイバ51aに結合される光のパワーは均等になる。つまり、バンドル光ファイバ36は、束ねる単一コア光ファイバ51aのコア52の大きさを調整することにより結合される光パワーを均一化し、公平性を担保する。
 図7のように、光源部11とバンドル光ファイバ36との間に光L1のスポット径を絞る光学系11cが配置されていてもよい。
 図6や図7の構成のように光源部11からバンドル光ファイバ36の各単一コア光ファイバ51aへ結合した光のパワーが均一であるため、照射部13が照射する光L2のエネルギーも均一になる。
 光源部11の発光パワーをPin
バンドル光ファイバ36に含まれる単一コア光ファイバ51aのコア数I(それぞれのコアを識別するための識別子iを所在地rl,m(lは層数、mは番地)で表してもよい。)、
各単一コア光ファイバ51aのコアへの結合効率C
とする。
 各コアへの結合光パワーPcou,Ciは、
cou,Ci=Pin×C
で表せる。Pcou,Ciが全ての単一コア光ファイバ51aで等しくなるように結合効率Cを設定、すなわち、各単一コア光ファイバ51aのコア径を調整する。
 そのように調整することで、各照射対象域への公平なパワー割当が可能となる。
 光源部11が出力する光L1が紫外光であるなら、各照射対象域ARnで公平な不活化が可能となる。また、バンドル光ファイバ36によって、パワー偏差が生じないため、各照射対象域ARnにおいて短時間化や、パワーが無駄にならないことから低消費電力化、しいてはコスト削減効果を得ることが可能である。
 なお、本実施形態では、単一コア光ファイバ51aのコア径で結合率を調整し、所望の結合効率Cを得ている場合を説明したが、結合率を一端T1における各単一コア光ファイバ51aのコアの開口数(NA)で調整してもよい。
(実施形態2)
 実施形態1では、それぞれの単一コア光ファイバ51aのコア径や一端T1での開口数を調整することで、一端T1におけるスポット域Lcに対するバンドル光ファイバ36の断面積に差異がある場合でも、結合パワーの大きさを各単一コア光ファイバ51aで均一化でき、公平性が保てる設計を説明した。
 本実施形態では、LEDの光源部11にて出力する光L1に対して、バンドル化する単一コア光ファイバ51aの設計(コア径やNA)を変更することにより、結合率をそれぞれの単一コア光ファイバ51aあるいは照射対象域ARnが所望するエネルギーに合わせる設計を説明する。
 図8は、本実施形態のバンドル光ファイバ36の効果を説明する図である。バンドル光ファイバ36の断面は図4で説明した断面に類似する。ただし、本実施形態のバンドル光ファイバ36は、単一コア光ファイバ51aの長さあるいは照射対象域ARnが所望するエネルギーに応じて結合率(コア径又は開口数)が調整される。例えば、図8のように照射対象域AR1が大きなエネルギーを要求し、照射対象域ARnが小さなエネルギーを要求している場合、一端T1において単一コア光ファイバ51a-r1,1に光L1が多く結合するように、単一コア光ファイバ51a-r3,mに光L1が少なく結合するようにコア径又は開口数を調整する。
 このように、バンドル光ファイバ36を、単一コア光ファイバ51aの長さや照射対象域ARnの要求に応じて単一コア光ファイバ51aに結合する光のパワー偏差を与えるように設計することで、各照射対象域ARnにおいて短時間化や、パワーが無駄にならないことから低消費電力化、しいてはコスト削減効果を得ることが可能である。
(他の実施形態)
 上述した実施形態は、光源部11がLEDである場合を説明した。しかし、本発明は、光源部11がLEDに限らず次のような光学特性を持つ光源(例えば、白熱ランプ、または放電ランプ)であってもよい。
・波長、振幅、又は位相にばらつきがある。
・光が散乱する。
・自然放出である。
[付録]
 バンドル光ファイバ36は、設計により、いずれの単一コア光ファイバ51aにも同じパワーの光を伝搬させることも、パワー偏差をつけて伝搬させることもできる。本付録では、その設計方法について説明する。
 各照射対象域に所望の光エネルギー(例えば、紫外光による不活化エネルギー)を照射できるように(設計方針に従って)バンドル光ファイバ36を設計するパラメータが複数存在する。本設計方法は、この設計方針に従ってバンドル光ファイバ36を含む光伝送システムのパラメータを算出する。つまり、本設計方法は、光伝送システムのパラメータを使って計算される、照射部13それぞれが出力する光L2のパワーが、前記照射対象域それぞれに必要なエネルギーを考慮した値となるように前記パラメータを調整する。
 前記パラメータは、
 光源部11が出力する光L1のパワーPin
 バンドル光ファイバ36に束ねられる光ファイバ51aの数I、
 バンドル光ファイバ36に束ねられる光ファイバ51aのそれぞれへ光L1が結合する結合効率C(iは光ファイバ51aを識別するための識別子)、
 照射部13の数n(nは1からNまでの整数)、
 光L1が結合されるバンドル光ファイバ36の一端T1から方路14を介してそれぞれの照射部13に至るまでの光経路の距離L、である。
 図9は、本設計方法を説明するフローチャートである。
 本設計方法は、それぞれの照射対象域ARnに必要なエネルギーE、それぞれの照射対象域ARnへの照射時間T、及び光経路における単位長あたりの伝搬損失CLossとしたとき、
[式(1)]
 E=Pin×C×L×CLoss×T
となるように前記パラメータを調整する。
 より具体的に説明する。
 本設計方法は、LEDである光源部11、バンドル光ファイバ36、バンドル分離後の方路14、及び照射部13を有する光伝送システム301(図10参照)であって、次のプロセスを有する。
 ステップS01:設計方針をたてる(設計者が行う)。なお、設計指針とは、例えば、バンドル光ファイバ36に含まれる光ファイバ51aを伝搬する光の強度が均等になるようにする、ある程度の偏差(外周の光ファイバ51aを伝搬する光の強度は中心付近の光ファイバ51aを伝搬する光の強度より小さくする)を持たせる、あるいは、一部の光ファイバ51aに対して光を伝搬させる、というような方針である。
 ステップS02:次のパラメータの設定を行う。
(i)LED光源部11の出力パワー(Pin)を設定する。
(ii)バンドル光ファイバ36のコア数(光ファイバ51aの数)Iを設定する。
(iii)バンドル光ファイバ36の一端T1における光L1の各光ファイバ51aへの結合効率(C)を取得する。ここで、“i”は一端T1における各光ファイバ51aを識別するための識別子である。例えば、識別子iをコアの座標や所在地rl,m(l:層数、m:番地)で表現することができる。
 結合効率(C)は、例えば、光ファイバ51aのコア径や開口数で調整することができる。また、結合効率(C)は、光源部11からの光L1のスポット径や照度分布によっても調整することができる。
(iv)照射対象域ARnの総数(N)を設定する。
(v)バンドル光ファイバ36および分離部T2以降の方路14それぞれの照射部13までの距離(L)を設定する。
(vi)伝搬損失特性(CLoss)を計算する。なお、CLoss=0.3としてもよい。
(vii)各照射対象域ARnにおいて所望されるエネルギー(E)を設定する(nは1からNまでの整数)。エネルギーEは、例えば、照射対象域の不活化に必要なエネルギー積算見込値であり、照射対象域の面積や照射時間Tを考慮して設定される。
 ステップS03:式(1)を利用して数値計算を行う。
 ステップS04:計算結果が設計方針に従った結果であるかを確認する。具体的には、照射対象域に所望のエネルギーEが照射されるか否かである。なお、照射対象域に照射されるエネルギーは必ずしもエネルギーEに等しくなくてもよく、エネルギーEに近似したエネルギーであってもよい。どの程度まで近似させるかは設計指針に従う。
 計算結果が設計方針に従っていなければ(ステップS04で“No”)、パラメータを変更してステップS02から再度行う。
 一方、計算結果が設計方針に従っていれば(ステップS04で“Yes”)、ステップS05を行う。
 ステップS05:各パラメータを確定し、単一方路14を各照射部13へ割当て、光伝送システム301を完成させる。
 なお、照射対象域ARnでの光パワーをPoutn、照射箇所Nでの照射時間TとするとEは、
 E=Poutn×T
と表せる。なおこのEは設計の見積もり値でその他の結合損失等はないものとする。
 Poutn
outn=Pin×C×L×CLoss
で表せる。
 ステップS03の数値計算は、設計方針に従って次のように行う。
(1)各照射部13が担当する照射対象域が公平に不活化されるように計算する。
 数値計算においてE=Poutn×Tの計算を実施するため、全ての照射部13の単位時間あたりのPoutnを一定にすることで公平性を保つことが可能である(公平性を担保)。
 従前のように、光源部11からの光L1のスポット径を大きくせずに公平性を担保できるため、無駄な光を低減でき、光源の低消費電力化が可能である。
(2)バンドル光ファイバ36、方路14、各照射部13が担当する照射対象域ARの状態に応じ、パワー偏差の重み付けを考慮して計算する。
 数値計算においてE=Poutn×Tの計算を実施するため、任意の照射対象域ARnにおける時間Tまたは、全ての照射対象域(AR1~ARN)における時間の和ΣTを最小化することで照射時間の短縮が可能である(短時間化)。
 照射時間の短縮ができるので、光源の低消費電力化が可能である。
 このように、ステップS03の数値計算は複数のパラメータ(Pin、C、N、L、CLoss、E)をもつ複雑系計算となり、所望の設計方針(得たい効果)を満足する結果を得ることができる。
 そのアルゴリズムについては、いずれの先行技術を活用可能で、例えば多目的最適化法などを適用しても良い。
11:光源部
11a:紫外光源部
11c:光学系
12:光分配部(等分岐)
13、13-1、・・・、13-n、・・・、13-N:照射部
14:方路(バンドル光ファイバ36に束ねられていた各単一コア光ファイバ51a)
16:光伝送路
36:バンドル光ファイバ
51a:単一コア光ファイバ
301:光伝送システム
L1、L2:光
Lc:光スポットの大きさ
AR1、AR2、・・・、ARn、・・・、ARN:照射対象域

Claims (8)

  1.  複数の単一コア光ファイバを束ねたバンドル光ファイバであって、
     一端において外部からの光を前記単一コア光ファイバに結合する結合率が、少なくとも一部の前記単一コア光ファイバと他の前記単一コア光ファイバとで異なっていることを特徴とするバンドル光ファイバ。
  2.  前記単一コア光ファイバのコア径を違えることで前記結合率を異ならせていることを特徴とする請求項1に記載のバンドル光ファイバ。
  3.  前記一端における前記単一コア光ファイバの開口数を違えることで前記結合率を異ならせていることを特徴とする請求項1に記載のバンドル光ファイバ。
  4.  断面において中心から外周に向けて前記単一コア光ファイバが層状に配置されており、前記層毎に前記結合率が異なることを特徴とする請求項1に記載のバンドル光ファイバ。
  5.  少なくとも最外層に含まれる前記単一コア光ファイバの前記結合率が最大であることを特徴とする請求項4に記載のバンドル光ファイバ。
  6.  外側にある層ほど前記単一コア光ファイバの前記結合率が大きいことを特徴とする請求項4に記載のバンドル光ファイバ。
  7.  前記一端に結合した前記外部からの光の強度が全ての前記単一コア光ファイバで等しくなるように前記結合率を異ならせていることを特徴とする請求項1に記載のバンドル光ファイバ。
  8.  前記一端でそれぞれの前記単一コア光ファイバに結合した前記外部からの光が他端においてそれぞれの前記単一コア光ファイバから出力するときに、所望のパワー偏差となるように前記結合率を異ならせていることを特徴とする請求項1に記載のバンドル光ファイバ。
PCT/JP2022/038675 2022-10-18 2022-10-18 バンドル光ファイバ WO2024084562A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038675 WO2024084562A1 (ja) 2022-10-18 2022-10-18 バンドル光ファイバ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038675 WO2024084562A1 (ja) 2022-10-18 2022-10-18 バンドル光ファイバ

Publications (1)

Publication Number Publication Date
WO2024084562A1 true WO2024084562A1 (ja) 2024-04-25

Family

ID=90737087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038675 WO2024084562A1 (ja) 2022-10-18 2022-10-18 バンドル光ファイバ

Country Status (1)

Country Link
WO (1) WO2024084562A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727206A (en) * 1980-07-28 1982-02-13 Sumitomo Electric Ind Ltd Bundle fiber
JPS61137104A (ja) * 1984-12-08 1986-06-24 Hitachi Cable Ltd イメ−ジフアイバ
JPH06281676A (ja) * 1993-03-29 1994-10-07 Ngk Insulators Ltd 光学式物理量検出センサ
JPH0966020A (ja) * 1995-09-01 1997-03-11 Toshiba Corp 内視鏡装置
JP2001166157A (ja) * 1999-12-09 2001-06-22 Mitsubishi Rayon Co Ltd 分散型混合多芯プラスチック光ファイバおよびプラスチック光ファイバケーブル
JP2011143350A (ja) * 2010-01-14 2011-07-28 Fujikura Ltd 光照射装置
WO2019186718A1 (ja) * 2018-03-27 2019-10-03 株式会社住田光学ガラス 光ファイババンドル、内視鏡用スコープ、及び、内視鏡
US20220079448A1 (en) * 2013-06-19 2022-03-17 The General Hospital Corporation Apparatus, devices and methods for obtaining omnidirectional viewing by a catheter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727206A (en) * 1980-07-28 1982-02-13 Sumitomo Electric Ind Ltd Bundle fiber
JPS61137104A (ja) * 1984-12-08 1986-06-24 Hitachi Cable Ltd イメ−ジフアイバ
JPH06281676A (ja) * 1993-03-29 1994-10-07 Ngk Insulators Ltd 光学式物理量検出センサ
JPH0966020A (ja) * 1995-09-01 1997-03-11 Toshiba Corp 内視鏡装置
JP2001166157A (ja) * 1999-12-09 2001-06-22 Mitsubishi Rayon Co Ltd 分散型混合多芯プラスチック光ファイバおよびプラスチック光ファイバケーブル
JP2011143350A (ja) * 2010-01-14 2011-07-28 Fujikura Ltd 光照射装置
US20220079448A1 (en) * 2013-06-19 2022-03-17 The General Hospital Corporation Apparatus, devices and methods for obtaining omnidirectional viewing by a catheter
WO2019186718A1 (ja) * 2018-03-27 2019-10-03 株式会社住田光学ガラス 光ファイババンドル、内視鏡用スコープ、及び、内視鏡

Similar Documents

Publication Publication Date Title
CN106794357B (zh) 杀菌装置
JP2020072862A (ja) 抗菌光伝送装置および表面を殺菌する方法
JP2017502717A (ja) 照射される包帯および創傷を殺菌する方法
JP2024059974A (ja) 紫外光照射システム
WO2024084562A1 (ja) バンドル光ファイバ
WO2024084561A1 (ja) 光伝送システムの設計方法及び設計装置
US20230390436A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2024105875A1 (ja) 光伝送システム及び光伝送方法
WO2023058144A1 (ja) 紫外光照射システム及び紫外光照射方法
US20220283476A1 (en) Light generation and distribution methods and systems for disinfection, medical therapeutics, and lighting
WO2022085142A1 (ja) 紫外光照射システム及び方法
JP7548315B2 (ja) 紫外光照射システム及び除染方法
WO2024100862A1 (ja) 光伝送システム
WO2024105873A1 (ja) 光スポット整形器及び光伝送システム
WO2023084677A1 (ja) 紫外光照射システム
WO2024100864A1 (ja) 光伝送システム及び光伝送方法
WO2022024406A1 (ja) 紫外光照射システム
WO2023073771A1 (ja) 紫外光照射システム
WO2024100863A1 (ja) 光伝送システム及び光伝送方法
US20240181099A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2023073774A1 (ja) 紫外光照射システム
US20240157003A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
JP7571789B2 (ja) 紫外光照射システム
WO2023073884A1 (ja) 紫外光照射システム
WO2023073885A1 (ja) 紫外光照射システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962674

Country of ref document: EP

Kind code of ref document: A1