WO2024105874A1 - Optical transmission system, optical splitter unit, and optical transmission method - Google Patents

Optical transmission system, optical splitter unit, and optical transmission method Download PDF

Info

Publication number
WO2024105874A1
WO2024105874A1 PCT/JP2022/042823 JP2022042823W WO2024105874A1 WO 2024105874 A1 WO2024105874 A1 WO 2024105874A1 JP 2022042823 W JP2022042823 W JP 2022042823W WO 2024105874 A1 WO2024105874 A1 WO 2024105874A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
unit
optical fiber
optical transmission
Prior art date
Application number
PCT/JP2022/042823
Other languages
French (fr)
Japanese (ja)
Inventor
勝久 田口
聖 成川
誉人 桐原
亜弥子 岩城
和秀 中島
隆 松井
千里 深井
悠途 寒河江
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/042823 priority Critical patent/WO2024105874A1/en
Publication of WO2024105874A1 publication Critical patent/WO2024105874A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means

Definitions

  • This disclosure relates to an optical transmission system that uses an optical fiber bundle consisting of multiple optical fibers as an optical transmission path, an optical branching unit provided therein, and a method for doing so.
  • Non-Patent Document 1 Mobile sterilization robot
  • the product of Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light.
  • the robot can irradiate ultraviolet light while moving around a room in a building such as a hospital room, thereby automatically sterilizing a wide area without human intervention.
  • Non-Patent Document 2 Freestanding Air Purifier
  • the product in Non-Patent Document 2 is a device that is installed on the ceiling or a predetermined location in a room and circulates the air in the room while sterilizing, etc.
  • Non-Patent Document 3 is a portable device equipped with an ultraviolet light source. A user can take the device to a desired area and irradiate ultraviolet light. Therefore, the device can be used in various places.
  • Non-Patent Document 1 irradiates high-power ultraviolet light, so the device is large-scale and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
  • the product of Non-Patent Document 2 sterilizes the circulated indoor air, and therefore cannot irradiate the location where sterilization is desired with ultraviolet light directly.
  • Non-Patent Document 3 cannot irradiate ultraviolet light onto, for example, narrow pipes or areas where people cannot enter.
  • the products described in non-patent documents have a problem in that they lack versatility in terms of being able to irradiate ultraviolet light at any location.
  • (3) Operability The product of Non-Patent Document 3 is portable and can irradiate ultraviolet light in various locations. However, in order to obtain sufficient sterilization effects at the target location, the user is required to have skills and knowledge, and there are problems with operability.
  • an ultraviolet light irradiation system 300 using optical fibers as shown in FIG. 1 can be considered.
  • ultraviolet light is transmitted from the ultraviolet light source unit 11a using a thin and easily bendable optical fiber, and the ultraviolet light output from the tip of the optical fiber 14 is irradiated to the irradiation target area AR where pinpoint sterilization or the like is desired. Since ultraviolet light can be irradiated to any location simply by moving the irradiation unit 13 at the tip of the optical fiber 14, the versatility of the above issue (2) can be resolved. In addition, since there is no need to move or set up the ultraviolet light source, and no skill or knowledge is required of the user, the operability of the above issue (3) can also be resolved.
  • an optical distribution unit 12 such as an optical splitter in the optical transmission path 16 and configuring the system as a P-MP (Point to Multipoint) such as FTTH (Fiber To The Home)
  • P-MP Point to Multipoint
  • FTTH Fiber To The Home
  • Coupled efficiency means the ratio of the power input to the optical fiber (optically coupled to the optical fiber core) to the output power of the light source.
  • Figure 2(A) Since the light-emitting surface of an LED is larger than that of a laser, even if you try to couple the light output from the LED to a single-core optical fiber, the core area in the cross section is narrow, and most of the light is not coupled, resulting in low coupling efficiency ( Figure 2(A)).
  • Fig. 3 is a diagram for explaining the configuration of an optical transmission system using a general bundle optical fiber.
  • the configuration of the optical transmission system includes the PP (Point to Point) configuration shown in Fig. 3(A), and the P-MP (Point to Multi Point) configuration shown in Fig. 3(B) to (D).
  • the optical transmission system using the bundle optical fiber has the effect of reducing the waste of the output power of the light source, but each of the configurations in Fig. 3 also has the following problems.
  • (a) There is a power deviation between the irradiation units 13, and it is difficult to eliminate the unfairness between the irradiation target areas.
  • the P-MP configuration in FIG. 3(B) is a configuration in which each single optical fiber 51a constituting the bundle optical fiber 36 is separated at the other end T2 of the bundle optical fiber 36 and wired to the irradiation target area as a path 14.
  • light L1 from the light source unit 11 incident on one end T1 of the bundle optical fiber 36 is propagated through the bundle optical fiber 36 and the path 14, and light L2 is irradiated from the irradiation unit 13 to the irradiation target area.
  • light can be supplied to multiple irradiation target areas.
  • the illuminance is not uniform on the irradiation surface (light spot) (there is a power deviation). Specifically, the illuminance is high near the center of the light spot and low around the light spot. For this reason, there is a power deviation in the light propagating through each single-core optical fiber 51a of the bundle optical fiber 36 and each path 14, which causes the above problems (a) and (b).
  • the P-MP configuration of FIG. 3(C) is a configuration in which an optical branching unit 12 that evenly branches the light propagating through the bundle optical fiber 36 to each path 14 is disposed at the other end T2 of the bundle optical fiber 36, and each path 14 is wired to the irradiation target area.
  • the path 14 is a bundle optical fiber 37.
  • light L1 from the light source unit 11 that is incident on one end T1 of the bundle optical fiber 36 propagates through the bundle optical fiber 36 and the path 14, and light L2 is irradiated from the irradiation unit 13 to the irradiation target area.
  • each single-core optical fiber 51a of the bundle optical fiber 36 has a power deviation, and since this is equally branched to each path 14 by the optical branching unit 12, there is a power deviation in the light propagating through each path 14, which causes the above problems (a) and (b). Furthermore, since it has an optical branching section 12 that branches equally, the above problem (c) also exists. And since the path 14 is a bundle optical fiber 37, the cost is high, and the above problem (d) also exists.
  • the P-MP configuration of FIG. 3(D) is a configuration in which an optical branching unit 12 that evenly branches the light propagating through the bundle optical fiber 36 to each path 14 is disposed at the other end T2 of the bundle optical fiber 36, and each path 14 is wired to the irradiation target area.
  • the path 14 is a single (not bundled) optical fiber 55.
  • light L1 from the light source unit 11 that is incident on one end T1 of the bundle optical fiber 36 propagates through the bundle optical fiber 36 and the path 14, and light L2 is irradiated from the irradiation unit 13 to the irradiation target area.
  • the present invention aims to provide an optical transmission system, optical branching unit, and optical transmission method that can achieve fairness of optical power between irradiation target areas, guarantee the safety of optical power, freedom in designing irradiation time, low cost, and power saving in order to solve the above-mentioned problems.
  • the optical transmission system according to the present invention has a P-MP configuration using bundled optical fibers, and uses an unequal branching optical branching section to branch light from the bundled optical fibers to each direction.
  • the optical transmission system comprises: an optical transmission path that propagates light from a light source unit using an optical fiber bundle in which a plurality of single optical fibers are bundled; an optical branching unit that branches the light propagated through the optical transmission line into a plurality of output ports at an arbitrary branching ratio; a control unit that adjusts the branching ratio of the optical branching unit; a path for propagating the light from each of the output ports of the optical branching unit to each of the irradiation target areas; Equipped with.
  • the optical transmission method comprises: Propagating light from a light source unit using an optical bundle formed by bundling a plurality of single optical fibers as an optical transmission path; In an optical branching unit, the light propagated through the optical transmission line is branched into a plurality of output ports at an arbitrary branching ratio; Propagating the light from each of the output ports of the optical branching unit to each of the irradiation target areas; and adjusting the branching ratio of the optical branching unit so that the power of the light irradiated to the irradiation target area is a target.
  • the optical branching unit does not branch equally, but the branching ratio can be adjusted for each output port. Therefore, by adjusting the branching ratio of the optical branching unit while considering the fairness of issue (a), the safety of issue (b), and the weighting of issue (c), these issues can be resolved. Furthermore, because it is a P-MP configuration, it is also possible to resolve issue (d) of low cost and issue (e) of power saving. Furthermore, even if the situation of the irradiation target area changes after the branching ratio is set (the required optical power changes, the number of irradiation target areas changes, etc.), the branching ratio can be easily readjusted from the control unit.
  • the present invention can provide an optical transmission system and an optical transmission method that can achieve fairness of optical power among irradiation target areas, guarantee of safety of optical power, freedom in designing irradiation time, low cost, and power saving.
  • the paths may all be single optical fibers, or may be bundled optical fibers consisting of multiple single optical fibers.
  • the control unit may adjust the branching ratio so as to approach the target.
  • the objective is to set the power of the light irradiated to the irradiation target area to a required value for each of the irradiation target areas
  • the control unit may adjust the branching ratio so as to approach the target.
  • the optical transmission system comprises: an optical system that couples the light from the light source unit to each of the plurality of optical fibers bundled in the bundle optical fiber of the optical transmission path at a predetermined coupling ratio; A control unit that adjusts the binding rate to more closely approach the target; It is preferable that the device further comprises: After adjusting the power of the light irradiated to each irradiation target area by the branching ratio of the optical branching section, the power of the light irradiated to each irradiation target area can be fine-tuned by the coupling ratio of the optical system.
  • the present invention can provide an optical transmission system, optical branching unit, and optical transmission method that can achieve fairness of optical power among irradiation target areas, guarantee of safety of optical power, freedom in designing irradiation time, low cost, and power saving.
  • FIG. 1 is a diagram illustrating a problem to be solved by the present invention.
  • FIG. 1 is a diagram illustrating a problem to be solved by the present invention.
  • FIG. 1 is a diagram illustrating a problem to be solved by the present invention.
  • 1 is a diagram illustrating an optical transmission system according to the present invention; 2 is a diagram illustrating a configuration of an optical branching unit included in the optical transmission system according to the present invention;
  • FIG. 2 is a diagram illustrating a configuration of an optical branching unit included in the optical transmission system according to the present invention;
  • FIG. 1A to 1C are diagrams illustrating the effect of an optical branching unit included in an optical transmission system according to the present invention.
  • FIG. 1 is a diagram illustrating an optical transmission system according to the present invention
  • 1 is a diagram illustrating an optical transmission system according to the present invention
  • 4A and 4B are diagrams illustrating a structure of a light separating unit.
  • 1 is a diagram illustrating an optical transmission system according to the present invention
  • FIG. 1 is a diagram illustrating an optical system of an optical transmission system according to the present invention.
  • 5A and 5B are diagrams illustrating adjustment of a coupling state performed by an optical system of the optical transmission system according to the present invention.
  • 1 is a diagram illustrating an optical transmission method according to the present invention
  • FIG. 4 is a diagram illustrating an optical transmission system according to the present embodiment.
  • an optical transmission path 26 that propagates light L1 from a light source unit 11 using a bundle optical fiber 36 in which a plurality of single optical fibers (single-core optical fibers 51 a) are bundled; an optical branching unit 12b that branches the light propagated through the optical transmission line 26 into a plurality of output ports at an arbitrary branching ratio; a control unit 15b that adjusts the branching ratio of the optical branching unit 12b; a path 14 for propagating the light from each of the output ports of the optical branching unit 12b to each of the irradiation target areas; Equipped with.
  • An irradiation unit 13 is disposed at the tip of the path 14, and irradiates the irradiation target area with light L2.
  • an optical system 11c is provided to couple the light L1 from the light source unit 11 to one end of the bundle optical fiber 36, but depending on the size of the spot shape of the light L1 output from the light source unit 11 and the diameter of one end of the bundle optical fiber 36, the optical system 11c may be unnecessary.
  • FIG. 4A shows an optical transmission system in which the paths 14 are all optical bundles 37 each consisting of a plurality of single optical fibers bundled together.
  • FIG. 4B shows an optical transmission system in which all of the paths 14 are a single optical fiber 55 .
  • single optical fiber means that it is not an optical fiber bundle.
  • the optical transmission system of FIG. 4 has a feature that a goal is to equalize the power of the light L2 irradiated to the irradiation target area, and the control unit 15b adjusts the branching ratio so as to approach the goal. 4, taking into consideration the power deviation of the light propagating through each optical fiber bundled in the bundle optical fiber 36 and the transmission distance of the path 14, the control unit 15b adjusts the branching ratio of the optical branching unit 12b so that the power of the light L2 irradiated from the irradiation unit 13 becomes uniform, as compared to the optical transmission systems of Figures 3C and 3D.
  • “so that it becomes uniform” means that the branching ratio adjusted by the control unit 15b makes the power of the light L2 irradiated from the irradiation unit 13 more uniform than the current branching ratio of the optical branching unit 12b.
  • an illuminometer that measures the power of light L2 may be arranged in each irradiation target area or irradiation unit 13 so that the control unit 15b can adjust the branching ratio of the optical branching unit 12b so that the power of the light L2 irradiated from the irradiation unit 13 is uniform.
  • the optical branching unit 12b further includes a core separation adapter 121 , an optical fiber 123 , and an optical fiber 125 .
  • the core separation adapter 121 dismantles and separates the multiple (I) single-core optical fibers 51a bundled into the bundle optical fiber 36.
  • the optical switch 131 is a 1 ⁇ (N+1) optical switch with one input port and N+1 output ports. Each single-core optical fiber (51a-1 to 51a-I) dismantled by the core separation adapter 121 is connected to the input port of the optical switch 131. N of the output ports of each optical switch 131 are connected to the corresponding input port of the multiplexer 133 via the optical fiber 123.
  • a termination unit 135 is connected to one of the output ports of each optical switch 131 (the one not connected to the optical fiber 123).
  • the output port of each multiplexer 133 is connected to the output port 132 via the optical fiber 125.
  • a route 14 is connected to each output port 132.
  • each single-core optical fiber 51a of the bundle optical fiber 36 Light from the light source unit 11 propagates through each single-core optical fiber 51a of the bundle optical fiber 36 as a unit.
  • Each single-core optical fiber 51a is separated by the core separation adapter 121, and each light propagating through the single-core optical fiber 51a is input to the optical switch 131.
  • the control unit 15b controls the switching of each optical switch 131, and the light is output to one of the optical fibers 123 or to the terminal unit 135.
  • the light output to the terminal unit 135 is terminated there.
  • the light output to the optical fiber 123 is multiplexed with light from other optical switches 123 in the multiplexing unit 133.
  • the light multiplexed in each multiplexing unit 133 is output to the path 14 via the optical fiber 125.
  • FIG. 6 is a diagram for explaining the structure of an optical branching unit 12b when the optical transmission system has the configuration as shown in FIG. 4(A).
  • the optical branching unit 12b in FIG. 5 the optical branching unit 12b in FIG.
  • a demultiplexer 134 that combines the light output by the multiplexer 133 to all the single optical fibers (single-core optical fibers 55) bundled in the bundle optical fiber 37 of the path 14.
  • the number of single-core optical fibers 55 bundled into one bundle optical fiber 37 is J.
  • each optical fiber 125 The light propagating through each optical fiber 125 is split into J single-core optical fibers 55 by the splitter 134.
  • the J single-core optical fibers 55 are bundled by the core separation adapter 139 to become the bundle optical fiber 37.
  • the light propagating through each optical fiber 125 propagates as a single light through each single-core optical fiber 55 of the bundle optical fiber 37, which is the path 14, to the irradiation unit 13.
  • FIG. 7(A) is a diagram illustrating a cross section of a bundle optical fiber 37 in the case where the multiplexer 133 and the demultiplexer 134 are not provided and the optical fibers 123 corresponding to each path 14 are bundled as a single-core optical fiber 55.
  • FIG. 7(B) is a diagram illustrating a cross section of the bundle optical fiber 37 in the configuration of the optical branching unit 12b in FIG. 6.
  • the multiplexer 133 multiplexes the light from each optical switch 131 into one, and the demultiplexer 134 distributes the light to the J single-core optical fibers 55 of the bundle optical fiber 37 so that the power is uniform. Since the power deviation between the single-core optical fibers 55 is eliminated, illuminance unevenness is unlikely to occur in the light L2 emitted from the irradiation unit 13.
  • the color of the core of the optical fiber through which light is propagating in Figure 7(A) is darker than the color of the core of the optical fiber through which light is propagating in Figure 7(B).
  • the color of the core represents the strength of the light power.
  • the light is biased and concentrated in a specific single-core optical fiber 55, so the power of the light propagating through that optical fiber is strong.
  • the light is evenly distributed and leveled out to all single-core optical fibers 55, so the power of the light propagating through the optical fiber is weaker than the optical power in Figure 7(A).
  • the branching ratio of the optical branching unit 12b is adjusted by the control unit 15b issuing a switching instruction to each optical switch 131 as to which output port the light from the single-core optical fiber 51a should be output to.
  • the control unit 15b outputs a switching instruction to the optical switch 131 so that the power of the light L2 irradiated from the irradiation unit 13 is equal in all cases.
  • FIG. 8 is a diagram for explaining the optical transmission system of this embodiment.
  • the configuration of this optical transmission system is the same as that of the optical transmission system explained in Fig. 4.
  • this optical transmission system is characterized in that it aims to make the power of the light L2 irradiated to the irradiation target area a required value for each of the irradiation target areas, and the control unit 15b adjusts the branching ratio so as to approach the target.
  • the power of the light L2 required by each irradiation target area may differ.
  • the branching ratio of the optical branching unit 12b is adjusted so that the power of the light L2 required by each irradiation target area is irradiated to each irradiation target area. 8 the branching ratio of the optical branching unit 12b is adjusted so that the power of the light L2 irradiated from the irradiation unit 13 satisfies the requirements of each irradiation target area (so that the power of the light L2 to each irradiation target area approaches the requirements of each irradiation target area more than in the optical transmission systems of FIGS.
  • the structure described in Fig. 5 and Fig. 6 can be applied to the optical branching unit 12b of this embodiment.
  • the branching ratio of the optical branching unit 12b is adjusted so that the power of the light L2 irradiated from the irradiation unit 13 is uniform.
  • the branching ratio of the optical branching unit 12b is adjusted so that the power of the light L2 irradiated from the irradiation unit 13 satisfies the requirements of each irradiation target area.
  • the power of the light L2 satisfies the requirements of each irradiation target area means that the power of the light L2 irradiated from the irradiation unit 13 is closer to the requirements of each irradiation target area with the branching ratio adjusted by the control unit 15b than with the current branching ratio of the optical branching unit 12b.
  • an illuminometer that measures the power of light L2 may be arranged in each irradiation target area or irradiation unit 13 so that the control unit 15b can adjust the branching ratio of the optical branching unit 12b.
  • FIG. 9 is a diagram illustrating an optical transmission system according to the present embodiment.
  • an optical transmission path 26 that propagates light L1 from a light source unit 11 using a bundle optical fiber 36 in which a plurality of single optical fibers (single-core optical fibers 51 a) are bundled; a light separating unit 12d for separating the single optical fibers (single-core optical fibers 51a) bundled into the bundle optical fiber 36, and having a shutter for transmitting or blocking light propagating through each of the single optical fibers (single-core optical fibers 51a);
  • a control unit 15b that instructs each of the shutters of the light separating unit 12d to transmit or block light;
  • a path 14 for propagating the light from each of the single optical fibers (single-core optical fibers 51 a) separated by the light separation unit 12 d to each of the irradiation target areas; Equipped with.
  • An irradiation unit 13 is disposed at the tip of the path 14, and irradiates the irradiation target area with light L2. Note that, in this embodiment as well, there is an optical system 11c that couples the light L1 from the light source unit 11 to one end of the bundle optical fiber 36, but depending on the size of the spot shape of the light L1 output by the light source unit 11 and the diameter of one end of the bundle optical fiber 36, the optical system 11c may be unnecessary.
  • Path 14 is a single optical fiber 55, but the single-core optical fiber 51a separated by the optical separation unit 12d may be used as path 14 as is.
  • the control unit 15b can set whether or not to irradiate the light L2 for each irradiation target area. In other words, in the optical transmission system of Fig. 9, the control unit 15b adjusts each shutter of the light separation unit 12d so that the light L2 irradiated from the irradiation unit 13 meets the requirement of the irradiation target area (request for light irradiation/no need for light irradiation).
  • a communication path may be provided to transmit requests from each irradiation target area or the irradiation unit 13 to the control unit 15b so that the control unit 15b can grasp the requests of the irradiation target areas.
  • FIG. 10 is a diagram explaining the structure of the optical separation unit 12d.
  • the optical branching unit 12b includes a core separation adapter 121, a shutter 141, and an output port 132.
  • the shutters 141 transmit/block light according to instructions from the control unit 15b.
  • a shutter 141 is placed on each of the single-core optical fibers (51a-1 to 51a-I) disassembled by the core separation adapter 121. In other words, there are I shutters 141.
  • Each single-core optical fiber (51a-1 to 51a-I) on which the shutter 141 is placed is connected to an output port 132.
  • a path 14 of a single optical fiber 55 is connected to each output port 132. Note that, as mentioned above, if the single-core optical fiber 51a is used as the path 14 as is, the output port 132 is not necessary, and the single-core optical fiber 51a is wired to each irradiation target area.
  • each single-core optical fiber 51a of the bundle optical fiber 36 Light from the light source unit 11 propagates through each single-core optical fiber 51a of the bundle optical fiber 36 as a unit.
  • the single-core optical fibers 51a are separated by the core separation adapter 121, and each light that has propagated through the single-core optical fiber 51a is input to the shutter 141.
  • the control unit 15b controls the transmission/blocking of each shutter 141, and the light input to a shutter 141 set to transmission is output to the output port 132 and output to the path 14. On the other hand, the light input to a shutter 141 set to blocking is terminated there.
  • Fig. 11 is a diagram for explaining the optical transmission system of this embodiment.
  • the configuration of the optical transmission system in Fig. 11(A) is the optical transmission system explained in Fig. 4, the configuration of the optical transmission system in Fig. 11(B) is the optical transmission system explained in Fig. 8, and the configuration of the optical transmission system in Fig. 11(C) is the optical transmission system explained in Fig. 9 to which a control unit 15 is added.
  • this optical transmission system is a configuration similar to that of the optical transmission systems explained in Figs. 4, 8, and 9.
  • control unit 15 that adjusts the binding rate so as to further approach the target;
  • the present invention is characterized by further comprising:
  • the control unit 15 of the optical transmission system in Figure 11 (C) aims to equalize the power of light L2 irradiated to the irradiation target area requesting light irradiation, or to set the power of light L2 irradiated to the irradiation target area requesting light irradiation to the required value for each of the irradiation target areas.
  • the 11 includes an optical system 11c that changes the coupling ratio between the light source unit 11 and each core of the bundle optical fiber 36 by the control unit 15.
  • the control unit 15b adjusts the coupling ratio of the optical system 11c as follows, taking into account the branching ratio of the optical branching unit 12b, the power deviation between the ports of the optical branching unit 12b (the optical branching unit 12b may not branch light according to the set branching ratio due to manufacturing errors, etc.), and the transmission distance of the path 14.
  • 11A the coupling rate of the optical system 11c is adjusted so that the power of the light L2 irradiated from the irradiating unit 13 becomes equal to that of the light transmission system of FIG. (b) In the case of the optical transmission system of FIG.
  • the coupling rate of the optical system 11c is adjusted so that the power of the light L2 irradiated from the irradiating unit 13 satisfies the requirements of each irradiation target area, as compared to the optical transmission system of FIG. (c)
  • the coupling rate of the optical system 11c is adjusted so that the power of the light L2 irradiated from the irradiation unit 13 to the irradiation target area requesting light irradiation is equal or so as to meet the requirements of each irradiation target area, as compared to the optical transmission system of Figure 9.
  • the optical transmission system of FIG. 11 is characterized in that after the power of the light L2 irradiated from each irradiation unit 13 is adjusted to a desired value by the branching ratio of the optical branching unit 12b, or after the optical fiber is separated by the optical separation unit 12d, the power of the light L2 irradiated from each irradiation unit 13 is fine-tuned by the coupling rate of the optical system 11c so that it approaches the desired value even more.
  • FIG. 12 is a diagram illustrating the optical system 11c.
  • the optical system 11c is The coupling state in which the light L1 is incident on each core (the core of the bundled single-core optical fiber 51 a) of the bundle optical fiber 36 is arbitrarily adjusted, and as the adjustment of the coupling state, the size Lc of the spot shape of the light L1 is adjusted between the diameter of a circle that includes all of the multiple cores and the diameter of a circle that includes only one of the multiple cores.
  • the optical system 11c adjusts the size of the spot shape of the light L1 from the light source unit 11 and irradiates one end T1 of the bundle optical fiber 36.
  • the size of the spot shape of the light L1 at one end T1 of the bundle optical fiber 36 is indicated by "Lc".
  • the optical system 11c adjusts the coupling rate of the light coupled to the core of each single-core optical fiber 51a by adjusting the size Lc of the spot shape.
  • “coupling rate” means the ratio between the total power of the light L1 output by the light source unit 11 and the power of the light L1 coupled to each single-core optical fiber 51a at one end T1 of the bundle optical fiber 36.
  • the optical system 11c adjusts the coupling rate to eliminate the power deviation of the light L1 at one end T1 and couple the light L1 fairly to the cores of each single-core optical fiber 51a (realizing power fairness), to utilize the power deviation of the light L1 at one end T1 to couple the light L1 to the cores of each single-core optical fiber 51a so as to satisfy the power required by the irradiation target area (realizing requirement fairness), or to reduce the light L1 that is not coupled to the cores of the single-core optical fibers 51a (reducing waste and saving power).
  • Figure 13 is a diagram explaining the adjustment of the coupling state performed by the optical system 11c. All of Figures 13 show the state of the size Lc of the spot shape of the light L1 at one end T1 of the bundle optical fiber 36.
  • Figures 13(A) to 13(C) are diagrams explaining how the optical system 11c adjusts the coupling state (adjusts the size Lc of the spot shape) while aligning the optical axis of the light L1 with the central axis of the bundle optical fiber 36.
  • the optical system 11c widens the size Lc of the spot shape as shown in FIG. 13(A), uniform power can be coupled to each single-core optical fiber 51a, except for the single-core optical fiber 51a on the outer periphery of the bundle optical fiber 36.
  • the optical system 11c adjusts the size Lc of the spot shape as shown in FIG. 13(A), the uniformity and fairness of the power of the light irradiated to the irradiation target area can be improved.
  • the optical system 11c narrows the size Lc of the spot shape to an extent that only one single-core optical fiber 51a is included, as shown in FIG. 13(B), the light L1 output by the light source unit 11 can be concentrated on the core of the single-core optical fiber 51a, and strong power light can be supplied to the irradiation target area corresponding to the single-core optical fiber 51a.
  • the light L1 is ultraviolet light
  • the inactivation of the irradiation target area can be completed in a short period of time.
  • the optical system 11c can narrow the size Lc of the spot shape to an extent that includes multiple single-core optical fibers 51a located near the center of the bundle optical fiber 36, as shown in Figure 13(C).
  • the optical system 11c can change the size Lc of the spot shape in response to the requirements of the irradiation target area.
  • the optical system 11c can know the requirements of the irradiation target area by some means (for example, a light request signal from the irradiation target area, an instruction signal from an operator, etc.). Furthermore, the optical system 11c may periodically change the positional relationship as shown in FIGS. 13(A) to 13(B), (B) to 13(C), and (C) to 13(A).
  • Figures 13 (D1) to 13 (D3) are diagrams explaining how the optical system 11c adjusts the coupling state (adjusts the positional relationship) while shifting the optical axis of the light L1 from the central axis of the bundle optical fiber 36.
  • the optical system 11c narrows the size Lc of the spot shape of the light L1 to the extent that only one single-core optical fiber 51a or a plurality of single-core optical fibers 51a are included. Then, the optical system 11c adjusts the positional relationship between the optical axis of the light L1 and the central axis of the bundle optical fiber 36 so that the single-core optical fiber 51a corresponding to the irradiation target area requesting light is included within the size Lc of the spot shape. If the irradiation target area requesting light changes, the optical system 11c changes the positional relationship accordingly, such as from FIG. 13 (D1) to FIG. 13 (D2) or from FIG. 13 (D1) to FIG. 13 (D3).
  • the optical system 11c can know that the irradiation target area requesting light has changed by some means (for example, a light request signal from the irradiation target area or an instruction signal from the operator). Furthermore, the optical system 11c may rotate the spot of the light L1 clockwise as shown in FIG. 13 from (D1) to (D2), (D2) to (D3), and (D3) to (D1).
  • some means for example, a light request signal from the irradiation target area or an instruction signal from the operator.
  • the optical system 11c may rotate the spot of the light L1 clockwise as shown in FIG. 13 from (D1) to (D2), (D2) to (D3), and (D3) to (D1).
  • the optical system 11c having the above-mentioned functions may be mechanically controlled or optically controlled.
  • the optical system 11c when adjusting the size Lc of the spot shape as shown in Figures 13(A) to 13(C), the optical system 11c adjusts the distance between the light source unit 11 and one end T1 of the bundle optical fiber 36.
  • the optical system 11c when adjusting the light coupling position as shown in Figures 13(D1) to 13(D3), the optical system 11c adjusts the positional relationship between the optical axis of the light L1 and the central axis of the bundle optical fiber 36.
  • the optical system 11c is an optical control system
  • the optical system 11c adjusts the optical components provided (condenser lens, wide-angle lens, beam splitter, prism, mirror, etc.).
  • FIG. 14 is a flowchart illustrating an optical transmission method performed by the optical transmission system described in the first to third embodiments.
  • Propagating light L1 from the light source unit 11 using a bundle optical fiber 36 formed by bundling a plurality of single optical fibers as the optical transmission path 26 (step S01);
  • the optical branching unit 12b the light L1 propagated through the optical transmission line 26 is branched into a plurality of output ports at an arbitrary branching ratio (step S02);
  • Propagating light L2 from each of the output ports of the optical branching unit 12b to each of the irradiation target areas step S03
  • Adjusting the branching ratio for the optical branching unit 12b so that the power of the light L2 irradiated to the irradiation target area becomes a target (step S04). I do.
  • step S04 is to "equalize the power of the light L2 irradiated to the irradiation target area" as described in the first embodiment, or to “set the power of the light L2 irradiated to the irradiation target area to the required value for each irradiation target area" as described in the second embodiment.
  • the shape (spot) of the light L1 on a plane perpendicular to the optical axis is expressed as a circle.
  • the spot of the light L1 is not limited to a circle.
  • the spot of the light L1 emitted by the light source unit 11 has a shape other than a circle (for example, an ellipse or a polygon). Since the present invention includes such cases, the above-mentioned "spot shape" includes a circle and a shape other than a circle.
  • the optical transmission system of the present invention comprises: an optical transmission path that propagates light from a light source unit using an optical fiber bundle in which a plurality of single optical fibers are bundled; an optical branching unit that branches the light propagated through the optical transmission line into a plurality of output ports at an arbitrary branching ratio; a control unit that adjusts the branching ratio of the optical branching unit; a path for propagating the light from each of the output ports of the optical branching unit to each of the irradiation target areas; Equipped with.
  • the optical branching unit is an optical separation unit that separates the single optical fibers bundled in the optical fiber bundle
  • the optical splitter has a shutter for each of the output ports, and the controller instructs each of the shutters to open or close as an adjustment of the splitting ratio.
  • the optical branching unit includes: a multiplexer, the number of which is equal to the number of the output ports, for outputting the light to each of the corresponding output ports; an optical switch, the number of which is the same as the number of the single optical fibers bundled in the bundle optical fiber, for outputting the light from the corresponding single optical fiber to one of the multiplexers or to a terminal end; [0043]
  • the optical branching unit may have a demultiplexer between the multiplexer and the output port, which couples the light output by the multiplexer to all of the single optical fibers bundled in the bundle optical fiber of the path.
  • Optical system 11 Light source unit 11a: Ultraviolet light source unit 11c: Optical system 12: Light branching unit (equal branching) 12b: Optical branching unit (active) 12d: Optical separation unit (active) 13, 13-1, ..., 13-n, ..., 13-N: Irradiation unit 14: Path (each single-core optical fiber 51a bundled in the bundle optical fiber 36) 15: Control unit 15b: Control unit 16: Optical transmission path 26: Optical transmission path 36: Bundle optical fiber 37: Bundle optical fiber 51a of a path: Single-core optical fiber 55: Single-core optical fiber 121 of a path: Core separation adapter 123: Optical fiber 125: Optical fiber 131: Optical switch 132: Output port 133: Multiplexer 135: Terminator 139: Core separation adapter 141: Shutter 301: Optical transmission system L1, L2: Light Lc: Size of optical spot AR1, AR2, ..., ARn,

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

The purpose of the present invention is to provide an optical transmission system that can secure fairness of optical power between regions to be irradiated with and safety of the optical power and that can achieve design freedom in irradiation time, low cost, and power saving. An optical transmission system according to the present invention comprises: an optical transmission path 26 through which light L1 is propagated from a light source 11 by means of a bundle optical fiber 36 formed by bundling a plurality of single optical fibers (single core optical fibers 51a); an optical splitter unit 12b that splits the light propagated through the optical transmission path 26 toward a plurality of output ports at a given split ratio; a control unit 15b that adjusts the split ratio for the optical splitter unit 12b; and paths 14 through which the light is propagated from the output ports of the optical splitter unit 12a to regions to be irradiated with.

Description

光伝送システム、光分岐部及び光伝送方法Optical transmission system, optical branching section, and optical transmission method
 本開示は、複数の光ファイバを束ねたバンドル光ファイバを光伝送路とした光伝送システム、それが備える光分岐部、及びその方法に関する。 This disclosure relates to an optical transmission system that uses an optical fiber bundle consisting of multiple optical fibers as an optical transmission path, an optical branching unit provided therein, and a method for doing so.
 感染症予防などの目的から、紫外光を用いた殺菌やウィルスの不活化を行うシステムの需要が高まっている。当該システムには、大きく3つのカテゴリの製品がある。なお、本明細書では、「殺菌等」と記載する場合、殺菌とウィルスの不活化を意味するものとする。
(I)移動型殺菌ロボット
 非特許文献1の製品は、紫外光を照射する自律移動型のロボットである。当該ロボットは、病室などの建物内の部屋の中を移動しながら紫外光を照射することで、人手を介さず、自動で広い範囲の殺菌等を実現できる。
(II)据え置き型空気清浄機
 非特許文献2の製品は、天井や室内の所定の場所に設置され、室内の空気を循環しながら殺菌等する装置である。当該装置は、直接紫外光を照射せず、人体への影響がないため、安全性の高い殺菌等が可能である。
(III)ポータブル型殺菌装置
 非特許文献3の製品は、紫外光源を搭載したポータブル型の装置である。ユーザが当該装置を所望のエリアに持って行って紫外光を照射できる。このため、当該装置は様々な場所で使用可能である。
There is an increasing demand for systems that use ultraviolet light to sterilize and inactivate viruses for the purpose of preventing infectious diseases. There are three main categories of such systems. In this specification, the term "sterilization, etc." refers to sterilization and inactivation of viruses.
(I) Mobile sterilization robot The product of Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light. The robot can irradiate ultraviolet light while moving around a room in a building such as a hospital room, thereby automatically sterilizing a wide area without human intervention.
(II) Freestanding Air Purifier The product in Non-Patent Document 2 is a device that is installed on the ceiling or a predetermined location in a room and circulates the air in the room while sterilizing, etc. This device does not directly irradiate ultraviolet light and has no effect on the human body, so it is possible to sterilize, etc. with a high degree of safety.
(III) Portable sterilization device The product of Non-Patent Document 3 is a portable device equipped with an ultraviolet light source. A user can take the device to a desired area and irradiate ultraviolet light. Therefore, the device can be used in various places.
 しかし、非特許文献に記載される装置には次のような課題がある。
(1)経済性
 非特許文献1の製品は、高出力の紫外光を照射するため、装置が大掛かりとなり高価となる。このため、非特許文献1の製品には経済的なシステムの実現が困難という課題がある。
(2)汎用性
 非特許文献1の製品は、紫外光照射箇所にロボットが移動/進入できる場所に限定されるため、細かい場所や奥まった場所などへの紫外光の照射が困難である。
 非特許文献2の製品は、循環させた室内の空気を殺菌等するため、殺菌等をしたい場所に直接紫外光を照射することができない。
 非特許文献3の製品は、例えば、細い管路や人が入られないエリアについては紫外光を照射することができない。
 このように、非特許文献の製品には、任意の場所に紫外光を照射できるという汎用性に課題がある。
(3)操作性
 非特許文献3の製品は、可搬性であり様々な場所で紫外光の照射が可能である。しかし、対象箇所で十分な殺菌等の効果が得られるためには、ユーザにスキルや知識を要求しており、操作性に課題がある。
However, the devices described in the non-patent literature have the following problems.
(1) Economic Efficiency The product of Non-Patent Document 1 irradiates high-power ultraviolet light, so the device is large-scale and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
(2) Versatility With the product of Non-Patent Document 1, the location where ultraviolet light can be irradiated is limited to a location where a robot can move/enter, making it difficult to irradiate narrow or deep spaces with ultraviolet light.
The product of Non-Patent Document 2 sterilizes the circulated indoor air, and therefore cannot irradiate the location where sterilization is desired with ultraviolet light directly.
The product of Non-Patent Document 3 cannot irradiate ultraviolet light onto, for example, narrow pipes or areas where people cannot enter.
As described above, the products described in non-patent documents have a problem in that they lack versatility in terms of being able to irradiate ultraviolet light at any location.
(3) Operability The product of Non-Patent Document 3 is portable and can irradiate ultraviolet light in various locations. However, in order to obtain sufficient sterilization effects at the target location, the user is required to have skills and knowledge, and there are problems with operability.
 これらの課題に対して、図1のような光ファイバを用いた紫外光照射システム300が考えられる。この紫外光照射システムは、細くて曲げやすい光ファイバを用いて紫外光源部11aから紫外光を伝送し、光ファイバ14の先端から出力される紫外光をピンポイントで殺菌等したい照射対象域ARへ照射する。光ファイバ14の先端の照射部13を移動させるだけで任意の場所に紫外光を照射できるため上記課題(2)の汎用性を解消できる。また、紫外光光源の移動や設定が不要でユーザにスキルや知識を求めないため、上記課題(3)の操作性も解消できる。さらに、光スプリッタのような光分配部12を光伝送路16に設け、FTTH(Fiber To The Home)のようなP-MP(Point to MultiPoint)のシステム構成とすることで、単一の光源をシェアすることができ、複数の箇所を殺菌等できる。このため、上記課題(1)の経済性も解消できる。 To address these issues, an ultraviolet light irradiation system 300 using optical fibers as shown in FIG. 1 can be considered. In this ultraviolet light irradiation system, ultraviolet light is transmitted from the ultraviolet light source unit 11a using a thin and easily bendable optical fiber, and the ultraviolet light output from the tip of the optical fiber 14 is irradiated to the irradiation target area AR where pinpoint sterilization or the like is desired. Since ultraviolet light can be irradiated to any location simply by moving the irradiation unit 13 at the tip of the optical fiber 14, the versatility of the above issue (2) can be resolved. In addition, since there is no need to move or set up the ultraviolet light source, and no skill or knowledge is required of the user, the operability of the above issue (3) can also be resolved. Furthermore, by providing an optical distribution unit 12 such as an optical splitter in the optical transmission path 16 and configuring the system as a P-MP (Point to Multipoint) such as FTTH (Fiber To The Home), a single light source can be shared and multiple locations can be sterilized or the like. Therefore, the economics of the above issue (1) can also be resolved.
 さらに紫外光照射システムにおいて、光ファイバへの結合効率が高いレーザではなく安価なLED(Light-Emitting Diode)を光源に用いてシステムコストの低減を図ることが提案されている。ここで、「結合効率」とは、光源の出力パワーに対する光ファイバへ入力された(光ファイバコアに光結合された)パワーの比を意味する。
 この提案の課題を図2に示す。LEDは発光面がレーザに比べて広いため、LEDが出力した光を1本の単一コアの光ファイバに結合しようとしてもその断面におけるコア面積が狭く、ほとんどが結合されないため結合効率が低い(図2(A))。これは、レンズなどの光学系でLEDが出力した光を絞ったとしても同じである(図2(B))。つまり、光源にLEDを使用した場合、光源の出力パワーの大半が有効活用できないという課題がある。
 なお、この課題は紫外光を伝送する光伝送システムに限らず、赤外光や可視光を伝送する光伝送システムに共通する課題である。
Furthermore, in an ultraviolet light irradiation system, it has been proposed to use an inexpensive LED (Light-Emitting Diode) as a light source instead of a laser, which has a high coupling efficiency to an optical fiber, to reduce system costs. Here, "coupling efficiency" means the ratio of the power input to the optical fiber (optically coupled to the optical fiber core) to the output power of the light source.
The problem with this proposal is shown in Figure 2. Since the light-emitting surface of an LED is larger than that of a laser, even if you try to couple the light output from the LED to a single-core optical fiber, the core area in the cross section is narrow, and most of the light is not coupled, resulting in low coupling efficiency (Figure 2(A)). This is the same even if you narrow the light output from the LED using an optical system such as a lens (Figure 2(B)). In other words, when an LED is used as a light source, there is a problem that most of the output power of the light source cannot be effectively used.
This problem is not limited to optical transmission systems that transmit ultraviolet light, but is a common problem to optical transmission systems that transmit infrared light or visible light.
 ここで、マルチコア光ファイバ(MCF)や複数の単一コア光ファイバを束ねたバンドル光ファイバのように、断面に存在する複数のコアに光を結合すれば、結合効率が向上し、光源の出力パワーの無駄を低減することができる(図2(C))。 Here, if light is coupled to multiple cores present in the cross section, such as in a multi-core optical fiber (MCF) or a bundled optical fiber consisting of multiple single-core optical fibers, the coupling efficiency can be improved and the waste of output power from the light source can be reduced (Figure 2 (C)).
 図3は、一般的なバンドル光ファイバを用いた光伝送システムの構成を説明する図である。光伝送システムの構成としては、図3(A)に示すP-P(Point to Point)構成、図3(B)から(D)もしくはP-MP(Point to Multi Point)構成がある。バンドル光ファイバを用いた光伝送システムには前述のように光源の出力パワーの無駄を低減することが可能という効果があるが、図3のそれぞれの構成には次に示すような課題もある。
(a)照射部13間のパワー偏差があり、照射対象域間の不公平性を解消することが困難、
(b)照射部13間のパワー偏差があり、照射された光パワーの人体等への安全性を担保することが困難、
(c)照射部13から照射される光のパワーに重み付けをすることができず、照射時間の設計自由度が低い、
(d)低コスト化が困難、
(e)省電力化が困難
Fig. 3 is a diagram for explaining the configuration of an optical transmission system using a general bundle optical fiber. The configuration of the optical transmission system includes the PP (Point to Point) configuration shown in Fig. 3(A), and the P-MP (Point to Multi Point) configuration shown in Fig. 3(B) to (D). As described above, the optical transmission system using the bundle optical fiber has the effect of reducing the waste of the output power of the light source, but each of the configurations in Fig. 3 also has the following problems.
(a) There is a power deviation between the irradiation units 13, and it is difficult to eliminate the unfairness between the irradiation target areas.
(b) There is a power deviation between the irradiation units 13, making it difficult to ensure the safety of the irradiated optical power to the human body, etc.
(c) It is not possible to weight the power of the light irradiated from the irradiating unit 13, and therefore the degree of freedom in designing the irradiation time is low.
(d) It is difficult to reduce costs.
(e) Difficulty in reducing power consumption
 図3(A)のP2P構成は、バンドル光ファイバ36の一端T1に入射された光源部11からの光L1をバンドル光ファイバ36で伝搬し、バンドル光ファイバ36の他端T2を照射部として照射対象域に光L2を照射する。本構成の場合、1つの光伝送システムは1つの照射対象域のみ光を供給するので、複数の照射対象域がある場合、複数の光伝送システムが必要となる。このため、上記の(d)及び(e)の課題がある。 In the P2P configuration of FIG. 3(A), light L1 from the light source unit 11 incident on one end T1 of the bundle optical fiber 36 is propagated through the bundle optical fiber 36, and the other end T2 of the bundle optical fiber 36 serves as an irradiation unit to irradiate the irradiation target area with light L2. In this configuration, one optical transmission system supplies light to only one irradiation target area, so if there are multiple irradiation target areas, multiple optical transmission systems are required. This results in the above issues (d) and (e).
 図3(B)のP-MP構成は、バンドル光ファイバ36の他端T2でバンドル光ファイバ36を構成する各単一光ファイバ51aを分離し、方路14として照射対象域へ配線される構成である。図3(B)のP-MP構成は、バンドル光ファイバ36の一端T1に入射された光源部11からの光L1をバンドル光ファイバ36と方路14で伝搬し、照射部13から照射対象域に光L2を照射する。本構成の場合、複数の照射対象域に光を供給できる。しかし、光源部11からの光L1はバンドル光ファイバ36の一端(結合部)に照射されるが、その照射面(光スポット)において照度は均一ではない(パワー偏差がある。)。具体的には、光スポットの中心付近は照度が高く、光スポットの周辺は照度が低い。このため、バンドル光ファイバ36の各単一コア光ファイバ51a及び各方路14を伝搬する光にパワー偏差があり、上記の(a)及び(b)の課題がある。 The P-MP configuration in FIG. 3(B) is a configuration in which each single optical fiber 51a constituting the bundle optical fiber 36 is separated at the other end T2 of the bundle optical fiber 36 and wired to the irradiation target area as a path 14. In the P-MP configuration in FIG. 3(B), light L1 from the light source unit 11 incident on one end T1 of the bundle optical fiber 36 is propagated through the bundle optical fiber 36 and the path 14, and light L2 is irradiated from the irradiation unit 13 to the irradiation target area. In this configuration, light can be supplied to multiple irradiation target areas. However, although light L1 from the light source unit 11 is irradiated to one end (joint portion) of the bundle optical fiber 36, the illuminance is not uniform on the irradiation surface (light spot) (there is a power deviation). Specifically, the illuminance is high near the center of the light spot and low around the light spot. For this reason, there is a power deviation in the light propagating through each single-core optical fiber 51a of the bundle optical fiber 36 and each path 14, which causes the above problems (a) and (b).
 図3(C)のP-MP構成は、バンドル光ファイバ36の他端T2に、バンドル光ファイバ36を伝搬してきた光を均等に各方路14へ分岐する光分岐部12を配置し、方路14をそれぞれ照射対象域へ配線する構成である。特に、図3(C)のP-MP構成は、方路14がバンドル光ファイバ37である。図3(C)のP-MP構成も、バンドル光ファイバ36の一端T1に入射された光源部11からの光L1をバンドル光ファイバ36と方路14で伝搬し、照射部13から照射対象域に光L2を照射する。本構成の場合、複数の照射対象域に光を供給できる。しかし、前述のようにバンドル光ファイバ36の各単一コア光ファイバ51aを伝搬する光L1はパワー偏差を有しており、これを光分岐部12で各方路14へ等分岐するため、各方路14を伝搬する光にパワー偏差があり、上記の(a)及び(b)の課題がある。さらに、等分岐の光分岐部12を備えるため、上記の(c)の課題もある。そして、方路14がバンドル光ファイバ37であるため、コスト高となり、上記の(d)の課題もある。 The P-MP configuration of FIG. 3(C) is a configuration in which an optical branching unit 12 that evenly branches the light propagating through the bundle optical fiber 36 to each path 14 is disposed at the other end T2 of the bundle optical fiber 36, and each path 14 is wired to the irradiation target area. In particular, in the P-MP configuration of FIG. 3(C), the path 14 is a bundle optical fiber 37. In the P-MP configuration of FIG. 3(C), light L1 from the light source unit 11 that is incident on one end T1 of the bundle optical fiber 36 propagates through the bundle optical fiber 36 and the path 14, and light L2 is irradiated from the irradiation unit 13 to the irradiation target area. In this configuration, light can be supplied to multiple irradiation target areas. However, as described above, the light L1 propagating through each single-core optical fiber 51a of the bundle optical fiber 36 has a power deviation, and since this is equally branched to each path 14 by the optical branching unit 12, there is a power deviation in the light propagating through each path 14, which causes the above problems (a) and (b). Furthermore, since it has an optical branching section 12 that branches equally, the above problem (c) also exists. And since the path 14 is a bundle optical fiber 37, the cost is high, and the above problem (d) also exists.
 図3(D)のP-MP構成は、バンドル光ファイバ36の他端T2に、バンドル光ファイバ36を伝搬してきた光を均等に各方路14へ分岐する光分岐部12を配置し、方路14をそれぞれ照射対象域へ配線する構成である。特に、図3(D)のP-MP構成は、方路14が単一の(バンドル化されていない)光ファイバ55である。図3(D)のP-MP構成も、バンドル光ファイバ36の一端T1に入射された光源部11からの光L1をバンドル光ファイバ36と方路14で伝搬し、照射部13から照射対象域に光L2を照射する。本構成の場合、複数の照射対象域に光を供給できる。しかし、前述のようにバンドル光ファイバ36の各単一コア光ファイバ51aを伝搬する光L1はパワー偏差を有しており、これを光分岐部12で各方路14へ等分岐するため、各方路14を伝搬する光にパワー偏差があり、上記の(a)及び(b)の課題がある。さらに、等分岐の光分岐部12を備えるため、上記の(c)の課題もある。 The P-MP configuration of FIG. 3(D) is a configuration in which an optical branching unit 12 that evenly branches the light propagating through the bundle optical fiber 36 to each path 14 is disposed at the other end T2 of the bundle optical fiber 36, and each path 14 is wired to the irradiation target area. In particular, in the P-MP configuration of FIG. 3(D), the path 14 is a single (not bundled) optical fiber 55. In the P-MP configuration of FIG. 3(D), light L1 from the light source unit 11 that is incident on one end T1 of the bundle optical fiber 36 propagates through the bundle optical fiber 36 and the path 14, and light L2 is irradiated from the irradiation unit 13 to the irradiation target area. In this configuration, light can be supplied to multiple irradiation target areas. However, as described above, the light L1 propagating through each single-core optical fiber 51a of the bundle optical fiber 36 has a power deviation, and since this is equally branched to each path 14 by the optical branching unit 12, there is a power deviation in the light propagating through each path 14, which causes the above problems (a) and (b). Furthermore, since it is equipped with an optical branching section 12 that branches equally, the above problem (c) also occurs.
 そこで、本発明は、上述した各課題を解決するために、照射対象域間における光パワーの公平性、光パワーの安全性の担保、照射時間の設計自由度、低コスト化、及び省電力化を実現できる光伝送システム、光分岐部及び光伝送方法を提供することを目的とする。 The present invention aims to provide an optical transmission system, optical branching unit, and optical transmission method that can achieve fairness of optical power between irradiation target areas, guarantee the safety of optical power, freedom in designing irradiation time, low cost, and power saving in order to solve the above-mentioned problems.
 上記目的を達成するために、本発明に係る光伝送システムは、バンドル光ファイバを用いたP-MP構成とし、不等分岐の光分岐部を用いてバンドル光ファイバから各方路へ光を分岐することとした。 In order to achieve the above objective, the optical transmission system according to the present invention has a P-MP configuration using bundled optical fibers, and uses an unequal branching optical branching section to branch light from the bundled optical fibers to each direction.
 具体的には、本発明に係る光伝送システムは、
 単一の光ファイバを複数束ねたバンドル光ファイバで光源部からの光を伝搬する光伝送路と、
 前記光伝送路が伝搬した前記光を任意の分岐比で複数の出力ポートに分岐する光分岐部と、
 前記光分岐部に対して前記分岐比の調整を行う制御部と、
 前記光分岐部のそれぞれの前記出力ポートからそれぞれの照射対象域へ前記光を伝搬する方路と、
を備える。
Specifically, the optical transmission system according to the present invention comprises:
an optical transmission path that propagates light from a light source unit using an optical fiber bundle in which a plurality of single optical fibers are bundled;
an optical branching unit that branches the light propagated through the optical transmission line into a plurality of output ports at an arbitrary branching ratio;
a control unit that adjusts the branching ratio of the optical branching unit;
a path for propagating the light from each of the output ports of the optical branching unit to each of the irradiation target areas;
Equipped with.
 また、本発明に係る光伝送方法は、
 単一の光ファイバを複数束ねたバンドル光ファイバを光伝送路として光源部からの光を伝搬すること、
 光分岐部において、前記光伝送路が伝搬した前記光を任意の分岐比で複数の出力ポートに分岐すること、
 前記光分岐部のそれぞれの前記出力ポートからそれぞれの照射対象域へ前記光を伝搬すること、及び
 前記照射対象域に照射される前記光のパワーが目標となるように、前記光分岐部に対して前記分岐比を調整すること
を行う。
Further, the optical transmission method according to the present invention comprises:
Propagating light from a light source unit using an optical bundle formed by bundling a plurality of single optical fibers as an optical transmission path;
In an optical branching unit, the light propagated through the optical transmission line is branched into a plurality of output ports at an arbitrary branching ratio;
Propagating the light from each of the output ports of the optical branching unit to each of the irradiation target areas; and adjusting the branching ratio of the optical branching unit so that the power of the light irradiated to the irradiation target area is a target.
 光分岐部は、等分岐ではなく、出力ポートごとに分岐比を調整できる。このため、課題(a)の公平性、課題(b)の安全性、及び課題(c)の重み付けを考慮し、光分岐部の分岐比を調整することで、これら課題を解決することができる。さらに、また、P-MP構成であるので、課題(d)の低コスト化、及び課題(e)の省電力化も解決することができる。さらに、分岐比の設定後に照射対象域の状況が変化(要求する光パワーが変わった、照射対象域の数が変わった等)した場合でも、制御部から容易に分岐比を再調整できる。 The optical branching unit does not branch equally, but the branching ratio can be adjusted for each output port. Therefore, by adjusting the branching ratio of the optical branching unit while considering the fairness of issue (a), the safety of issue (b), and the weighting of issue (c), these issues can be resolved. Furthermore, because it is a P-MP configuration, it is also possible to resolve issue (d) of low cost and issue (e) of power saving. Furthermore, even if the situation of the irradiation target area changes after the branching ratio is set (the required optical power changes, the number of irradiation target areas changes, etc.), the branching ratio can be easily readjusted from the control unit.
 従って、本発明は、照射対象域間における光パワーの公平性、光パワーの安全性の担保、照射時間の設計自由度、低コスト化、及び省電力化を実現できる光伝送システム及び光伝送方法を提供することができる。 Therefore, the present invention can provide an optical transmission system and an optical transmission method that can achieve fairness of optical power among irradiation target areas, guarantee of safety of optical power, freedom in designing irradiation time, low cost, and power saving.
 前記方路は、全て単一の光ファイバ、又は全て単一の光ファイバを複数束ねたバンドル光ファイバであってもよい。 The paths may all be single optical fibers, or may be bundled optical fibers consisting of multiple single optical fibers.
 例えば、前記照射対象域に照射される前記光のパワーを均等することを目標とし、
 前記制御部は、前記目標に近づくように前記分岐比の調整を行うこととしてもよい。
For example, the goal is to uniformly distribute the power of the light irradiated onto the irradiation target area,
The control unit may adjust the branching ratio so as to approach the target.
 また、前記照射対象域に照射される前記光のパワーをそれぞれの前記照射対象域の要求値とすることを目標とし、
 前記制御部は、前記目標に近づくように前記分岐比の調整を行うこととしてもよい。
Also, the objective is to set the power of the light irradiated to the irradiation target area to a required value for each of the irradiation target areas,
The control unit may adjust the branching ratio so as to approach the target.
 本発明に係る光伝送システムは、
 前記光伝送路の前記バンドル光ファイバに束ねられている前記複数の光ファイバそれぞれに所定の結合率で前記光源部から前記光を結合する光学系と、
 前記目標にさらに近づくように前記結合率を調整する制御部と、
をさらに備えることが好ましい。
 光分岐部の分岐比で各照射対象域に照射される光のパワーを調整した後に、光学系の結合率により各照射対象域に照射される光のパワーの微調整が可能となる。
The optical transmission system according to the present invention comprises:
an optical system that couples the light from the light source unit to each of the plurality of optical fibers bundled in the bundle optical fiber of the optical transmission path at a predetermined coupling ratio;
A control unit that adjusts the binding rate to more closely approach the target;
It is preferable that the device further comprises:
After adjusting the power of the light irradiated to each irradiation target area by the branching ratio of the optical branching section, the power of the light irradiated to each irradiation target area can be fine-tuned by the coupling ratio of the optical system.
 なお、上記各発明は、可能な限り組み合わせることができる。 The above inventions can be combined as much as possible.
 本発明は、照射対象域間における光パワーの公平性、光パワーの安全性の担保、照射時間の設計自由度、低コスト化、及び省電力化を実現できる光伝送システム、光分岐部及び光伝送方法を提供することができる。 The present invention can provide an optical transmission system, optical branching unit, and optical transmission method that can achieve fairness of optical power among irradiation target areas, guarantee of safety of optical power, freedom in designing irradiation time, low cost, and power saving.
本発明の課題を説明する図である。FIG. 1 is a diagram illustrating a problem to be solved by the present invention. 本発明の課題を説明する図である。FIG. 1 is a diagram illustrating a problem to be solved by the present invention. 本発明の課題を説明する図である。FIG. 1 is a diagram illustrating a problem to be solved by the present invention. 本発明に係る光伝送システムを説明する図である。1 is a diagram illustrating an optical transmission system according to the present invention; 本発明に係る光伝送システムが備える光分岐部の構成を説明する図である。2 is a diagram illustrating a configuration of an optical branching unit included in the optical transmission system according to the present invention; FIG. 本発明に係る光伝送システムが備える光分岐部の構成を説明する図である。2 is a diagram illustrating a configuration of an optical branching unit included in the optical transmission system according to the present invention; FIG. 本発明に係る光伝送システムが備える光分岐部の効果を説明する図である。1A to 1C are diagrams illustrating the effect of an optical branching unit included in an optical transmission system according to the present invention. 本発明に係る光伝送システムを説明する図である。1 is a diagram illustrating an optical transmission system according to the present invention; 本発明に係る光伝送システムを説明する図である。1 is a diagram illustrating an optical transmission system according to the present invention; 光分離部の構造を説明する図である。4A and 4B are diagrams illustrating a structure of a light separating unit. 本発明に係る光伝送システムを説明する図である。1 is a diagram illustrating an optical transmission system according to the present invention; 本発明に係る光伝送システムの光学系を説明する図である。FIG. 1 is a diagram illustrating an optical system of an optical transmission system according to the present invention. 本発明に係る光伝送システムの光学系が行う結合状態の調整を説明する図である。5A and 5B are diagrams illustrating adjustment of a coupling state performed by an optical system of the optical transmission system according to the present invention. 本発明に係る光伝送方法を説明する図である。1 is a diagram illustrating an optical transmission method according to the present invention;
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 The following describes an embodiment of the present invention with reference to the attached drawings. The embodiment described below is an example of the present invention, and the present invention is not limited to the following embodiment. Note that components with the same reference numerals in this specification and drawings are mutually identical.
(実施形態1)
 図4は、本実施形態の光伝送システムを説明する図である。本光伝送システムは、
 単一の光ファイバ(単一コア光ファイバ51a)を複数束ねたバンドル光ファイバ36で光源部11からの光L1を伝搬する光伝送路26と、
 光伝送路26が伝搬した前記光を任意の分岐比で複数の出力ポートに分岐する光分岐部12bと、
 光分岐部12bに対して前記分岐比の調整を行う制御部15bと、
 光分岐部12bのそれぞれの前記出力ポートからそれぞれの照射対象域へ前記光を伝搬する方路14と、
を備える。
 方路14の先端には照射部13が配置され、照射対象域へ光L2を照射する。なお、本実施形態では、光源部11からの光L1をバンドル光ファイバ36の一端に結合する光学系11cが存在するが、光源部11が出力する光L1のスポット形状の大きさやバンドル光ファイバ36の一端の直径によっては光学系11cを不要とすることもできる。
(Embodiment 1)
FIG. 4 is a diagram illustrating an optical transmission system according to the present embodiment.
an optical transmission path 26 that propagates light L1 from a light source unit 11 using a bundle optical fiber 36 in which a plurality of single optical fibers (single-core optical fibers 51 a) are bundled;
an optical branching unit 12b that branches the light propagated through the optical transmission line 26 into a plurality of output ports at an arbitrary branching ratio;
a control unit 15b that adjusts the branching ratio of the optical branching unit 12b;
a path 14 for propagating the light from each of the output ports of the optical branching unit 12b to each of the irradiation target areas;
Equipped with.
An irradiation unit 13 is disposed at the tip of the path 14, and irradiates the irradiation target area with light L2. Note that, in this embodiment, an optical system 11c is provided to couple the light L1 from the light source unit 11 to one end of the bundle optical fiber 36, but depending on the size of the spot shape of the light L1 output from the light source unit 11 and the diameter of one end of the bundle optical fiber 36, the optical system 11c may be unnecessary.
 図4(A)は、方路14が、全て単一の光ファイバを複数束ねたバンドル光ファイバ37である場合の光伝送システムである。
 図4(B)は、方路14が、全て単一の光ファイバ55である場合の光伝送システムである。
 なお、「単一の光ファイバ」とはバンドル光ファイバではない、という意味である。
FIG. 4A shows an optical transmission system in which the paths 14 are all optical bundles 37 each consisting of a plurality of single optical fibers bundled together.
FIG. 4B shows an optical transmission system in which all of the paths 14 are a single optical fiber 55 .
It should be noted that "single optical fiber" means that it is not an optical fiber bundle.
 図4の光伝送システムは、前記照射対象域に照射される光L2のパワーを均等することを目標とし、制御部15bは、前記目標に近づくように前記分岐比の調整を行うことを特徴とする。
 つまり、図4の光伝送システムは、バンドル光ファイバ36に束ねられた各光ファイバを伝搬する光のパワー偏差、および方路14の伝送距離を考慮して、図3(C)や(D)の光伝送システムより、照射部13から照射される光L2のパワーが均等になるように制御部15bで光分岐部12bの分岐比を調整する。ここで、「均等になるように」とは、現在の光分岐部12bの分岐比より、制御部15bが調整した分岐比のほうが照射部13から照射される光L2のパワーが均等になる、という意味である。
 なお、制御部15bが照射部13から照射される光L2のパワーが均等になるように光分岐部12bの分岐比を調整できるように、各照射対象域又は照射部13に光L2のパワーを計測する照度計を配置してもよい。
The optical transmission system of FIG. 4 has a feature that a goal is to equalize the power of the light L2 irradiated to the irradiation target area, and the control unit 15b adjusts the branching ratio so as to approach the goal.
4, taking into consideration the power deviation of the light propagating through each optical fiber bundled in the bundle optical fiber 36 and the transmission distance of the path 14, the control unit 15b adjusts the branching ratio of the optical branching unit 12b so that the power of the light L2 irradiated from the irradiation unit 13 becomes uniform, as compared to the optical transmission systems of Figures 3C and 3D. Here, "so that it becomes uniform" means that the branching ratio adjusted by the control unit 15b makes the power of the light L2 irradiated from the irradiation unit 13 more uniform than the current branching ratio of the optical branching unit 12b.
In addition, an illuminometer that measures the power of light L2 may be arranged in each irradiation target area or irradiation unit 13 so that the control unit 15b can adjust the branching ratio of the optical branching unit 12b so that the power of the light L2 irradiated from the irradiation unit 13 is uniform.
 図5は、光伝送システムが図4(B)のような構成である場合の光分岐部12bの構造を説明する図である。光分岐部12bは、
 出力ポート132の数(N個)と同数であり、対応する出力ポート132のそれぞれへ前記光を出力する合波器133と、
 バンドル光ファイバ36に束ねられている単一の光ファイバ(単一コア光ファイバ51a)の数(I本)と同数であり、対応する単一の光ファイバからの前記光を合波器133のいずれか又は終端部135に出力する光スイッチ133と、
を有する。
 光分岐部12bは、コア分離アダプタ121、光ファイバ123、及び光ファイバ125をさらに備える。
5 is a diagram for explaining the structure of the optical branching unit 12b when the optical transmission system has the configuration as shown in FIG.
a number of multiplexers 133 equal to the number (N) of output ports 132, each of which outputs the light to a corresponding output port 132;
an optical switch 133, the number of which is equal to the number (I) of single optical fibers (single-core optical fibers 51 a) bundled into the bundle optical fiber 36, for outputting the light from the corresponding single optical fiber to one of the multiplexers 133 or to a terminal unit 135;
has.
The optical branching unit 12 b further includes a core separation adapter 121 , an optical fiber 123 , and an optical fiber 125 .
 コア分離アダプタ121は、バンドル光ファイバ36に束ねられている複数(I本)の単一コア光ファイバ51aを解体してバラバラにする。光スイッチ131は、入力ポートが1個、出力ポートがN+1個の1×(N+1)の光スイッチである。コア分離アダプタ121で解体されたそれぞれの単一コア光ファイバ(51a-1~51a-I)は光スイッチ131の入力ポートに接続される。各光スイッチ131の出力ポートのうちN個は光ファイバ123を介してそれぞれ対応する合波器133の入力ポートと接続される。また、各光スイッチ131の出力ポートのうち1個(光ファイバ123に接続されないもの)には、終端部135が接続される。各合波器133の出力ポートは、光ファイバ125を介して出力ポート132と接続される。各出力ポート132には方路14が接続される。 The core separation adapter 121 dismantles and separates the multiple (I) single-core optical fibers 51a bundled into the bundle optical fiber 36. The optical switch 131 is a 1×(N+1) optical switch with one input port and N+1 output ports. Each single-core optical fiber (51a-1 to 51a-I) dismantled by the core separation adapter 121 is connected to the input port of the optical switch 131. N of the output ports of each optical switch 131 are connected to the corresponding input port of the multiplexer 133 via the optical fiber 123. In addition, a termination unit 135 is connected to one of the output ports of each optical switch 131 (the one not connected to the optical fiber 123). The output port of each multiplexer 133 is connected to the output port 132 via the optical fiber 125. A route 14 is connected to each output port 132.
 光源部11からの光は、バンドル光ファイバ36の各単一コア光ファイバ51aを一体となって伝搬する。コア分離アダプタ121で各単一コア光ファイバ51aはバラバラになり、単一コア光ファイバ51aを伝搬したそれぞれの光は光スイッチ131に入力する。制御部15bは各光スイッチ131の切り替えを制御しており、当該光は光ファイバ123のいずれか、又は終端部135へ出力する。終端部135へ出力された光はそこで終端される。光ファイバ123へ出力された光は合波部133で他の光スイッチ123からの光と合波される。各合波部133で合波された光は光ファイバ125を介して方路14へ出力される。 Light from the light source unit 11 propagates through each single-core optical fiber 51a of the bundle optical fiber 36 as a unit. Each single-core optical fiber 51a is separated by the core separation adapter 121, and each light propagating through the single-core optical fiber 51a is input to the optical switch 131. The control unit 15b controls the switching of each optical switch 131, and the light is output to one of the optical fibers 123 or to the terminal unit 135. The light output to the terminal unit 135 is terminated there. The light output to the optical fiber 123 is multiplexed with light from other optical switches 123 in the multiplexing unit 133. The light multiplexed in each multiplexing unit 133 is output to the path 14 via the optical fiber 125.
 図6は、光伝送システムが図4(A)のような構成である場合の光分岐部12bの構造を説明する図である。図5の光分岐部12bに対し、図6の光分岐部12bは、
 合波器133と出力ポート(本構成ではコア分離アダプタ139)との間に、合波器133が出力した前記光を方路14のバンドル光ファイバ37に束ねられた全ての単一の光ファイバ(単一コア光ファイバ55)へ結合する分波器134をさらに有する。
 1つのバンドル光ファイバ37に束ねられている単一コア光ファイバ55の数をJ本とする。
6 is a diagram for explaining the structure of an optical branching unit 12b when the optical transmission system has the configuration as shown in FIG. 4(A). In contrast to the optical branching unit 12b in FIG. 5, the optical branching unit 12b in FIG.
Between the multiplexer 133 and the output port (in this configuration, the core separation adapter 139), there is further provided a demultiplexer 134 that combines the light output by the multiplexer 133 to all the single optical fibers (single-core optical fibers 55) bundled in the bundle optical fiber 37 of the path 14.
The number of single-core optical fibers 55 bundled into one bundle optical fiber 37 is J.
 それぞれの光ファイバ125を伝搬した光は分波器134でJ本の単一コア光ファイバ55に分波される。J本の単一コア光ファイバ55はコア分離アダプタ139でバンドル化され、バンドル光ファイバ37となる。つまり、それぞれの光ファイバ125を伝搬した光は方路14であるバンドル光ファイバ37の各単一コア光ファイバ55を一体の光として照射部13まで伝搬する。 The light propagating through each optical fiber 125 is split into J single-core optical fibers 55 by the splitter 134. The J single-core optical fibers 55 are bundled by the core separation adapter 139 to become the bundle optical fiber 37. In other words, the light propagating through each optical fiber 125 propagates as a single light through each single-core optical fiber 55 of the bundle optical fiber 37, which is the path 14, to the irradiation unit 13.
 ここで、図6の光分岐部12bにおいて合波器133と分波器134を備える効果を図7で説明する。図7(A)は、合波器133と分波器134を備えず、方路14毎に対応する光ファイバ123を単一コア光ファイバ55としてバンドル化した場合のバンドル光ファイバ37の断面を説明する図である。図7(B)は、図6の光分岐部12bの構成におけるバンドル光ファイバ37の断面を説明する図である。 Here, the effect of providing a multiplexer 133 and a demultiplexer 134 in the optical branching unit 12b in FIG. 6 will be explained with reference to FIG. 7. FIG. 7(A) is a diagram illustrating a cross section of a bundle optical fiber 37 in the case where the multiplexer 133 and the demultiplexer 134 are not provided and the optical fibers 123 corresponding to each path 14 are bundled as a single-core optical fiber 55. FIG. 7(B) is a diagram illustrating a cross section of the bundle optical fiber 37 in the configuration of the optical branching unit 12b in FIG. 6.
 図7(A)のように、合波器133と分波器134を備えない場合、光スイッチ131からの光が結合される単一コア光ファイバ55と、そうでない単一コア光ファイバ55が発生することになる。このように、単一コア光ファイバ55において光の有無の差が生じ、照射部13から出射される光L2に照度むらが発生する。
 一方、図7(B)のように、合波器133と分波器134を備える場合、合波器133は各光スイッチ131からの光を合波して一つにまとめ、分波器134はその光をパワーが均等になるようにバンドル光ファイバ37のJ本の単一コア光ファイバ55へ分配する。単一コア光ファイバ55間のパワー偏差が解消されるため、照射部13から出射される光L2に照度むらは発生しにくい。
7A, when the multiplexer 133 and the demultiplexer 134 are not provided, there will be single-core optical fibers 55 to which the light from the optical switch 131 is coupled and single-core optical fibers 55 to which the light from the optical switch 131 is not coupled. In this way, a difference occurs between the presence and absence of light in the single-core optical fibers 55, and illuminance unevenness occurs in the light L2 emitted from the irradiation unit 13.
7B, in the case where a multiplexer 133 and a demultiplexer 134 are provided, the multiplexer 133 multiplexes the light from each optical switch 131 into one, and the demultiplexer 134 distributes the light to the J single-core optical fibers 55 of the bundle optical fiber 37 so that the power is uniform. Since the power deviation between the single-core optical fibers 55 is eliminated, illuminance unevenness is unlikely to occur in the light L2 emitted from the irradiation unit 13.
 なお、図7(A)において光が伝搬している光ファイバのコアの色を、図7(B)において光が伝搬している光ファイバのコアの色より濃くしている。コアの色は光のパワーの強さを表わしている。図7(A)では光が偏っており、特定の単一コア光ファイバ55に集中しているのでその光ファイバを伝搬する光のパワーが強い。一方、図7(B)では光が全ての単一コア光ファイバ55に均等に振り分けられ、平準化したため、光ファイバを伝搬する光のパワーが図7(A)の光パワーより弱くなっている。 Note that the color of the core of the optical fiber through which light is propagating in Figure 7(A) is darker than the color of the core of the optical fiber through which light is propagating in Figure 7(B). The color of the core represents the strength of the light power. In Figure 7(A), the light is biased and concentrated in a specific single-core optical fiber 55, so the power of the light propagating through that optical fiber is strong. On the other hand, in Figure 7(B), the light is evenly distributed and leveled out to all single-core optical fibers 55, so the power of the light propagating through the optical fiber is weaker than the optical power in Figure 7(A).
 図5及び図6で説明したように、光分岐部12bは、制御部15bが各光スイッチ131に対し、単一コア光ファイバ51aからの光をいずれの出力ポートに出力させるかの切り替え指示を行うことで分岐比が調整される。図4の光伝送システムであれば、制御部15bは、照射部13から照射される光L2のパワーがいずれも等しくなるように光スイッチ131へ切り替え指示を出力する。 As explained in Fig. 5 and Fig. 6, the branching ratio of the optical branching unit 12b is adjusted by the control unit 15b issuing a switching instruction to each optical switch 131 as to which output port the light from the single-core optical fiber 51a should be output to. In the optical transmission system of Fig. 4, the control unit 15b outputs a switching instruction to the optical switch 131 so that the power of the light L2 irradiated from the irradiation unit 13 is equal in all cases.
(実施形態2)
 図8は、本実施形態の光伝送システムを説明する図である。本光伝送システムの構成は、図4で説明した光伝送システムの構成と同じである。しかし、本光伝送システムは、前記照射対象域に照射される光L2のパワーをそれぞれの前記照射対象域の要求値とすることを目標とし、制御部15bは、前記目標に近づくように前記分岐比の調整を行うことを特徴とする。
(Embodiment 2)
Fig. 8 is a diagram for explaining the optical transmission system of this embodiment. The configuration of this optical transmission system is the same as that of the optical transmission system explained in Fig. 4. However, this optical transmission system is characterized in that it aims to make the power of the light L2 irradiated to the irradiation target area a required value for each of the irradiation target areas, and the control unit 15b adjusts the branching ratio so as to approach the target.
 それぞれの照射対象域が要求する光L2のパワーは異なることもある。このため、光伝送システムとしては、照射対象域が要求する光L2のパワーがそれぞれに照射されるように、光分岐部12bの分岐比が調整されることが好ましい。
 つまり、図8の光伝送システムは、バンドル光ファイバ36に束ねられた各光ファイバを伝搬する光のパワー偏差、および方路14の伝送距離を考慮して、照射部13から照射される光L2のパワーが各照射対象域の要求を満たすように(各照射対象域への光L2のパワーが図3(C)や(D)の光伝送システムより各照射対象域の要求に近づくように)光分岐部12bの分岐比が調整される。また、伝送する光が紫外光である場合、照射対象域における紫外光のパワーが安全基準を超えないように光分岐部12bの分岐比を調整する必要がある。
The power of the light L2 required by each irradiation target area may differ. For this reason, in the optical transmission system, it is preferable that the branching ratio of the optical branching unit 12b is adjusted so that the power of the light L2 required by each irradiation target area is irradiated to each irradiation target area.
8, the branching ratio of the optical branching unit 12b is adjusted so that the power of the light L2 irradiated from the irradiation unit 13 satisfies the requirements of each irradiation target area (so that the power of the light L2 to each irradiation target area approaches the requirements of each irradiation target area more than in the optical transmission systems of FIGS. 3C and 3D), taking into consideration the power deviation of the light propagating through each optical fiber bundled in the bundle optical fiber 36 and the transmission distance of the path 14. In addition, when the light to be transmitted is ultraviolet light, it is necessary to adjust the branching ratio of the optical branching unit 12b so that the power of the ultraviolet light in the irradiation target area does not exceed the safety standard.
 本実施形態の光分岐部12bには、図5及び図6で説明した構造を適用することができる。ただし、図5及び図6の説明では、「照射部13から照射される光L2のパワーが均等になるように光分岐部12bの分岐比が調整される。」と説明したが、本実施形態では、照射部13から照射される光L2のパワーが各照射対象域の要求を満たすように光分岐部12bの分岐比が調整される。ここで、「光L2のパワーが各照射対象域の要求を満たすように」とは、現在の光分岐部12bの分岐比より、制御部15bが調整した分岐比のほうが照射部13から照射される光L2のパワーが各照射対象域の要求に近づく、という意味である。
 なお、実施形態1の説明と同様に、本実施形態の光伝送システムでも制御部15bが光分岐部12bの分岐比を調整できるように、各照射対象域又は照射部13に光L2のパワーを計測する照度計を配置してもよい。
The structure described in Fig. 5 and Fig. 6 can be applied to the optical branching unit 12b of this embodiment. However, in the description of Fig. 5 and Fig. 6, it was described that "the branching ratio of the optical branching unit 12b is adjusted so that the power of the light L2 irradiated from the irradiation unit 13 is uniform." However, in this embodiment, the branching ratio of the optical branching unit 12b is adjusted so that the power of the light L2 irradiated from the irradiation unit 13 satisfies the requirements of each irradiation target area. Here, "so that the power of the light L2 satisfies the requirements of each irradiation target area" means that the power of the light L2 irradiated from the irradiation unit 13 is closer to the requirements of each irradiation target area with the branching ratio adjusted by the control unit 15b than with the current branching ratio of the optical branching unit 12b.
As in the description of embodiment 1, in the optical transmission system of this embodiment, an illuminometer that measures the power of light L2 may be arranged in each irradiation target area or irradiation unit 13 so that the control unit 15b can adjust the branching ratio of the optical branching unit 12b.
(実施形態3)
 図9は、本実施形態の光伝送システムを説明する図である。本光伝送システムは、
 単一の光ファイバ(単一コア光ファイバ51a)を複数束ねたバンドル光ファイバ36で光源部11からの光L1を伝搬する光伝送路26と、
 バンドル光ファイバ36に束ねられた単一の光ファイバ(単一コア光ファイバ51a)を解体し、それぞれの単一の光ファイバ(単一コア光ファイバ51a)を伝搬する光を透過又は遮断するシャッタを有する光分離部12dと、
 光分離部12dの前記シャッタそれぞれに対して光の透過又は遮断の指示を行う制御部15bと、
 光分離部12dで解体されたそれぞれの単一の光ファイバ(単一コア光ファイバ51a)からそれぞれの照射対象域へ前記光を伝搬する方路14と、
を備える。
 方路14の先端には照射部13が配置され、照射対象域へ光L2を照射する。なお、本実施形態でも、光源部11からの光L1をバンドル光ファイバ36の一端に結合する光学系11cが存在するが、光源部11が出力する光L1のスポット形状の大きさやバンドル光ファイバ36の一端の直径によっては光学系11cを不要とすることもできる。
(Embodiment 3)
FIG. 9 is a diagram illustrating an optical transmission system according to the present embodiment.
an optical transmission path 26 that propagates light L1 from a light source unit 11 using a bundle optical fiber 36 in which a plurality of single optical fibers (single-core optical fibers 51 a) are bundled;
a light separating unit 12d for separating the single optical fibers (single-core optical fibers 51a) bundled into the bundle optical fiber 36, and having a shutter for transmitting or blocking light propagating through each of the single optical fibers (single-core optical fibers 51a);
A control unit 15b that instructs each of the shutters of the light separating unit 12d to transmit or block light;
a path 14 for propagating the light from each of the single optical fibers (single-core optical fibers 51 a) separated by the light separation unit 12 d to each of the irradiation target areas;
Equipped with.
An irradiation unit 13 is disposed at the tip of the path 14, and irradiates the irradiation target area with light L2. Note that, in this embodiment as well, there is an optical system 11c that couples the light L1 from the light source unit 11 to one end of the bundle optical fiber 36, but depending on the size of the spot shape of the light L1 output by the light source unit 11 and the diameter of one end of the bundle optical fiber 36, the optical system 11c may be unnecessary.
 方路14は、単一の光ファイバ55であるが、光分離部12dで解体された単一コア光ファイバ51aをそのまま方路14として利用してもよい。 Path 14 is a single optical fiber 55, but the single-core optical fiber 51a separated by the optical separation unit 12d may be used as path 14 as is.
 図9の光伝送システムは、制御部15bにより前記照射対象域毎に光L2を照射する/照射しないを設定することができる。つまり、図9の光伝送システムは、照射対象域の要求(光の照射を要求/光の照射が不要)に基づき、照射部13から照射される光L2が当該要求に沿うように制御部15bで光分離部12dの各シャッタを調整する。
 なお、制御部15bが照射対象域の要求を把握できるように、各照射対象域又は照射部13からの要求を制御部15bに伝える通信路を配置してもよい。
In the optical transmission system of Fig. 9, the control unit 15b can set whether or not to irradiate the light L2 for each irradiation target area. In other words, in the optical transmission system of Fig. 9, the control unit 15b adjusts each shutter of the light separation unit 12d so that the light L2 irradiated from the irradiation unit 13 meets the requirement of the irradiation target area (request for light irradiation/no need for light irradiation).
In addition, a communication path may be provided to transmit requests from each irradiation target area or the irradiation unit 13 to the control unit 15b so that the control unit 15b can grasp the requests of the irradiation target areas.
 図10は、光分離部12dの構造を説明する図である。光分岐部12bは、コア分離アダプタ121、シャッタ141、及び出力ポート132を備える。 FIG. 10 is a diagram explaining the structure of the optical separation unit 12d. The optical branching unit 12b includes a core separation adapter 121, a shutter 141, and an output port 132.
 シャッタ141は、制御部15bの指示により光の透過/遮断を行う。コア分離アダプタ121で解体されたそれぞれの単一コア光ファイバ(51a-1~51a-I)のそれぞれにシャッタ141が配置される。つまり、シャッタ141はI個存在する。また、シャッタ141が配置された各単一コア光ファイバ(51a-1~51a-I)は出力ポート132と接続される。各出力ポート132には単一の光ファイバ55の方路14が接続される。なお、前述のように、単一コア光ファイバ51aをそのまま方路14として利用する場合は、出力ポート132は不要であり、単一コア光ファイバ51aが各照射対象域へ配線される。 The shutters 141 transmit/block light according to instructions from the control unit 15b. A shutter 141 is placed on each of the single-core optical fibers (51a-1 to 51a-I) disassembled by the core separation adapter 121. In other words, there are I shutters 141. Each single-core optical fiber (51a-1 to 51a-I) on which the shutter 141 is placed is connected to an output port 132. A path 14 of a single optical fiber 55 is connected to each output port 132. Note that, as mentioned above, if the single-core optical fiber 51a is used as the path 14 as is, the output port 132 is not necessary, and the single-core optical fiber 51a is wired to each irradiation target area.
 光源部11からの光は、バンドル光ファイバ36の各単一コア光ファイバ51aを一体となって伝搬する。コア分離アダプタ121で各単一コア光ファイバ51aはバラバラになり、単一コア光ファイバ51aを伝搬したそれぞれの光はシャッタ141に入力する。制御部15bは各シャッタ141の透過/遮断を制御しており、透過設定のシャッタ141に入力された当該光は出力ポート132へ出力され、方路14へ出力される。一方、遮断設定のシャッタ141に入力された当該光はそこで終端される。 Light from the light source unit 11 propagates through each single-core optical fiber 51a of the bundle optical fiber 36 as a unit. The single-core optical fibers 51a are separated by the core separation adapter 121, and each light that has propagated through the single-core optical fiber 51a is input to the shutter 141. The control unit 15b controls the transmission/blocking of each shutter 141, and the light input to a shutter 141 set to transmission is output to the output port 132 and output to the path 14. On the other hand, the light input to a shutter 141 set to blocking is terminated there.
(実施形態4)
 図11は、本実施形態の光伝送システムを説明する図である。図11(A)の光伝送システムの構成は図4で説明した光伝送システムに、図11(B)の光伝送システムの構成は図8で説明した光伝送システムに、図11(C)の光伝送システムの構成は図9で説明した光伝送システムに制御部15が追加された構成である。つまり、本光伝送システムは、図4、図8、及び図9で説明した光伝送システムに、
 光伝送路26のバンドル光ファイバ36に束ねられている複数の光ファイバそれぞれに所定の結合率で光源部11から光L1を結合する光学系11cと、
 前記目標にさらに近づくように前記結合率を調整する制御部15と、
をさらに備えることを特徴とする。
 なお、図11(C)の光伝送システムの制御部15は、光の照射を要求している照射対象域に照射される光L2のパワーを均等すること、又は光の照射を要求している照射対象域に照射される光L2のパワーをそれぞれの前記照射対象域の要求値とすることを目標とする。
(Embodiment 4)
Fig. 11 is a diagram for explaining the optical transmission system of this embodiment. The configuration of the optical transmission system in Fig. 11(A) is the optical transmission system explained in Fig. 4, the configuration of the optical transmission system in Fig. 11(B) is the optical transmission system explained in Fig. 8, and the configuration of the optical transmission system in Fig. 11(C) is the optical transmission system explained in Fig. 9 to which a control unit 15 is added. In other words, this optical transmission system is a configuration similar to that of the optical transmission systems explained in Figs. 4, 8, and 9.
an optical system 11c that couples light L1 from the light source unit 11 to each of a plurality of optical fibers bundled in the optical fiber bundle 36 of the optical transmission line 26 at a predetermined coupling ratio;
A control unit 15 that adjusts the binding rate so as to further approach the target;
The present invention is characterized by further comprising:
In addition, the control unit 15 of the optical transmission system in Figure 11 (C) aims to equalize the power of light L2 irradiated to the irradiation target area requesting light irradiation, or to set the power of light L2 irradiated to the irradiation target area requesting light irradiation to the required value for each of the irradiation target areas.
 図11の光伝送システムは、光源部11とバンドル光ファイバ36の各コアとの結合率を、制御部15によって可変とする光学系11cを備える。制御部15bは、光分岐部12bの分岐比、光分岐部12bのポート間パワー偏差(光分岐部12bは製造誤差等により設定された分岐比の通りに光を分岐していない場合がある。)、および方路14の伝送距離を考慮して次のように光学系11cの結合率を調整する。
(a)図11(A)の光伝送システムの場合、図4の光伝送システムより、照射部13から照射される光L2のパワーが等しくなるように、光学系11cの結合率を調整する。
(b)図11(B)の光伝送システムの場合、図8の光伝送システムより、照射部13から照射される光L2のパワーが各照射対象域の要求を満たすように、光学系11cの結合率を調整する。
(c)図11(C)の光伝送システムの場合、図9の光伝送システムより、光の照射を要求している照射対象域への照射部13から照射される光L2のパワーが等しくなるように、又は各照射対象域の要求を満たすように、光学系11cの結合率を調整する。
11 includes an optical system 11c that changes the coupling ratio between the light source unit 11 and each core of the bundle optical fiber 36 by the control unit 15. The control unit 15b adjusts the coupling ratio of the optical system 11c as follows, taking into account the branching ratio of the optical branching unit 12b, the power deviation between the ports of the optical branching unit 12b (the optical branching unit 12b may not branch light according to the set branching ratio due to manufacturing errors, etc.), and the transmission distance of the path 14.
11A, the coupling rate of the optical system 11c is adjusted so that the power of the light L2 irradiated from the irradiating unit 13 becomes equal to that of the light transmission system of FIG.
(b) In the case of the optical transmission system of FIG. 11(B), the coupling rate of the optical system 11c is adjusted so that the power of the light L2 irradiated from the irradiating unit 13 satisfies the requirements of each irradiation target area, as compared to the optical transmission system of FIG.
(c) In the case of the optical transmission system of Figure 11 (C), the coupling rate of the optical system 11c is adjusted so that the power of the light L2 irradiated from the irradiation unit 13 to the irradiation target area requesting light irradiation is equal or so as to meet the requirements of each irradiation target area, as compared to the optical transmission system of Figure 9.
 換言すると、図11の光伝送システムは、光分岐部12bの分岐比で各照射部13から照射される光L2のパワーを所望値となるように調整された後、あるいは光分離部12dで光ファイバが分離された後、各照射部13から照射される光L2のパワーが、さらに所望値に近づくように光学系11cの結合率で微調整を行うことを特徴とする。 In other words, the optical transmission system of FIG. 11 is characterized in that after the power of the light L2 irradiated from each irradiation unit 13 is adjusted to a desired value by the branching ratio of the optical branching unit 12b, or after the optical fiber is separated by the optical separation unit 12d, the power of the light L2 irradiated from each irradiation unit 13 is fine-tuned by the coupling rate of the optical system 11c so that it approaches the desired value even more.
 図12は、光学系11cを説明する図である。
 光学系11cは、
 光L1がバンドル光ファイバ36の各コア(束ねられている単一コア光ファイバ51aのコア)に入射する結合状態を任意に調整すること、及び
 前記結合状態の調整として、光L1のスポット形状の大きさLcを、前記複数のコアが全て含まれる円の直径から前記複数のコアのうちの1つのみが含まれる円の直径の間で調整すること
を特徴とする。
FIG. 12 is a diagram illustrating the optical system 11c.
The optical system 11c is
The coupling state in which the light L1 is incident on each core (the core of the bundled single-core optical fiber 51 a) of the bundle optical fiber 36 is arbitrarily adjusted, and as the adjustment of the coupling state, the size Lc of the spot shape of the light L1 is adjusted between the diameter of a circle that includes all of the multiple cores and the diameter of a circle that includes only one of the multiple cores.
 光学系11cは、光源部11からの光L1のスポット形状の大きさを調整してバンドル光ファイバ36の一端T1に照射する。バンドル光ファイバ36の一端T1における光L1のスポット形状の大きさを“Lc”で示している。光学系11cは、スポット形状の大きさLcを調整することで、それぞれの単一コア光ファイバ51aのコアへ結合する光の結合率を調整する。ここで、本明細書において「結合率」とは、光源部11が出力する光L1の全パワーとバンドル光ファイバ36の一端T1においてそれぞれの単一コア光ファイバ51aに結合する光L1のパワーとの比を意味する。 The optical system 11c adjusts the size of the spot shape of the light L1 from the light source unit 11 and irradiates one end T1 of the bundle optical fiber 36. The size of the spot shape of the light L1 at one end T1 of the bundle optical fiber 36 is indicated by "Lc". The optical system 11c adjusts the coupling rate of the light coupled to the core of each single-core optical fiber 51a by adjusting the size Lc of the spot shape. Here, in this specification, "coupling rate" means the ratio between the total power of the light L1 output by the light source unit 11 and the power of the light L1 coupled to each single-core optical fiber 51a at one end T1 of the bundle optical fiber 36.
 例えば、光学系11cは、結合率を調整することで、一端T1における光L1のパワー偏差を解消して光L1を各単一コア光ファイバ51aのコアへ公平に結合する(パワーの公平を実現)、一端T1における光L1のパワー偏差を利用して照射対象域が要求するパワーを満たすように光L1を各単一コア光ファイバ51aのコアへ結合する(要求の公平を実現)、あるいは、単一コア光ファイバ51aのコアへ結合されない光L1を低減する(無駄を低減して省電力化)。 For example, the optical system 11c adjusts the coupling rate to eliminate the power deviation of the light L1 at one end T1 and couple the light L1 fairly to the cores of each single-core optical fiber 51a (realizing power fairness), to utilize the power deviation of the light L1 at one end T1 to couple the light L1 to the cores of each single-core optical fiber 51a so as to satisfy the power required by the irradiation target area (realizing requirement fairness), or to reduce the light L1 that is not coupled to the cores of the single-core optical fibers 51a (reducing waste and saving power).
 図13は、光学系11cが行う結合状態の調整を説明する図である。図13は、いずれもバンドル光ファイバ36の一端T1における光L1のスポット形状の大きさLcの状態を示している。 Figure 13 is a diagram explaining the adjustment of the coupling state performed by the optical system 11c. All of Figures 13 show the state of the size Lc of the spot shape of the light L1 at one end T1 of the bundle optical fiber 36.
 図13(A)から図13(C)は、光学系11cが、光L1の光軸とバンドル光ファイバ36の中心軸とを合わせた状態で前記結合状態の調整(スポット形状の大きさLcの調整)を行うことを説明する図である。 Figures 13(A) to 13(C) are diagrams explaining how the optical system 11c adjusts the coupling state (adjusts the size Lc of the spot shape) while aligning the optical axis of the light L1 with the central axis of the bundle optical fiber 36.
 例えば、光学系11cが、図13(A)のようにスポット形状の大きさLcを広げれば、バンドル光ファイバ36の外周部の単一コア光ファイバ51aを除けば、均一なパワーを各単一コア光ファイバ51aに結合することができる。つまり、光学系11cが図13(A)のようにスポット形状の大きさLcを調整すれば、照射対象域へ照射する光のパワーの均一性や公平性を高めることができる。また、光源部11が出力する光L1のパワーに無駄が発生するが、スポット形状の大きさLcをバンドル光ファイバ36の直径より広げることで外周部の単一コア光ファイバ51aまでも均一なパワーを結合することができる。 For example, if the optical system 11c widens the size Lc of the spot shape as shown in FIG. 13(A), uniform power can be coupled to each single-core optical fiber 51a, except for the single-core optical fiber 51a on the outer periphery of the bundle optical fiber 36. In other words, if the optical system 11c adjusts the size Lc of the spot shape as shown in FIG. 13(A), the uniformity and fairness of the power of the light irradiated to the irradiation target area can be improved. Also, although there is waste in the power of the light L1 output by the light source unit 11, by widening the size Lc of the spot shape beyond the diameter of the bundle optical fiber 36, uniform power can be coupled even to the single-core optical fiber 51a on the outer periphery.
 例えば、光学系11cが、図13(B)のようにスポット形状の大きさLcを1つの単一コア光ファイバ51aのみが含まれる程度に絞れば、光源部11が出力した光L1を当該単一コア光ファイバ51aのコアに集中させることができ、当該単一コア光ファイバ51aに対応する照射対象域に強いパワーの光を供給することができる。例えば、光L1が紫外光ならば、当該照射対象域の不活化を短時間で終了させることができる。 For example, if the optical system 11c narrows the size Lc of the spot shape to an extent that only one single-core optical fiber 51a is included, as shown in FIG. 13(B), the light L1 output by the light source unit 11 can be concentrated on the core of the single-core optical fiber 51a, and strong power light can be supplied to the irradiation target area corresponding to the single-core optical fiber 51a. For example, if the light L1 is ultraviolet light, the inactivation of the irradiation target area can be completed in a short period of time.
 また、図13(A)と(B)で説明した効果を折衷した効果を得るように、光学系11cが、図13(C)のようにスポット形状の大きさLcをバンドル光ファイバ36の中心付近にある複数の単一コア光ファイバ51aが含まれる程度に絞ることもできる。 In addition, to obtain a compromise between the effects described in Figures 13(A) and (B), the optical system 11c can narrow the size Lc of the spot shape to an extent that includes multiple single-core optical fibers 51a located near the center of the bundle optical fiber 36, as shown in Figure 13(C).
 光学系11cは、照射対象域の要求に応じてスポット形状の大きさLcを変化させることができる。光学系11cは、照射対象域の要求を、何らかの手段(例えば、照射対象域からの光の要求信号や、作業者の指示信号など)で知ることができる。
 また、光学系11cは、図13(A)から(B)、(B)から(C)、(C)から(A)のように、定期的に当該位置関係を変化させていってもよい。
The optical system 11c can change the size Lc of the spot shape in response to the requirements of the irradiation target area. The optical system 11c can know the requirements of the irradiation target area by some means (for example, a light request signal from the irradiation target area, an instruction signal from an operator, etc.).
Furthermore, the optical system 11c may periodically change the positional relationship as shown in FIGS. 13(A) to 13(B), (B) to 13(C), and (C) to 13(A).
 図13(D1)から図13(D3)は、光学系11cが、光L1の光軸をバンドル光ファイバ36の中心軸からずらせた状態で前記結合状態の調整(位置関係の調整)を行うことを説明する図である。 Figures 13 (D1) to 13 (D3) are diagrams explaining how the optical system 11c adjusts the coupling state (adjusts the positional relationship) while shifting the optical axis of the light L1 from the central axis of the bundle optical fiber 36.
 光学系11cは、光L1のスポット形状の大きさLcを1つの単一コア光ファイバ51aのみ、あるいは複数の単一コア光ファイバ51aが含まれる程度に絞る。そして、光学系11cは、光を要求している照射対象域に対応する単一コア光ファイバ51aがスポット形状の大きさLcの中に入るように光L1の光軸とバンドル光ファイバ36の中心軸との位置関係を調整する。光を要求している照射対象域が変われば、光学系11cはそれに応じて当該位置関係を図13(D1)から(D2)へ、あるいは図13(D1)から(D3)へ、のように変化させる。光学系11cは、光を要求している照射対象域が変わったことを、何らかの手段(例えば、照射対象域からの光の要求信号や、作業者の指示信号など)で知ることができる。
 また、光学系11cは、図13(D1)から(D2)、(D2)から(D3)、(D3)から(D1)のように時計回りで光L1のスポットを回転させていってもよい。
The optical system 11c narrows the size Lc of the spot shape of the light L1 to the extent that only one single-core optical fiber 51a or a plurality of single-core optical fibers 51a are included. Then, the optical system 11c adjusts the positional relationship between the optical axis of the light L1 and the central axis of the bundle optical fiber 36 so that the single-core optical fiber 51a corresponding to the irradiation target area requesting light is included within the size Lc of the spot shape. If the irradiation target area requesting light changes, the optical system 11c changes the positional relationship accordingly, such as from FIG. 13 (D1) to FIG. 13 (D2) or from FIG. 13 (D1) to FIG. 13 (D3). The optical system 11c can know that the irradiation target area requesting light has changed by some means (for example, a light request signal from the irradiation target area or an instruction signal from the operator).
Furthermore, the optical system 11c may rotate the spot of the light L1 clockwise as shown in FIG. 13 from (D1) to (D2), (D2) to (D3), and (D3) to (D1).
 上述したような機能を有する光学系11cは、機械的な制御であっても、光学的な制御であってもよい。
 例えば、光学系11cが機械的な制御である場合、図13(A)から(C)のようにスポット形状の大きさLcを調整するとき、光学系11cは光源部11とバンドル光ファイバ36の一端T1との距離を調整する。また、図13(D1)から(D3)のように光の結合位置を調整するとき、光学系11cは光L1の光軸とバンドル光ファイバ36の中心軸との位置関係を調整する。
The optical system 11c having the above-mentioned functions may be mechanically controlled or optically controlled.
For example, in the case where the optical system 11c is mechanically controlled, when adjusting the size Lc of the spot shape as shown in Figures 13(A) to 13(C), the optical system 11c adjusts the distance between the light source unit 11 and one end T1 of the bundle optical fiber 36. Also, when adjusting the light coupling position as shown in Figures 13(D1) to 13(D3), the optical system 11c adjusts the positional relationship between the optical axis of the light L1 and the central axis of the bundle optical fiber 36.
 一方、光学系11cが光学的な制御である場合、図13(A)から(C)のようにスポット形状の大きさLcを調整するとき、備えられているレンズの焦点位置を調整する。また、図13(D1)から(D3)のように光の結合位置を調整するとき、光学系11cは備えられている光学部材(集光レンズ、広角レンズ、ビームスプリッタ、プリズム、ミラー等)を調整する。 On the other hand, if the optical system 11c is an optical control system, when adjusting the size Lc of the spot shape as shown in Figures 13 (A) to (C), the focal position of the lens provided is adjusted. Also, when adjusting the light coupling position as shown in Figures 13 (D1) to (D3), the optical system 11c adjusts the optical components provided (condenser lens, wide-angle lens, beam splitter, prism, mirror, etc.).
(実施形態5)
 図14は、実施形態1から3で説明した光伝送システムが行う光伝送方法を説明するフローチャートである。本光伝送方法は、
 単一の光ファイバを複数束ねたバンドル光ファイバ36を光伝送路26として光源部11からの光L1を伝搬すること(ステップS01)、
 光分岐部12bにおいて、光伝送路26が伝搬した光L1を任意の分岐比で複数の出力ポートに分岐すること(ステップS02)、
 光分岐部12bのそれぞれの前記出力ポートからそれぞれの照射対象域へ光L2を伝搬すること(ステップS03)、及び
 前記照射対象域に照射される光L2のパワーが目標となるように、光分岐部12bに対して前記分岐比を調整すること(ステップS04)
を行う。
(Embodiment 5)
FIG. 14 is a flowchart illustrating an optical transmission method performed by the optical transmission system described in the first to third embodiments.
Propagating light L1 from the light source unit 11 using a bundle optical fiber 36 formed by bundling a plurality of single optical fibers as the optical transmission path 26 (step S01);
In the optical branching unit 12b, the light L1 propagated through the optical transmission line 26 is branched into a plurality of output ports at an arbitrary branching ratio (step S02);
Propagating light L2 from each of the output ports of the optical branching unit 12b to each of the irradiation target areas (step S03); and Adjusting the branching ratio for the optical branching unit 12b so that the power of the light L2 irradiated to the irradiation target area becomes a target (step S04).
I do.
 ステップS04の「目標」とは、実施形態1で説明したように「照射対象域に照射される光L2のパワーを均等すること」、あるいは実施形態2で説明したように「照射対象域に照射される光L2のパワーをそれぞれの照射対象域の要求値とすること」である。 The "goal" in step S04 is to "equalize the power of the light L2 irradiated to the irradiation target area" as described in the first embodiment, or to "set the power of the light L2 irradiated to the irradiation target area to the required value for each irradiation target area" as described in the second embodiment.
(補足)
 本実施形態では、光L1の光軸に対して垂直な面における形(スポット)を円で表現している。しかし、光L1のスポットは円とは限らない。光源部11が出射する光L1のスポットが円以外(例えば、楕円状、多角形状)の場合もある。本発明は、そのような場合も含むため、上記の「スポット形状」は円及び円以外の形状を含むものとする。
(supplement)
In this embodiment, the shape (spot) of the light L1 on a plane perpendicular to the optical axis is expressed as a circle. However, the spot of the light L1 is not limited to a circle. There are also cases where the spot of the light L1 emitted by the light source unit 11 has a shape other than a circle (for example, an ellipse or a polygon). Since the present invention includes such cases, the above-mentioned "spot shape" includes a circle and a shape other than a circle.
(付記)
 本発明の光伝送システムは、
 単一の光ファイバを複数束ねたバンドル光ファイバで光源部からの光を伝搬する光伝送路と、
 前記光伝送路が伝搬した前記光を任意の分岐比で複数の出力ポートに分岐する光分岐部と、
 前記光分岐部に対して前記分岐比の調整を行う制御部と、
 前記光分岐部のそれぞれの前記出力ポートからそれぞれの照射対象域へ前記光を伝搬する方路と、
を備える。
(Additional Note)
The optical transmission system of the present invention comprises:
an optical transmission path that propagates light from a light source unit using an optical fiber bundle in which a plurality of single optical fibers are bundled;
an optical branching unit that branches the light propagated through the optical transmission line into a plurality of output ports at an arbitrary branching ratio;
a control unit that adjusts the branching ratio of the optical branching unit;
a path for propagating the light from each of the output ports of the optical branching unit to each of the irradiation target areas;
Equipped with.
 そして、本発明の光伝送システムにおいて、
 前記光分岐部が前記バンドル光ファイバに束ねられている前記単一の光ファイバを解体する光分離部であって、
 前記光分離部は、前記出力ポート毎にシャッタを有すること、及び
 前記制御部は、前記分岐比の調整として前記シャッタ毎に開放と遮断を指示すること
を特徴とする。
In the optical transmission system of the present invention,
The optical branching unit is an optical separation unit that separates the single optical fibers bundled in the optical fiber bundle,
The optical splitter has a shutter for each of the output ports, and the controller instructs each of the shutters to open or close as an adjustment of the splitting ratio.
 また、本発明の光伝送システムにおいて、
 前記光分岐部は、
 前記出力ポートの数と同数であり、対応する前記出力ポートのそれぞれへ前記光を出力する合波器と、
 前記バンドル光ファイバに束ねられている前記単一の光ファイバの数と同数であり、対応する前記単一の光ファイバからの前記光を前記合波器のいずれか又は終端部に出力する光スイッチと、
を有していてもよい。
In the optical transmission system of the present invention,
The optical branching unit includes:
a multiplexer, the number of which is equal to the number of the output ports, for outputting the light to each of the corresponding output ports;
an optical switch, the number of which is the same as the number of the single optical fibers bundled in the bundle optical fiber, for outputting the light from the corresponding single optical fiber to one of the multiplexers or to a terminal end;
[0043]
 さらに、前記光分岐部は、前記合波器と前記出力ポートとの間に、前記合波器が出力した前記光を前記方路の前記バンドル光ファイバに束ねられた全ての前記単一の光ファイバへ結合する分波器を有していてもよい。 Furthermore, the optical branching unit may have a demultiplexer between the multiplexer and the output port, which couples the light output by the multiplexer to all of the single optical fibers bundled in the bundle optical fiber of the path.
11:光源部
11a:紫外光源部
11c:光学系
12:光分岐部(等分岐)
12b:光分岐部(アクティブ)
12d:光分離部(アクティブ)
13、13-1、・・・、13-n、・・・、13-N:照射部
14:方路(バンドル光ファイバ36に束ねられていた各単一コア光ファイバ51a)
15:制御部
15b:制御部
16:光伝送路
26:光伝送路
36:バンドル光ファイバ
37:方路のバンドル光ファイバ
51a:単一コア光ファイバ
55:方路の単一コア光ファイバ
121:コア分離アダプタ
123:光ファイバ
125:光ファイバ
131:光スイッチ
132:出力ポート
133:合波器
135:終端器
139:コア分離アダプタ
141:シャッタ
301:光伝送システム
L1、L2:光
Lc:光スポットの大きさ
AR1、AR2、・・・、ARn、・・・、ARN:照射対象域
11: Light source unit 11a: Ultraviolet light source unit 11c: Optical system 12: Light branching unit (equal branching)
12b: Optical branching unit (active)
12d: Optical separation unit (active)
13, 13-1, ..., 13-n, ..., 13-N: Irradiation unit 14: Path (each single-core optical fiber 51a bundled in the bundle optical fiber 36)
15: Control unit 15b: Control unit 16: Optical transmission path 26: Optical transmission path 36: Bundle optical fiber 37: Bundle optical fiber 51a of a path: Single-core optical fiber 55: Single-core optical fiber 121 of a path: Core separation adapter 123: Optical fiber 125: Optical fiber 131: Optical switch 132: Output port 133: Multiplexer 135: Terminator 139: Core separation adapter 141: Shutter 301: Optical transmission system L1, L2: Light Lc: Size of optical spot AR1, AR2, ..., ARn, ..., ARN: Irradiation target area

Claims (8)

  1.  単一の光ファイバを複数束ねたバンドル光ファイバで光源部からの光を伝搬する光伝送路と、
     前記光伝送路が伝搬した前記光を任意の分岐比で複数の出力ポートに分岐する光分岐部と、
     前記光分岐部に対して前記分岐比の調整を行う制御部と、
     前記光分岐部のそれぞれの前記出力ポートからそれぞれの照射対象域へ前記光を伝搬する方路と、
    を備える光伝送システム。
    an optical transmission path that propagates light from a light source unit using an optical fiber bundle in which a plurality of single optical fibers are bundled;
    an optical branching unit that branches the light propagated through the optical transmission line into a plurality of output ports at an arbitrary branching ratio;
    a control unit that adjusts the branching ratio of the optical branching unit;
    a path for propagating the light from each of the output ports of the optical branching unit to each of the irradiation target areas;
    An optical transmission system comprising:
  2.  前記方路は、全て単一の光ファイバであることを特徴とする請求項1に記載の光伝送システム。 The optical transmission system according to claim 1, characterized in that all of the paths are single optical fibers.
  3.  前記方路は、全て単一の光ファイバを複数束ねたバンドル光ファイバであることを特徴とする請求項1に記載の光伝送システム。 The optical transmission system according to claim 1, characterized in that all of the paths are bundled optical fibers consisting of multiple single optical fibers.
  4.  前記照射対象域に照射される前記光のパワーを均等することを目標とし、
     前記制御部は、前記目標に近づくように前記分岐比の調整を行うことを特徴とする請求項1に記載の光伝送システム。
    The goal is to make the power of the light irradiated onto the irradiation target area uniform;
    2. The optical transmission system according to claim 1, wherein the control unit adjusts the branching ratio so as to approach the target.
  5.  前記照射対象域に照射される前記光のパワーをそれぞれの前記照射対象域の要求値とすることを目標とし、
     前記制御部は、前記目標に近づくように前記分岐比の調整を行うことを特徴とする請求項1に記載の光伝送システム。
    The power of the light irradiated to the irradiation target area is set to a required value for each of the irradiation target areas;
    2. The optical transmission system according to claim 1, wherein the control unit adjusts the branching ratio so as to approach the target.
  6.  単一の光ファイバを複数束ねたバンドル光ファイバからの光を任意の分岐比で複数の出力ポートに分岐する光分岐部であって、
     前記出力ポートの数と同数であり、対応する前記出力ポートのそれぞれへ前記光を出力する合波器と、
     前記バンドル光ファイバに束ねられている前記単一の光ファイバの数と同数であり、対応する前記単一の光ファイバからの前記光を前記合波器のいずれか又は終端部に出力する光スイッチと、
     前記バンドル光ファイバを解体し、前記単一の光ファイバをそれぞれ前記光スイッチへ接続するコア分離アダプタと、
    を備えることを特徴とする光分岐部。
    An optical branching unit that branches light from an optical bundle formed by bundling a plurality of single optical fibers into a plurality of output ports at an arbitrary branching ratio,
    a multiplexer, the number of which is equal to the number of the output ports, for outputting the light to each of the corresponding output ports;
    an optical switch, the number of which is the same as the number of the single optical fibers bundled in the bundle optical fiber, for outputting the light from the corresponding single optical fiber to one of the multiplexers or to a terminal end;
    a core separation adapter for separating the bundled optical fibers and connecting each of the single optical fibers to the optical switch;
    An optical branching unit comprising:
  7.  前記合波器と前記出力ポートとの間に、前記合波器が出力した前記光を前記出力ポートに接続されたバンドル光ファイバに束ねられた全ての単一の光ファイバへ結合する分波器をさらに備え、
     それぞれの前記合波器と前記分波器とは、単一の光ファイバで接続されていることを特徴とする請求項6に記載の光分岐部。
    a demultiplexer between the multiplexer and the output port, the demultiplexer coupling the light output from the multiplexer to all single optical fibers bundled in a bundle optical fiber connected to the output port;
    7. The optical branching section according to claim 6, wherein each of the multiplexers and the demultiplexers is connected to each other by a single optical fiber.
  8.  単一の光ファイバを複数束ねたバンドル光ファイバを光伝送路として光源部からの光を伝搬すること、
     光分岐部において、前記光伝送路が伝搬した前記光を任意の分岐比で複数の出力ポートに分岐すること、
     前記光分岐部のそれぞれの前記出力ポートからそれぞれの照射対象域へ前記光を伝搬すること、及び
     前記照射対象域に照射される前記光のパワーが目標となるように、前記光分岐部に対して前記分岐比を調整すること
    を行う光伝送方法。
    Propagating light from a light source unit using an optical bundle formed by bundling a plurality of single optical fibers as an optical transmission path;
    In an optical branching unit, the light propagated through the optical transmission line is branched into a plurality of output ports at an arbitrary branching ratio;
    An optical transmission method comprising: propagating the light from each of the output ports of the optical branching unit to each of the irradiation target areas; and adjusting the branching ratio of the optical branching unit so that the power of the light irradiated to the irradiation target area becomes a target.
PCT/JP2022/042823 2022-11-18 2022-11-18 Optical transmission system, optical splitter unit, and optical transmission method WO2024105874A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042823 WO2024105874A1 (en) 2022-11-18 2022-11-18 Optical transmission system, optical splitter unit, and optical transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042823 WO2024105874A1 (en) 2022-11-18 2022-11-18 Optical transmission system, optical splitter unit, and optical transmission method

Publications (1)

Publication Number Publication Date
WO2024105874A1 true WO2024105874A1 (en) 2024-05-23

Family

ID=91084144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042823 WO2024105874A1 (en) 2022-11-18 2022-11-18 Optical transmission system, optical splitter unit, and optical transmission method

Country Status (1)

Country Link
WO (1) WO2024105874A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150870A (en) * 1976-07-23 1979-04-24 Thomson-Csf Adjustable distributor device for shared transmission of radiant energy
JPS593410A (en) * 1982-06-30 1984-01-10 Alps Electric Co Ltd Optical branching device
JPS603605A (en) * 1983-06-22 1985-01-10 Mitsubishi Electric Corp Optical branch
JPH0348213A (en) * 1989-07-17 1991-03-01 Hitachi Ltd Optical switch
JP2012191475A (en) * 2011-03-11 2012-10-04 Nec Casio Mobile Communications Ltd Light-emitting device and light-emitting method
WO2017213069A1 (en) * 2016-06-07 2017-12-14 アダマンド株式会社 Light propagation device, display device and lighting device
WO2022085123A1 (en) * 2020-10-21 2022-04-28 日本電信電話株式会社 Ultraviolet light irradiation system and ultraviolet light irradiation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150870A (en) * 1976-07-23 1979-04-24 Thomson-Csf Adjustable distributor device for shared transmission of radiant energy
JPS593410A (en) * 1982-06-30 1984-01-10 Alps Electric Co Ltd Optical branching device
JPS603605A (en) * 1983-06-22 1985-01-10 Mitsubishi Electric Corp Optical branch
JPH0348213A (en) * 1989-07-17 1991-03-01 Hitachi Ltd Optical switch
JP2012191475A (en) * 2011-03-11 2012-10-04 Nec Casio Mobile Communications Ltd Light-emitting device and light-emitting method
WO2017213069A1 (en) * 2016-06-07 2017-12-14 アダマンド株式会社 Light propagation device, display device and lighting device
WO2022085123A1 (en) * 2020-10-21 2022-04-28 日本電信電話株式会社 Ultraviolet light irradiation system and ultraviolet light irradiation method

Similar Documents

Publication Publication Date Title
EP2659301B1 (en) Optical amplifier for multi-core optical fiber
KR101596473B1 (en) Optical path switching signal transmission/reception apparatus and corresponding method
US11516562B2 (en) Core selective switch and optical node device
US9103987B2 (en) Optical amplifier for multi-core optical fiber
WO2024105874A1 (en) Optical transmission system, optical splitter unit, and optical transmission method
US9794016B2 (en) Systems and methods for processing space-multiplexed optical signals
CA2298168A1 (en) Controllable wavelength-selective optical cross-connect
WO2024105875A1 (en) Optical transfer system and optical transfer method
WO2004034878A3 (en) Laser delivery device incorporating a plurality of laser source optical fibers
WO2024100862A1 (en) Optical transmission system
WO2024100864A1 (en) Optical transmission system and optical transmission method
WO2023058144A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
US20230390436A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2024100863A1 (en) Optical transmission system and optical transmission method
WO2022085142A1 (en) Ultraviolet light irradiation system and method
WO2024084562A1 (en) Bundled optical fiber
WO2017134286A1 (en) Active optical waveguide device
WO2023084675A1 (en) Uv irradiation system
WO2023084666A1 (en) Ultraviolet light irradiation system
WO2023084668A1 (en) Ultraviolet light radiation system and control method
WO2023073885A1 (en) Ultraviolet light irradiation system
WO2024105873A1 (en) Light spot shaper and optical transmission system
WO2024084561A1 (en) Optical transmission system design method and design device
WO2023073771A1 (en) Ultraviolet light irradiation system
JP5071870B2 (en) Optical path switching type optical signal transmitting / receiving apparatus and optical signal optical path switching method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22965850

Country of ref document: EP

Kind code of ref document: A1