WO2024100862A1 - Optical transmission system - Google Patents

Optical transmission system Download PDF

Info

Publication number
WO2024100862A1
WO2024100862A1 PCT/JP2022/042008 JP2022042008W WO2024100862A1 WO 2024100862 A1 WO2024100862 A1 WO 2024100862A1 JP 2022042008 W JP2022042008 W JP 2022042008W WO 2024100862 A1 WO2024100862 A1 WO 2024100862A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
optical fiber
transmission system
bundle
Prior art date
Application number
PCT/JP2022/042008
Other languages
French (fr)
Japanese (ja)
Inventor
誉人 桐原
聖 成川
勝久 田口
亜弥子 岩城
和秀 中島
隆 松井
千里 深井
悠途 寒河江
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/042008 priority Critical patent/WO2024100862A1/en
Publication of WO2024100862A1 publication Critical patent/WO2024100862A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Definitions

  • This disclosure relates to an optical transmission system that uses an optical bundle made of multiple optical fibers as an optical transmission path.
  • Non-Patent Document 1 Mobile sterilization robot
  • the product of Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light.
  • the robot can irradiate ultraviolet light while moving around a room in a building such as a hospital room, thereby automatically sterilizing a wide area without human intervention.
  • Non-Patent Document 2 Freestanding Air Purifier
  • the product in Non-Patent Document 2 is a device that is installed on the ceiling or a predetermined location in a room and circulates the air in the room while sterilizing, etc.
  • Non-Patent Document 3 is a portable device equipped with an ultraviolet light source. A user can take the device to a desired area and irradiate ultraviolet light. Therefore, the device can be used in various places.
  • Non-Patent Document 1 irradiates high-power ultraviolet light, so the device is large-scale and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
  • the product of Non-Patent Document 2 sterilizes the circulated indoor air, and therefore cannot irradiate the location where sterilization is desired with ultraviolet light directly.
  • Non-Patent Document 3 cannot irradiate ultraviolet light onto, for example, narrow pipes or areas where people cannot enter.
  • the products described in non-patent documents have a problem in that they lack versatility in terms of being able to irradiate ultraviolet light at any location.
  • (3) Operability The product of Non-Patent Document 3 is portable and can irradiate ultraviolet light in various locations. However, in order to obtain sufficient sterilization effects at the target location, the user is required to have skills and knowledge, and there are problems with operability.
  • an ultraviolet light irradiation system 300 using optical fibers as shown in FIG. 1 can be considered.
  • ultraviolet light is transmitted from the ultraviolet light source unit 11a using a thin and easily bendable optical fiber, and the ultraviolet light output from the tip of the optical fiber 14 is irradiated to the irradiation target area AR where pinpoint sterilization is desired. Since ultraviolet light can be irradiated to any location simply by moving the irradiation unit 13 at the tip of the optical fiber 14, the versatility of the above issue (2) can be resolved. In addition, since there is no need to move or set up the ultraviolet light source, and no skill or knowledge is required of the user, the operability of the above issue (3) can also be resolved.
  • an optical distribution unit 12 such as an optical splitter in the optical transmission path 16 and configuring a system of P-MP (Point to Multipoint) such as FTTH (Fiber To The Home), multiple locations can be sterilized by sharing a single light source. Therefore, the economics of the above issue (1) can also be resolved.
  • P-MP Point to Multipoint
  • FTTH Fiber To The Home
  • Coupled efficiency means the ratio of the power input to the optical fiber (optically coupled to the optical fiber core) to the output power of the light source.
  • Figure 2(A) Since the light-emitting surface of an LED is larger than that of a laser, even if you try to couple the light output from the LED to a single-core optical fiber, the core area in the cross section is narrow, and most of the light is not coupled, resulting in low coupling efficiency ( Figure 2(A)).
  • FIG. 3A is a diagram for explaining how the light L1 from the light source unit 11 is irradiated onto one end of the bundle optical fiber 36, how the bundle optical fiber 36 is separated into each single optical fiber 51a at the other end to become the path 14, and how the light propagating through it is emitted (the irradiation target area ARn is located at the end of the emitted light).
  • the bundle optical fiber 36 is a bundle of multiple single-core optical fibers 51a.
  • the light L1 from the light source unit 11 is irradiated onto one end (the coupling portion) of the bundle optical fiber 36, but the illuminance is not uniform on the irradiation surface (light spot) (there is a power deviation). Specifically, the illuminance is high near the center of the light spot, and low around the light spot.
  • the light spot may only partially hit the core of the outer peripheral optical fiber 51a of the bundle optical fiber 36.
  • each irradiation target area ARn of the ultraviolet light irradiation system 300 in FIG. 1 does not necessarily require ultraviolet light of the same power.
  • the irradiation target area AR1 may require ultraviolet light of twice the power of the irradiation target area ARN, while the irradiation target area AR2 may be sufficient with ultraviolet light of 1/2 the power of the irradiation target area ARN.
  • each irradiation target area ARn requires ultraviolet light of different power, coupling light to each single-core optical fiber of the bundle optical fiber so that the power is uniform is not fair to the requirements.
  • the present invention aims to provide an optical transmission system that can couple the optical power required by each irradiation target area to a single-core optical fiber of a bundle optical fiber corresponding to each irradiation target area.
  • the optical transmission system of the present invention actively utilizes the power deviation of the light from the light source unit to couple light to one end of the bundle optical fiber.
  • the optical transmission system comprises: A light source unit that outputs light; an optical transmission line that propagates the light through a plurality of cores of an optical bundle formed by bundling a plurality of single-core optical fibers; an optical coupling unit that causes the light output from the light source unit to enter the multiple cores;
  • An optical transmission system comprising:
  • the optical coupling unit includes:
  • the present invention is characterized in that a coupling state in which the light is incident on the cores is arbitrarily adjusted, and as the adjustment of the coupling state, a spot shape of the light is adjusted between a size that includes all of the multiple cores and a size that includes only one of the multiple cores.
  • the present invention can provide an optical transmission system that can couple the optical power required by each irradiation target area to a single-core optical fiber of a bundle optical fiber corresponding to each irradiation target area.
  • the optical coupling unit is characterized in that it adjusts the coupling state while aligning the optical axis of the light with the central axis of the bundle optical fiber.
  • the optical coupling unit adjusts the coupling state while aligning the optical axis of the light with the central axis of the bundle optical fiber.
  • the optical coupling unit is characterized in that the optical axis of the light is shifted from the central axis of the bundle optical fiber to adjust the coupling state. By shifting the optical axis, it is possible to irradiate light with a narrowed spot shape at the position where the single-core optical fiber corresponding to the irradiation target area requiring a large amount of optical power is located.
  • the present invention can provide an optical transmission system that can couple the optical power required by each irradiation target area to a single-core optical fiber of a bundle optical fiber corresponding to each irradiation target area.
  • FIG. 1 is a diagram illustrating a problem to be solved by the present invention.
  • FIG. 1 is a diagram illustrating a problem to be solved by the present invention.
  • FIG. 1 is a diagram illustrating a problem to be solved by the present invention.
  • 1 is a diagram illustrating an optical transmission system according to the present invention;
  • 5A and 5B are diagrams for explaining adjustment of a coupling state performed by an optical coupling unit of the optical transmission system according to the present invention;
  • 1 is a diagram illustrating an optical transmission system according to the present invention;
  • 1 is a diagram illustrating an optical transmission system according to the present invention;
  • 1 is a diagram illustrating an optical transmission system according to the present invention;
  • 1 is a diagram illustrating an optical transmission system according to the present invention;
  • 1 is a diagram illustrating an optical transmission system according to the present invention;
  • 1 is a diagram illustrating an optical transmission system according to the present invention;
  • FIG. 4 is a diagram illustrating an optical transmission system 301 according to the present embodiment.
  • the optical transmission system 301 includes: A light source unit 11 that outputs light L1; an optical transmission line that propagates light L1 through a plurality of cores of a bundle optical fiber 36 in which a plurality of single-core optical fibers 51a are bundled; an optical coupling unit 11d that couples the light L1 output from the light source unit 11 to the multiple cores; Equipped with.
  • the optical coupling unit 11d is The coupling state of the light L1 incident on the cores is arbitrarily adjusted, and as the adjustment of the coupling state, a spot shape Lc of the light L1 is adjusted between a size that includes all of the multiple cores and a size that includes only one of the multiple cores.
  • the light source unit 11 is an LED that outputs ultraviolet light, visible light, or infrared light L1.
  • the bundle optical fiber 36 is a bundle of a plurality of single-core optical fibers 51a.
  • the single-core optical fibers 51a are separated at the other end T2 and wired to the respective irradiation target areas.
  • the optical coupling unit 11d adjusts the size of the spot shape of the light L1 from the light source unit 11 and irradiates it onto one end T1 of the bundle optical fiber 36.
  • the size of the spot shape of the light L1 at one end T1 of the bundle optical fiber 36 is indicated by "Lc".
  • the optical coupling unit 11d adjusts the size Lc of the spot shape to adjust the coupling rate of the light coupled to the core of each single-core optical fiber 51a.
  • “coupling rate” means the ratio between the total power of the light L1 output by the light source unit 11 and the power of the light L1 coupled to each single-core optical fiber 51a at one end T1 of the bundle optical fiber 36.
  • the optical coupling unit 11d eliminates the power deviation of the light L1 at one end T1 and couples the light L1 fairly to the core of each single-core optical fiber 51a (realizing power fairness), couples the light L1 to the core of each single-core optical fiber 51a by utilizing the power deviation of the light L1 at one end T1 so as to satisfy the power required by the irradiation target area (realizing fairness of requirements), or reduces the light L1 that is not coupled to the core of the single-core optical fiber 51a (reducing waste and saving power).
  • Figure 5 is a diagram explaining the adjustment of the coupling state performed by the optical coupling unit 11d. All of Figure 5 shows the state of the size Lc of the spot shape of the light L1 at one end T1 of the bundle optical fiber 36.
  • Figures 5(A) to 5(C) are diagrams explaining how the optical coupling unit 11d adjusts the coupling state (adjusts the size Lc of the spot shape) while aligning the optical axis of the light L1 with the central axis of the bundle optical fiber 36.
  • the optical coupling unit 11d widens the size Lc of the spot shape as shown in FIG. 5(A), uniform power can be coupled to each single-core optical fiber 51a, except for the single-core optical fiber 51a on the outer periphery of the bundle optical fiber 36.
  • the optical coupling unit 11d adjusts the size Lc of the spot shape as shown in FIG. 5(A)
  • the uniformity and fairness of the power of the light irradiated to the irradiation target area can be improved.
  • the optical coupling unit 11d narrows the size Lc of the spot shape to an extent that only one single-core optical fiber 51a is included, as shown in FIG. 5(B), the light L1 output by the light source unit 11 can be concentrated on the core of the single-core optical fiber 51a, and strong power light can be supplied to the irradiation target area corresponding to the single-core optical fiber 51a.
  • the light L1 is ultraviolet light
  • the inactivation of the irradiation target area can be completed in a short period of time.
  • the optical coupling section 11d can narrow the size Lc of the spot shape to an extent that includes multiple single-core optical fibers 51a located near the center of the bundle optical fiber 36, as shown in Figure 5(C).
  • the optical coupling unit 11d can change the size Lc of the spot shape according to the requirements of the irradiation target area.
  • the optical coupling unit 11d can know the requirements of the irradiation target area by some means (for example, a light request signal from the irradiation target area, an instruction signal from an operator, etc.). Furthermore, the optical coupling portion 11d may periodically change the positional relationship as shown in FIG. 5(A) to (B), (B) to (C), and (C) to (A).
  • Figures 5 (D1) to 5 (D3) are diagrams that explain how the optical coupling unit 11d adjusts the coupling state (adjusts the positional relationship) while shifting the optical axis of the light L1 from the central axis of the bundle optical fiber 36.
  • the optical coupling unit 11d narrows the size Lc of the spot shape of the light L1 to the extent that only one single-core optical fiber 51a or a plurality of single-core optical fibers 51a are included. Then, the optical coupling unit 11d adjusts the positional relationship between the optical axis of the light L1 and the central axis of the bundle optical fiber 36 so that the single-core optical fiber 51a corresponding to the irradiation target area requesting light is included within the size Lc of the spot shape. If the irradiation target area requesting light changes, the optical coupling unit 11d changes the positional relationship from FIG. 5 (D1) to FIG. 5 (D2) or from FIG. 5 (D1) to FIG. 5 (D3) accordingly.
  • the optical coupling unit 11d can know that the irradiation target area requesting light has changed by some means (for example, a light request signal from the irradiation target area or an instruction signal from the operator). Furthermore, the optical coupling section 11d may rotate the spot of the light L1 clockwise, such as from (D1) to (D2), from (D2) to (D3), and from (D3) to (D1) in FIG.
  • the optical coupling section 11d having the above-mentioned function may be mechanically controlled or optically controlled.
  • the optical coupling unit 11d when adjusting the size Lc of the spot shape as shown in Figures 5(A) to 5(C), the optical coupling unit 11d adjusts the distance between the light source unit 11 and one end T1 of the bundle optical fiber 36.
  • the optical coupling unit 11d when adjusting the coupling position of the light as shown in Figures 5(D1) to 5(D3), the optical coupling unit 11d adjusts the positional relationship between the optical axis of the light L1 and the central axis of the bundle optical fiber 36.
  • the optical coupling unit 11d is an optical control unit
  • the optical coupling unit 11d adjusts the optical components provided (condenser lens, wide-angle lens, beam splitter, prism, mirror, etc.).
  • (Embodiment 2) 6 is a diagram for explaining an optical transmission system 302 of this embodiment.
  • the optical transmission system 302 is configured to further include a monitoring unit 40 in the irradiation target area AR compared to the optical transmission system 301 of FIG. 4, and to feed back the monitoring value of the light L2 monitored by the monitoring unit 40 to the optical coupling unit 11d.
  • the optical transmission system 302 is configured to transmit the light L1 from the light source unit 11 as a whole through the bundle optical fiber 36, and irradiate it as light L2 from the other end T2 to one irradiation target area AR.
  • the "monitoring value" is, for example, the power or illuminance of the light L2, or a deviation thereof.
  • the monitoring unit 40 is located in the irradiation target area AR, but it may be located near the other end T2. Also, in FIG. 6, there is one monitoring unit 40, but multiple units may be placed within the irradiation target area AR to detect illuminance deviations and power deviations.
  • the monitoring unit 40 notifies the optical coupling unit 11d of the monitoring value of the light L2.
  • the monitoring unit 40 may also notify the optical coupling unit 11d of the required value (e.g., power, illuminance, or deviation thereof) required by the irradiation target area AR.
  • the optical coupling unit 11d compares the monitoring value notified by the monitoring unit 40 with the required value required by the irradiation target area AR, and adjusts the coupling state so that the monitoring value becomes the required value. Note that "so that the monitoring value becomes the required value” has the following meaning. (1) Matching the monitored value with the required value. (2) If the monitored value cannot be made to match the required value (for example, due to power deviation), the difference between the monitored value and the required value is reduced.
  • FIG. 7 is a diagram for explaining an optical transmission system 303 of this embodiment.
  • the bundle optical fiber 36 is disassembled at the other end T2 of the optical transmission system 301 of FIG. 4, and each single-core optical fiber 51a is wired to each irradiation unit 13 as a route 14.
  • a monitoring unit 40 is further provided in each irradiation target area ARn, and the monitoring value of the light L2 irradiated from each irradiation unit 13 to each irradiation target area ARn monitored by each monitoring unit 40 is fed back to the optical coupling unit 11d.
  • the "monitoring value" is, for example, the power or illuminance of the light L2.
  • the monitoring unit 40 exists in all irradiation target areas ARn, but may be disposed only in some irradiation target areas.
  • the monitoring unit 40 notifies the optical coupling unit 11d of the monitoring value of the light L2.
  • each monitoring unit 40 may also notify the optical coupling unit 11d of the required value (e.g., power or illuminance) required by the irradiation target area ARn.
  • the optical coupling unit 11d compares the monitoring value notified from each monitoring unit 40 with the required value required by the irradiation target area ARn, and adjusts the coupling state so that the monitoring value becomes the required value.
  • the optical coupling unit 11d adjusts the coupling state so that the monitoring values notified from each monitoring unit 40 are uniform or have the desired deviation.
  • “so as to be even” has the following meaning. (1) All monitored values must be the same. (2) If the monitored values cannot be made uniform (for example, due to power deviation), reduce the variance of the monitored values. Moreover, “so as to have a desired deviation” has the following meaning.
  • the “desired deviation” means that the power or illuminance of the light L2 is different for each irradiation target area or for each group of irradiation target areas (for example, AR1 to AR5 are strong illuminance, AR6 to AR10 are medium illuminance, and AR11 to AR20 are no irradiation, etc.).
  • Matching the deviation of the monitored value to a desired deviation (2) If the deviation of the monitored value cannot be made to coincide with the desired deviation, the difference between the deviation of the monitored value and the desired deviation is reduced.
  • FIG. 8 is a diagram illustrating an optical transmission system 304 according to the present embodiment.
  • the optical transmission system 304 is different from the optical transmission system 303 in Fig. 7 in that a monitoring unit 40 is connected to the tip of one or more specific paths 14, and the monitoring unit 40 is not present in the irradiation target area ARn.
  • the optical transmission system 304 is configured to feed back the monitoring value of the light L2 monitored by the monitoring unit 40 to the optical coupling unit 11d.
  • the optical coupling unit 11d compares the monitoring value notified from one or more monitoring units 40 with the required value required by the irradiation target area ARn, and adjusts the coupling state so that the monitoring value becomes the required value.
  • the optical coupling unit 11d adjusts the coupling state so that the monitoring values notified from each monitoring unit 40 are uniform or have the desired deviation.
  • the optical transmission system 304 may also be operated as follows.
  • the optical transmission system 304 also utilizes the power deviation when the ultraviolet light from the light source unit 11, which is an LED, is coupled at one end T1 of the bundle optical fiber 36, and utilizes (for example, inactivates) the high-power light propagating through the single-core optical fiber 51a near the center for the irradiation target area, and monitors the low-power light propagating through the single-core optical fiber 51a near the outer periphery by the monitoring unit 40.
  • the light coupled to the single-core optical fiber 51a with low power can be used to grasp the light propagation state without being wasted, ensuring safety, and there is no need to install a new device for ensuring safety, thereby reducing system costs.
  • the optical transmission system 304 feeds back monitoring information (whether or not light is propagating, or the power and illuminance of light) from the monitoring unit 40 to the optical coupling unit 11d.
  • Communication from the monitoring unit 40 to the optical coupling unit 11d may be wired or wireless.
  • the optical coupling unit 11d can perform the following controls based on the monitoring information. (1) If the light power is greater than the required value, the size of the spot shape of the light L1 is expanded (the illuminance at one end T1 decreases, and the power of the ultraviolet light coupled to the single-core optical fiber 51a decreases), the optical axis of the light L1 and the bundle optical fiber 36 is shifted, or the light is blocked by a shutter, a filter, or the like.
  • the optical transmission system 304 can ensure the safety of the entire system. Furthermore, since the optical transmission system 304 can vary the optical power to the irradiation target area, it is possible to shorten the irradiation time according to the conditions of the irradiation target area, reducing the waste of optical power and enabling the power consumption of the light source unit 11 to be reduced. In other words, the optical transmission system 304 makes it possible to reduce costs during system design and operation.
  • FIG. 9 is a diagram for explaining an optical transmission system 305 of this embodiment.
  • the optical transmission system 305 is different from the optical transmission system 304 of Fig. 8 in that the feedback is performed using at least one of the multiple single-core optical fibers 51a of the bundle optical fiber 36.
  • the single-core optical fiber 51a used for the feedback is preferably arranged on the outer periphery in the cross section of the bundle optical fiber 36.
  • the single-core optical fibers 51a included in the bundle optical fiber 36 that are not used for light propagation or monitoring by the monitoring unit 40 are used for communication, and connect the monitoring unit 40 to the optical coupling unit 11d.
  • the monitoring unit 40 may be one or more, and therefore the single-core optical fibers 51a for communication may also be one or more.
  • the single-core optical fiber 51a for optical monitoring and the single-core optical fiber 51a for communication may be installed together like a tape line and operated. In this way, there is no need to prepare a separate communication line (optical fiber cable or other communication means such as wireless) for feedback to the optical coupling unit 11d, so the cost of the entire system can be reduced. Also, if the irradiation target area and the monitoring unit 40 are installed in the same location, the single-core optical fiber 51a for optical propagation, optical monitoring, and communication can be tape-connected, further reducing the cost of system operation and management.
  • the light source unit 11 is an LED.
  • the light source unit 11 is not limited to an LED, and may be a light source (for example, an incandescent lamp or a discharge lamp) having the following optical characteristics. - There is variation in wavelength, amplitude, or phase. ⁇ Light is scattered. ⁇ It is a natural release.
  • the optical transmission system of this embodiment has the following features.
  • This optical transmission system includes an optical coupling unit 11d that utilizes the power deviation of the light L1 from the light source unit 11 having optical characteristics such as an LED, or a more pronounced power deviation, to adjust the coupling state of the light L1 to the bundle optical fiber 36 so as to have desired characteristics.
  • the optical coupling unit 11d may be a mechanism that mechanically adjusts the coupling state based on position information of both the light source unit 11 and the bundle optical fiber 36, or may be configured by an optical system (a condenser lens, a wide-angle lens, a beam splitter, a prism, a mirror, etc.).
  • the “desired characteristics” include, for example, uniformity of the optical power supplied to multiple irradiation target areas, fairness in response to the requirements of each irradiation target area, shortening the time for supplying light, a combination of these characteristics (fairness and shortening), or priority control of the irradiation target areas.
  • the optical coupling unit 11d adjusts the coupling state according to such desired characteristics, so that the present optical transmission system can achieve the desired characteristics.
  • light from a light source unit with optical characteristics such as an LED is coupled to the bundle optical fiber in accordance with the characteristics desired by the irradiation target area, so that fairness for the irradiation target area can be achieved and waste during coupling can be reduced.
  • the shape (spot) of the light L1 on a plane perpendicular to the optical axis is expressed as a circle.
  • the spot of the light L1 is not limited to a circle.
  • the spot of the light L1 emitted by the light source unit 11 has a shape other than a circle (for example, an ellipse or a polygon). Since the present invention includes such cases, the above-mentioned "spot shape" includes a circle and a shape other than a circle.
  • Light source unit 11a Ultraviolet light source unit 11c: Optical system 11d: Light combining unit 12: Light distribution unit (equal branching) 13, 13-1, ..., 13-n, ..., 13-N: Irradiation unit 14: Path (each single-core optical fiber 51a bundled in the bundle optical fiber 36) 16: Optical transmission path 36: Bundle optical fiber 40: Monitoring unit 51a: Single-core optical fibers 301 to 305: Optical transmission system L1, L2: Light Lc: Size of optical spot AR1, AR2, ..., ARn, ..., ARN: Irradiation target area

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

The purpose of the present invention is to provide an optical transmission system that is able to couple power of light requested by respective regions to be irradiated to a single core optical fiber of bundled optical fibers corresponding to each of the regions to be irradiated. An optical transmission system according to the present invention is characterized by comprising: a light source part 11 that outputs light L1; an optical transmission path that propagates the light L1 through a plurality of cores of a bundled optical fiber 36 in which a plurality of single core optical fibers 51a are bundled; and an optical coupling part 11d that causes the light L1 outputted by the light source part 11 to be incident to the plurality of cores, wherein the optical coupling part 11d arbitrarily adjusts the coupling states of the light L1 incident to the cores, and, as the adjustment of the coupling states, adjusts the spot shape of the light L1 between a size in which all of the cores are included and a size in which only one of the plurality of cores is included.

Description

光伝送システムOptical Transmission System
 本開示は、複数の光ファイバを束ねたバンドル光ファイバを光伝送路とした光伝送システムに関する。 This disclosure relates to an optical transmission system that uses an optical bundle made of multiple optical fibers as an optical transmission path.
 感染症予防などの目的から、紫外光を用いた殺菌やウィルスの不活化を行うシステムの需要が高まっている。当該システムには、大きく3つのカテゴリの製品がある。なお、本明細書では、「殺菌等」と記載する場合、殺菌とウィルスの不活化を意味するものとする。
(I)移動型殺菌ロボット
 非特許文献1の製品は、紫外光を照射する自律移動型のロボットである。当該ロボットは、病室などの建物内の部屋の中を移動しながら紫外光を照射することで、人手を介さず、自動で広い範囲の殺菌等を実現できる。
(II)据え置き型空気清浄機
 非特許文献2の製品は、天井や室内の所定の場所に設置され、室内の空気を循環しながら殺菌等する装置である。当該装置は、直接紫外光を照射せず、人体への影響がないため、安全性の高い殺菌等が可能である。
(III)ポータブル型殺菌装置
 非特許文献3の製品は、紫外光源を搭載したポータブル型の装置である。ユーザが当該装置を所望のエリアに持って行って紫外光を照射できる。このため、当該装置は様々な場所で使用可能である。
There is an increasing demand for systems that use ultraviolet light to sterilize and inactivate viruses for the purpose of preventing infectious diseases. There are three main categories of such systems. In this specification, the term "sterilization, etc." refers to sterilization and inactivation of viruses.
(I) Mobile sterilization robot The product of Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light. The robot can irradiate ultraviolet light while moving around a room in a building such as a hospital room, thereby automatically sterilizing a wide area without human intervention.
(II) Freestanding Air Purifier The product in Non-Patent Document 2 is a device that is installed on the ceiling or a predetermined location in a room and circulates the air in the room while sterilizing, etc. This device does not directly irradiate ultraviolet light and has no effect on the human body, so it is possible to sterilize, etc. with a high degree of safety.
(III) Portable sterilization device The product of Non-Patent Document 3 is a portable device equipped with an ultraviolet light source. A user can take the device to a desired area and irradiate ultraviolet light. Therefore, the device can be used in various places.
 しかし、非特許文献に記載される装置には次のような課題がある。
(1)経済性
 非特許文献1の製品は、高出力の紫外光を照射するため、装置が大掛かりとなり高価となる。このため、非特許文献1の製品には経済的なシステムの実現が困難という課題がある。
(2)汎用性
 非特許文献1の製品は、紫外光照射箇所がロボットが移動/進入できる場所に限定されるため、細かい場所や奥まった場所などへの紫外光の照射が困難である。
 非特許文献2の製品は、循環させた室内の空気を殺菌等するため、殺菌等をしたい場所に直接紫外光を照射することができない。
 非特許文献3の製品は、例えば、細い管路や人が入られないエリアについては紫外光を照射することができない。
 このように、非特許文献の製品には、任意の場所に紫外光を照射できるという汎用性に課題がある。
(3)操作性
 非特許文献3の製品は、可搬性であり様々な場所で紫外光の照射が可能である。しかし、対象箇所で十分な殺菌等の効果が得られるためには、ユーザにスキルや知識を要求しており、操作性に課題がある。
However, the devices described in the non-patent literature have the following problems.
(1) Economic Efficiency The product of Non-Patent Document 1 irradiates high-power ultraviolet light, so the device is large-scale and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
(2) Versatility With the product of Non-Patent Document 1, the areas to be irradiated with ultraviolet light are limited to areas where a robot can move/enter, making it difficult to irradiate narrow or deep areas with ultraviolet light.
The product of Non-Patent Document 2 sterilizes the circulated indoor air, and therefore cannot irradiate the location where sterilization is desired with ultraviolet light directly.
The product of Non-Patent Document 3 cannot irradiate ultraviolet light onto, for example, narrow pipes or areas where people cannot enter.
As described above, the products described in non-patent documents have a problem in that they lack versatility in terms of being able to irradiate ultraviolet light at any location.
(3) Operability The product of Non-Patent Document 3 is portable and can irradiate ultraviolet light in various locations. However, in order to obtain sufficient sterilization effects at the target location, the user is required to have skills and knowledge, and there are problems with operability.
 これらの課題に対して、図1のような光ファイバを用いた紫外光照射システム300が考えられる。この紫外光照射システムは、細くて曲げやすい光ファイバを用いて紫外光源部11aから紫外光を伝送し、光ファイバ14の先端から出力される紫外光をピンポイントで殺菌等したい照射対象域ARへ照射する。光ファイバ14の先端の照射部13を移動させるだけで任意の場所に紫外光を照射できるため上記課題(2)の汎用性を解消できる。また、紫外光光源の移動や設定が不要でユーザにスキルや知識を求めないため、上記課題(3)の操作性も解消できる。さらに、光スプリッタのような光分配部12を光伝送路16に設け、FTTH(Fiber To The Home)のようなP-MP(Point to MultiPoint)のシステム構成とすることで、単一の光源をシェアすることで複数の箇所を殺菌等できる。このため、上記課題(1)の経済性も解消できる。 To address these issues, an ultraviolet light irradiation system 300 using optical fibers as shown in FIG. 1 can be considered. In this ultraviolet light irradiation system, ultraviolet light is transmitted from the ultraviolet light source unit 11a using a thin and easily bendable optical fiber, and the ultraviolet light output from the tip of the optical fiber 14 is irradiated to the irradiation target area AR where pinpoint sterilization is desired. Since ultraviolet light can be irradiated to any location simply by moving the irradiation unit 13 at the tip of the optical fiber 14, the versatility of the above issue (2) can be resolved. In addition, since there is no need to move or set up the ultraviolet light source, and no skill or knowledge is required of the user, the operability of the above issue (3) can also be resolved. Furthermore, by providing an optical distribution unit 12 such as an optical splitter in the optical transmission path 16 and configuring a system of P-MP (Point to Multipoint) such as FTTH (Fiber To The Home), multiple locations can be sterilized by sharing a single light source. Therefore, the economics of the above issue (1) can also be resolved.
 さらに紫外光照射システムにおいて、光ファイバへの結合効率が高いレーザではなく安価なLED(Light-Emitting Diode)を光源に用いてシステムコストの低減を図ることが提案されている。ここで、「結合効率」とは、光源の出力パワーに対する光ファイバへ入力された(光ファイバコアに光結合された)パワーの比を意味する。
 この提案の課題を図2に示す。LEDは発光面がレーザに比べて広いため、LEDが出力した光を1本の単一コアの光ファイバに結合しようとしてもその断面におけるコア面積が狭く、ほとんどが結合されないため結合効率が低い(図2(A))。これは、レンズなどの光学系でLEDが出力した光を絞ったとしても同じである(図2(B))。つまり、光源にLEDを使用した場合、光源の出力パワーの大半が有効活用できないという課題がある。
 なお、この課題は紫外光を伝送する光伝送システムに限らず、赤外光や可視光を伝送する光伝送システムに共通する課題である。
Furthermore, in an ultraviolet light irradiation system, it has been proposed to use an inexpensive LED (Light-Emitting Diode) as a light source instead of a laser, which has a high coupling efficiency to an optical fiber, to reduce system costs. Here, "coupling efficiency" means the ratio of the power input to the optical fiber (optically coupled to the optical fiber core) to the output power of the light source.
The problem with this proposal is shown in Figure 2. Since the light-emitting surface of an LED is larger than that of a laser, even if you try to couple the light output from the LED to a single-core optical fiber, the core area in the cross section is narrow, and most of the light is not coupled, resulting in low coupling efficiency (Figure 2(A)). This is the same even if you narrow the light output from the LED using an optical system such as a lens (Figure 2(B)). In other words, when an LED is used as a light source, there is a problem that most of the output power of the light source cannot be effectively used.
This problem is not limited to optical transmission systems that transmit ultraviolet light, but is a common problem to optical transmission systems that transmit infrared light or visible light.
 ここで、マルチコア光ファイバ(MCF)や複数の単一コア光ファイバを束ねたバンドル光ファイバのように、断面に存在する複数のコアに光を結合すれば、結合効率が向上し、光源の出力パワーの無駄を低減することができる(図2(C))。 Here, if light is coupled to multiple cores present in the cross section, such as in a multi-core optical fiber (MCF) or a bundled optical fiber consisting of multiple single-core optical fibers, the coupling efficiency can be improved and the waste of output power from the light source can be reduced (Figure 2 (C)).
 このように光源の出力パワーの無駄を低減することができるバンドル光ファイバであるが、図3に示すような課題もある。
 図3(A)は、光源部11からの光L1がバンドル光ファイバ36の一端に照射される様子と、バンドル光ファイバ36が他端で各単一光ファイバ51aに分離され方路14となり、それを伝搬した光が放射される様子を説明する図である(放射された先には照射対象域ARnがある。)。バンドル光ファイバ36は複数の単一コア光ファイバ51aが束ねられたものである。光源部11からの光L1はバンドル光ファイバ36の一端(結合部)に照射されるが、その照射面(光スポット)において照度は均一ではない(パワー偏差がある。)。具体的には、光スポットの中心付近は照度が高く、光スポットの周辺は照度が低い。
 さらに、図3(A)のようにバンドル光ファイバ36の一端の大きさが光スポットの大きさLcより大きい場合、バンドル光ファイバ36の外周の光ファイバ51aのコアには一部にしか光スポットが当たらないこともある。このような状態で光L1がバンドル光ファイバ36に結合されると、バンドル光ファイバ36の外周の光ファイバ51aには中央の光ファイバ51aより小さいパワーの光が伝搬することになる。
 このような状態であると、バンドル光ファイバ36の他端(分離部)において、各光ファイバ51aをそれぞれの照射対象域へ分離した場合、バンドル光ファイバ36の外側の光ファイバ51aが出射する光は、バンドル光ファイバ36の中心付近の光ファイバ51aが出射する光よりパワーが小さくなる。
 この課題は、光学系11cで光L1を絞ったとしても同様である(図3(B))。
Although the optical fiber bundle can reduce waste of the output power of the light source in this way, it also has problems as shown in FIG.
3A is a diagram for explaining how the light L1 from the light source unit 11 is irradiated onto one end of the bundle optical fiber 36, how the bundle optical fiber 36 is separated into each single optical fiber 51a at the other end to become the path 14, and how the light propagating through it is emitted (the irradiation target area ARn is located at the end of the emitted light). The bundle optical fiber 36 is a bundle of multiple single-core optical fibers 51a. The light L1 from the light source unit 11 is irradiated onto one end (the coupling portion) of the bundle optical fiber 36, but the illuminance is not uniform on the irradiation surface (light spot) (there is a power deviation). Specifically, the illuminance is high near the center of the light spot, and low around the light spot.
3A, when the size of one end of the bundle optical fiber 36 is larger than the size Lc of the light spot, the light spot may only partially hit the core of the outer peripheral optical fiber 51a of the bundle optical fiber 36. When light L1 is coupled to the bundle optical fiber 36 in this state, light with a smaller power propagates through the outer peripheral optical fiber 51a of the bundle optical fiber 36 than through the central optical fiber 51a.
In this state, when each optical fiber 51a is separated into its respective irradiation target area at the other end (separation portion) of the bundle optical fiber 36, the light emitted from the optical fiber 51a on the outside of the bundle optical fiber 36 will have lower power than the light emitted from the optical fiber 51a near the center of the bundle optical fiber 36.
This problem also occurs when the light L1 is narrowed down by the optical system 11c (FIG. 3B).
 また、上記のパワー偏差を生じさせないようにするためには、結合部での光スポットの面積をバンドル光ファイバ36の一端の面積より大きくする必要がある(図3(C))。しかし、そのようにするとバンドル光ファイバ36に結合できない光が発生し、パワー損失が大きくなり、光源部11のパワーが無駄になる。これは、その無駄になっている分、照射可能な時間分だけ短時間化が困難、照射している光源の駆動時間分の低消費電力化が困難、結果低コスト化が困難となる。 Furthermore, to prevent the above-mentioned power deviation from occurring, it is necessary to make the area of the light spot at the coupling portion larger than the area of one end of the bundle optical fiber 36 (FIG. 3(C)). However, doing so will result in some light not being able to be coupled to the bundle optical fiber 36, resulting in large power losses and wasting the power of the light source unit 11. This means that it is difficult to shorten the time that irradiation is possible due to the amount of wasted power, and it is difficult to reduce the power consumption for the operating time of the irradiating light source, which results in difficulty in reducing costs.
 つまり、バンドル化の特徴を生かして単一コア光ファイバに分離して送受信するPoint to MultiPoint構成の紫外光照射システムには、
(課題1)光源からバンドル光ファイバへの結合部においてパワー偏差が生じるため、それぞれの照射部に対して公平にパワーを送受信することが困難、及び
(課題2)パワー偏差を無くそうとすれば、低コスト化や低消費電力化が困難、
という課題がある。
In other words, in a Point-to-Multipoint configuration ultraviolet light irradiation system that utilizes the characteristics of bundling to separate and transmit signals to a single-core optical fiber,
(Problem 1) Since power deviation occurs at the coupling portion from the light source to the bundle optical fiber, it is difficult to transmit and receive power fairly to each irradiation portion, and (Problem 2) if one tries to eliminate the power deviation, it is difficult to reduce costs and power consumption.
There is a problem that...
 ところで、図1の紫外光照射システム300の各照射対象域ARnは、全て同じパワーの紫外光を所望しているとは限らない。例えば、照射対象域AR1は照射対象域ARNの2倍のパワーの紫外光を必要とし、照射対象域AR2は照射対象域ARNの1/2倍のパワーの紫外光で十分であることもある。このように、各照射対象域ARnが異なるパワーの紫外光を要求している場合、バンドル光ファイバの各単一コア光ファイバにパワーが均等になるように光を結合することは、要求に対して公平ではない。 However, each irradiation target area ARn of the ultraviolet light irradiation system 300 in FIG. 1 does not necessarily require ultraviolet light of the same power. For example, the irradiation target area AR1 may require ultraviolet light of twice the power of the irradiation target area ARN, while the irradiation target area AR2 may be sufficient with ultraviolet light of 1/2 the power of the irradiation target area ARN. In this way, when each irradiation target area ARn requires ultraviolet light of different power, coupling light to each single-core optical fiber of the bundle optical fiber so that the power is uniform is not fair to the requirements.
 そこで、本発明は、上述した状況を鑑みて、それぞれの照射対象域が要求する光のパワーを、それぞれの照射対象域に対応するバンドル光ファイバの単一コア光ファイバに結合できる光伝送システムを提供することを目的とする。 In view of the above-mentioned circumstances, the present invention aims to provide an optical transmission system that can couple the optical power required by each irradiation target area to a single-core optical fiber of a bundle optical fiber corresponding to each irradiation target area.
 上記目的を達成するために、本発明に係る光伝送システムは、光源部からの光のパワー偏差を積極的に利用してバンドル光ファイバの一端に光を結合することとした。 In order to achieve the above objective, the optical transmission system of the present invention actively utilizes the power deviation of the light from the light source unit to couple light to one end of the bundle optical fiber.
 具体的には、本発明に係る光伝送システムは、
 光を出力する光源部と、
 複数のシングルコア光ファイバを束ねたバンドル光ファイバの複数のコアで前記光を伝搬する光伝送路と、
 前記光源部が出力した前記光を前記複数のコアに入射する光結合部と、
を備える光伝送システムであって、
 前記光結合部は、
 前記光が前記コアに入射する結合状態を任意に調整すること、及び
 前記結合状態の調整として、前記光のスポット形状を、前記複数のコアが全て含まれる大きさから前記複数のコアのうちの1つのみが含まれる大きさの間で調整すること
を特徴とする。
Specifically, the optical transmission system according to the present invention comprises:
A light source unit that outputs light;
an optical transmission line that propagates the light through a plurality of cores of an optical bundle formed by bundling a plurality of single-core optical fibers;
an optical coupling unit that causes the light output from the light source unit to enter the multiple cores;
An optical transmission system comprising:
The optical coupling unit includes:
The present invention is characterized in that a coupling state in which the light is incident on the cores is arbitrarily adjusted, and as the adjustment of the coupling state, a spot shape of the light is adjusted between a size that includes all of the multiple cores and a size that includes only one of the multiple cores.
 光のスポット形状の大きさを変化させることで、バンドル光ファイバに含まれる全ての単一コア光ファイバに均一に光を結合することもでき、特定の1本又はi本(iはI以下の自然数である。Iはバンドル光ファイバに含まれる全ての単一コア光ファイバの数である。)に光を結合することができる。 By changing the size of the light spot shape, it is also possible to uniformly couple light to all single-core optical fibers included in the bundle optical fiber, and to couple light to one specific fiber or to i specific fibers (i is a natural number less than or equal to I, and I is the number of all single-core optical fibers included in the bundle optical fiber).
 従って、本発明は、それぞれの照射対象域が要求する光のパワーを、それぞれの照射対象域に対応するバンドル光ファイバの単一コア光ファイバに結合できる光伝送システムを提供することができる。 Therefore, the present invention can provide an optical transmission system that can couple the optical power required by each irradiation target area to a single-core optical fiber of a bundle optical fiber corresponding to each irradiation target area.
 例えば、前記光結合部は、前記光の光軸と前記バンドル光ファイバの中心軸とを合わせた状態で前記結合状態の調整を行うことを特徴とする。スポット形状の大きさを絞れば、バンドル光ファイバの中心付近の単一コア光ファイバに光が結合するため、当該単一コア光ファイバに対応した照射対象域に多くの光パワーを供給することができる。 For example, the optical coupling unit is characterized in that it adjusts the coupling state while aligning the optical axis of the light with the central axis of the bundle optical fiber. By narrowing the size of the spot shape, the light is coupled to a single-core optical fiber near the center of the bundle optical fiber, so that a large amount of optical power can be supplied to the irradiation target area corresponding to the single-core optical fiber.
 また、多くの光パワーを要求する照射対象域に対応する単一コア光ファイバがバンドル光ファイバの中心にあるとは限らない。そこで、前記光結合部は、前記光の光軸を前記バンドル光ファイバの中心軸からずらせた状態で前記結合状態の調整を行うことを特徴とする。光軸をずらすことで、多くの光パワーを要求する照射対象域に対応する単一コア光ファイバが配置された位置にスポット形状の大きさを絞った光を照射することができる。 In addition, the single-core optical fiber corresponding to the irradiation target area requiring a large amount of optical power is not necessarily located at the center of the bundle optical fiber. Therefore, the optical coupling unit is characterized in that the optical axis of the light is shifted from the central axis of the bundle optical fiber to adjust the coupling state. By shifting the optical axis, it is possible to irradiate light with a narrowed spot shape at the position where the single-core optical fiber corresponding to the irradiation target area requiring a large amount of optical power is located.
 なお、上記各発明は、可能な限り組み合わせることができる。 The above inventions can be combined as much as possible.
 本発明は、それぞれの照射対象域が要求する光のパワーを、それぞれの照射対象域に対応するバンドル光ファイバの単一コア光ファイバに結合できる光伝送システムを提供することができる。 The present invention can provide an optical transmission system that can couple the optical power required by each irradiation target area to a single-core optical fiber of a bundle optical fiber corresponding to each irradiation target area.
本発明の課題を説明する図である。FIG. 1 is a diagram illustrating a problem to be solved by the present invention. 本発明の課題を説明する図である。FIG. 1 is a diagram illustrating a problem to be solved by the present invention. 本発明の課題を説明する図である。FIG. 1 is a diagram illustrating a problem to be solved by the present invention. 本発明に係る光伝送システムを説明する図である。1 is a diagram illustrating an optical transmission system according to the present invention; 本発明に係る光伝送システムの光結合部が行う結合状態の調整を説明する図である。5A and 5B are diagrams for explaining adjustment of a coupling state performed by an optical coupling unit of the optical transmission system according to the present invention; 本発明に係る光伝送システムを説明する図である。1 is a diagram illustrating an optical transmission system according to the present invention; 本発明に係る光伝送システムを説明する図である。1 is a diagram illustrating an optical transmission system according to the present invention; 本発明に係る光伝送システムを説明する図である。1 is a diagram illustrating an optical transmission system according to the present invention; 本発明に係る光伝送システムを説明する図である。1 is a diagram illustrating an optical transmission system according to the present invention;
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 The following describes an embodiment of the present invention with reference to the attached drawings. The embodiment described below is an example of the present invention, and the present invention is not limited to the following embodiment. Note that components with the same reference numerals in this specification and drawings are mutually identical.
(実施形態1)
 図4は、本実施形態の光伝送システム301を説明する図である。光伝送システム301は、
 光L1を出力する光源部11と、
 複数のシングルコア光ファイバ51aを束ねたバンドル光ファイバ36の複数のコアで光L1を伝搬する光伝送路と、
 光源部11が出力した光L1を前記複数のコアに入射する光結合部11dと、
を備える。
(Embodiment 1)
FIG. 4 is a diagram illustrating an optical transmission system 301 according to the present embodiment. The optical transmission system 301 includes:
A light source unit 11 that outputs light L1;
an optical transmission line that propagates light L1 through a plurality of cores of a bundle optical fiber 36 in which a plurality of single-core optical fibers 51a are bundled;
an optical coupling unit 11d that couples the light L1 output from the light source unit 11 to the multiple cores;
Equipped with.
 光結合部11dは、
 光L1が前記コアに入射する結合状態を任意に調整すること、及び
 前記結合状態の調整として、光L1のスポット形状Lcを、前記複数のコアが全て含まれる大きさから前記複数のコアのうちの1つのみが含まれる大きさの間で調整すること
を特徴とする。
The optical coupling unit 11d is
The coupling state of the light L1 incident on the cores is arbitrarily adjusted, and as the adjustment of the coupling state, a spot shape Lc of the light L1 is adjusted between a size that includes all of the multiple cores and a size that includes only one of the multiple cores.
 光源部11は、紫外光、可視光、又は赤外光の光L1を出力するLEDである。
 バンドル光ファイバ36は、図3(A)での説明のように、複数の単一コア光ファイバ51aを束ねたものである。単一コア光ファイバ51aは他端T2で解体され、それぞれの照射対象域まで配線される。
The light source unit 11 is an LED that outputs ultraviolet light, visible light, or infrared light L1.
3A, the bundle optical fiber 36 is a bundle of a plurality of single-core optical fibers 51a. The single-core optical fibers 51a are separated at the other end T2 and wired to the respective irradiation target areas.
 光結合部11dは、光源部11からの光L1のスポット形状の大きさを調整してバンドル光ファイバ36の一端T1に照射する。バンドル光ファイバ36の一端T1における光L1のスポット形状の大きさを“Lc”で示している。光結合部11dは、スポット形状の大きさLcを調整することで、それぞれの単一コア光ファイバ51aのコアへ結合する光の結合率を調整する。ここで、本明細書において「結合率」とは、光源部11が出力する光L1の全パワーとバンドル光ファイバ36の一端T1においてそれぞれの単一コア光ファイバ51aに結合する光L1のパワーとの比を意味する。 The optical coupling unit 11d adjusts the size of the spot shape of the light L1 from the light source unit 11 and irradiates it onto one end T1 of the bundle optical fiber 36. The size of the spot shape of the light L1 at one end T1 of the bundle optical fiber 36 is indicated by "Lc". The optical coupling unit 11d adjusts the size Lc of the spot shape to adjust the coupling rate of the light coupled to the core of each single-core optical fiber 51a. Here, in this specification, "coupling rate" means the ratio between the total power of the light L1 output by the light source unit 11 and the power of the light L1 coupled to each single-core optical fiber 51a at one end T1 of the bundle optical fiber 36.
 光結合部11dは、結合率を調整することで、一端T1における光L1のパワー偏差を解消して光L1を各単一コア光ファイバ51aのコアへ公平に結合する(パワーの公平を実現)、一端T1における光L1のパワー偏差を利用して照射対象域が要求するパワーを満たすように光L1を各単一コア光ファイバ51aのコアへ結合する(要求の公平を実現)、あるいは、単一コア光ファイバ51aのコアへ結合されない光L1を低減する(無駄を低減して省電力化)。 By adjusting the coupling rate, the optical coupling unit 11d eliminates the power deviation of the light L1 at one end T1 and couples the light L1 fairly to the core of each single-core optical fiber 51a (realizing power fairness), couples the light L1 to the core of each single-core optical fiber 51a by utilizing the power deviation of the light L1 at one end T1 so as to satisfy the power required by the irradiation target area (realizing fairness of requirements), or reduces the light L1 that is not coupled to the core of the single-core optical fiber 51a (reducing waste and saving power).
 図5は、光結合部11dが行う結合状態の調整を説明する図である。図5は、いずれもバンドル光ファイバ36の一端T1における光L1のスポット形状の大きさLcの状態を示している。 Figure 5 is a diagram explaining the adjustment of the coupling state performed by the optical coupling unit 11d. All of Figure 5 shows the state of the size Lc of the spot shape of the light L1 at one end T1 of the bundle optical fiber 36.
 図5(A)から図5(C)は、光結合部11dが、光L1の光軸とバンドル光ファイバ36の中心軸とを合わせた状態で前記結合状態の調整(スポット形状の大きさLcの調整)を行うことを説明する図である。 Figures 5(A) to 5(C) are diagrams explaining how the optical coupling unit 11d adjusts the coupling state (adjusts the size Lc of the spot shape) while aligning the optical axis of the light L1 with the central axis of the bundle optical fiber 36.
 例えば、光結合部11dが、図5(A)のようにスポット形状の大きさLcを広げれば、バンドル光ファイバ36の外周部の単一コア光ファイバ51aを除けば、均一なパワーを各単一コア光ファイバ51aに結合することができる。つまり、光結合部11dが図5(A)のようにスポット形状の大きさLcを調整すれば、照射対象域へ照射する光のパワーの均一性や公平性を高めることができる。また、光源部11が出力する光L1のパワーに無駄が発生するが、スポット形状の大きさLcをバンドル光ファイバ36の直径より広げることで外周部の単一コア光ファイバ51aまでも均一なパワーを結合することができる。 For example, if the optical coupling unit 11d widens the size Lc of the spot shape as shown in FIG. 5(A), uniform power can be coupled to each single-core optical fiber 51a, except for the single-core optical fiber 51a on the outer periphery of the bundle optical fiber 36. In other words, if the optical coupling unit 11d adjusts the size Lc of the spot shape as shown in FIG. 5(A), the uniformity and fairness of the power of the light irradiated to the irradiation target area can be improved. In addition, although there is waste in the power of the light L1 output by the light source unit 11, by widening the size Lc of the spot shape beyond the diameter of the bundle optical fiber 36, uniform power can be coupled even to the single-core optical fiber 51a on the outer periphery.
 例えば、光結合部11dが、図5(B)のようにスポット形状の大きさLcを1つの単一コア光ファイバ51aのみが含まれる程度に絞れば、光源部11が出力した光L1を当該単一コア光ファイバ51aのコアに集中させることができ、当該単一コア光ファイバ51aに対応する照射対象域に強いパワーの光を供給することができる。例えば、光L1が紫外光ならば、当該照射対象域の不活化を短時間で終了させることができる。 For example, if the optical coupling unit 11d narrows the size Lc of the spot shape to an extent that only one single-core optical fiber 51a is included, as shown in FIG. 5(B), the light L1 output by the light source unit 11 can be concentrated on the core of the single-core optical fiber 51a, and strong power light can be supplied to the irradiation target area corresponding to the single-core optical fiber 51a. For example, if the light L1 is ultraviolet light, the inactivation of the irradiation target area can be completed in a short period of time.
 また、図5(A)と(B)で説明した効果を折衷した効果を得るように、光結合部11dが、図5(C)のようにスポット形状の大きさLcをバンドル光ファイバ36の中心付近にある複数の単一コア光ファイバ51aが含まれる程度に絞ることもできる。 In addition, to obtain a compromise between the effects described in Figures 5(A) and (B), the optical coupling section 11d can narrow the size Lc of the spot shape to an extent that includes multiple single-core optical fibers 51a located near the center of the bundle optical fiber 36, as shown in Figure 5(C).
 光結合部11dは、照射対象域の要求に応じてスポット形状の大きさLcを変化させることができる。光結合部11dは、照射対象域の要求を、何らかの手段(例えば、照射対象域からの光の要求信号や、作業者の指示信号など)で知ることができる。
 また、光結合部11dは、図5(A)から(B)、(B)から(C)、(C)から(A)のように、定期的に当該位置関係を変化させていってもよい。
The optical coupling unit 11d can change the size Lc of the spot shape according to the requirements of the irradiation target area. The optical coupling unit 11d can know the requirements of the irradiation target area by some means (for example, a light request signal from the irradiation target area, an instruction signal from an operator, etc.).
Furthermore, the optical coupling portion 11d may periodically change the positional relationship as shown in FIG. 5(A) to (B), (B) to (C), and (C) to (A).
 図5(D1)から図5(D3)は、光結合部11dが、光L1の光軸をバンドル光ファイバ36の中心軸からずらせた状態で前記結合状態の調整(位置関係の調整)を行うことを説明する図である。 Figures 5 (D1) to 5 (D3) are diagrams that explain how the optical coupling unit 11d adjusts the coupling state (adjusts the positional relationship) while shifting the optical axis of the light L1 from the central axis of the bundle optical fiber 36.
 光結合部11dは、光L1のスポット形状の大きさLcを1つの単一コア光ファイバ51aのみ、あるいは複数の単一コア光ファイバ51aが含まれる程度に絞る。そして、光結合部11dは、光を要求している照射対象域に対応する単一コア光ファイバ51aがスポット形状の大きさLcの中に入るように光L1の光軸とバンドル光ファイバ36の中心軸との位置関係を調整する。光を要求している照射対象域が変われば、光結合部11dはそれに応じて当該位置関係を図5(D1)から(D2)へ、あるいは図5(D1)から(D3)へ、のように変化させる。光結合部11dは、光を要求している照射対象域が変わったことを、何らかの手段(例えば、照射対象域からの光の要求信号や、作業者の指示信号など)で知ることができる。
 また、光結合部11dは、図5(D1)から(D2)、(D2)から(D3)、(D3)から(D1)のように時計回りで光L1のスポットを回転させていってもよい。
The optical coupling unit 11d narrows the size Lc of the spot shape of the light L1 to the extent that only one single-core optical fiber 51a or a plurality of single-core optical fibers 51a are included. Then, the optical coupling unit 11d adjusts the positional relationship between the optical axis of the light L1 and the central axis of the bundle optical fiber 36 so that the single-core optical fiber 51a corresponding to the irradiation target area requesting light is included within the size Lc of the spot shape. If the irradiation target area requesting light changes, the optical coupling unit 11d changes the positional relationship from FIG. 5 (D1) to FIG. 5 (D2) or from FIG. 5 (D1) to FIG. 5 (D3) accordingly. The optical coupling unit 11d can know that the irradiation target area requesting light has changed by some means (for example, a light request signal from the irradiation target area or an instruction signal from the operator).
Furthermore, the optical coupling section 11d may rotate the spot of the light L1 clockwise, such as from (D1) to (D2), from (D2) to (D3), and from (D3) to (D1) in FIG.
 上述したような機能を有する光結合部11dは、機械的な制御であっても、光学的な制御であってもよい。
 例えば、光結合部11dが機械的な制御である場合、図5(A)から(C)のようにスポット形状の大きさLcを調整するとき、光結合部11dは光源部11とバンドル光ファイバ36の一端T1との距離を調整する。また、図5(D1)から(D3)のように光の結合位置を調整するとき、光結合部11dは光L1の光軸とバンドル光ファイバ36の中心軸との位置関係を調整する。
The optical coupling section 11d having the above-mentioned function may be mechanically controlled or optically controlled.
For example, in the case where the optical coupling unit 11d is mechanically controlled, when adjusting the size Lc of the spot shape as shown in Figures 5(A) to 5(C), the optical coupling unit 11d adjusts the distance between the light source unit 11 and one end T1 of the bundle optical fiber 36. Also, when adjusting the coupling position of the light as shown in Figures 5(D1) to 5(D3), the optical coupling unit 11d adjusts the positional relationship between the optical axis of the light L1 and the central axis of the bundle optical fiber 36.
 一方、光結合部11dが光学的な制御である場合、図5(A)から(C)のようにスポット形状の大きさLcを調整するとき、備えられているレンズの焦点位置を調整する。また、図5(D1)から(D3)のように光の結合位置を調整するとき、光結合部11dは備えられている光学部材(集光レンズ、広角レンズ、ビームスプリッタ、プリズム、ミラー等)を調整する。 On the other hand, if the optical coupling unit 11d is an optical control unit, when adjusting the size Lc of the spot shape as shown in Figures 5 (A) to (C), the focal position of the lens provided is adjusted. Also, when adjusting the light coupling position as shown in Figures 5 (D1) to (D3), the optical coupling unit 11d adjusts the optical components provided (condenser lens, wide-angle lens, beam splitter, prism, mirror, etc.).
(実施形態2)
 図6は、本実施形態の光伝送システム302を説明する図である。光伝送システム302は、図4の光伝送システム301に対し、照射対象域ARに監視部40をさらに備え、監視部40が監視した光L2の監視値を光結合部11dへフィードバックする構成である。特に、光伝送システム302は、光源部11からの光L1を一体としてバンドル光ファイバ36で伝送し、他端T2から1つの照射対象域ARへ光L2として照射する構成である。なお、「監視値」とは、例えば、光L2のパワー、照度、又はこれらの偏差である。
(Embodiment 2)
6 is a diagram for explaining an optical transmission system 302 of this embodiment. The optical transmission system 302 is configured to further include a monitoring unit 40 in the irradiation target area AR compared to the optical transmission system 301 of FIG. 4, and to feed back the monitoring value of the light L2 monitored by the monitoring unit 40 to the optical coupling unit 11d. In particular, the optical transmission system 302 is configured to transmit the light L1 from the light source unit 11 as a whole through the bundle optical fiber 36, and irradiate it as light L2 from the other end T2 to one irradiation target area AR. The "monitoring value" is, for example, the power or illuminance of the light L2, or a deviation thereof.
 図6では、監視部40が照射対象域ARに存在しているが、他端T2の近傍にあってもよい。また、図6では、監視部40が1つであるが、照度偏差やパワー偏差を検知するために、照射対象域AR内に複数配置されていてもよい。 In FIG. 6, the monitoring unit 40 is located in the irradiation target area AR, but it may be located near the other end T2. Also, in FIG. 6, there is one monitoring unit 40, but multiple units may be placed within the irradiation target area AR to detect illuminance deviations and power deviations.
 監視部40は、光L2の監視値を光結合部11dに通知する。ここで、監視部40は、照射対象域ARが要求する要求値(例えば、パワー、照度、又はこれらの偏差)も光結合部11dに通知してもよい。 The monitoring unit 40 notifies the optical coupling unit 11d of the monitoring value of the light L2. Here, the monitoring unit 40 may also notify the optical coupling unit 11d of the required value (e.g., power, illuminance, or deviation thereof) required by the irradiation target area AR.
 光結合部11dは、監視部40から通知された監視値と照射対象域ARが要求する要求値を比較し、監視値が要求値となるように前記結合状態を調整する。なお、「監視値が要求値となるように」とは次の意味である。
(1)監視値を要求値に一致させること。
(2)監視値を要求値に一致させることができない場合(例えばパワー偏差など)、監視値と要求値との差分を小さくすること。
The optical coupling unit 11d compares the monitoring value notified by the monitoring unit 40 with the required value required by the irradiation target area AR, and adjusts the coupling state so that the monitoring value becomes the required value. Note that "so that the monitoring value becomes the required value" has the following meaning.
(1) Matching the monitored value with the required value.
(2) If the monitored value cannot be made to match the required value (for example, due to power deviation), the difference between the monitored value and the required value is reduced.
(実施形態3)
 図7は、本実施形態の光伝送システム303を説明する図である。光伝送システム303は、図4の光伝送システム301に対し、他端T2においてバンドル光ファイバ36が解体され、各単一コア光ファイバ51aが方路14としてそれぞれの照射部13まで配線されている。そして、各照射対象域ARnに監視部40をさらに備え、それぞれの監視部40が監視したそれぞれの照射部13から各照射対象域ARnに照射した光L2の監視値を光結合部11dへフィードバックする構成である。なお、「監視値」とは、例えば、光L2のパワー、又は照度である。なお、図7では、監視部40が全ての照射対象域ARnに存在しているが、一部の照射対象域のみに配置されていてもよい。
(Embodiment 3)
7 is a diagram for explaining an optical transmission system 303 of this embodiment. In the optical transmission system 303, the bundle optical fiber 36 is disassembled at the other end T2 of the optical transmission system 301 of FIG. 4, and each single-core optical fiber 51a is wired to each irradiation unit 13 as a route 14. A monitoring unit 40 is further provided in each irradiation target area ARn, and the monitoring value of the light L2 irradiated from each irradiation unit 13 to each irradiation target area ARn monitored by each monitoring unit 40 is fed back to the optical coupling unit 11d. Note that the "monitoring value" is, for example, the power or illuminance of the light L2. Note that, in FIG. 7, the monitoring unit 40 exists in all irradiation target areas ARn, but may be disposed only in some irradiation target areas.
 監視部40は、光L2の監視値を光結合部11dに通知する。ここで、それぞれの監視部40は、照射対象域ARnが要求する要求値(例えば、パワー、又は照度)も光結合部11dに通知してもよい。光結合部11dは、各監視部40から通知された監視値と照射対象域ARnが要求する要求値を比較し、監視値が要求値となるように前記結合状態を調整する。あるいは、光結合部11dは、各監視部40から通知された監視値が均等になるように、又は所望の偏差を持つように前記結合状態を調整する。 The monitoring unit 40 notifies the optical coupling unit 11d of the monitoring value of the light L2. Here, each monitoring unit 40 may also notify the optical coupling unit 11d of the required value (e.g., power or illuminance) required by the irradiation target area ARn. The optical coupling unit 11d compares the monitoring value notified from each monitoring unit 40 with the required value required by the irradiation target area ARn, and adjusts the coupling state so that the monitoring value becomes the required value. Alternatively, the optical coupling unit 11d adjusts the coupling state so that the monitoring values notified from each monitoring unit 40 are uniform or have the desired deviation.
 ここで、「均等になるように」とは次の意味である。
(1)全ての監視値を同値とすること。
(2)監視値を同値にできない場合(例えばパワー偏差など)、監視値の分散を小さくすること。
 また、「所望の偏差を持つように」とは次の意味である。
 「所望の偏差」とは、光L2のパワーや照度に照射対象域毎、あるいは照射対象域のグループ毎に差を設けること(例えば、AR1からAR5は強照度、AR6からAR10は中照度、AR11からAR20は照射無など)を意味しており、
(1)監視値の偏差を所望の偏差に一致させること。
(2)監視値の偏差を所望の偏差に一致させることができない場合、監視値の偏差を所望の偏差との差分を小さくすること。
Here, "so as to be even" has the following meaning.
(1) All monitored values must be the same.
(2) If the monitored values cannot be made uniform (for example, due to power deviation), reduce the variance of the monitored values.
Moreover, "so as to have a desired deviation" has the following meaning.
The "desired deviation" means that the power or illuminance of the light L2 is different for each irradiation target area or for each group of irradiation target areas (for example, AR1 to AR5 are strong illuminance, AR6 to AR10 are medium illuminance, and AR11 to AR20 are no irradiation, etc.).
(1) Matching the deviation of the monitored value to a desired deviation.
(2) If the deviation of the monitored value cannot be made to coincide with the desired deviation, the difference between the deviation of the monitored value and the desired deviation is reduced.
(実施形態4)
 図8は、本実施形態の光伝送システム304を説明する図である。光伝送システム304は、図7の光伝送システム303に対し、特定の1又は複数の方路14の先端に監視部40が接続され、照射対象域ARnには監視部40が無い構成である。
(Embodiment 4)
Fig. 8 is a diagram illustrating an optical transmission system 304 according to the present embodiment. The optical transmission system 304 is different from the optical transmission system 303 in Fig. 7 in that a monitoring unit 40 is connected to the tip of one or more specific paths 14, and the monitoring unit 40 is not present in the irradiation target area ARn.
 光伝送システム304も図7の光伝送システム303と同様に、監視部40が監視した光L2の監視値を光結合部11dへフィードバックする構成である。光結合部11dは、1又は複数の監視部40から通知された監視値と照射対象域ARnが要求する要求値を比較し、監視値が要求値となるように前記結合状態を調整する。あるいは、光結合部11dは、各監視部40から通知された監視値が均等になるように、又は所望の偏差を持つように前記結合状態を調整する。 Similar to the optical transmission system 303 in FIG. 7, the optical transmission system 304 is configured to feed back the monitoring value of the light L2 monitored by the monitoring unit 40 to the optical coupling unit 11d. The optical coupling unit 11d compares the monitoring value notified from one or more monitoring units 40 with the required value required by the irradiation target area ARn, and adjusts the coupling state so that the monitoring value becomes the required value. Alternatively, the optical coupling unit 11d adjusts the coupling state so that the monitoring values notified from each monitoring unit 40 are uniform or have the desired deviation.
 光伝送システム304を次のように動作させることもできる。
 光伝送システム304も、LEDである光源部11からの紫外光がバンドル光ファイバ36の一端T1において結合する時のパワー偏差を利用し、中心部寄りの単一コア光ファイバ51aを伝搬した大パワーの光を照射対象域に利用(例えば不活化)し、外周部寄りの単一コア光ファイバ51aを伝搬した小パワーの光を監視部40に監視させる。このような構成とすることで、パワーが小さい単一コア光ファイバ51aに結合した光を無駄にすることなく光の伝搬状況を把握することに使用して安全性を担保でき、且つ安全性を担保する新たな装置を設置する必要がなくシステムコストの低減を図ることができる。
The optical transmission system 304 may also be operated as follows.
The optical transmission system 304 also utilizes the power deviation when the ultraviolet light from the light source unit 11, which is an LED, is coupled at one end T1 of the bundle optical fiber 36, and utilizes (for example, inactivates) the high-power light propagating through the single-core optical fiber 51a near the center for the irradiation target area, and monitors the low-power light propagating through the single-core optical fiber 51a near the outer periphery by the monitoring unit 40. With such a configuration, the light coupled to the single-core optical fiber 51a with low power can be used to grasp the light propagation state without being wasted, ensuring safety, and there is no need to install a new device for ensuring safety, thereby reducing system costs.
 更に、光伝送システム304は、監視部40での監視情報(光が伝搬してきているか否か、あるいは光のパワーや照度)を光結合部11dにフィードバックする。監視部40から光結合部11dへの通信は、有線でも無線でもよい。光結合部11dは、監視情報に基づいて次の制御を行うことができる。
(1)光のパワーが要求値より大きい場合、光L1のスポット形状の大きさを広げる(一端T1での照度が下がり、単一コア光ファイバ51aに結合する紫外光のパワーが下がる)、光L1とバンドル光ファイバ36との光軸をずらす、またはシャッターやフィルタなどで遮断する。
(2)光のパワーが所望値より小さい場合、光L1のスポット形状の大きさを絞る(一端T1での照度が上がり、単一コア光ファイバ51aに結合する紫外光のパワーが上がる)、光L1とバンドル光ファイバ36との光軸を一致させる、またはシャッターやフィルタなどを開放する。
Furthermore, the optical transmission system 304 feeds back monitoring information (whether or not light is propagating, or the power and illuminance of light) from the monitoring unit 40 to the optical coupling unit 11d. Communication from the monitoring unit 40 to the optical coupling unit 11d may be wired or wireless. The optical coupling unit 11d can perform the following controls based on the monitoring information.
(1) If the light power is greater than the required value, the size of the spot shape of the light L1 is expanded (the illuminance at one end T1 decreases, and the power of the ultraviolet light coupled to the single-core optical fiber 51a decreases), the optical axis of the light L1 and the bundle optical fiber 36 is shifted, or the light is blocked by a shutter, a filter, or the like.
(2) If the light power is smaller than the desired value, narrow the size of the spot shape of the light L1 (the illuminance at one end T1 increases, and the power of the ultraviolet light coupled to the single-core optical fiber 51a increases), align the optical axes of the light L1 and the bundle optical fiber 36, or open a shutter, a filter, or the like.
 光伝送システム304は、このように動作することでシステム全体の安全性を担保することができる。また、光伝送システム304は、照射対象域への光のパワーを可変できるので、照射対象域の状況に合わせて照射時間を短時間化することができ、光パワーの無駄を低減して光源部11を省電力化することができる。つまり、光伝送システム304は、システム設計および運用時の低コスト化が可能である。 By operating in this manner, the optical transmission system 304 can ensure the safety of the entire system. Furthermore, since the optical transmission system 304 can vary the optical power to the irradiation target area, it is possible to shorten the irradiation time according to the conditions of the irradiation target area, reducing the waste of optical power and enabling the power consumption of the light source unit 11 to be reduced. In other words, the optical transmission system 304 makes it possible to reduce costs during system design and operation.
(実施形態5)
 図9は、本実施形態の光伝送システム305を説明する図である。光伝送システム305は、図8の光伝送システム304に対し、バンドル光ファイバ36の複数の単一コア光ファイバ51aの内の少なくとも1つを利用して前記フィードバックを行うことが異なる。ここで、前記フィードバックに利用される単一コア光ファイバ51aは、バンドル光ファイバ36の断面において外周に配置されたものであることが好ましい。
(Embodiment 5)
Fig. 9 is a diagram for explaining an optical transmission system 305 of this embodiment. The optical transmission system 305 is different from the optical transmission system 304 of Fig. 8 in that the feedback is performed using at least one of the multiple single-core optical fibers 51a of the bundle optical fiber 36. Here, the single-core optical fiber 51a used for the feedback is preferably arranged on the outer periphery in the cross section of the bundle optical fiber 36.
 光伝送システム305は、バンドル光ファイバ36に含まれる単一コア光ファイバ51aの内、光の伝搬や監視部40の監視に使用しないものを通信用とし、監視部40と光結合部11dとを接続している。ここで、監視部40は1つでも複数でも良いので、通信用の単一コア光ファイバ51aも1つでも複数でも良い。 In the optical transmission system 305, the single-core optical fibers 51a included in the bundle optical fiber 36 that are not used for light propagation or monitoring by the monitoring unit 40 are used for communication, and connect the monitoring unit 40 to the optical coupling unit 11d. Here, the monitoring unit 40 may be one or more, and therefore the single-core optical fibers 51a for communication may also be one or more.
 また、他端T2から監視部40までにおいて、光監視用の単一コア光ファイバ51aと通信用の単一コア光ファイバ51aをテープ線のようにまとめて設置して運用しても良い。こうすることで、光結合部11dへのフィードバック用の通信線(光ファイバケーブルやその他無線等の通信手段)を別途用意することがないため、システム全体を低コストすることができる。また、照射対象域と監視部40を同一箇所に設置すれば、光伝搬用、光監視用、及び通信用の単一コア光ファイバ51aをテープ化することで、さらにシステム運用管理の低コスト化も可能である。 Also, from the other end T2 to the monitoring unit 40, the single-core optical fiber 51a for optical monitoring and the single-core optical fiber 51a for communication may be installed together like a tape line and operated. In this way, there is no need to prepare a separate communication line (optical fiber cable or other communication means such as wireless) for feedback to the optical coupling unit 11d, so the cost of the entire system can be reduced. Also, if the irradiation target area and the monitoring unit 40 are installed in the same location, the single-core optical fiber 51a for optical propagation, optical monitoring, and communication can be tape-connected, further reducing the cost of system operation and management.
(他の実施形態)
 上述した実施形態は、光源部11がLEDである場合を説明した。しかし、本発明は、光源部11がLEDに限らず次のような光学特性を持つ光源(例えば、白熱ランプ、または放電ランプ)であってもよい。
・波長、振幅、又は位相にばらつきがある。
・光が散乱する。
・自然放出である。
Other Embodiments
In the above-described embodiment, the light source unit 11 is an LED. However, in the present invention, the light source unit 11 is not limited to an LED, and may be a light source (for example, an incandescent lamp or a discharge lamp) having the following optical characteristics.
- There is variation in wavelength, amplitude, or phase.
・Light is scattered.
・It is a natural release.
(効果)
 本実施形態の光伝送システムは、次のような特徴を有する。
 本光伝送システムは、LEDのような光学特性の光源部11からの光L1のパワー偏差、あるいはそれをさらに顕著化したパワー偏差を利用し、光L1がバンドル光ファイバ36へ結合する結合状態を所望の特性となるように調整する光結合部11dを備えている。光結合部11dは、光源部11とバンドル光ファイバ36の双方の位置情報によってメカニカルに調整する機構であってもよいし、光学系(集光レンズ、広角レンズ、ビームスプリッタ、プリズム、ミラー等)により構成されていてもよい。
(effect)
The optical transmission system of this embodiment has the following features.
This optical transmission system includes an optical coupling unit 11d that utilizes the power deviation of the light L1 from the light source unit 11 having optical characteristics such as an LED, or a more pronounced power deviation, to adjust the coupling state of the light L1 to the bundle optical fiber 36 so as to have desired characteristics. The optical coupling unit 11d may be a mechanism that mechanically adjusts the coupling state based on position information of both the light source unit 11 and the bundle optical fiber 36, or may be configured by an optical system (a condenser lens, a wide-angle lens, a beam splitter, a prism, a mirror, etc.).
 前記「所望の特性」としては、例えば、複数の照射対象域に供給される光パワーの均一性、それぞれの照射対象域の要求に対する公平性、光の供給時間の短時間化、これらを組み合わせた特性(公平かつ短時間化)、または照射対象域の優先度制御が挙げられる。光結合部11dがこのような所望の特性に応じて結合状態を調整することで、本光伝送システムは所望する特性を実現することができる。つまり、LEDのような光学特性の光源部からの光を照射対象域が所望する特性に合わせてバンドル光ファイバへ結合するので、照射対象域についての公平性、及び結合時の無駄を低減することができる。 The "desired characteristics" include, for example, uniformity of the optical power supplied to multiple irradiation target areas, fairness in response to the requirements of each irradiation target area, shortening the time for supplying light, a combination of these characteristics (fairness and shortening), or priority control of the irradiation target areas. The optical coupling unit 11d adjusts the coupling state according to such desired characteristics, so that the present optical transmission system can achieve the desired characteristics. In other words, light from a light source unit with optical characteristics such as an LED is coupled to the bundle optical fiber in accordance with the characteristics desired by the irradiation target area, so that fairness for the irradiation target area can be achieved and waste during coupling can be reduced.
(補足)
 本実施形態では、光L1の光軸に対して垂直な面における形(スポット)を円で表現している。しかし、光L1のスポットは円とは限らない。光源部11が出射する光L1のスポットが円以外(例えば、楕円状、多角形状)の場合もある。本発明は、そのような場合も含むため、上記の「スポット形状」は円及び円以外の形状を含むものとする。
(supplement)
In this embodiment, the shape (spot) of the light L1 on a plane perpendicular to the optical axis is expressed as a circle. However, the spot of the light L1 is not limited to a circle. There are also cases where the spot of the light L1 emitted by the light source unit 11 has a shape other than a circle (for example, an ellipse or a polygon). Since the present invention includes such cases, the above-mentioned "spot shape" includes a circle and a shape other than a circle.
11:光源部
11a:紫外光源部
11c:光学系
11d:光結合部
12:光分配部(等分岐)
13、13-1、・・・、13-n、・・・、13-N:照射部
14:方路(バンドル光ファイバ36に束ねられていた各単一コア光ファイバ51a)
16:光伝送路
36:バンドル光ファイバ
40:監視部
51a:単一コア光ファイバ
301~305:光伝送システム
L1、L2:光
Lc:光スポットの大きさ
AR1、AR2、・・・、ARn、・・・、ARN:照射対象域
11: Light source unit 11a: Ultraviolet light source unit 11c: Optical system 11d: Light combining unit 12: Light distribution unit (equal branching)
13, 13-1, ..., 13-n, ..., 13-N: Irradiation unit 14: Path (each single-core optical fiber 51a bundled in the bundle optical fiber 36)
16: Optical transmission path 36: Bundle optical fiber 40: Monitoring unit 51a: Single-core optical fibers 301 to 305: Optical transmission system L1, L2: Light Lc: Size of optical spot AR1, AR2, ..., ARn, ..., ARN: Irradiation target area

Claims (3)

  1.  光を出力する光源部と、
     複数のシングルコア光ファイバを束ねたバンドル光ファイバの複数のコアで前記光を伝搬する光伝送路と、
     前記光源部が出力した前記光を前記複数のコアに入射する光結合部と、
    を備える光伝送システムであって、
     前記光結合部は、
     前記光が前記コアに入射する結合状態を任意に調整すること、及び
     前記結合状態の調整として、前記光のスポット形状を、前記複数のコアが全て含まれる大きさから前記複数のコアのうちの1つのみが含まれる大きさの間で調整すること
    を特徴とする光伝送システム。
    A light source unit that outputs light;
    an optical transmission line that propagates the light through a plurality of cores of an optical bundle formed by bundling a plurality of single-core optical fibers;
    an optical coupling unit that causes the light output from the light source unit to enter the multiple cores;
    An optical transmission system comprising:
    The optical coupling unit includes:
    an optical transmission system comprising: arbitrarily adjusting a coupling state in which the light is incident on the cores; and, as the adjustment of the coupling state, adjusting a spot shape of the light between a size that includes all of the multiple cores and a size that includes only one of the multiple cores.
  2.  前記光結合部は、前記光の光軸と前記バンドル光ファイバの中心軸とを合わせた状態で前記結合状態の調整を行うことを特徴とする請求項1に記載の光伝送システム。 The optical transmission system according to claim 1, characterized in that the optical coupling unit adjusts the coupling state while aligning the optical axis of the light with the central axis of the bundle optical fiber.
  3.  前記光結合部は、前記光の光軸を前記バンドル光ファイバの中心軸からずらせた状態で前記結合状態の調整を行うことを特徴とする請求項1に記載の光伝送システム。 The optical transmission system according to claim 1, characterized in that the optical coupling unit adjusts the coupling state while shifting the optical axis of the light from the central axis of the bundle optical fiber.
PCT/JP2022/042008 2022-11-10 2022-11-10 Optical transmission system WO2024100862A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042008 WO2024100862A1 (en) 2022-11-10 2022-11-10 Optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042008 WO2024100862A1 (en) 2022-11-10 2022-11-10 Optical transmission system

Publications (1)

Publication Number Publication Date
WO2024100862A1 true WO2024100862A1 (en) 2024-05-16

Family

ID=91032255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042008 WO2024100862A1 (en) 2022-11-10 2022-11-10 Optical transmission system

Country Status (1)

Country Link
WO (1) WO2024100862A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577811U (en) * 1992-03-25 1993-10-22 東陶機器株式会社 Fiber optic lighting equipment
US5838865A (en) * 1997-06-05 1998-11-17 Clarity Visual Systems, Inc. Fiber optic light homogenizer for use in projection displays
JP2000199864A (en) * 1999-01-06 2000-07-18 Asahi Optical Co Ltd Endoscope illuminator
JP2002231008A (en) * 2001-02-05 2002-08-16 Matsushita Electric Works Ltd Lighting device
JP2011143350A (en) * 2010-01-14 2011-07-28 Fujikura Ltd Light irradiation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577811U (en) * 1992-03-25 1993-10-22 東陶機器株式会社 Fiber optic lighting equipment
US5838865A (en) * 1997-06-05 1998-11-17 Clarity Visual Systems, Inc. Fiber optic light homogenizer for use in projection displays
JP2000199864A (en) * 1999-01-06 2000-07-18 Asahi Optical Co Ltd Endoscope illuminator
JP2002231008A (en) * 2001-02-05 2002-08-16 Matsushita Electric Works Ltd Lighting device
JP2011143350A (en) * 2010-01-14 2011-07-28 Fujikura Ltd Light irradiation device

Similar Documents

Publication Publication Date Title
JP5469213B2 (en) Indoor wireless optical link method and system
EP2659301B1 (en) Optical amplifier for multi-core optical fiber
EP3234674A1 (en) Optical coupling efficiency detection assembly and method of assembling the same
JP2024059973A (en) Ultraviolet Light Irradiation System
WO2024100862A1 (en) Optical transmission system
WO2023058144A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
US20230390436A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2024105874A1 (en) Optical transmission system, optical splitter unit, and optical transmission method
WO2024084561A1 (en) Optical transmission system design method and design device
WO2024105875A1 (en) Optical transfer system and optical transfer method
WO2024100864A1 (en) Optical transmission system and optical transmission method
WO2024084562A1 (en) Bundled optical fiber
WO2022085142A1 (en) Ultraviolet light irradiation system and method
WO2023085389A1 (en) Optical transmission system
WO2024100863A1 (en) Optical transmission system and optical transmission method
CN103424868A (en) Laser coupling unit, laser coupling module and laser light source module
WO2022024406A1 (en) Ultraviolet light irradiation system
WO2024105873A1 (en) Light spot shaper and optical transmission system
WO2023073771A1 (en) Ultraviolet light irradiation system
WO2023084675A1 (en) Uv irradiation system
WO2023084665A1 (en) Uv radiation system
WO2023073885A1 (en) Ultraviolet light irradiation system
WO2023073884A1 (en) Ultraviolet light irradiation system
WO2023084666A1 (en) Ultraviolet light irradiation system
WO2023084668A1 (en) Ultraviolet light radiation system and control method