WO2023073771A1 - Ultraviolet light irradiation system - Google Patents

Ultraviolet light irradiation system Download PDF

Info

Publication number
WO2023073771A1
WO2023073771A1 PCT/JP2021/039334 JP2021039334W WO2023073771A1 WO 2023073771 A1 WO2023073771 A1 WO 2023073771A1 JP 2021039334 W JP2021039334 W JP 2021039334W WO 2023073771 A1 WO2023073771 A1 WO 2023073771A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet light
irradiation
target area
irradiation target
irradiation system
Prior art date
Application number
PCT/JP2021/039334
Other languages
French (fr)
Japanese (ja)
Inventor
亜弥子 岩城
友宏 谷口
聖 成川
誉人 桐原
和秀 中島
隆 松井
裕之 飯田
千里 深井
悠途 寒河江
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/039334 priority Critical patent/WO2023073771A1/en
Publication of WO2023073771A1 publication Critical patent/WO2023073771A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultra-violet radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present disclosure relates to an ultraviolet light irradiation system that uses ultraviolet light to sterilize and inactivate viruses.
  • Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light. By irradiating the robot with ultraviolet light while moving in a room in a building such as a hospital room, the robot can automatically realize sterilization in a wide range without human intervention.
  • Stationary air purifier The product of Non-Patent Document 2 is a device that is installed on the ceiling or at a predetermined place in a room, and performs sterilization while circulating the air in the room.
  • Non-Patent Document 3 is a portable apparatus equipped with an ultraviolet light source. A user can bring the device to a desired area and irradiate it with ultraviolet light. Therefore, the device can be used in various places.
  • Kantum Ushikata Co., Ltd. website https://www.kantum.co.jp/product/sakkin_robot/sakkinn_robot/UVD_robot
  • June 22, 2020 Iwasaki Electric Co., Ltd. website https://www.iwasaki.co.jp/optics/ARrilization/air/air03.html
  • June 22, 2020 Funakoshi Co., Ltd. website https://www.funakoshi.co.jp/contents/68182
  • Non-Patent Document 1 has the following problems.
  • Economy Since the product of Non-Patent Document 1 is irradiated with high-output ultraviolet light, the apparatus becomes large and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
  • Non-Patent Document 3 cannot irradiate ultraviolet light to narrow pipes or areas where people cannot enter.
  • the product of Non-Patent Literature has a problem of versatility in that it can irradiate any place with ultraviolet light.
  • (3) Operability The product of Non-Patent Document 3 is portable and can be irradiated with ultraviolet light at various locations. However, in order to obtain sufficient effects such as sterilization at the target location, the user is required to have skill and knowledge, and there is a problem in operability.
  • an ultraviolet light irradiation system 300 using an optical fiber as shown in FIG. 1 is conceivable.
  • This ultraviolet light irradiation system transmits ultraviolet light from the light source 11 using a thin and flexible optical fiber, and irradiates the ultraviolet light output from the tip of the optical fiber 14 to an irradiation target area AR to be sterilized or the like with pinpoint accuracy.
  • the versatility of the above problem (2) can be solved because the ultraviolet light can be irradiated to any place simply by moving the irradiation unit 13 at the tip of the optical fiber 14 .
  • the operability of the above problem (3) can be resolved.
  • an optical distribution unit 12 such as an optical splitter in the optical transmission line 16 to form a P-MP (Point to MultiPoint) system configuration such as FTTH (Fiber To The Home)
  • FTTH Fiber To The Home
  • the length of the optical fiber 14, the area of the irradiation target area AR, and the illuminance required for the irradiation target area AR are different.
  • the energy of ultraviolet light considering the time to be supplied to each direction and the energy of ultraviolet light considering the time to irradiate the irradiation target area AR is the integrated light amount (unit: J).
  • the energy per unit time is defined as power (unit: W)
  • the power per unit area of the ultraviolet light applied to the irradiation target area AR is defined as illuminance (W/m 2 ).
  • A Fairness
  • Each path 14 has a different transmission loss depending on the length of the optical fiber and the distance from the irradiation unit to the irradiation target area, and the area of the irradiation target area AR is also different.
  • the light distribution unit 12 of the ultraviolet light irradiation system 300 power-splits the ultraviolet light at an equal splitting ratio, it is difficult to obtain uniform illuminance in each irradiation target area AR.
  • the ultraviolet light irradiation system 300 has a problem that it is difficult to obtain a fair sterilization effect in each irradiation target area AR.
  • Each route 14 has a different transmission loss depending on the length of the optical fiber and the distance from the irradiation unit to the irradiation target area, and the area of the irradiation target area AR is also different.
  • the light distribution unit 12 of the ultraviolet light irradiation system 300 power-splits the ultraviolet light at an equal splitting ratio, there is a case where the irradiation target area AR is irradiated with the ultraviolet light with excessive illuminance.
  • the ultraviolet light irradiation system 300 may be irradiated with ultraviolet light having an excessive illuminance, which poses a problem of difficulty in ensuring safety.
  • C Efficiency
  • the light distribution unit 12 of the ultraviolet light irradiation system 300 power-splits the ultraviolet light at an equal splitting ratio, it is difficult to supply the ultraviolet light with the illuminance desired for each irradiation target area AR.
  • the ultraviolet light irradiation system 300 cannot perform sterilization or the like by a method according to the irradiation target area AR, and has a problem that it is difficult to improve the work efficiency.
  • the present invention is a P-MP configuration that can obtain effects such as fair sterilization in each irradiation target area, can ensure safety, and can improve work efficiency. It is an object of the present invention to provide an ultraviolet light irradiation system of
  • the ultraviolet light irradiation system according to the present invention is provided with a light distribution section with unequal branching ratio.
  • the ultraviolet light irradiation system includes: an ultraviolet light source that generates ultraviolet light; N irradiating units that irradiate N (N is a natural number of 2 or more) irradiation target areas with the ultraviolet light; a light distribution unit that branches the ultraviolet light to each of the irradiation units; with The optical splitter is an unequal branch coupler.
  • the optical distribution unit that distributes the ultraviolet light transmitted from the ultraviolet light source unit to multiple single-core optical fibers is an unequal branch coupler.
  • the branching ratio of each output port of the unequal branching coupler is varied according to the conditions of the irradiation target area. As a specific connection method, the following can be considered.
  • the light distribution section is characterized by having a branching ratio for branching the ultraviolet light from the ultraviolet light source section so that the illuminance of the ultraviolet light irradiated to each of the irradiation target areas is equal.
  • the light distribution unit has a branching ratio for branching the ultraviolet light from the ultraviolet light source unit such that the illuminance of the ultraviolet light irradiated to each irradiation target area is equal to or less than a predetermined reference value. and
  • the aforementioned problem (B) can be solved.
  • the light distribution unit is characterized by having a branching ratio for branching the ultraviolet light from the ultraviolet light source unit so as to satisfy the illuminance of the ultraviolet light required by each irradiation target area.
  • the aforementioned problem (C) can be solved.
  • the present invention provides an ultraviolet light irradiation system with a P-MP configuration that can obtain effects such as fair sterilization in each irradiation target area, can ensure safety, and can improve work efficiency. can do.
  • the ultraviolet light source section 11 and the light distribution section 12 may be arranged at the same place or arranged in the same housing. In the case of such a configuration, the following problems also occur.
  • the ultraviolet light irradiation system according to the present invention is separated from the ultraviolet light source unit and the light distribution unit, and further includes an optical transmission line that connects the ultraviolet light source unit and the light distribution unit. .
  • the optical fiber in the section from the ultraviolet light source section to the light distribution section can be shared, and the total length of the optical fiber can be shortened. For this reason, the cost of members and construction can be reduced by the amount that the optical fiber can be shared, and the problem (D) can be solved.
  • the present invention provides an ultraviolet light irradiation system with a P-MP configuration that can obtain effects such as fair sterilization in each irradiation target area, can ensure safety, and can improve work efficiency. can be done.
  • FIG. 2 is a diagram illustrating the ultraviolet light irradiation system 301 of this embodiment.
  • This embodiment is a case of supplying the illuminance required for each irradiation target area AR.
  • the ultraviolet light irradiation system 301 is an ultraviolet light source unit 11 that generates ultraviolet light; N irradiating units 13 that irradiate N (N is a natural number of 2 or more) irradiation target areas AR with the ultraviolet light; a light distribution unit 12-1 that branches the ultraviolet light to each of the irradiation units 13; with It is characterized in that the optical splitter 12-1 is an unequal branch coupler.
  • the ultraviolet light source unit 11 outputs light in the ultraviolet region (ultraviolet light) that is effective for sterilization and the like. Let P [W] be the power of the ultraviolet light output by the ultraviolet light source unit 11 .
  • the ultraviolet light source section 11 and the light distribution section 12-1 are connected by an optical fiber or an optical transmission line 16 in space.
  • the ultraviolet light source unit 11 and the light distribution unit 12-1 may be arranged in the same place (within the same housing), or an optical transmission line 26 longer than the optical transmission line 16 as described later with reference to FIG. may be connected with each other and spaced apart.
  • the light distribution unit 12-1 power-splits the ultraviolet light from the ultraviolet light source unit 11 at a set branching ratio, and outputs it to the route 14 connected to each output port.
  • the optical splitter 12-1 is, for example, an unequal branch coupler disclosed in Japanese Unexamined Patent Application Publication No. 2020-036068.
  • the unequal splitting coupler splits the power of the ultraviolet light from the ultraviolet light source unit 11 so that the splitting ratio is set in advance for each output port, and outputs the split power to each output port.
  • the ultraviolet light output from the output ports 1 to N is irradiated to the irradiation target areas AR (1 to N) via the route 14 and the irradiation unit 13, respectively.
  • FIG. Path 14 propagates the ultraviolet light distributed by the light distribution section 12-1 to each irradiation section 13.
  • FIG. Path 14 is an optical fiber. Since it is an optical fiber, it can be installed in narrow places where conventional robots and devices cannot enter.
  • FIG. 3 is a diagram illustrating cross sections of optical fibers that can be used for the optical fiber transmission lines 16 and 14. As shown in FIG. (1) Solid Core Optical Fiber This optical fiber has one solid core 52 in the clad 60 having a higher refractive index than the clad 60 . "Full" means "not hollow". The solid core can also be realized by forming an annular low refractive index region in the clad.
  • Hole-assisted optical fiber This optical fiber has a solid core 52 in the clad 60 and a plurality of holes 53 arranged around the core.
  • the medium of the holes 53 is air, and the refractive index of air is sufficiently smaller than that of quartz-based glass. Therefore, the hole-assisted optical fiber has a function of returning light leaking from the core 52 due to bending or the like back to the core 52, and is characterized by a small bending loss.
  • Hole structure optical fiber This optical fiber has a hole group 53a of a plurality of holes 53 in the clad 60, and has an effective refractive index lower than that of the host material (glass or the like). This structure is called a photonic crystal fiber.
  • This structure can take a structure in which a high-refractive-index core with a changed refractive index does not exist, and light can be confined using the region 52a surrounded by the holes 53 as an effective core region.
  • photonic crystal fibers can reduce the effects of absorption and scattering losses due to additives in the core.
  • Optical characteristics that cannot be realized can be realized.
  • This optical fiber has a core region made of air. Light can be confined in the core region by forming a photonic bandgap structure with a plurality of holes in the cladding region or an anti-resonant structure with glass wires. This optical fiber has low nonlinear effects and is capable of delivering high power or high energy lasers.
  • Coupling Core Optical Fiber In this optical fiber, a plurality of solid cores 52 having a high refractive index are closely arranged in a clad 60 . This optical fiber guides light by optical wave coupling between solid cores 52 . Coupling-core optical fibers can disperse and send light as many times as the number of cores, so high power can be used for efficient disinfection. There is an advantage that the service life can be extended.
  • the irradiation unit 13 irradiates the ultraviolet light transmitted through the route 14 to a predetermined target location (irradiation target area AR) for sterilization or the like.
  • the irradiation unit 13 is composed of an optical system such as a lens designed for the wavelength of ultraviolet light.
  • a branching ratio for branching the ultraviolet light from the ultraviolet light source unit 11 is set so that the illuminance of the ultraviolet light irradiated to each irradiation target area AR becomes equal.
  • the branch ratio is set as follows. (a1) As shown in FIG. 4, the branching ratio to the irradiation target area AR2 having a large area is large and the branching ratio to the irradiation target area AR1 having a small area is set to be small. The illuminance of the ultraviolet light to each irradiation target area AR becomes uniform, and effects such as fair sterilization can be obtained. (a2) As shown in FIG.
  • the distance from the route 14 and the distance from the irradiation unit 13 to the irradiation target area AR is long and the branch ratio to the irradiation target area AR1 having a large transmission loss is increased.
  • 13 to the irradiation target area AR is set to a small branching ratio to the irradiation target area AR2 having a short transmission loss.
  • the illuminance of the ultraviolet light to each irradiation target area AR becomes uniform, and effects such as fair sterilization can be obtained.
  • (a3) Increase the branching ratio to the irradiation target area AR that requires high illuminance for sterilization or the like, and set the branching ratio to the irradiation target area AR that requires low illuminance to be low.
  • the requirements of each irradiation target area AR can be fairly met, and effects such as fair sterilization can be obtained.
  • L fiber-n [a. u. ] L fiber-n [a. u. ]
  • S n [m 2 ] the area of the ultraviolet light spot irradiated to the irradiation target area ARn.
  • the branching ratio that can be set to the unequal branch coupler is discrete (for example, 1:2:4), and if the illuminance of all the irradiation target areas AR cannot always be uniform, or if the request for each irradiation target area AR is Sometimes it cannot be met fairly.
  • the unequal branch coupler of this embodiment branches the ultraviolet light from the ultraviolet light source unit 11 so that the illuminance of the ultraviolet light irradiated to each irradiation target area AR is equal to or less than a predetermined reference value.
  • a branching ratio is set. Specifically, the branch ratio is set as follows. (b1) The illuminance of ultraviolet light has a standard value of 0.2 ⁇ W/cm 2 , for example, in order to safely sterilize by reducing the amount of human exposure. For this reason, the ultraviolet light power output from the ultraviolet light source unit 11, the loss L fiber-n [a. u. ], loss L air-n [a. u. ] and the area S n [m 2 ], the branching ratio is set such that the illuminance of the ultraviolet light irradiated to each irradiation target area AR is equal to or less than the reference value.
  • a branching ratio for branching the ultraviolet light from the ultraviolet light source section is set so as to satisfy the illuminance of the ultraviolet light required by each irradiation target area.
  • the branch ratio is set as follows. (c1) As shown in FIG. 6, set a large branching ratio to the irradiation target area AR2 that requires sterilization in a short time, and a small branching ratio to the irradiation target area ARN that requires sterilization over a long period of time. .
  • Ultraviolet light with high illuminance can be distributed to a desired irradiation target area AR, and sterilization and the like can be performed in a short period of time.
  • low illuminance ultraviolet light is distributed to the irradiation target area AR where sterilization or the like takes time.
  • an irradiation target area AR in which sterilization or the like is performed over a long period of time can be exemplified by a room (a place where people or animals come and go) in which it is desired to avoid exposure to high-intensity ultraviolet light.
  • a room a place where people or animals come and go
  • the irradiation target area AR that performs sterilization or the like in a short time include a closed space such as a UV sterilization box that does not allow people or animals to enter.
  • FIG. 7 is a diagram illustrating the ultraviolet light irradiation system 302 of this embodiment.
  • the ultraviolet light source unit 11 and the light distribution unit 12-1 are separated from each other. It is characterized by having The optical fiber described with reference to FIG. 3 can be used for the optical transmission line 26 .
  • FIG. 7 is a diagram explaining the effect of this embodiment.
  • the term “separate” means that the ultraviolet light source section 11 and the light distribution section 12-1 are not located at the same place or in the same housing 3.
  • FIG. 7 is a diagram explaining the effect of this embodiment.
  • the term “separate” means that the ultraviolet light source section 11 and the light distribution section 12-1 are not located at the same place or in the same housing 3.
  • the light distribution unit 12-1 distributes the ultraviolet light to each route 14 and propagates it to each irradiation target area AR as described above.
  • the ultraviolet light source section 11 and the light distribution section 12-1 are arranged at the same place (for example, in one housing 3). Therefore, the optical fiber that is the route 14 must be laid to each irradiation target area AR, and the total extension of the optical fiber becomes longer according to the number of irradiation target areas AR, resulting in the cost of system members and construction. can be higher.
  • the ultraviolet light irradiation system 302 of FIG. 7(B) has a configuration in which the ultraviolet light source unit 11 and the light distribution unit 12-1 are connected by the optical fiber 26.
  • the ultraviolet light irradiation system 302 does not place the light distribution unit 12-1 in the same housing as the ultraviolet light source unit 11, but protrudes to the vicinity of the irradiation target area AR, and from there, each irradiation target area by the route 14.
  • Ultraviolet light can be supplied to the AR.
  • the optical fiber 26 has a length that covers a section from the ultraviolet light source unit 11 to the irradiation target area AR, such as a room or equipment, and has a length of 10 m or more, for example.
  • the ultraviolet light irradiation system 302 connects the ultraviolet light source unit 11 and the light distribution unit 12-1, which are not located at the same place or are not in the same housing, with the optical fiber 26, and connects the light distribution unit 12-1 to the ultraviolet light source unit.
  • the feature is that it can be placed in a different place from 11.
  • the configuration of the ultraviolet light irradiation system 302 produces the following effects.
  • this configuration only one long optical fiber 26 and a short optical fiber between the light distribution section 12-1 and the irradiation section 13 are laid. Therefore, even if the number of irradiation target areas AR increases, the total extension of the optical fibers is not as long as that of the ultraviolet light irradiation system 301, and the cost of system members and construction increases according to the number of irradiation target areas AR. can be avoided.
  • FIG. 8 is a flowchart for explaining a design method for setting the branching ratio of the light distribution section 12-1 of the ultraviolet light irradiation system 301.
  • the ultraviolet light in an ultraviolet light irradiation system 301 in which ultraviolet light generated by one ultraviolet light source unit 11 is branched by a light distribution unit 12-1 and the ultraviolet light is irradiated to a plurality of irradiation target areas AR, the ultraviolet light It is characterized in that a branching ratio for branching the light to the routes 14 to the respective irradiation units 13 is set based on the illuminance of the ultraviolet light irradiated to the irradiation target area AR.
  • Step S01 Ultraviolet light output power P [W] of ultraviolet light source 11, loss L fiber-n [a. u. ], loss L air-n [a. u. ], the area S n [m 2 ], and the illuminance [W/m 2 ] required by each irradiation target area AR.
  • Step S02 Judge whether the effect to be ensured by the ultraviolet light irradiation system 301 is fairness.
  • Step S03 If the effect to be ensured by the ultraviolet light irradiation system 301 is fairness ("Yes" in step S02), the light distribution unit 12-1 branches according to (a1), (a2) or (a3) described above. Set ratio.
  • Step S ⁇ b>04 It is judged whether the effect to be ensured by the ultraviolet light irradiation system 301 is safety.
  • Step S05 If the effect to be ensured in the ultraviolet light irradiation system 301 is safety ("Yes" in step S04), the branching ratio of the light distribution unit 12-1 is set according to (b1) described above.
  • Step S ⁇ b>06 It is judged whether the effect to be ensured by the ultraviolet light irradiation system 301 is efficiency.
  • Step S07 If the effect to be ensured in the ultraviolet light irradiation system 301 is efficiency ("Yes" in step S06), the branching ratio of the light distribution unit 12-1 is set according to (c1) described above.
  • Step S08 If the effects to be ensured by the ultraviolet light irradiation system 301 are none of fairness, safety and efficiency, the design is stopped.

Abstract

The objective of the present invention is to provide an ultraviolet light irradiation system with a P-MP configuration with which effects such as fair sterilization in each area to be irradiated can be obtained, safety can be ensured, and work efficiency can be improved. An ultraviolet light irradiation system 301 according to the present invention is characterized by comprising an ultraviolet light source 11 that generates ultraviolet light, N irradiation units 13 (where N is a natural number equal to or greater than 2) that irradiate N areas AR to be irradiated with the ultraviolet light, and a light distribution unit 12-1 that splits the ultraviolet light into paths to the respective irradiation units 13, wherein the light distribution unit 12-1 is an unequal-split coupler.

Description

紫外光照射システムUltraviolet light irradiation system
 本開示は、紫外光を用いて殺菌やウィルスの不活化を行う紫外光照射システムに関する。 The present disclosure relates to an ultraviolet light irradiation system that uses ultraviolet light to sterilize and inactivate viruses.
 感染症予防などの目的から、紫外光を用いた殺菌やウィルスの不活化を行うシステムの需要が高まっている。当該システムには、大きく3つのカテゴリの製品がある。なお、本明細書では、「殺菌等」と記載する場合、殺菌とウィルスの不活化を意味するものとする。
(I)移動型殺菌ロボット
 非特許文献1の製品は、紫外光を照射する自律移動型のロボットである。当該ロボットは、病室などの建物内の部屋の中を移動しながら紫外光を照射することで、人手を介さず、自動で広い範囲の殺菌等を実現できる。
(II)据え置き型空気清浄機
 非特許文献2の製品は、天井や室内の所定の場所に設置され、室内の空気を循環しながら殺菌等する装置である。当該装置は、直接紫外光を照射せず、人体への影響がないため、安全性の高い殺菌が可能である。
(III)ポータブル型殺菌装置
 非特許文献3の製品は、紫外光源を搭載したポータブル型の装置である。ユーザが当該装置を所望のエリアに持って行って紫外光を照射できる。このため、当該装置は様々な場所で使用可能である。
Demand is increasing for systems that perform sterilization and virus inactivation using ultraviolet light for the purpose of preventing infectious diseases. There are three main categories of products in this system. In this specification, the term “sterilization, etc.” shall mean sterilization and virus inactivation.
(I) Mobile sterilization robot The product of Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light. By irradiating the robot with ultraviolet light while moving in a room in a building such as a hospital room, the robot can automatically realize sterilization in a wide range without human intervention.
(II) Stationary air purifier The product of Non-Patent Document 2 is a device that is installed on the ceiling or at a predetermined place in a room, and performs sterilization while circulating the air in the room. Since this device does not directly irradiate ultraviolet light and has no effect on the human body, highly safe sterilization is possible.
(III) Portable Sterilization Apparatus The product of Non-Patent Document 3 is a portable apparatus equipped with an ultraviolet light source. A user can bring the device to a desired area and irradiate it with ultraviolet light. Therefore, the device can be used in various places.
 しかし、非特許文献に記載される装置には次のような課題がある。
(1)経済性
 非特許文献1の製品は、高出力の紫外光を照射するため、装置が大掛かりとなり高価となる。このため、非特許文献1の製品には経済的なシステムの実現が困難という課題がある。
(2)汎用性
 非特許文献1の製品は、紫外光照射箇所がロボットが移動/進入できる場所に限定されるため、細かい場所や奥まった場所などへの紫外光の照射が困難である。
 非特許文献2の製品は、循環させた室内の空気を殺菌するため、殺菌等をしたい場所に直接紫外光を照射することができない。
 非特許文献3の製品は、例えば、細い管路や人が入られないエリアについては紫外光を照射することができない。
 このように、非特許文献の製品には、任意の場所に紫外光を照射できるという汎用性に課題がある。
(3)操作性
 非特許文献3の製品は、可搬性であり様々な場所で紫外光の照射が可能である。しかし、対象箇所で十分な殺菌等の効果が得られるためには、ユーザにスキルや知識を要求しており、操作性に課題がある。
However, the device described in Non-Patent Document has the following problems.
(1) Economy Since the product of Non-Patent Document 1 is irradiated with high-output ultraviolet light, the apparatus becomes large and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
(2) Versatility In the product of Non-Patent Document 1, since the ultraviolet light irradiation position is limited to a place where the robot can move/enter, it is difficult to irradiate the ultraviolet light to a small place or a deep place.
Since the product of Non-Patent Document 2 sterilizes the circulated indoor air, it is not possible to directly irradiate a place to be sterilized with ultraviolet light.
The product of Non-Patent Document 3, for example, cannot irradiate ultraviolet light to narrow pipes or areas where people cannot enter.
Thus, the product of Non-Patent Literature has a problem of versatility in that it can irradiate any place with ultraviolet light.
(3) Operability The product of Non-Patent Document 3 is portable and can be irradiated with ultraviolet light at various locations. However, in order to obtain sufficient effects such as sterilization at the target location, the user is required to have skill and knowledge, and there is a problem in operability.
 これらの課題に対して、図1のような光ファイバを用いた紫外光照射システム300が考えられる。この紫外光照射システムは、細くて曲げやすい光ファイバを用いて光源11から紫外光を伝送し、光ファイバ14の先端から出力される紫外光をピンポイントで殺菌等したい照射対象域ARへ照射する。光ファイバ14の先端の照射部13を移動させるだけで任意の場所に紫外光を照射できるため上記課題(2)の汎用性を解消できる。また、紫外光光源の移動や設定が不要でユーザにスキルや知識を求めないため、上記課題(3)の操作性も解消できる。さらに、光スプリッタのような光分配部12を光伝送路16に設け、FTTH(Fiber To The Home)のようなP-MP(Point to MultiPoint)のシステム構成とすることで、単一の光源をシェアすることで複数の箇所を殺菌等できる。このため、上記課題(1)の経済性も解消できる。 For these problems, an ultraviolet light irradiation system 300 using an optical fiber as shown in FIG. 1 is conceivable. This ultraviolet light irradiation system transmits ultraviolet light from the light source 11 using a thin and flexible optical fiber, and irradiates the ultraviolet light output from the tip of the optical fiber 14 to an irradiation target area AR to be sterilized or the like with pinpoint accuracy. . The versatility of the above problem (2) can be solved because the ultraviolet light can be irradiated to any place simply by moving the irradiation unit 13 at the tip of the optical fiber 14 . In addition, since there is no need to move or set the ultraviolet light source, and the user is not required to have skills or knowledge, the operability of the above problem (3) can be resolved. Furthermore, by providing an optical distribution unit 12 such as an optical splitter in the optical transmission line 16 to form a P-MP (Point to MultiPoint) system configuration such as FTTH (Fiber To The Home), a single light source can be used. By sharing, you can sterilize multiple places. Therefore, it is possible to solve the problem (1) economically.
 しかし、紫外光照射システムとしてのP-MP構成の実現には次のような課題がある。
 光ファイバ14の長さ、照射対象域ARの面積、及び照射対象域ARで求められる照度(殺菌等に必要な照度)はそれぞれ異なる。しかし、図1のような紫外光照射システム300が備える光分配部12は光の分岐比が等しく、紫外光源部11から出力された紫外光は、複数の方路14(例えば単一コアの光ファイバ)に等しくパワー分岐される。なお、本明細書では、各方路へ供給する時間を考慮した紫外光のエネルギー及び照射対象域ARに照射する時間を考慮した紫外光のエネルギーを積算光量(単位J)とし、それら紫外光の単位時間あたりのエネルギーをパワー(単位W)とし、照射対象域ARに照射する紫外光の単位面積当たりのパワーを照度(W/m)として説明する。
(A)公平性
 それぞれの方路14は光ファイバの長さや照射部から照射対象域までの距離により伝送損失が異なり、照射対象域ARの面積も異なる。しかし、紫外光照射システム300の光分配部12が等しい分岐比で紫外光をパワー分岐するため、照射対象域ARそれぞれは均等な照度を得ることが難しい。つまり、紫外光照射システム300には各照射対象域ARで公平な殺菌等の効果が得られ難いという課題がある。
(B)安全性
 それぞれの方路14は光ファイバの長さや照射部から照射対象域までの距離により伝送損失が異なり、照射対象域ARの面積も異なる。しかし、紫外光照射システム300の光分配部12が等しい分岐比で紫外光をパワー分岐するため、過剰な照度の紫外光が照射対象域ARに照射されるケースがある。つまり、紫外光照射システム300には構成によって過剰な照度の紫外光が照射されることもあり、安全性を担保することが困難という課題がある。
(C)効率性
 さらに、照射対象域ARには、照度を上げて短時間で殺菌等を終わらせたい場所や照度を下げた紫外光で長時間殺菌等を行う場所も存在する。しかし、紫外光照射システム300の光分配部12が等しい分岐比で紫外光をパワー分岐するため、それぞれの照射対象域ARが所望する照度の紫外光を供給することが難しい。つまり、紫外光照射システム300には照射対象域ARに応じた方法で殺菌等を行えず、作業効率を向上させることが困難という課題がある。
However, there are the following problems in realizing the P-MP configuration as an ultraviolet light irradiation system.
The length of the optical fiber 14, the area of the irradiation target area AR, and the illuminance required for the irradiation target area AR (illuminance required for sterilization or the like) are different. However, the light distribution unit 12 provided in the ultraviolet light irradiation system 300 as shown in FIG. fiber) with equal power split. In this specification, the energy of ultraviolet light considering the time to be supplied to each direction and the energy of ultraviolet light considering the time to irradiate the irradiation target area AR is the integrated light amount (unit: J). The energy per unit time is defined as power (unit: W), and the power per unit area of the ultraviolet light applied to the irradiation target area AR is defined as illuminance (W/m 2 ).
(A) Fairness Each path 14 has a different transmission loss depending on the length of the optical fiber and the distance from the irradiation unit to the irradiation target area, and the area of the irradiation target area AR is also different. However, since the light distribution unit 12 of the ultraviolet light irradiation system 300 power-splits the ultraviolet light at an equal splitting ratio, it is difficult to obtain uniform illuminance in each irradiation target area AR. In other words, the ultraviolet light irradiation system 300 has a problem that it is difficult to obtain a fair sterilization effect in each irradiation target area AR.
(B) Safety Each route 14 has a different transmission loss depending on the length of the optical fiber and the distance from the irradiation unit to the irradiation target area, and the area of the irradiation target area AR is also different. However, since the light distribution unit 12 of the ultraviolet light irradiation system 300 power-splits the ultraviolet light at an equal splitting ratio, there is a case where the irradiation target area AR is irradiated with the ultraviolet light with excessive illuminance. In other words, depending on the configuration, the ultraviolet light irradiation system 300 may be irradiated with ultraviolet light having an excessive illuminance, which poses a problem of difficulty in ensuring safety.
(C) Efficiency Further, in the irradiation target area AR, there are places where sterilization, etc., should be completed in a short period of time with increased illuminance, and places where sterilization, etc., should be performed for a long time with ultraviolet light with reduced illuminance. However, since the light distribution unit 12 of the ultraviolet light irradiation system 300 power-splits the ultraviolet light at an equal splitting ratio, it is difficult to supply the ultraviolet light with the illuminance desired for each irradiation target area AR. In other words, the ultraviolet light irradiation system 300 cannot perform sterilization or the like by a method according to the irradiation target area AR, and has a problem that it is difficult to improve the work efficiency.
 本発明は、これらの課題を解決するために、各照射対象域で公平な殺菌等の効果が得られ、安全性を担保することができ、且つ作業効率を向上させることができるP-MP構成の紫外光照射システムを提供することを目的とする。 In order to solve these problems, the present invention is a P-MP configuration that can obtain effects such as fair sterilization in each irradiation target area, can ensure safety, and can improve work efficiency. It is an object of the present invention to provide an ultraviolet light irradiation system of
 上記目的を達成するために、本発明に係る紫外光照射システムは、不等分岐比の光分配部を備えることとした。 In order to achieve the above object, the ultraviolet light irradiation system according to the present invention is provided with a light distribution section with unequal branching ratio.
 具体的には、本発明に係る紫外光照射システムは、
 紫外光を発生させる紫外光源部と、
 前記紫外光をN個(Nは2以上の自然数)の照射対象域に照射するN個の照射部と、
 前記紫外光をそれぞれの前記照射部への方路へ分岐する光分配部と、
を備え、
 前記光分配部が不等分岐カプラであることを特徴とする。
Specifically, the ultraviolet light irradiation system according to the present invention includes:
an ultraviolet light source that generates ultraviolet light;
N irradiating units that irradiate N (N is a natural number of 2 or more) irradiation target areas with the ultraviolet light;
a light distribution unit that branches the ultraviolet light to each of the irradiation units;
with
The optical splitter is an unequal branch coupler.
 本紫外光照射システムは、紫外光源部から伝送された紫外光を複数の単一コアの光ファイバに分配する光分配部が不等分岐カプラである。照射対象域の条件に合わせて不等分岐カプラの各出力ポートの分岐比率を違える。具体的な接続方法としては以下のようなものが考えられる。 In this ultraviolet light irradiation system, the optical distribution unit that distributes the ultraviolet light transmitted from the ultraviolet light source unit to multiple single-core optical fibers is an unequal branch coupler. The branching ratio of each output port of the unequal branching coupler is varied according to the conditions of the irradiation target area. As a specific connection method, the following can be considered.
 前記光分配部は、それぞれの前記照射対象域へ照射される前記紫外光の照度が等しくなるように前記紫外光源部からの前記紫外光を分岐する分岐比を有することを特徴とする。前述の課題(A)を解決することができる。 The light distribution section is characterized by having a branching ratio for branching the ultraviolet light from the ultraviolet light source section so that the illuminance of the ultraviolet light irradiated to each of the irradiation target areas is equal. The aforementioned problem (A) can be solved.
 前記光分配部は、それぞれの前記照射対象域へ照射される前記紫外光の照度が所定の基準値以下となるように前記紫外光源部からの前記紫外光を分岐する分岐比を有することを特徴とする。前述の課題(B)を解決することができる。 The light distribution unit has a branching ratio for branching the ultraviolet light from the ultraviolet light source unit such that the illuminance of the ultraviolet light irradiated to each irradiation target area is equal to or less than a predetermined reference value. and The aforementioned problem (B) can be solved.
 前記光分配部は、それぞれの前記照射対象域が要求する前記紫外光の照度を満たすように前記紫外光源部からの前記紫外光を分岐する分岐比を有することを特徴とする。前述の課題(C)を解決することができる。 The light distribution unit is characterized by having a branching ratio for branching the ultraviolet light from the ultraviolet light source unit so as to satisfy the illuminance of the ultraviolet light required by each irradiation target area. The aforementioned problem (C) can be solved.
 従って、本発明は、各照射対象域で公平な殺菌等の効果が得られ、安全性を担保することができ、且つ作業効率を向上させることができるP-MP構成の紫外光照射システムを提供することができる。 Therefore, the present invention provides an ultraviolet light irradiation system with a P-MP configuration that can obtain effects such as fair sterilization in each irradiation target area, can ensure safety, and can improve work efficiency. can do.
 また、図1の紫外光照射システム300は、紫外光源部11と光分配部12とが同じ場所に配置されていたり、同一筐体内に配置されることもある。このような構成の場合、次のような課題も生じる。 Further, in the ultraviolet light irradiation system 300 of FIG. 1, the ultraviolet light source section 11 and the light distribution section 12 may be arranged at the same place or arranged in the same housing. In the case of such a configuration, the following problems also occur.
 課題(D):紫外光源部近傍から各照射対象域まで光ファイバの方路を敷設するため、照射対象域ARの数に応じて光ファイバの総延長が長くなり、システムの部材や施工のコストが高くなるという課題がある。 Problem (D): Since the route of the optical fiber is laid from the vicinity of the ultraviolet light source to each irradiation target area, the total length of the optical fiber becomes long according to the number of irradiation target areas AR, and the cost of system members and construction. There is a problem that the
 そこで、本発明に係る紫外光照射システムは、前記紫外光源部と前記光分配部とが離隔されており、前記紫外光源部と前記光分配部とを接続する光伝送路をさらに備えることが好ましい。 Therefore, it is preferable that the ultraviolet light irradiation system according to the present invention is separated from the ultraviolet light source unit and the light distribution unit, and further includes an optical transmission line that connects the ultraviolet light source unit and the light distribution unit. .
 本紫外照射システムは、光分配部を照射対象域の近くまで張り出して設置するため、紫外光源部から光分配部までの区間の光ファイバを共有でき、光ファイバ総延長を短くできる。このため、光ファイバを共有できた分だけ、部材や施工のコストを低減でき、課題(D)を解決することができる。 In this ultraviolet irradiation system, since the light distribution section is installed near the irradiation target area, the optical fiber in the section from the ultraviolet light source section to the light distribution section can be shared, and the total length of the optical fiber can be shortened. For this reason, the cost of members and construction can be reduced by the amount that the optical fiber can be shared, and the problem (D) can be solved.
 なお、上記各発明は、可能な限り組み合わせることができる。 The above inventions can be combined as much as possible.
 本発明は、各照射対象域で公平な殺菌等の効果が得られ、安全性を担保することができ、且つ作業効率を向上させることができるP-MP構成の紫外光照射システムを提供することができる。 The present invention provides an ultraviolet light irradiation system with a P-MP configuration that can obtain effects such as fair sterilization in each irradiation target area, can ensure safety, and can improve work efficiency. can be done.
本発明の課題を説明する図である。It is a figure explaining the subject of this invention. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 光ファイバの断面構造を説明する図である。It is a figure explaining the cross-sectional structure of an optical fiber. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムの設計方法を説明するフローチャートである。It is a flow chart explaining a design method of an ultraviolet light irradiation system concerning the present invention.
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 An embodiment of the present invention will be described with reference to the attached drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In addition, in this specification and the drawings, constituent elements having the same reference numerals are the same as each other.
(実施形態1)
 図2は、本実施形態の紫外光照射システム301を説明する図である。本実施形態は、各照射対象域ARで求められる照度を供給する場合である。
 紫外光照射システム301は、
 紫外光を発生させる紫外光源部11と、
 前記紫外光をN個(Nは2以上の自然数)の照射対象域ARに照射するN個の照射部13と、
 前記紫外光をそれぞれの照射部13への方路へ分岐する光分配部12-1と、
を備え、
 光分配部12-1が不等分岐カプラであることを特徴とする。
(Embodiment 1)
FIG. 2 is a diagram illustrating the ultraviolet light irradiation system 301 of this embodiment. This embodiment is a case of supplying the illuminance required for each irradiation target area AR.
The ultraviolet light irradiation system 301 is
an ultraviolet light source unit 11 that generates ultraviolet light;
N irradiating units 13 that irradiate N (N is a natural number of 2 or more) irradiation target areas AR with the ultraviolet light;
a light distribution unit 12-1 that branches the ultraviolet light to each of the irradiation units 13;
with
It is characterized in that the optical splitter 12-1 is an unequal branch coupler.
 紫外光源部11は、殺菌等に有効である紫外領域の光(紫外光)を出力する。紫外光源部11が出力する紫外光のパワーをP[W]とする。紫外光源部11と光分配部12-1とは光ファイバ又は空間の光伝送路16で接続される。なお、紫外光源部11と光分配部12-1とは同一場所(同じ筐体内)に配置されていてもよいし、後の図7の説明のように光伝送路16より長い光伝送路26で接続し、離隔して配置されていてもよい。 The ultraviolet light source unit 11 outputs light in the ultraviolet region (ultraviolet light) that is effective for sterilization and the like. Let P [W] be the power of the ultraviolet light output by the ultraviolet light source unit 11 . The ultraviolet light source section 11 and the light distribution section 12-1 are connected by an optical fiber or an optical transmission line 16 in space. The ultraviolet light source unit 11 and the light distribution unit 12-1 may be arranged in the same place (within the same housing), or an optical transmission line 26 longer than the optical transmission line 16 as described later with reference to FIG. may be connected with each other and spaced apart.
 光分配部12-1は、紫外光源部11からの紫外光を設定された分岐比でパワー分岐し、各出力ポートに接続された方路14に出力する。光分配部12-1は、例えば、特開2020-036068で開示される不等分岐カプラである。不等分岐カプラは、紫外光源部11からの紫外光を出力ポート毎に予め設定された分岐比率となるようにパワー分岐し、各出力ポートへ出力する。出力ポート1~Nから出力された紫外光は方路14及び照射部13を介して、それぞれ照射対象域AR(1~N)に照射される。 The light distribution unit 12-1 power-splits the ultraviolet light from the ultraviolet light source unit 11 at a set branching ratio, and outputs it to the route 14 connected to each output port. The optical splitter 12-1 is, for example, an unequal branch coupler disclosed in Japanese Unexamined Patent Application Publication No. 2020-036068. The unequal splitting coupler splits the power of the ultraviolet light from the ultraviolet light source unit 11 so that the splitting ratio is set in advance for each output port, and outputs the split power to each output port. The ultraviolet light output from the output ports 1 to N is irradiated to the irradiation target areas AR (1 to N) via the route 14 and the irradiation unit 13, respectively.
 方路14は、光分配部12-1で分配された紫外光をそれぞれの照射部13まで伝搬する。方路14は光ファイバである。光ファイバなので従来技術のロボットや装置が入り込めない細かい場所などにも敷設することができる。図3は、光ファイバ伝送路16および方路14に使用可能な光ファイバの断面を説明する図である。
(1)充実コア光ファイバ
 この光ファイバは、クラッド60の中にクラッド60より高屈折率である1つの充実コア52を有する。「充実」とは「空洞ではない」という意味である。尚、充実コアは、クラッド内に円環状の低屈折率領域を形成することでも実現できる。
(2)空孔アシスト光ファイバ
 この光ファイバは、クラッド60の中に充実コア52とその外周に配置された複数の空孔53を有する。空孔53の媒質は空気であり、空気の屈折率は石英系ガラスに比べ十分小さい。このため、空孔アシスト光ファイバは、曲げなどでコア52から漏れた光を再びコア52に戻す機能があり、曲げ損失が小さいという特徴がある。
(3)空孔構造光ファイバ
この光ファイバは、クラッド60の中に複数の空孔53の空孔群53aを有し、ホスト材料(ガラス等)よりも実効的に屈折率が低い。本構造は、フォトニック結晶ファイバと呼ばれる。本構造には、屈折率を変化させた高屈折率コアが存在しない構造をとることができ、空孔53に取り囲まれた領域52aを実効的なコア領域として、光を閉じ込めることができる。充実コアを有する光ファイバに比べ、フォトニック結晶ファイバは、コアの添加剤による吸収や散乱損失の影響を低減することができるとともに、曲げ損失の低減や非線形効果の制御等、充実型光ファイバでは実現し得ない光学特性を実現できる。
(4)中空コア光ファイバ
この光ファイバは、コア領域が空気で形成される。クラッド領域に複数の空孔によるフォトニックバンドギャップ構造もしくはガラス細線によるアンチレゾナント構造をとることによって光をコア領域に閉じ込めることができる。この光ファイバは、非線形効果が小さく、高出力または高エネルギーレーザ供給が可能である。
(5)結合コア型光ファイバ
 この光ファイバは、クラッド60の中に複数の高屈折率である充実コア52が近接して配置される。この光ファイバは、充実コア52間で光波結合で光を導波する。結合コア型光ファイバは、コア数分だけ光を分散して送れるので、その分ハイパワー化して効率的な殺菌等ができる、また、結合コア型光ファイバは、紫外線によるファイバ劣化を緩和し長寿命化できるというメリットがある。
The path 14 propagates the ultraviolet light distributed by the light distribution section 12-1 to each irradiation section 13. FIG. Path 14 is an optical fiber. Since it is an optical fiber, it can be installed in narrow places where conventional robots and devices cannot enter. FIG. 3 is a diagram illustrating cross sections of optical fibers that can be used for the optical fiber transmission lines 16 and 14. As shown in FIG.
(1) Solid Core Optical Fiber This optical fiber has one solid core 52 in the clad 60 having a higher refractive index than the clad 60 . "Full" means "not hollow". The solid core can also be realized by forming an annular low refractive index region in the clad.
(2) Hole-assisted optical fiber This optical fiber has a solid core 52 in the clad 60 and a plurality of holes 53 arranged around the core. The medium of the holes 53 is air, and the refractive index of air is sufficiently smaller than that of quartz-based glass. Therefore, the hole-assisted optical fiber has a function of returning light leaking from the core 52 due to bending or the like back to the core 52, and is characterized by a small bending loss.
(3) Hole structure optical fiber This optical fiber has a hole group 53a of a plurality of holes 53 in the clad 60, and has an effective refractive index lower than that of the host material (glass or the like). This structure is called a photonic crystal fiber. This structure can take a structure in which a high-refractive-index core with a changed refractive index does not exist, and light can be confined using the region 52a surrounded by the holes 53 as an effective core region. Compared to optical fibers with solid cores, photonic crystal fibers can reduce the effects of absorption and scattering losses due to additives in the core. Optical characteristics that cannot be realized can be realized.
(4) Hollow core optical fiber This optical fiber has a core region made of air. Light can be confined in the core region by forming a photonic bandgap structure with a plurality of holes in the cladding region or an anti-resonant structure with glass wires. This optical fiber has low nonlinear effects and is capable of delivering high power or high energy lasers.
(5) Coupling Core Optical Fiber In this optical fiber, a plurality of solid cores 52 having a high refractive index are closely arranged in a clad 60 . This optical fiber guides light by optical wave coupling between solid cores 52 . Coupling-core optical fibers can disperse and send light as many times as the number of cores, so high power can be used for efficient disinfection. There is an advantage that the service life can be extended.
 照射部13は、方路14で伝送された紫外光を、殺菌等を行う所定の対象箇所(照射対象域AR)に照射する。照射部13は、紫外光の波長に対して設計されたレンズなどの光学系で構成されている。 The irradiation unit 13 irradiates the ultraviolet light transmitted through the route 14 to a predetermined target location (irradiation target area AR) for sterilization or the like. The irradiation unit 13 is composed of an optical system such as a lens designed for the wavelength of ultraviolet light.
 例えば、本実施形態の不等分岐カプラには、それぞれの照射対象域ARへ照射される前記紫外光の照度が等しくなるように紫外光源部11からの前記紫外光を分岐する分岐比が設定される。具体的には、次のように分岐比を設定する。
(a1)図4のように面積が大きい照射対象域AR2への分岐比率が大きく、面積が小さい照射対象域AR1への分岐比率が小さい分岐比とする。各照射対象域ARへの紫外光の照度が均一となり公平な殺菌等の効果が得られる。
(a2)図5のように方路14の距離や照射部13から照射対象域ARまでの距離が長く伝送損失が大きい照射対象域AR1への分岐比率を大きく、方路14の距離や照射部13から照射対象域ARまでの距離が短く伝送損失が小さい照射対象域AR2への分岐比率を小さい分岐比とする。各照射対象域ARへの紫外光の照度が均一となり公平な殺菌等の効果が得られる。
(a3)殺菌等に高い照度を要求する照射対象域ARへの分岐比率を大きく、低い照度でよい照射対象域ARへの分岐比率を小さい分岐比とする。各照射対象域ARの要求を公平に満たすことができ、公平な殺菌等の効果が得られる。
For example, in the unequal branching coupler of the present embodiment, a branching ratio for branching the ultraviolet light from the ultraviolet light source unit 11 is set so that the illuminance of the ultraviolet light irradiated to each irradiation target area AR becomes equal. be. Specifically, the branch ratio is set as follows.
(a1) As shown in FIG. 4, the branching ratio to the irradiation target area AR2 having a large area is large and the branching ratio to the irradiation target area AR1 having a small area is set to be small. The illuminance of the ultraviolet light to each irradiation target area AR becomes uniform, and effects such as fair sterilization can be obtained.
(a2) As shown in FIG. 5, the distance from the route 14 and the distance from the irradiation unit 13 to the irradiation target area AR is long and the branch ratio to the irradiation target area AR1 having a large transmission loss is increased. 13 to the irradiation target area AR is set to a small branching ratio to the irradiation target area AR2 having a short transmission loss. The illuminance of the ultraviolet light to each irradiation target area AR becomes uniform, and effects such as fair sterilization can be obtained.
(a3) Increase the branching ratio to the irradiation target area AR that requires high illuminance for sterilization or the like, and set the branching ratio to the irradiation target area AR that requires low illuminance to be low. The requirements of each irradiation target area AR can be fairly met, and effects such as fair sterilization can be obtained.
 ここで、紫外光源部11から照射部13-nまでの損失(光分配部12-1の通過損失含む)をLfiber-n[a.u.]とし、照射部13から照射対象域ARnまでの損失をLair-n[a.u.]とする。また、照射対象域ARnに照射される紫外光のスポットの面積をS[m]とする。上記(a1)と(a2)の場合、不等分岐カプラの任意の出力ポートnの分岐比率εは次のように設定する。
Figure JPOXMLDOC01-appb-M000001
Here, L fiber-n [a. u. ], and the loss from the irradiation unit 13 to the irradiation target area ARn is L air-n [a. u. ]. Also, let S n [m 2 ] be the area of the ultraviolet light spot irradiated to the irradiation target area ARn. In the cases of (a1) and (a2) above, the branching ratio εn of an arbitrary output port n of the unequal branching coupler is set as follows.
Figure JPOXMLDOC01-appb-M000001
 このように不等分岐カプラの分岐比を設定することで、各照射対象域ARで公平な殺菌等の効果が得られ、紫外光照射システム301の公平性を担保することができる。なお、不等分岐カプラに設定できる分岐比が離散的であり(例えば、1:2:4など)、必ずしも全ての照射対象域ARの照度を均一にできない場合や各照射対象域ARの要求を公平に満たすことができない場合もある。その場合は、等分岐カプラを用いたときの照射対象域ARの照度間差より小さくなるような分岐比の不等分岐カプラや、各照射対象域ARの要求をできるだけ満たせるような不等分岐カプラを選択し、各出力ポートと照射部13-nとを接続する。 By setting the branching ratio of the unequal branching coupler in this way, effects such as fair sterilization can be obtained in each irradiation target area AR, and the fairness of the ultraviolet light irradiation system 301 can be ensured. The branching ratio that can be set to the unequal branch coupler is discrete (for example, 1:2:4), and if the illuminance of all the irradiation target areas AR cannot always be uniform, or if the request for each irradiation target area AR is Sometimes it cannot be met fairly. In that case, an unequal branching coupler with a branching ratio that is smaller than the difference between illuminances in the irradiation target area AR when using an equal branching coupler, or an unequal branching coupler that satisfies the requirements of each irradiation target area AR as much as possible to connect each output port to the irradiation unit 13-n.
 照射対象域ARへ人間の出入りがある場合、安全性を担保する必要がある。その場合、本実施形態の不等分岐カプラには、それぞれの照射対象域ARへ照射される前記紫外光の照度が所定の基準値以下となるように紫外光源部11からの前記紫外光を分岐する分岐比が設定される。具体的には、次のように分岐比を設定する。
(b1)紫外光の照度には、人間への暴露量を小さくして安全に殺菌等を行うため、例えば、0.2μW/cmという基準値がある。このため、紫外光源部11が出力する紫外光パワー、損失Lfiber-n[a.u.]、損失Lair-n[a.u.]、及び面積S[m]に基づき、それぞれの照射対象域ARへ照射される紫外光の照度が基準値以下となるような分岐比とする。
When a person enters and exits the irradiation target area AR, it is necessary to ensure safety. In that case, the unequal branch coupler of this embodiment branches the ultraviolet light from the ultraviolet light source unit 11 so that the illuminance of the ultraviolet light irradiated to each irradiation target area AR is equal to or less than a predetermined reference value. A branching ratio is set. Specifically, the branch ratio is set as follows.
(b1) The illuminance of ultraviolet light has a standard value of 0.2 μW/cm 2 , for example, in order to safely sterilize by reducing the amount of human exposure. For this reason, the ultraviolet light power output from the ultraviolet light source unit 11, the loss L fiber-n [a. u. ], loss L air-n [a. u. ] and the area S n [m 2 ], the branching ratio is set such that the illuminance of the ultraviolet light irradiated to each irradiation target area AR is equal to or less than the reference value.
 このように不等分岐カプラの分岐比を設定することで、過剰な照度の紫外光が照射対象域ARへ照射されることを防止し、紫外光照射システム301の安全性を担保することができる。 By setting the branching ratio of the unequal branch coupler in this way, it is possible to prevent the ultraviolet light of excessive illuminance from being irradiated to the irradiation target area AR, and to ensure the safety of the ultraviolet light irradiation system 301. .
 また、本実施形態の不等分岐カプラには、それぞれの前記照射対象域が要求する前記紫外光の照度を満たすように前記紫外光源部からの前記紫外光を分岐する分岐比が設定される。具体的には、次のように分岐比を設定する。
(c1)図6のように短時間での殺菌等が必要な照射対象域AR2への分岐比率を大きく、時間をかけて殺菌等を行う照射対象域ARNへの分岐比率を小さい分岐比とする。所望の照射対象域ARに高い照度の紫外光を分配でき、短時間での殺菌等が可能となる。一方、時間をかけて殺菌等を行う照射対象域ARには低い照度の紫外光を分配する。
Further, in the unequal branching coupler of the present embodiment, a branching ratio for branching the ultraviolet light from the ultraviolet light source section is set so as to satisfy the illuminance of the ultraviolet light required by each irradiation target area. Specifically, the branch ratio is set as follows.
(c1) As shown in FIG. 6, set a large branching ratio to the irradiation target area AR2 that requires sterilization in a short time, and a small branching ratio to the irradiation target area ARN that requires sterilization over a long period of time. . Ultraviolet light with high illuminance can be distributed to a desired irradiation target area AR, and sterilization and the like can be performed in a short period of time. On the other hand, low illuminance ultraviolet light is distributed to the irradiation target area AR where sterilization or the like takes time.
 このように不等分岐カプラの分岐比を設定することで、照射対象域ARの殺菌等の要望(短時間や長時間)に応じることができ、紫外光照射システム301の効率性を向上させることができる。
 なお、長時間かけて殺菌等を行う照射対象域ARとしては、高い照度の紫外光の暴露を回避したい部屋(人や動物の出入りがある場所)などが例示できる。短時間で殺菌等を行う照射対象域ARとしては、UV除菌ボックスなど、人や動物が中に入らないような閉空間を構成するものが例示できる。
By setting the branching ratio of the unequal branching coupler in this way, it is possible to respond to requests such as sterilization of the irradiation target area AR (for a short time or a long time), and to improve the efficiency of the ultraviolet light irradiation system 301. can be done.
Note that an irradiation target area AR in which sterilization or the like is performed over a long period of time can be exemplified by a room (a place where people or animals come and go) in which it is desired to avoid exposure to high-intensity ultraviolet light. Examples of the irradiation target area AR that performs sterilization or the like in a short time include a closed space such as a UV sterilization box that does not allow people or animals to enter.
(実施形態2)
 図7は、本実施形態の紫外光照射システム302を説明する図である。紫外光照射システム302は、紫外光源部11と光分配部12-1とが離隔されており、紫外光源部11と光分配部12-1とを接続する光伝送路(光ファイバ)26をさらに備えることを特徴とする。光伝送路26には、図3で説明した光ファイバを使用できる。
(Embodiment 2)
FIG. 7 is a diagram illustrating the ultraviolet light irradiation system 302 of this embodiment. In the ultraviolet light irradiation system 302, the ultraviolet light source unit 11 and the light distribution unit 12-1 are separated from each other. It is characterized by having The optical fiber described with reference to FIG. 3 can be used for the optical transmission line 26 .
 図7は、本実施形態の効果を説明する図である。なお、「離隔」とは、紫外光源部11と光分配部12-1とが同じ場所にないこと、あるいは同一の筐体3の中にないことを意味する。 FIG. 7 is a diagram explaining the effect of this embodiment. The term “separate” means that the ultraviolet light source section 11 and the light distribution section 12-1 are not located at the same place or in the same housing 3. FIG.
 図7(A)の紫外光照射システム301は、前述のように光分配部12-1で紫外光を各方路14へ分配し、各照射対象域ARまで伝搬している。そして、紫外光源部11と光分配部12-1とは同一場所(例えば1つの筐体3内)に配置されている。このため、それぞれの照射対象域ARまで方路14である光ファイバを敷設しなければならず、照射対象域ARの数に応じて光ファイバの総延長が長くなり、システムの部材や施工のコストが高くなることがある。 In the ultraviolet light irradiation system 301 of FIG. 7(A), the light distribution unit 12-1 distributes the ultraviolet light to each route 14 and propagates it to each irradiation target area AR as described above. The ultraviolet light source section 11 and the light distribution section 12-1 are arranged at the same place (for example, in one housing 3). Therefore, the optical fiber that is the route 14 must be laid to each irradiation target area AR, and the total extension of the optical fiber becomes longer according to the number of irradiation target areas AR, resulting in the cost of system members and construction. can be higher.
 一方、図7(B)の紫外光照射システム302は、紫外光源部11と光分配部12-1とを光ファイバ26で接続した構成である。このため、紫外光照射システム302は、光分配部12-1を紫外光源部11と同一の筐体内に置かずに、照射対象域ARの近傍まで張り出し、そこから方路14で各照射対象域ARへ紫外光を供給することができる。光ファイバ26は、紫外光源部11から離れた照射対象域ARである部屋や設備までの区間をカバーする長さであり、例えば10m以上の長さである。要するに、紫外光照射システム302は、同じ場所にない、あるいは同一筐体内にない紫外光源部11と光分配部12-1とを光ファイバ26が接続し、光分配部12-1を紫外光源部11と異なる場所に配置できることが特徴である。 On the other hand, the ultraviolet light irradiation system 302 of FIG. 7(B) has a configuration in which the ultraviolet light source unit 11 and the light distribution unit 12-1 are connected by the optical fiber 26. For this reason, the ultraviolet light irradiation system 302 does not place the light distribution unit 12-1 in the same housing as the ultraviolet light source unit 11, but protrudes to the vicinity of the irradiation target area AR, and from there, each irradiation target area by the route 14. Ultraviolet light can be supplied to the AR. The optical fiber 26 has a length that covers a section from the ultraviolet light source unit 11 to the irradiation target area AR, such as a room or equipment, and has a length of 10 m or more, for example. In short, the ultraviolet light irradiation system 302 connects the ultraviolet light source unit 11 and the light distribution unit 12-1, which are not located at the same place or are not in the same housing, with the optical fiber 26, and connects the light distribution unit 12-1 to the ultraviolet light source unit. The feature is that it can be placed in a different place from 11.
 紫外光照射システム302の構成とすることで次のような効果が発生する。この構成では、敷設する光ファイバは1本の長い光ファイバ26及び光分配部12-1から照射部13との間の短い光ファイバだけである。このため、照射対象域ARの数が増加しても光ファイバの総延長は紫外光照射システム301ほど伸びず、システムの部材や施工のコストが照射対象域ARの数に応じて高くなることを回避できる。 The configuration of the ultraviolet light irradiation system 302 produces the following effects. In this configuration, only one long optical fiber 26 and a short optical fiber between the light distribution section 12-1 and the irradiation section 13 are laid. Therefore, even if the number of irradiation target areas AR increases, the total extension of the optical fibers is not as long as that of the ultraviolet light irradiation system 301, and the cost of system members and construction increases according to the number of irradiation target areas AR. can be avoided.
 このように、紫外光照射システム302は、紫外光照射システム301に対し、照射対象域ARの数の増加による光ファイバの総延長が伸びることを回避し、コスト低減を図ることができる。以下に具体例を説明する。
 光伝送路(光ファイバ)16の長さをX(m)、光伝送路(光ファイバ)26の長さをY(m)、光分配部12-1の分岐数をNとする。紫外光照射システム302は、紫外光照射システム301と比較して、
(Y-X)×(N-1)(m)
だけ光ファイバの総延長を短くできる。
 一例として、X=1(m)、Y=10(m)、N=10とすると、
(10-1)×(10-1)=81(m)
となり、光ファイバの総延長を81(m)削減することができる。
In this way, the ultraviolet light irradiation system 302 can avoid an increase in the total length of the optical fibers due to an increase in the number of irradiation target areas AR, and can reduce costs. Specific examples are described below.
Let X (m) be the length of the optical transmission line (optical fiber) 16, Y (m) be the length of the optical transmission line (optical fiber) 26, and N be the number of branches of the optical distribution unit 12-1. Compared with the ultraviolet light irradiation system 301, the ultraviolet light irradiation system 302 has
(Y - X) x (N - 1) (m)
can shorten the total length of the optical fiber.
As an example, if X=1 (m), Y=10 (m), and N=10,
(10-1) x (10-1) = 81 (m)
As a result, the total length of the optical fiber can be reduced by 81 (m).
(実施形態3)
 図8は、紫外光照射システム301の光分配部12-1の分岐比を設定する設計方法を説明するフローチャートである。本設計方法は、1つの紫外光源部11で発生させた紫外光を光分配部12-1で分岐して前記紫外光を複数の照射対象域ARに照射する紫外光照射システム301において、前記紫外光をそれぞれの照射部13への方路14へ分岐する分岐比を照射対象域ARへ照射される前記紫外光の照度に基づいて設定することを特徴とする。
(Embodiment 3)
FIG. 8 is a flowchart for explaining a design method for setting the branching ratio of the light distribution section 12-1 of the ultraviolet light irradiation system 301. As shown in FIG. In the present design method, in an ultraviolet light irradiation system 301 in which ultraviolet light generated by one ultraviolet light source unit 11 is branched by a light distribution unit 12-1 and the ultraviolet light is irradiated to a plurality of irradiation target areas AR, the ultraviolet light It is characterized in that a branching ratio for branching the light to the routes 14 to the respective irradiation units 13 is set based on the illuminance of the ultraviolet light irradiated to the irradiation target area AR.
 具体的には、次のように設計する。
 ステップS01:紫外光源11の紫外光出力パワーP[W]、損失Lfiber-n[a.u.]、損失Lair-n[a.u.]、面積S[m]、及び各照射対象域ARが要求する照度[W/m]の情報を入手する。
 ステップS02:紫外光照射システム301で担保させたい効果は公平性であるかを判断する。
 ステップS03:紫外光照射システム301で担保させたい効果は公平性である場合(ステップS02で“Yes”)、前述の(a1)、(a2)又は(a3)によって光分配部12-1の分岐比を設定する。
 ステップS04:紫外光照射システム301で担保させたい効果は安全性であるかを判断する。
 ステップS05:紫外光照射システム301で担保させたい効果は安全性である場合(ステップS04で“Yes”)、前述の(b1)によって光分配部12-1の分岐比を設定する。
 ステップS06:紫外光照射システム301で担保させたい効果は効率性であるかを判断する。
 ステップS07:紫外光照射システム301で担保させたい効果は効率性である場合(ステップS06で“Yes”)、前述の(c1)によって光分配部12-1の分岐比を設定する。
 ステップS08:紫外光照射システム301で担保させたい効果が公平性、安全性及び効率性のいずれでもない場合、設計を中止する。
Specifically, it is designed as follows.
Step S01: Ultraviolet light output power P [W] of ultraviolet light source 11, loss L fiber-n [a. u. ], loss L air-n [a. u. ], the area S n [m 2 ], and the illuminance [W/m 2 ] required by each irradiation target area AR.
Step S02: Judge whether the effect to be ensured by the ultraviolet light irradiation system 301 is fairness.
Step S03: If the effect to be ensured by the ultraviolet light irradiation system 301 is fairness ("Yes" in step S02), the light distribution unit 12-1 branches according to (a1), (a2) or (a3) described above. Set ratio.
Step S<b>04 : It is judged whether the effect to be ensured by the ultraviolet light irradiation system 301 is safety.
Step S05: If the effect to be ensured in the ultraviolet light irradiation system 301 is safety ("Yes" in step S04), the branching ratio of the light distribution unit 12-1 is set according to (b1) described above.
Step S<b>06 : It is judged whether the effect to be ensured by the ultraviolet light irradiation system 301 is efficiency.
Step S07: If the effect to be ensured in the ultraviolet light irradiation system 301 is efficiency ("Yes" in step S06), the branching ratio of the light distribution unit 12-1 is set according to (c1) described above.
Step S08: If the effects to be ensured by the ultraviolet light irradiation system 301 are none of fairness, safety and efficiency, the design is stopped.
3:筐体
11:紫外光源部
12:光分配部(等分岐)
12-1:光分配部(不等分岐)
13、13-1、・・・、13-N:照射部
14:方路(光ファイバ)
16:光伝送路
26:光伝送路
52:充実コア
52a:領域
53:空孔
53a:空孔群
53c:空孔
60:クラッド
300、301、302:紫外光照射システム
AR1、AR2、・・・、ARN:照射対象域(紫外光を照射しようとする領域)
3: Housing 11: Ultraviolet light source section 12: Light distribution section (equally branched)
12-1: Optical distribution unit (uneven branch)
13, 13-1, ..., 13-N: irradiation unit 14: direction (optical fiber)
16: Optical transmission line 26: Optical transmission line 52: Solid core 52a: Region 53: Hole 53a: Hole group 53c: Hole 60: Cladding 300, 301, 302: Ultraviolet light irradiation system AR1, AR2, ... , ARN: irradiation target area (area to be irradiated with ultraviolet light)

Claims (5)

  1.  紫外光を発生させる紫外光源部と、
     前記紫外光をN個(Nは2以上の自然数)の照射対象域に照射するN個の照射部と、
     前記紫外光をそれぞれの前記照射部への方路へ分岐する光分配部と、
    を備え、
     前記光分配部が不等分岐カプラであることを特徴とする紫外光照射システム。
    an ultraviolet light source that generates ultraviolet light;
    N irradiating units that irradiate N (N is a natural number of 2 or more) irradiation target areas with the ultraviolet light;
    a light distribution unit that branches the ultraviolet light to each of the irradiation units;
    with
    An ultraviolet light irradiation system, wherein the light distribution unit is an unequal branch coupler.
  2.  前記光分配部は、それぞれの前記照射対象域へ照射される前記紫外光の照度が等しくなるように前記紫外光源部からの前記紫外光を分岐する分岐比を有することを特徴とする請求項1に記載の紫外光照射システム。 2. The light distribution unit has a branching ratio for branching the ultraviolet light from the ultraviolet light source unit such that the illuminance of the ultraviolet light applied to each of the irradiation target areas is equal. Ultraviolet light irradiation system according to.
  3.  前記光分配部は、それぞれの前記照射対象域へ照射される前記紫外光の照度が所定の基準値以下となるように前記紫外光源部からの前記紫外光を分岐する分岐比を有することを特徴とする請求項1に記載の紫外光照射システム。 The light distribution unit has a branching ratio for branching the ultraviolet light from the ultraviolet light source unit such that the illuminance of the ultraviolet light irradiated to each irradiation target area is equal to or less than a predetermined reference value. The ultraviolet light irradiation system according to claim 1.
  4.  前記光分配部は、それぞれの前記照射対象域が要求する前記紫外光の照度を満たすように前記紫外光源部からの前記紫外光を分岐する分岐比を有することを特徴とする請求項1に記載の紫外光照射システム。 2. The light distribution unit according to claim 1, wherein the light distribution unit has a branching ratio for branching the ultraviolet light from the ultraviolet light source unit so as to satisfy the illuminance of the ultraviolet light required by each of the irradiation target areas. of ultraviolet light irradiation system.
  5.  前記紫外光源部と前記光分配部とが離隔されており、
     前記紫外光源部と前記光分配部とを接続する光伝送路をさらに備えることを特徴とする請求項1から4のいずれかに記載の紫外光照射システム。
    The ultraviolet light source unit and the light distribution unit are separated,
    5. The ultraviolet light irradiation system according to any one of claims 1 to 4, further comprising an optical transmission line connecting said ultraviolet light source unit and said light distribution unit.
PCT/JP2021/039334 2021-10-25 2021-10-25 Ultraviolet light irradiation system WO2023073771A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/039334 WO2023073771A1 (en) 2021-10-25 2021-10-25 Ultraviolet light irradiation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/039334 WO2023073771A1 (en) 2021-10-25 2021-10-25 Ultraviolet light irradiation system

Publications (1)

Publication Number Publication Date
WO2023073771A1 true WO2023073771A1 (en) 2023-05-04

Family

ID=86157514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039334 WO2023073771A1 (en) 2021-10-25 2021-10-25 Ultraviolet light irradiation system

Country Status (1)

Country Link
WO (1) WO2023073771A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415022A (en) * 1990-05-07 1992-01-20 Keiji Iimura Sterilizing device for toilet seat
JP2001042272A (en) * 1999-08-03 2001-02-16 Nippon Telegr & Teleph Corp <Ntt> Polarized wave dispersion compensating circuit
JP2007007232A (en) * 2005-07-01 2007-01-18 Mitsubishi Electric Corp Photo-sterilizer and photo-sterilizing system
JP2015207481A (en) * 2014-04-22 2015-11-19 ユーヴィックス株式会社 Sunlight guiding system
JP2020036068A (en) * 2018-08-27 2020-03-05 日本電信電話株式会社 Optical communication system and optical communication method
JP6947271B1 (en) * 2020-09-29 2021-10-13 ウシオ電機株式会社 Inactivating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415022A (en) * 1990-05-07 1992-01-20 Keiji Iimura Sterilizing device for toilet seat
JP2001042272A (en) * 1999-08-03 2001-02-16 Nippon Telegr & Teleph Corp <Ntt> Polarized wave dispersion compensating circuit
JP2007007232A (en) * 2005-07-01 2007-01-18 Mitsubishi Electric Corp Photo-sterilizer and photo-sterilizing system
JP2015207481A (en) * 2014-04-22 2015-11-19 ユーヴィックス株式会社 Sunlight guiding system
JP2020036068A (en) * 2018-08-27 2020-03-05 日本電信電話株式会社 Optical communication system and optical communication method
JP6947271B1 (en) * 2020-09-29 2021-10-13 ウシオ電機株式会社 Inactivating device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"About "Fivery", a technology to prevent infection such as novel coronavirus", NTT HOLDING COMPANY NEWS RELEASE, 13 November 2020 (2020-11-13), XP009545150 *

Similar Documents

Publication Publication Date Title
HUP0301300A2 (en) Method and apparatus for photobiostimulation of biological tissue, biostimulation device and method for the treatment of tissue
JP2017502717A (en) Irradiated bandages and methods of disinfecting wounds
JP2024059974A (en) Ultraviolet Light Irradiation System
WO2023073771A1 (en) Ultraviolet light irradiation system
WO2023073885A1 (en) Ultraviolet light irradiation system
WO2023073774A1 (en) Uv irradiation system
WO2023058144A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2023084665A1 (en) Uv radiation system
WO2022024406A1 (en) Ultraviolet light irradiation system
WO2023073884A1 (en) Ultraviolet light irradiation system
JPH01316705A (en) Transmitter for high energy laser beam
CN108348764B (en) Laser system for selective treatment of acne
WO2022085123A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2023084675A1 (en) Uv irradiation system
WO2023084668A1 (en) Ultraviolet light radiation system and control method
WO2023084677A1 (en) Ultraviolet light emission system
US20220283476A1 (en) Light generation and distribution methods and systems for disinfection, medical therapeutics, and lighting
US20230270898A1 (en) Ultraviolet light irradiation system and decontamination method
WO2023084669A1 (en) Ultraviolet light radiation system and radiation method
WO2023084666A1 (en) Ultraviolet light irradiation system
WO2022085142A1 (en) Ultraviolet light irradiation system and method
WO2024084561A1 (en) Optical transmission system design method and design device
WO2023084674A1 (en) Ultraviolet light irradiation system and control method
WO2024084562A1 (en) Bundled optical fiber
WO2022185458A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962321

Country of ref document: EP

Kind code of ref document: A1