WO2023058144A1 - Ultraviolet light irradiation system and ultraviolet light irradiation method - Google Patents

Ultraviolet light irradiation system and ultraviolet light irradiation method Download PDF

Info

Publication number
WO2023058144A1
WO2023058144A1 PCT/JP2021/036936 JP2021036936W WO2023058144A1 WO 2023058144 A1 WO2023058144 A1 WO 2023058144A1 JP 2021036936 W JP2021036936 W JP 2021036936W WO 2023058144 A1 WO2023058144 A1 WO 2023058144A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet light
optical fiber
light
irradiation
visible light
Prior art date
Application number
PCT/JP2021/036936
Other languages
French (fr)
Japanese (ja)
Inventor
誉人 桐原
亜弥子 岩城
聖 成川
友宏 谷口
和秀 中島
隆 松井
信智 半澤
悠途 寒河江
千里 深井
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/036936 priority Critical patent/WO2023058144A1/en
Publication of WO2023058144A1 publication Critical patent/WO2023058144A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Definitions

  • the present disclosure relates to an ultraviolet light irradiation system and method for sterilizing and inactivating viruses using ultraviolet light.
  • Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light. By irradiating the robot with ultraviolet light while moving in a room in a building such as a hospital room, the robot can automatically realize sterilization in a wide range without human intervention.
  • Stationary air purifier The product of Non-Patent Document 2 is a device that is installed on the ceiling or at a predetermined place in a room, and performs sterilization while circulating the air in the room.
  • Non-Patent Document 3 is a portable apparatus equipped with an ultraviolet light source. A user can bring the device to a desired area and irradiate it with ultraviolet light. Therefore, the device can be used in various places.
  • Kantum Ushikata Co., Ltd. website https://www.kantum.co.jp/product/sakkin_robot/sakkinn_robot/UVD_robot
  • June 22, 2020 Iwasaki Electric Co., Ltd. website https://www.iwasaki.co.jp/optics/ARrilization/air/air03.html
  • June 22, 2020 Funakoshi Co., Ltd. website https://www.funakoshi.co.jp/contents/68182
  • Non-Patent Document 1 has the following problems.
  • Economy Since the product of Non-Patent Document 1 is irradiated with high-output ultraviolet light, the apparatus becomes large and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
  • Non-Patent Document 3 cannot irradiate ultraviolet light to narrow pipes or areas where people cannot enter.
  • the product of Non-Patent Literature has a problem of versatility in that it can irradiate any place with ultraviolet light.
  • (3) Operability The product of Non-Patent Document 3 is portable and can be irradiated with ultraviolet light at various locations. However, in order to obtain sufficient effects such as sterilization at the target location, the user is required to have skill and knowledge, and there is a problem in operability.
  • an ultraviolet light irradiation system 300 using an optical fiber as shown in FIG. 1 is conceivable.
  • This ultraviolet light irradiation system uses a thin and flexible optical fiber to transmit ultraviolet light from the ultraviolet light source unit 11a, and the ultraviolet light output from the tip of the optical fiber transmission unit 14 is used to pinpoint an irradiation target area to be sterilized. Illuminate the AR.
  • the versatility of the above problem (2) can be solved because the ultraviolet light can be applied to any place simply by moving the irradiation unit 13 at the tip of the optical fiber transmission unit 14 .
  • the operability of the above problem (3) can be resolved.
  • an optical distribution unit 12 such as an optical splitter in the optical fiber transmission unit 14 to form a P-MP (Point to MultiPoint) system configuration such as FTTH (Fiber To The Home)
  • P-MP Point to MultiPoint
  • FTTH Fiber To The Home
  • Deep ultraviolet light used for sterilization or the like has a wavelength band of 200 nm.
  • ultraviolet light in this band may cause cataracts and skin cancer if the eyes and skin of living things, including humans, are exposed to it. Desired.
  • the ultraviolet light in that band is invisible to the human eye, and it is difficult for the operator to grasp the ultraviolet light emitted from the irradiation unit 13 and its irradiation range.
  • an object of the present invention is to provide an ultraviolet light irradiation system and method that can ensure safety and operability for handling ultraviolet light.
  • the ultraviolet light irradiation system irradiates visible light to the same range at the same time as irradiating ultraviolet light.
  • the ultraviolet light irradiation system includes a light source unit that outputs ultraviolet light and visible light, an optical fiber transmission unit that propagates the ultraviolet light and the visible light, and the optical fiber transmission unit that propagates the ultraviolet light and the visible light. and an irradiation unit that irradiates the same irradiation target area with the ultraviolet light and the visible light.
  • the ultraviolet light irradiation method includes: outputting ultraviolet light and visible light from a light source unit; propagating the ultraviolet light and the visible light from an optical fiber transmission unit; is irradiated from the irradiation unit to the same irradiation target area.
  • This ultraviolet light irradiation system and method irradiate an irradiation target area by superimposing visible light on ultraviolet light. Since the visible light is superimposed, the operator can easily grasp the irradiation area of the ultraviolet light without using a power meter or an ultraviolet light camera. Therefore, the present invention can provide an ultraviolet light irradiation system and method that can ensure safety and operability for handling ultraviolet light.
  • the irradiation unit of the ultraviolet light irradiation system according to the present invention is characterized in that the irradiation area of the visible light is made larger than the irradiation area of the ultraviolet light in the irradiation target area. Safety can be further enhanced.
  • the ultraviolet light irradiation system according to the present invention is characterized by irradiating the irradiation target area with the visible light before the ultraviolet light. Safety can be further enhanced.
  • the ultraviolet light irradiation system according to the present invention is characterized by further comprising a controller that expresses the intensity of the ultraviolet light with the visible light. Workers can intuitively recognize the degree of danger.
  • the optical fiber transmission unit of the ultraviolet light irradiation system according to the present invention is characterized by propagating the ultraviolet light and the visible light through the same core, or propagating the ultraviolet light and the visible light through different cores. .
  • the present invention can provide an ultraviolet light irradiation system and method that can ensure safety and operability for handling ultraviolet light.
  • FIG. 2 is a diagram illustrating the ultraviolet light irradiation system 301 of this embodiment.
  • the ultraviolet light irradiation system 301 is a light source unit 11 that outputs ultraviolet light and visible light; an optical fiber transmission unit 14 that propagates the ultraviolet light and the visible light; an irradiation unit 13 that irradiates the same irradiation target area AR with the ultraviolet light and the visible light propagated by the optical fiber transmission unit 14; Prepare.
  • the optical fiber transmission unit 14 can also transmit ultraviolet light and visible light to a plurality of irradiation target areas AR by arranging the light distribution unit 12 in the middle, like the ultraviolet light irradiation system 302 in FIG.
  • the optical distributor 12 may be composed of, for example, an optical splitter, an optical switch, or a combination thereof.
  • each component of the ultraviolet light irradiation system (301, 302) is as follows.
  • the light source unit 11 simultaneously outputs ultraviolet light (approximately 100 to 400 nm band) and visible light (approximately 400 to 800 nm band) visible to humans to the optical fiber coupling unit 16 .
  • the optical fiber coupling section 16 inputs the ultraviolet light and the visible light output from the light source section 11 to the optical fiber transmission section 14 .
  • the optical fiber transmission unit 14 transmits the ultraviolet light and visible light input from the optical fiber coupling unit 16 to the irradiation unit 13 .
  • the irradiation unit 13 simultaneously irradiates the same irradiation target area AR with the ultraviolet light and the visible light transmitted by the optical fiber transmission unit 14 .
  • the irradiation unit 13 may be set so that the irradiation area of the visible light to the irradiation target area AR is larger than the irradiation area of the ultraviolet light.
  • FIG. 4 is a diagram for explaining the configuration (example 1) of the light source unit 11.
  • the light source unit 11 includes an ultraviolet light source unit 11a, a visible light source unit 11b, and a control unit 11c.
  • the ultraviolet light source unit 11a generates ultraviolet light UV (wavelength band of 100 nm to 400 nm) effective for sterilization and the like based on instructions from the control unit 11c.
  • the visible light source section 11b generates visible light VL (wavelength band of 400 nm to 800 nm) visible to humans based on instructions from the control section 11c.
  • the control unit 11c has a control function for simultaneously generating ultraviolet light and visible light for the ultraviolet light source unit 11a and the visible light source unit 11b, and transmits a control signal CS1 to each light source unit. Further, the control unit 11c may irradiate the visible light before starting the irradiation of the ultraviolet light, instead of irradiating the ultraviolet light and the visible light at the same time, in order to further ensure the safety.
  • the irradiation unit 13 or the sensor 11d arranged in the irradiation target area AR may detect whether or not the ultraviolet light and the visible light are simultaneously irradiated in the same range.
  • the control unit 11c may receive the irradiation status information CS2 detected by the sensor 11d in advance or in real time, and may perform feedback control on the ultraviolet light source unit 11a and the visible light source unit 11b.
  • the control unit 11c can, for example, immediately stop irradiation when there is a person near the irradiation target area AR to improve safety. .
  • This feedback control is intended to avoid a situation where only the visible light is not irradiated to the irradiation target area AR due to some problem in the optical fiber coupling section 16, the optical fiber transmission section 14, or the irradiation section 13 after the light source section 11. aim.
  • the sensor 11d informs the control unit 11c of the irradiation conditions (for example, the illuminance of the visible light in the irradiation target area AR and the phase of the visible light in the irradiation unit 13) as information.
  • the control unit 11c controls the ultraviolet light source unit 11a based on the information to turn on/off the ultraviolet light. This feedback control avoids situations in which only ultraviolet light is irradiated, and can improve the safety of the ultraviolet light irradiation system.
  • FIG. 5 is a diagram for explaining the configuration (example 2) of the light source unit 11.
  • the light source unit 11 in FIG. 5 includes an ultraviolet light source unit 11a, a visible light source unit 11b, and a control unit 11c, which is the same as the light source unit 11 in FIG.
  • the light source unit 11 in FIG. 5 is different from the light source unit 11 in FIG. 4 in that the control unit 11c expresses the intensity of the ultraviolet light with visible light. Specifically, the control unit 11c displays the power of the ultraviolet light as (1) the power of the visible light (brightness/darkness). (2) display with a flashing pattern of visible light; or (3) display with a hue of visible light. By expressing with visible light in this way, a person in the vicinity of the irradiation target area AR can intuitively recognize the degree of danger.
  • the power of the ultraviolet light means the power of the ultraviolet light output by the ultraviolet light source unit 11a, the power of the ultraviolet light emitted by the irradiation unit 13 detected by the sensor 11d in FIG. 7, or the sensor 11d in FIG. Any of the powers of the ultraviolet light received by the irradiation target area AR detected in step 1 may be used.
  • FIG. 6 is a table for explaining changes in visual recognition pattern of visible light based on the power of ultraviolet light.
  • the power of the ultraviolet light is represented by the power of the visible light
  • the power of the visible light is also increased (brighter) so that a person in the vicinity of the irradiation target area AR recognizes that the danger is high.
  • the power of the ultraviolet light is weak, the power of the visible light is also weak (dark), thereby making it possible to increase the sense of security for people in the vicinity of the irradiation target area AR.
  • the ultraviolet light power when expressing the ultraviolet light power by the blinking pattern of visible light, for example, if the ultraviolet light power is strong, the visible light blinks at a high frequency (e.g., 5 times/second) to indicate that the irradiation target has a high degree of danger.
  • the area AR is made to be recognized by people in the vicinity.
  • blinking the visible light at a low frequency for example, once per second can increase the sense of security for people in the vicinity of the irradiation target area AR.
  • the ultraviolet light power is represented by the hue of visible light
  • the ultraviolet light power is strong, the person in the vicinity of the irradiation target area AR is made to recognize that the danger is high as violet visible light.
  • the power of the ultraviolet light is weak, the blue visible light can increase the sense of security for people in the vicinity of the irradiation target area AR.
  • a visible light emitting element (eg, LED) 11e may be installed near the irradiation unit 13, and the control unit 11c may cause the LED to emit light in the above-described visible pattern according to the power of the ultraviolet light.
  • control unit 11c By performing such control by the control unit 11c, it is possible not only to display irradiation/non-irradiation of ultraviolet light by simple ON/OFF of visible light, but also to visualize the degree of danger depending on the power of ultraviolet light. can be done. Furthermore, the control unit 11c performs this control, so that the state of the ultraviolet light can be visually recognized even when there is another light-emitting body such as a lighting device in the irradiation target area AR.
  • FIG. 7 is a diagram for explaining the configuration (example 3) of the light source unit 11.
  • the light source unit 11 includes a visible light source unit 11b, a wavelength conversion function unit 11f, and a control unit 11c.
  • the visible light source section 11b generates visible light VL (wavelength band of 400 nm to 800 nm) visible to humans based on instructions from the control section 11c.
  • the wavelength conversion function unit 11f uses part of the visible light from the visible light source unit 11b to convert it into ultraviolet light (wavelength band of about 100 to 400 nm) that is effective for sterilization, etc., and instructs the control unit 11c. to generate ultraviolet light.
  • the control unit 11c in FIG. 7 does not irradiate ultraviolet light and visible light at the same time as described in FIG. You can
  • the control unit 11c has a control function for simultaneously generating ultraviolet light and visible light for the visible light source 11b and the wavelength conversion function unit 11f, and transmits a control signal CS1 to each.
  • the control unit 11c in FIG. Feedback control may be performed on the light source 11b and the wavelength conversion function unit 11f.
  • the wavelength of visible light may be converted to generate visible light.
  • the visual recognition pattern of visible light may be changed according to the power of ultraviolet light.
  • FIG. 8 is a diagram for explaining the configuration (example 1) of the optical fiber coupling section 16.
  • the optical fiber coupling section 16 optically couples the ultraviolet light and visible light transmitted from the light source section 11 to the optical fiber transmission section 14 .
  • the optical fiber coupling section 16 differs depending on the type of the optical fiber transmission section 14 (that is, optical fiber), but ( ⁇ ) wavelength-multiplexes and couples two wavelengths of ultraviolet light and visible light to a single core (or core section). and ( ⁇ ) a configuration in which ultraviolet light and visible light are coupled to different cores, respectively.
  • the optical fibers having different cores are an optical cable (a bundle of a plurality of single-core optical fibers 21) as shown in FIG. 9A and a multi-core optical fiber 23 (a plurality of cores) as shown in FIG. an optical fiber having a core 22), or a multi-core optical cable (a bundle of a plurality of multi-core optical fibers 23) as shown in FIG. 9C.
  • the optical fiber coupling section 16 includes a first correction section 16a, a condensing section 16b, and a second correction section 16c.
  • the first correction unit 16a receives the ultraviolet light UV and the visible light VL transmitted from the light source unit 11, corrects deviation and inclination of the optical axis, and inputs the light to the light collecting unit 16b.
  • the first correction unit 16a is composed of an optical system lens.
  • the light condensing part 16b receives the ultraviolet light UV and the visible light VL from the first correcting part 16a, converges the light to about the diameter of the core of the optical fiber that is the optical fiber transmission part 14, or the core part, and the second correcting part Enter 16c.
  • the condensing part 16b is composed of an optical system lens.
  • the second correction unit 16c receives the ultraviolet light UV and the visible light VL condensed by the condensing unit 16b, corrects the misalignment and inclination of the optical axis, and enters the optical fiber transmission unit .
  • the second corrector 16c is composed of an optical system lens.
  • the optical fiber coupling section 16 of the present embodiment has a simple configuration, for example, it can be realized by combining optical system lenses, so there is an advantage that it can be realized at a low cost.
  • FIG. 10 is a diagram illustrating a configuration (example 2) of the optical fiber coupling section 16.
  • the optical fiber coupling section 16 of FIG. 10 further includes a monitoring section 16d and a control section 16e in contrast to the optical fiber coupling section 16 of FIG.
  • the monitoring unit 16d monitors the transmission status of the ultraviolet light and visible light transmitted from the second correction unit 16c and incident on the optical fiber transmission unit 14.
  • FIG. The monitoring unit 16d transmits the transmission status information CS3 to the control unit 16e.
  • the transmission status is, for example, the power of the ultraviolet light and the visible light, or the amount of axis deviation between the ultraviolet light and the visible light incident on the optical fiber transmission unit 14 .
  • the purpose of monitoring the transmission status is to avoid the above-described situation in which only visible light is not applied to the irradiation target area AR.
  • the control unit 16e analyzes the transmission status information CS3 received from the monitoring unit 16d, and sends a control signal CS4 to the first correction unit 16a, the light collection unit 16b, and the second correction unit 16c so as to optimize the transmission status, control each.
  • the first correction unit 16a and the second correction unit 16c are optical fiber couplers (positioners), and the control unit 16e uses these to correct axial deviation of visible light and ultraviolet light based on the transmission situation. can do.
  • the control unit 16e shifts the optical axis of the ultraviolet light using the first correction unit 16a and the second correction unit 16c so that the ultraviolet light is incident on the optical fiber transmission unit 14. You can also choose not to.
  • the first corrector 16a and the second corrector 16c may be optical amplifiers or optical attenuators.
  • the control unit 16e can attenuate the ultraviolet light in the first correcting unit 16a and the second correcting unit 16c, and prevent the ultraviolet light from entering the optical fiber transmission unit 14. .
  • the irradiation timing of the light can be controlled by, for example, irradiating the ultraviolet light and the visible light at the same time or irradiating the visible light first to ensure safety. can be adjusted.
  • FIG. 11 is a diagram illustrating a configuration (example 3) of the optical fiber coupling section 16.
  • the first correction portions are for ultraviolet light (first correction portion 16a#1) and for visible light (first correction portion 16a#2).
  • the multiplexing unit 16f multiplexes the wavelengths of the ultraviolet light and the visible light from the first correcting units 16a#1 and #2, and transmits the multiplexed light to the light collecting unit 16b.
  • the multiplexing section 16f is composed of an optical wavelength multiplexing coupler, an optical lens, or a prism.
  • the first correction section is divided for ultraviolet light and visible light, so that the transmission power of ultraviolet light and visible light is optimized according to the wavelength characteristics of the optical fiber transmission section 14. can be In addition, it is difficult to suddenly combine two lights, ultraviolet light and visible light, and wavelength-multiplex them into various types of optical fibers having smaller cores or core portions, especially single-core optical fibers. For this reason, as a first step, the combining unit 16f combines the ultraviolet light and the visible light, as a second step, the wavelength-multiplexed light is collected to the core level of the optical fiber in the collecting unit 16b, and as a third step, Optical axis adjustment is performed by the second correction unit 16c. By performing wavelength multiplexing step by step in this manner, coupling efficiency and transmission efficiency can be improved.
  • FIG. 12 is a diagram illustrating a configuration (example 4) of the optical fiber coupling section 16.
  • the optical fiber coupling section 16 of FIG. 12 further includes a monitoring section 16d and a control section 16e in contrast to the optical fiber coupling section 16 of FIG.
  • the monitoring unit 16d monitors the transmission status of the ultraviolet light and visible light transmitted from the second correction unit 16c and incident on the optical fiber transmission unit 14.
  • FIG. The monitoring unit 16d transmits the transmission status information CS3 to the control unit 16e.
  • the transmission status is as described above.
  • the control unit 16e analyzes the transmission status information CS3 received from the monitoring unit 16d, and adjusts the first correction units (16a #1 and #2), the light collection unit 16b, and the second correction unit 16c so that the transmission status becomes optimal. to control each of them.
  • the specific contents of control are as described above.
  • the irradiation timing of the light can be controlled by, for example, irradiating the ultraviolet light and the visible light at the same time or irradiating the visible light first to ensure safety. can be adjusted.
  • the optical fiber coupling section 16 of the present embodiment includes the first correction section for each wavelength, the influence of chromatic dispersion in the optical fiber transmission line 14 can be reduced (attenuation of the irradiation power can be suppressed).
  • the first corrector (16a #1, #2) is a spatial optical system using a fiber Bragg grating (FBG), a circulator, or the like. This spatial optical system performs dispersion compensation for a desired wavelength band according to the length of the optical fiber transmission section 14 .
  • optical fiber transmission in the optical communication band for example, dispersion-shifted fiber and dispersion-compensating fiber are used, and it is possible to change the refractive index profile of the optical fiber.
  • dispersion-shifted fiber and dispersion-compensating fiber are used, and it is possible to change the refractive index profile of the optical fiber.
  • the ultraviolet light irradiation system of this embodiment as well, especially when the distance of the optical fiber transmission section 14 is long, the propagation characteristics of each light are different. can reduce the influence of chromatic dispersion.
  • the optical fiber transmission section 14 propagates the ultraviolet light and the visible light that are incident at the optical fiber coupling section 16 to the irradiation section 13 .
  • the optical fiber transmission section 14 is an optical fiber. Since it is an optical fiber, it can be installed in narrow places where conventional robots and devices cannot enter.
  • the optical fiber transmission unit 14 includes: ( ⁇ ) a configuration in which two wavelengths of ultraviolet light and visible light are wavelength-multiplexed and coupled to a single core (or core portion); ( ⁇ ) Configuration in which ultraviolet light and visible light are coupled to different cores (see FIG. 9) There is
  • optical fiber having a cross section as shown in FIG. 13 can be used for the optical fiber of the optical fiber transmission section 14 .
  • the optical fiber having the hole structure described in FIGS. It may be a multi-core optical fiber having a plurality of core regions described in 6) or an optical fiber having a structure combining them (FIGS. 13(7) to 13(10)).
  • a variation of the above single-core optical fiber ( ⁇ ) will be described. It is an optical fiber having a structure of (1) to (5) in FIG.
  • Solid Core Optical Fiber This optical fiber has one solid core 52 in the clad 60 having a higher refractive index than the clad 60 .
  • “Full” means "not hollow”.
  • the solid core can also be realized by forming an annular low refractive index region in the clad.
  • Hole-assisted optical fiber This optical fiber has a solid core 52 in the clad 60 and a plurality of holes 53 arranged around the core.
  • the medium of the holes 53 is air, and the refractive index of air is sufficiently smaller than that of quartz-based glass.
  • the hole-assisted optical fiber has a function of returning light leaking from the core 52 due to bending or the like back to the core 52, and is characterized by a small bending loss.
  • This optical fiber has a hole group 53a of a plurality of holes 53 in the clad 60, and has an effective refractive index lower than that of the host material (glass or the like). This structure is called a photonic crystal fiber. This structure can take a structure in which a high-refractive-index core with a changed refractive index does not exist, and light can be confined using the region 52a surrounded by the holes 53 as an effective core region.
  • Photonic crystal fibers can reduce the effects of absorption and scattering losses due to additives in the core. Optical characteristics that cannot be realized can be realized.
  • Hollow core optical fiber This optical fiber has a core region made of air. Light can be confined in the core region by forming a photonic bandgap structure with a plurality of holes in the cladding region or an anti-resonant structure with glass wires. This optical fiber has low nonlinear effects and is capable of delivering high power or high energy lasers.
  • Coupling Core Optical Fiber In this optical fiber, a plurality of solid cores 52 having a high refractive index are closely arranged in a clad 60 .
  • This optical fiber guides light by optical wave coupling between solid cores 52 .
  • Coupling-core type optical fibers can disperse and send light as many times as the number of cores, so high power can be used for efficient sterilization.Coupling-core type optical fibers mitigate fiber deterioration due to ultraviolet rays and have a long life. It has the advantage of being able to
  • a variation of the multi-core optical fiber among the above ( ⁇ ) will be explained. It is an optical fiber having a structure of (6) to (10) in FIG. (6) Solid-core type multi-core optical fiber In this optical fiber, a plurality of solid cores 52 with a high refractive index are spaced apart in a clad 60 . This optical fiber guides light in such a manner that the optical wave coupling between the solid cores 52 is sufficiently small so that the effect of the optical wave coupling can be ignored. Therefore, the solid-core multi-core optical fiber has the advantage that each core can be treated as an independent waveguide.
  • Hole-Assisted Multi-Core Optical Fiber This optical fiber has a structure in which a plurality of hole structures and core regions of (2) above are arranged in a clad 60 .
  • Hole structure type multi-core optical fiber This optical fiber has a structure in which a plurality of the hole structures of (3) above are arranged in the clad 60 .
  • Hollow-core multi-core optical fiber This optical fiber has a structure in which a plurality of the hole structures of (4) above are arranged in the clad 60 .
  • Coupling-core type multi-core optical fiber This optical fiber has a structure in which a plurality of coupling-core structures of (5) above are arranged in a clad 60 .
  • the above ( ⁇ ) may be an optical fiber cable including a plurality of optical fibers having the structure described above (see FIG. 9).
  • FIG. 14 is a diagram for explaining the ultraviolet light irradiation method performed by the ultraviolet light irradiation system (301, 302).
  • This ultraviolet light irradiation method is outputting ultraviolet light and visible light from the light source unit 11 (step S01); propagating the ultraviolet light and the visible light in the optical fiber transmission unit 14 (step S02); irradiating the same irradiation target area AR with the ultraviolet light and the visible light from the irradiation unit 13 (step S03); characterized by
  • Ultraviolet light source section 11b Visible light source section 12: Light distribution section (equally branched) 13, 13-1, ..., 13-N: irradiation section 14: optical fiber transmission section 16: optical fiber coupling section 52: solid core 52a: region 53: hole 53a: hole group 53c: hole 60: Claddings 300, 301, 302: UV light irradiation system AR1, AR2, ..., ARN: irradiation target area (area to be irradiated with ultraviolet light)

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

The purpose of the present invention is to provide an ultraviolet light irradiation system that can ensure the safety and operability for handling ultraviolet light and a method thereof. An ultraviolet light irradiation system 301 according to the present invention comprises: a light source part 11 that outputs ultraviolet light and visible light; an optical fiber transmitting part 14 that propagates the ultraviolet light and the visible light; and an irradiating part 13 that irradiates an identical irradiation target region AR with the ultraviolet light and the visible light that have been propagated by the optical fiber transmitting part 14. The light source part 11 simultaneously outputs, to an optical fiber coupling part 16, the ultraviolet light (approximately 100 to 400 nm band) and the visible light visually recognizable by the human (approximately 400 to 800 nm band). The optical fiber coupling part 16 inputs, to the optical fiber transmitting part 14, the ultraviolet light and the visible light that the light source part 11 has outputted. The optical fiber transmitting part 14 transmits, to the irradiating part 13, the ultraviolet light and the visible light that have been inputted by the optical fiber coupling part 16.

Description

紫外光照射システム及び紫外光照射方法Ultraviolet light irradiation system and ultraviolet light irradiation method
 本開示は、紫外光を用いて殺菌やウィルスの不活化を行う紫外光照射システム及びその方法に関する。 The present disclosure relates to an ultraviolet light irradiation system and method for sterilizing and inactivating viruses using ultraviolet light.
 感染症予防などの目的から、紫外光を用いた殺菌やウィルスの不活化を行うシステムの需要が高まっている。当該システムには、大きく3つのカテゴリの製品がある。なお、本明細書では、「殺菌等」と記載する場合、殺菌とウィルスの不活化を意味するものとする。
(I)移動型殺菌ロボット
 非特許文献1の製品は、紫外光を照射する自律移動型のロボットである。当該ロボットは、病室などの建物内の部屋の中を移動しながら紫外光を照射することで、人手を介さず、自動で広い範囲の殺菌等を実現できる。
(II)据え置き型空気清浄機
 非特許文献2の製品は、天井や室内の所定の場所に設置され、室内の空気を循環しながら殺菌等する装置である。当該装置は、直接紫外光を照射せず、人体への影響がないため、安全性の高い殺菌が可能である。
(III)ポータブル型殺菌装置
 非特許文献3の製品は、紫外光源を搭載したポータブル型の装置である。ユーザが当該装置を所望のエリアに持って行って紫外光を照射できる。このため、当該装置は様々な場所で使用可能である。
Demand is increasing for systems that perform sterilization and virus inactivation using ultraviolet light for the purpose of preventing infectious diseases. There are three main categories of products in this system. In this specification, the term “sterilization, etc.” shall mean sterilization and virus inactivation.
(I) Mobile sterilization robot The product of Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light. By irradiating the robot with ultraviolet light while moving in a room in a building such as a hospital room, the robot can automatically realize sterilization in a wide range without human intervention.
(II) Stationary air purifier The product of Non-Patent Document 2 is a device that is installed on the ceiling or at a predetermined place in a room, and performs sterilization while circulating the air in the room. Since this device does not directly irradiate ultraviolet light and has no effect on the human body, highly safe sterilization is possible.
(III) Portable Sterilization Apparatus The product of Non-Patent Document 3 is a portable apparatus equipped with an ultraviolet light source. A user can bring the device to a desired area and irradiate it with ultraviolet light. Therefore, the device can be used in various places.
 しかし、非特許文献に記載される装置には次のような課題がある。
(1)経済性
 非特許文献1の製品は、高出力の紫外光を照射するため、装置が大掛かりとなり高価となる。このため、非特許文献1の製品には経済的なシステムの実現が困難という課題がある。
(2)汎用性
 非特許文献1の製品は、紫外光照射箇所がロボットが移動/進入できる場所に限定されるため、細かい場所や奥まった場所などへの紫外光の照射が困難である。
 非特許文献2の製品は、循環させた室内の空気を殺菌するため、殺菌等をしたい場所に直接紫外光を照射することができない。
 非特許文献3の製品は、例えば、細い管路や人が入られないエリアについては紫外光を照射することができない。
 このように、非特許文献の製品には、任意の場所に紫外光を照射できるという汎用性に課題がある。
(3)操作性
 非特許文献3の製品は、可搬性であり様々な場所で紫外光の照射が可能である。しかし、対象箇所で十分な殺菌等の効果が得られるためには、ユーザにスキルや知識を要求しており、操作性に課題がある。
However, the device described in Non-Patent Document has the following problems.
(1) Economy Since the product of Non-Patent Document 1 is irradiated with high-output ultraviolet light, the apparatus becomes large and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
(2) Versatility In the product of Non-Patent Document 1, since the ultraviolet light irradiation position is limited to a place where the robot can move/enter, it is difficult to irradiate the ultraviolet light to a small place or a deep place.
Since the product of Non-Patent Document 2 sterilizes the circulated indoor air, it is not possible to directly irradiate a place to be sterilized with ultraviolet light.
The product of Non-Patent Document 3, for example, cannot irradiate ultraviolet light to narrow pipes or areas where people cannot enter.
Thus, the product of Non-Patent Literature has a problem of versatility in that it can irradiate any place with ultraviolet light.
(3) Operability The product of Non-Patent Document 3 is portable and can be irradiated with ultraviolet light at various locations. However, in order to obtain sufficient effects such as sterilization at the target location, the user is required to have skill and knowledge, and there is a problem in operability.
 これらの課題に対して、図1のような光ファイバを用いた紫外光照射システム300が考えられる。この紫外光照射システムは、細くて曲げやすい光ファイバを用いて紫外光源部11aから紫外光を伝送し、光ファイバ伝送部14の先端から出力される紫外光をピンポイントで殺菌等したい照射対象域ARへ照射する。光ファイバ伝送部14の先端の照射部13を移動させるだけで任意の場所に紫外光を照射できるため上記課題(2)の汎用性を解消できる。また、紫外光光源の移動や設定が不要でユーザにスキルや知識を求めないため、上記課題(3)の操作性も解消できる。さらに、光スプリッタのような光分配部12を光ファイバ伝送部14に設け、FTTH(Fiber To The Home)のようなP-MP(Point to MultiPoint)のシステム構成とすることで、単一の光源をシェアすることで複数の箇所を殺菌等できる。このため、上記課題(1)の経済性も解消できる。 For these problems, an ultraviolet light irradiation system 300 using an optical fiber as shown in FIG. 1 is conceivable. This ultraviolet light irradiation system uses a thin and flexible optical fiber to transmit ultraviolet light from the ultraviolet light source unit 11a, and the ultraviolet light output from the tip of the optical fiber transmission unit 14 is used to pinpoint an irradiation target area to be sterilized. Illuminate the AR. The versatility of the above problem (2) can be solved because the ultraviolet light can be applied to any place simply by moving the irradiation unit 13 at the tip of the optical fiber transmission unit 14 . In addition, since there is no need to move or set the ultraviolet light source, and the user is not required to have skills or knowledge, the operability of the above problem (3) can be resolved. Furthermore, by providing an optical distribution unit 12 such as an optical splitter in the optical fiber transmission unit 14 to form a P-MP (Point to MultiPoint) system configuration such as FTTH (Fiber To The Home), a single light source By sharing, you can sterilize multiple places. Therefore, it is possible to solve the problem (1) economically.
 しかし、紫外光照射システムとしての光ファイバを用いたP-MP構成の実現には次のような課題がある。
 殺菌等に使用される深紫外光の光は200nm帯の波長帯域である。この帯域の紫外光は、人をはじめとする生物の目や皮膚に照射した場合、白内障や皮膚がんの原因となるなどの影響が懸念されており、波長帯域の利用において安全性の確保が求められる。しかし、その帯域の紫外光は人の目に不可視であり、作業者が照射部13から照射される紫外光とその照射範囲を把握することが困難である。一方、安全性の確保のためにパワーメータや紫外光カメラなどを同時に利用して紫外光とその照射範囲をモニタリングすればシステム構成や作業が複雑になり運用が困難になる。
 つまり、光ファイバを用いたP-MP構成の紫外光照射システムには、紫外光を取り扱うための安全性や運用性の確保が困難という課題があった。
However, there are the following problems in realizing a P-MP configuration using an optical fiber as an ultraviolet light irradiation system.
Deep ultraviolet light used for sterilization or the like has a wavelength band of 200 nm. There are concerns that ultraviolet light in this band may cause cataracts and skin cancer if the eyes and skin of living things, including humans, are exposed to it. Desired. However, the ultraviolet light in that band is invisible to the human eye, and it is difficult for the operator to grasp the ultraviolet light emitted from the irradiation unit 13 and its irradiation range. On the other hand, if a power meter, an ultraviolet light camera, etc. are simultaneously used to monitor the ultraviolet light and its irradiation range in order to ensure safety, the system configuration and work will be complicated, and operation will become difficult.
In other words, it is difficult to ensure safety and operability for handling ultraviolet light in the P-MP configuration ultraviolet light irradiation system using optical fibers.
 そこで、本発明は、上記課題を解決するために、紫外光を取り扱うための安全性や運用性を確保できる紫外光照射システム及びその方法を提供することを目的とする。 Therefore, in order to solve the above problems, an object of the present invention is to provide an ultraviolet light irradiation system and method that can ensure safety and operability for handling ultraviolet light.
 上記目的を達成するために、本発明に係る紫外光照射システムは、紫外光の照射と同時に同じ範囲に可視光も照射することとした。 In order to achieve the above object, the ultraviolet light irradiation system according to the present invention irradiates visible light to the same range at the same time as irradiating ultraviolet light.
 具体的には、本発明に係る紫外光照射システムは、紫外光と可視光を出力する光源部と、前記紫外光と前記可視光を伝搬する光ファイバ伝送部と、前記光ファイバ伝送部が伝搬した前記紫外光と前記可視光を同一の照射対象域に照射する照射部と、を備える。 Specifically, the ultraviolet light irradiation system according to the present invention includes a light source unit that outputs ultraviolet light and visible light, an optical fiber transmission unit that propagates the ultraviolet light and the visible light, and the optical fiber transmission unit that propagates the ultraviolet light and the visible light. and an irradiation unit that irradiates the same irradiation target area with the ultraviolet light and the visible light.
 また、本発明に係る紫外光照射方法は、光源部で紫外光と可視光を出力すること、光ファイバ伝送部で前記紫外光と前記可視光を伝搬すること、及び前記紫外光と前記可視光を照射部から同一の照射対象域に照射すること、を特徴とする。 Further, the ultraviolet light irradiation method according to the present invention includes: outputting ultraviolet light and visible light from a light source unit; propagating the ultraviolet light and the visible light from an optical fiber transmission unit; is irradiated from the irradiation unit to the same irradiation target area.
 本紫外光照射システム及び方法は、紫外光に可視光を重畳して照射対象域に照射する。可視光が重畳しているため、パワーメータや紫外光カメラなどを使用せずとも作業者は紫外光の照射領域を容易に把握することができる。従って、本発明は、紫外光を取り扱うための安全性や運用性を確保できる紫外光照射システム及びその方法を提供することができる。 This ultraviolet light irradiation system and method irradiate an irradiation target area by superimposing visible light on ultraviolet light. Since the visible light is superimposed, the operator can easily grasp the irradiation area of the ultraviolet light without using a power meter or an ultraviolet light camera. Therefore, the present invention can provide an ultraviolet light irradiation system and method that can ensure safety and operability for handling ultraviolet light.
 本発明に係る紫外光照射システムの前記照射部は、前記照射対象域において前記紫外光の照射領域より前記可視光の照射領域を大きくすることを特徴とする。安全性を一層高めることができる。 The irradiation unit of the ultraviolet light irradiation system according to the present invention is characterized in that the irradiation area of the visible light is made larger than the irradiation area of the ultraviolet light in the irradiation target area. Safety can be further enhanced.
 本発明に係る紫外光照射システムは、前記紫外光より前に前記可視光を前記照射対象域に照射することを特徴とする。安全性を一層高めることができる。 The ultraviolet light irradiation system according to the present invention is characterized by irradiating the irradiation target area with the visible light before the ultraviolet light. Safety can be further enhanced.
 本発明に係る紫外光照射システムは、前記紫外光の強度を前記可視光で表現させる制御部をさらに備えることを特徴とする。作業者は直感的に危険度を認識できるようになる。 The ultraviolet light irradiation system according to the present invention is characterized by further comprising a controller that expresses the intensity of the ultraviolet light with the visible light. Workers can intuitively recognize the degree of danger.
 本発明に係る紫外光照射システムの光ファイバ伝送部は、前記紫外光と前記可視光を同一のコアで伝搬すること、又は前記紫外光と前記可視光を異なるコアで伝搬することを特徴とする。 The optical fiber transmission unit of the ultraviolet light irradiation system according to the present invention is characterized by propagating the ultraviolet light and the visible light through the same core, or propagating the ultraviolet light and the visible light through different cores. .
 なお、上記各発明は、可能な限り組み合わせることができる。 The above inventions can be combined as much as possible.
 本発明は、紫外光を取り扱うための安全性や運用性を確保できる紫外光照射システム及びその方法を提供することができる。 The present invention can provide an ultraviolet light irradiation system and method that can ensure safety and operability for handling ultraviolet light.
本発明の課題を説明する図である。It is a figure explaining the subject of this invention. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムの光源部を説明する図である。It is a figure explaining the light source part of the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムの光源部を説明する図である。It is a figure explaining the light source part of the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムの光源部の動作を説明する図である。It is a figure explaining operation|movement of the light source part of the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムの光源部を説明する図である。It is a figure explaining the light source part of the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムの光ファイバ結合部を説明する図である。It is a figure explaining the optical fiber coupling part of the ultraviolet light irradiation system which concerns on this invention. 光ファイバケーブルの構造を説明する図である。It is a figure explaining the structure of an optical fiber cable. 本発明に係る紫外光照射システムの光ファイバ結合部を説明する図である。It is a figure explaining the optical fiber coupling part of the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムの光ファイバ結合部を説明する図である。It is a figure explaining the optical fiber coupling part of the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムの光ファイバ結合部を説明する図である。It is a figure explaining the optical fiber coupling part of the ultraviolet light irradiation system which concerns on this invention. 光ファイバの構造を説明する図である。It is a figure explaining the structure of an optical fiber. 本発明に係る紫外光照射方法を説明するフローチャートである。It is a flow chart explaining an ultraviolet light irradiation method concerning the present invention.
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 An embodiment of the present invention will be described with reference to the attached drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In addition, in this specification and the drawings, constituent elements having the same reference numerals are the same as each other.
(実施形態1)
 図2は、本実施形態の紫外光照射システム301を説明する図である。紫外光照射システム301は、
 紫外光と可視光を出力する光源部11と、
 前記紫外光と前記可視光を伝搬する光ファイバ伝送部14と、
 光ファイバ伝送部14が伝搬した前記紫外光と前記可視光を同一の照射対象域ARに照射する照射部13と、
を備える。
(Embodiment 1)
FIG. 2 is a diagram illustrating the ultraviolet light irradiation system 301 of this embodiment. The ultraviolet light irradiation system 301 is
a light source unit 11 that outputs ultraviolet light and visible light;
an optical fiber transmission unit 14 that propagates the ultraviolet light and the visible light;
an irradiation unit 13 that irradiates the same irradiation target area AR with the ultraviolet light and the visible light propagated by the optical fiber transmission unit 14;
Prepare.
 なお、光ファイバ伝送部14は、図3の紫外光照射システム302のように、途中に光分配部12を配置し、複数の照射対象域ARへ紫外光および可視光を伝送することもできる。光分配部12は、例えば、光スプリッタ、光スイッチ、およびそれらの組み合わせで構成しても良い。 The optical fiber transmission unit 14 can also transmit ultraviolet light and visible light to a plurality of irradiation target areas AR by arranging the light distribution unit 12 in the middle, like the ultraviolet light irradiation system 302 in FIG. The optical distributor 12 may be composed of, for example, an optical splitter, an optical switch, or a combination thereof.
 紫外光照射システム(301、302)の各構成の基本動作は次の通りである。
 光源部11は、紫外光(およそ100~400nm帯)と人間が視認可能な可視光(およそ400~800nm帯)を同時に光ファイバ結合部16へ出力する。
 光ファイバ結合部16は、光源部11が出力した紫外光と可視光を光ファイバ伝送部14へ入力する。
 光ファイバ伝送部14は、光ファイバ結合部16から入力された紫外光と可視光を照射部13へ伝送する。
The basic operation of each component of the ultraviolet light irradiation system (301, 302) is as follows.
The light source unit 11 simultaneously outputs ultraviolet light (approximately 100 to 400 nm band) and visible light (approximately 400 to 800 nm band) visible to humans to the optical fiber coupling unit 16 .
The optical fiber coupling section 16 inputs the ultraviolet light and the visible light output from the light source section 11 to the optical fiber transmission section 14 .
The optical fiber transmission unit 14 transmits the ultraviolet light and visible light input from the optical fiber coupling unit 16 to the irradiation unit 13 .
 照射部13は、光ファイバ伝送部14が伝送してきた紫外光と可視光を同時に同じ照射対象域ARに照射する。なお、安全性をより担保するために、照射対象域ARへの可視光の照射領域が紫外光の照射領域よりも大きくなるように照射部13を設定しても良い。 The irradiation unit 13 simultaneously irradiates the same irradiation target area AR with the ultraviolet light and the visible light transmitted by the optical fiber transmission unit 14 . In order to further ensure safety, the irradiation unit 13 may be set so that the irradiation area of the visible light to the irradiation target area AR is larger than the irradiation area of the ultraviolet light.
[光源部の実施例1]
 図4は、光源部11の構成(例1)を説明する図である。
 光源部11は、紫外光源部11aと可視光源部11bと制御部11cを備える。
 紫外光源部11aは、制御部11cの指示に基づいて殺菌等に効果がある紫外光UV(100nm~400nmの波長帯)を発生する。
 可視光源部11bは、制御部11cの指示に基づいて人間が視認可能な可視光VL(400nm~800nmの波長帯)を発生する。
[Embodiment 1 of light source part]
FIG. 4 is a diagram for explaining the configuration (example 1) of the light source unit 11. As shown in FIG.
The light source unit 11 includes an ultraviolet light source unit 11a, a visible light source unit 11b, and a control unit 11c.
The ultraviolet light source unit 11a generates ultraviolet light UV (wavelength band of 100 nm to 400 nm) effective for sterilization and the like based on instructions from the control unit 11c.
The visible light source section 11b generates visible light VL (wavelength band of 400 nm to 800 nm) visible to humans based on instructions from the control section 11c.
 制御部11cは、紫外光源部11aと可視光源部11bに対して紫外光と可視光を同時に発生させるための制御機能を有し、それぞれの光源部に制御信号CS1を送信する。また、制御部11cは、紫外光と可視光を同時に照射するのではなく、さらに安全性を担保するために紫外光の照射を開始する前に可視光を照射しても良い。 The control unit 11c has a control function for simultaneously generating ultraviolet light and visible light for the ultraviolet light source unit 11a and the visible light source unit 11b, and transmits a control signal CS1 to each light source unit. Further, the control unit 11c may irradiate the visible light before starting the irradiation of the ultraviolet light, instead of irradiating the ultraviolet light and the visible light at the same time, in order to further ensure the safety.
 また、照射部13や照射対象域ARに配置したセンサー11dにて紫外光と可視光が同時に同じ範囲に照射しているか否かを検出させてもよい。制御部11cは、センサー11dにて検出した照射状況情報CS2を事前またはリアルタイムに受信し、紫外光源部11aと可視光源部11bに対してフィードバック制御してもよい。制御部11cは、照射部13や照射対象域ARの照射状況情報を把握することにより、例えば照射対象域ARの付近に人がいる場合に即座に照射を休止して安全性を高めることができる。
 このフィードバック制御は、光源部11以降の、光ファイバ結合部16、光ファイバ伝送部14又は照射部13にて何らかの不具合があり可視光だけが照射対象域ARに照射されないという状況を回避することを目的とする。具体的には、センサー11dは照射状況(例えば、照射対象域ARでの可視光の照度や照射部13での可視光の位相)を情報として制御部11cに伝える。制御部11cは、その情報に基づいて紫外光源部11aを制御し、紫外光のON/OFFを実施する。このフィードバック制御は、紫外光のみが照射される状況を回避し、紫外光照射システムの安全性を高めることができる。
Alternatively, the irradiation unit 13 or the sensor 11d arranged in the irradiation target area AR may detect whether or not the ultraviolet light and the visible light are simultaneously irradiated in the same range. The control unit 11c may receive the irradiation status information CS2 detected by the sensor 11d in advance or in real time, and may perform feedback control on the ultraviolet light source unit 11a and the visible light source unit 11b. By grasping the irradiation status information of the irradiation unit 13 and the irradiation target area AR, the control unit 11c can, for example, immediately stop irradiation when there is a person near the irradiation target area AR to improve safety. .
This feedback control is intended to avoid a situation where only the visible light is not irradiated to the irradiation target area AR due to some problem in the optical fiber coupling section 16, the optical fiber transmission section 14, or the irradiation section 13 after the light source section 11. aim. Specifically, the sensor 11d informs the control unit 11c of the irradiation conditions (for example, the illuminance of the visible light in the irradiation target area AR and the phase of the visible light in the irradiation unit 13) as information. The control unit 11c controls the ultraviolet light source unit 11a based on the information to turn on/off the ultraviolet light. This feedback control avoids situations in which only ultraviolet light is irradiated, and can improve the safety of the ultraviolet light irradiation system.
[光源部の実施例2]
 図5は、光源部11の構成(例2)を説明する図である。図5の光源部11が紫外光源部11aと可視光源部11bと制御部11cを備えることは、図4の光源部11と同じである。
[Embodiment 2 of light source part]
FIG. 5 is a diagram for explaining the configuration (example 2) of the light source unit 11. As shown in FIG. The light source unit 11 in FIG. 5 includes an ultraviolet light source unit 11a, a visible light source unit 11b, and a control unit 11c, which is the same as the light source unit 11 in FIG.
 図5の光源部11は、制御部11cが紫外光の強度を可視光で表現させる点で図4の光源部11と相違する。具体的には、制御部11cは、紫外光のパワーの大きさを
(1)可視光のパワー(明暗)で表示させる、
(2)可視光の点滅パターンで表示させる、あるいは
(3)可視光の色相で表示させる。
 このように可視光で表現させることで、照射対象域AR近傍の人に直観的に危険度を認識できるようにする。
 なお、紫外光のパワーとは、紫外光源部11aが出力する紫外光のパワー、図7のセンサー11dなどで検出した照射部13が照射するときの紫外光のパワー、又は図7のセンサー11dなどで検出した照射対象域ARが受ける紫外光のパワーのいずれでもよい。
The light source unit 11 in FIG. 5 is different from the light source unit 11 in FIG. 4 in that the control unit 11c expresses the intensity of the ultraviolet light with visible light. Specifically, the control unit 11c displays the power of the ultraviolet light as (1) the power of the visible light (brightness/darkness).
(2) display with a flashing pattern of visible light; or (3) display with a hue of visible light.
By expressing with visible light in this way, a person in the vicinity of the irradiation target area AR can intuitively recognize the degree of danger.
The power of the ultraviolet light means the power of the ultraviolet light output by the ultraviolet light source unit 11a, the power of the ultraviolet light emitted by the irradiation unit 13 detected by the sensor 11d in FIG. 7, or the sensor 11d in FIG. Any of the powers of the ultraviolet light received by the irradiation target area AR detected in step 1 may be used.
 図6は、紫外光のパワーに基づく可視光の視認パターンの変化を説明する表である。
 紫外光パワーを可視光のパワーで表現する場合、例えば、紫外光パワーが強ければ可視光もパワーを強く(明るく)光らせることで危険度が高いことを照射対象域AR近傍の人に認識させる。逆に紫外光パワーが弱ければ可視光もパワーを弱く(暗く)光らせることで照射対象域AR近傍の人に安心度を増すことができる。
 また、紫外光パワーを可視光の点滅パターンで表現する場合、例えば、紫外光パワーが強ければ可視光を大きな周波数(例;5回/秒)で点滅させることで危険度が高いことを照射対象域AR近傍の人に認識させる。逆に紫外光パワーが弱ければ可視光を小さな周波数(例;1回/秒)で点滅させことで照射対象域AR近傍の人に安心度を増すことができる。
 また、紫外光パワーを可視光の色相で表現する場合、例えば、紫外光パワーが強ければ紫の可視光として危険度が高いことを照射対象域AR近傍の人に認識させる。逆に紫外光パワーが弱ければ青の可視光として照射対象域AR近傍の人に安心度を増すことができる。
FIG. 6 is a table for explaining changes in visual recognition pattern of visible light based on the power of ultraviolet light.
When the power of the ultraviolet light is represented by the power of the visible light, for example, if the power of the ultraviolet light is strong, the power of the visible light is also increased (brighter) so that a person in the vicinity of the irradiation target area AR recognizes that the danger is high. Conversely, if the power of the ultraviolet light is weak, the power of the visible light is also weak (dark), thereby making it possible to increase the sense of security for people in the vicinity of the irradiation target area AR.
In addition, when expressing the ultraviolet light power by the blinking pattern of visible light, for example, if the ultraviolet light power is strong, the visible light blinks at a high frequency (e.g., 5 times/second) to indicate that the irradiation target has a high degree of danger. The area AR is made to be recognized by people in the vicinity. Conversely, if the power of the ultraviolet light is weak, blinking the visible light at a low frequency (for example, once per second) can increase the sense of security for people in the vicinity of the irradiation target area AR.
Further, when the ultraviolet light power is represented by the hue of visible light, for example, if the ultraviolet light power is strong, the person in the vicinity of the irradiation target area AR is made to recognize that the danger is high as violet visible light. Conversely, if the power of the ultraviolet light is weak, the blue visible light can increase the sense of security for people in the vicinity of the irradiation target area AR.
 他の手法として、照射部13の付近に可視光の発光素子(例:LED)11eを設置し、制御部11cが紫外光のパワーに応じて上述の視認パターンでLEDを発光させてもよい。 As another method, a visible light emitting element (eg, LED) 11e may be installed near the irradiation unit 13, and the control unit 11c may cause the LED to emit light in the above-described visible pattern according to the power of the ultraviolet light.
 制御部11cがこのような制御を行うことにより、紫外光の照射/非照射を可視光の単純なON/OFFで表示するだけでなく、紫外光のパワーの大きさによる危険度も可視化することができる。さらに、制御部11cがこの制御を行うことにより、照射対象域ARに照明など別の発光体がある中でも紫外光の状態を視認可能となる。 By performing such control by the control unit 11c, it is possible not only to display irradiation/non-irradiation of ultraviolet light by simple ON/OFF of visible light, but also to visualize the degree of danger depending on the power of ultraviolet light. can be done. Furthermore, the control unit 11c performs this control, so that the state of the ultraviolet light can be visually recognized even when there is another light-emitting body such as a lighting device in the irradiation target area AR.
[光源部の実施例3]
 図7は、光源部11の構成(例3)を説明する図である。
 光源部11は、可視光源部11bと波長変換機能部11fと制御部11cを備える。
 可視光源部11bは、制御部11cの指示に基づいて人間が視認可能な可視光VL(400nm~800nmの波長帯)を発生する。
[Embodiment 3 of light source part]
FIG. 7 is a diagram for explaining the configuration (example 3) of the light source unit 11. As shown in FIG.
The light source unit 11 includes a visible light source unit 11b, a wavelength conversion function unit 11f, and a control unit 11c.
The visible light source section 11b generates visible light VL (wavelength band of 400 nm to 800 nm) visible to humans based on instructions from the control section 11c.
 波長変換機能部11fは、可視光源部11bからの可視光の一部の光を利用して殺菌等に効果がある紫外光(およそ100~400nmの波長帯)に変換し、制御部11cの指示に基づいて紫外光を発生する。図7の制御部11cは、図4で説明したように、紫外光と可視光を同時に照射するのではなく、さらに安全性を担保するために紫外光の照射を開始する前に可視光を照射しても良い。 The wavelength conversion function unit 11f uses part of the visible light from the visible light source unit 11b to convert it into ultraviolet light (wavelength band of about 100 to 400 nm) that is effective for sterilization, etc., and instructs the control unit 11c. to generate ultraviolet light. The control unit 11c in FIG. 7 does not irradiate ultraviolet light and visible light at the same time as described in FIG. You can
 制御部11cは、可視光源11bと波長変換機能部11fに対して紫外光と可視光を同時に発生させるための制御機能を有し、それぞれに制御信号CS1を送信する。また、図7の制御部11cは、図4で説明したように、紫外光照射部において同時に同じ範囲に照射可能とするように、センサー11dから照射状況情報CS2を事前またはリアルタイムに受信し、可視光源11bと波長変換機能部11fに対してフィードバック制御してもよい。 The control unit 11c has a control function for simultaneously generating ultraviolet light and visible light for the visible light source 11b and the wavelength conversion function unit 11f, and transmits a control signal CS1 to each. In addition, as described in FIG. 4, the control unit 11c in FIG. Feedback control may be performed on the light source 11b and the wavelength conversion function unit 11f.
 また、図7の実施例では可視光を波長変換して紫外光を発生させる構成を説明したが、紫外光を波長変換して可視光を発生させてもよい。
 さらに、図7の実施例においても、実施例2の説明通り、可視光の視認パターンを紫外光のパワーに伴い変化させても良い。
Further, in the embodiment of FIG. 7, the configuration in which the wavelength of visible light is converted to generate ultraviolet light has been described, but the wavelength of ultraviolet light may be converted to generate visible light.
Furthermore, also in the embodiment of FIG. 7, as described in the second embodiment, the visual recognition pattern of visible light may be changed according to the power of ultraviolet light.
[光ファイバ結合部の実施例1]
 図8は、光ファイバ結合部16の構成(例1)を説明する図である。光ファイバ結合部16は、光源部11から送信された紫外光および可視光を光ファイバ伝送部14に光結合させる。光ファイバ結合部16は、光ファイバ伝送部14(つまり光ファイバ)の種別により異なるが、(α)単一コア(またはコア部)に紫外光と可視光の2波長を波長多重して結合させる構成と、(β)異なるコアにそれぞれ紫外光と可視光を結合させる構成がある。
[Example 1 of the optical fiber coupling part]
FIG. 8 is a diagram for explaining the configuration (example 1) of the optical fiber coupling section 16. As shown in FIG. The optical fiber coupling section 16 optically couples the ultraviolet light and visible light transmitted from the light source section 11 to the optical fiber transmission section 14 . The optical fiber coupling section 16 differs depending on the type of the optical fiber transmission section 14 (that is, optical fiber), but (α) wavelength-multiplexes and couples two wavelengths of ultraviolet light and visible light to a single core (or core section). and (β) a configuration in which ultraviolet light and visible light are coupled to different cores, respectively.
 なお、異なるコアをもつ光ファイバとは、図9(A)のような光ケーブル(複数の単一コア光ファイバ21を束ねたもの)、図9(B)のようなマルチコア光ファイバ23(複数のコア22を有する光ファイバ)、あるいは図9(C)のようなマルチコア光ケーブル(複数のマルチコア光ファイバ23を束ねたもの)が挙げられる。 The optical fibers having different cores are an optical cable (a bundle of a plurality of single-core optical fibers 21) as shown in FIG. 9A and a multi-core optical fiber 23 (a plurality of cores) as shown in FIG. an optical fiber having a core 22), or a multi-core optical cable (a bundle of a plurality of multi-core optical fibers 23) as shown in FIG. 9C.
 光ファイバ結合部16は、第1補正部16a、集光部16b、及び第2補正部16cを備える。
 第1補正部16aは、光源部11から送信された紫外光UVと可視光VLを受光し、光軸のズレや傾きを補正して集光部16bへ入力する。第1補正部16aは、光学系レンズで構成される。
 集光部16bは、第1補正部16aからの紫外光UVと可視光VLを受光し、光ファイバ伝送部14である光ファイバのコアまたはコア部の直径程度に集光し、第2補正部16cへ入力する。集光部16bは、光学系レンズで構成される。
 第2補正部16cは、集光部16bで集光された紫外光UVと可視光VLを受光し、光軸の軸ズレや傾きを補正して光ファイバ伝送部14へ入射する。第2補正部16cは、光学系レンズで構成される。
The optical fiber coupling section 16 includes a first correction section 16a, a condensing section 16b, and a second correction section 16c.
The first correction unit 16a receives the ultraviolet light UV and the visible light VL transmitted from the light source unit 11, corrects deviation and inclination of the optical axis, and inputs the light to the light collecting unit 16b. The first correction unit 16a is composed of an optical system lens.
The light condensing part 16b receives the ultraviolet light UV and the visible light VL from the first correcting part 16a, converges the light to about the diameter of the core of the optical fiber that is the optical fiber transmission part 14, or the core part, and the second correcting part Enter 16c. The condensing part 16b is composed of an optical system lens.
The second correction unit 16c receives the ultraviolet light UV and the visible light VL condensed by the condensing unit 16b, corrects the misalignment and inclination of the optical axis, and enters the optical fiber transmission unit . The second corrector 16c is composed of an optical system lens.
 本実施例の光ファイバ結合部16は、シンプルな構成で、例えば、光学系レンズの組み合わせで可能であることから安価に実現できるというメリットがある。 The optical fiber coupling section 16 of the present embodiment has a simple configuration, for example, it can be realized by combining optical system lenses, so there is an advantage that it can be realized at a low cost.
[光ファイバ結合部の実施例2]
 図10は、光ファイバ結合部16の構成(例2)を説明する図である。
 図10の光ファイバ結合部16は、図8の光ファイバ結合部16に対し、監視部16d及び制御部16eをさらに備える。
 監視部16dは、第2補正部16cから送信され光ファイバ伝送部14へ入射される紫外光と可視光の送信状況を監視する。監視部16dは、その送信状況の情報CS3を制御部16eへ送信する。ここで、送信状況とは、例えば、当該紫外光と可視光のパワーや、光ファイバ伝送部14へ入射される紫外光と可視光の軸ズレ量である。送信状況の監視は、前述の、可視光だけが照射対象域ARに照射されないという状況を回避することを目的としている。
 制御部16eは、監視部16dから受信した送信状況情報CS3を解析し、送信状況が最適となるよう第1補正部16a、集光部16b、及び第2補正部16cへ制御信号CS4を送り、それぞれを制御する。具体的には、第1補正部16aや第2補正部16cが光ファイバカプラ(ポジショナ)であって、制御部16eはこれらを用いて送信状況に基づいて可視光や紫外光の軸ズレを修正することができる。また、紫外光のパワーのみで可視光のパワーがない場合、制御部16eは第1補正部16aや第2補正部16cで紫外光の光軸をずらし、紫外光を光ファイバ伝送部14へ入射させないこともできる。
 また、第1補正部16aや第2補正部16cが光増幅器や光減衰器であってもよい。紫外光のパワーのみで可視光のパワーがない場合、制御部16eは第1補正部16aや第2補正部16cで紫外光を減衰し、紫外光を光ファイバ伝送部14へ入射させないこともできる。
[Embodiment 2 of Optical Fiber Coupling Portion]
FIG. 10 is a diagram illustrating a configuration (example 2) of the optical fiber coupling section 16. As shown in FIG.
The optical fiber coupling section 16 of FIG. 10 further includes a monitoring section 16d and a control section 16e in contrast to the optical fiber coupling section 16 of FIG.
The monitoring unit 16d monitors the transmission status of the ultraviolet light and visible light transmitted from the second correction unit 16c and incident on the optical fiber transmission unit 14. FIG. The monitoring unit 16d transmits the transmission status information CS3 to the control unit 16e. Here, the transmission status is, for example, the power of the ultraviolet light and the visible light, or the amount of axis deviation between the ultraviolet light and the visible light incident on the optical fiber transmission unit 14 . The purpose of monitoring the transmission status is to avoid the above-described situation in which only visible light is not applied to the irradiation target area AR.
The control unit 16e analyzes the transmission status information CS3 received from the monitoring unit 16d, and sends a control signal CS4 to the first correction unit 16a, the light collection unit 16b, and the second correction unit 16c so as to optimize the transmission status, control each. Specifically, the first correction unit 16a and the second correction unit 16c are optical fiber couplers (positioners), and the control unit 16e uses these to correct axial deviation of visible light and ultraviolet light based on the transmission situation. can do. Further, when only the power of the ultraviolet light is present and the power of the visible light is absent, the control unit 16e shifts the optical axis of the ultraviolet light using the first correction unit 16a and the second correction unit 16c so that the ultraviolet light is incident on the optical fiber transmission unit 14. You can also choose not to.
Also, the first corrector 16a and the second corrector 16c may be optical amplifiers or optical attenuators. When only the power of the ultraviolet light is present and the power of the visible light is absent, the control unit 16e can attenuate the ultraviolet light in the first correcting unit 16a and the second correcting unit 16c, and prevent the ultraviolet light from entering the optical fiber transmission unit 14. .
 本実施例の光ファイバ結合部16は、制御部16eを有するため、紫外光と可視光を同時に照射する、あるいは安全性を担保するために可視光を先に照射するなど、光の照射タイミングを調整することができる。 Since the optical fiber coupling unit 16 of the present embodiment has the control unit 16e, the irradiation timing of the light can be controlled by, for example, irradiating the ultraviolet light and the visible light at the same time or irradiating the visible light first to ensure safety. can be adjusted.
[光ファイバ結合部の実施例3]
 図11は、光ファイバ結合部16の構成(例3)を説明する図である。
 図11の光ファイバ結合部16は、図8の光ファイバ結合部16に対し、第1補正部が紫外光用(第1補正部16a#1)と可視光用(第1補正部16a#2)に分かれており、合波部16fをさらに備える。
 合波部16fは、第1補正部16a#1及び#2からの紫外光と可視光を波長合波し、集光部16bへ送信する。合波部16fは、光波長多重カプラ、光学レンズあるいはプリズムで構成される。
[Embodiment 3 of Optical Fiber Coupling Portion]
FIG. 11 is a diagram illustrating a configuration (example 3) of the optical fiber coupling section 16. As shown in FIG.
11 is different from the optical fiber coupling portion 16 in FIG. 8 in that the first correction portions are for ultraviolet light (first correction portion 16a#1) and for visible light (first correction portion 16a#2). ), and further includes a multiplexing unit 16f.
The multiplexing unit 16f multiplexes the wavelengths of the ultraviolet light and the visible light from the first correcting units 16a#1 and #2, and transmits the multiplexed light to the light collecting unit 16b. The multiplexing section 16f is composed of an optical wavelength multiplexing coupler, an optical lens, or a prism.
 本実施例の光ファイバ結合部16は、第1補正部を紫外光用と可視光用に分けたことで、光ファイバ伝送部14の波長特性に応じて紫外光と可視光の送信パワーを最適化することができる。
 また、いきなり紫外光と可視光の2つの光を合波してコアまたはコア部がより小さな各種別の光ファイバ、特に単一コア光ファイバに波長多重することは難しい。このため、第1段階として合波部16fで紫外光と可視光を合波し、第2段階として集光部16bでその波長多重光を光ファイバのコアレベルまで集光し、第3段階として第2補正部16cで光軸調整を行う。このように段階的に波長多重を行うことで結合効率や伝送効率を高めることができる。
In the optical fiber coupling section 16 of the present embodiment, the first correction section is divided for ultraviolet light and visible light, so that the transmission power of ultraviolet light and visible light is optimized according to the wavelength characteristics of the optical fiber transmission section 14. can be
In addition, it is difficult to suddenly combine two lights, ultraviolet light and visible light, and wavelength-multiplex them into various types of optical fibers having smaller cores or core portions, especially single-core optical fibers. For this reason, as a first step, the combining unit 16f combines the ultraviolet light and the visible light, as a second step, the wavelength-multiplexed light is collected to the core level of the optical fiber in the collecting unit 16b, and as a third step, Optical axis adjustment is performed by the second correction unit 16c. By performing wavelength multiplexing step by step in this manner, coupling efficiency and transmission efficiency can be improved.
[光ファイバ結合部の実施例4]
 図12は、光ファイバ結合部16の構成(例4)を説明する図である。
 図12の光ファイバ結合部16は、図11の光ファイバ結合部16に対し、監視部16d及び制御部16eをさらに備える。
 監視部16dは、第2補正部16cから送信され光ファイバ伝送部14へ入射される紫外光と可視光の送信状況を監視する。監視部16dは、その送信状況の情報CS3を制御部16eへ送信する。送信状況は前述の通りである。
 制御部16eは、監視部16dから受信した送信状況情報CS3を解析し、送信状況が最適となるよう第1補正部(16a#1と#2)、集光部16b、及び第2補正部16cへ制御信号CS4を送り、それぞれを制御する。具体的な制御内容は前述の通りである。
[Embodiment 4 of Optical Fiber Coupling Portion]
FIG. 12 is a diagram illustrating a configuration (example 4) of the optical fiber coupling section 16. As shown in FIG.
The optical fiber coupling section 16 of FIG. 12 further includes a monitoring section 16d and a control section 16e in contrast to the optical fiber coupling section 16 of FIG.
The monitoring unit 16d monitors the transmission status of the ultraviolet light and visible light transmitted from the second correction unit 16c and incident on the optical fiber transmission unit 14. FIG. The monitoring unit 16d transmits the transmission status information CS3 to the control unit 16e. The transmission status is as described above.
The control unit 16e analyzes the transmission status information CS3 received from the monitoring unit 16d, and adjusts the first correction units (16a #1 and #2), the light collection unit 16b, and the second correction unit 16c so that the transmission status becomes optimal. to control each of them. The specific contents of control are as described above.
 本実施例の光ファイバ結合部16は、制御部16eを有するため、紫外光と可視光を同時に照射する、あるいは安全性を担保するために可視光を先に照射するなど、光の照射タイミングを調整することができる。 Since the optical fiber coupling unit 16 of the present embodiment has the control unit 16e, the irradiation timing of the light can be controlled by, for example, irradiating the ultraviolet light and the visible light at the same time or irradiating the visible light first to ensure safety. can be adjusted.
 波長多重した光を光ファイバで長距離伝送すると、波長分散により特定の波長の照射パワーが低下する場合がある。本実施例の光ファイバ結合部16は、波長毎に第1補正部を備えるため、光ファイバ伝送路14での波長分散の影響を小さくする(照射パワーが減衰することを抑える)ことができる。例えば、第1補正部(16a#1、#2)は、ファイバブラッググレーティング(FBG)とサーキュレータ等を用いた空間光学系である。本空間光学系で光ファイバ伝送部14の長さに応じて所望の波長帯の分散補償をする。 When wavelength-multiplexed light is transmitted over long distances through optical fibers, the irradiation power of specific wavelengths may decrease due to chromatic dispersion. Since the optical fiber coupling section 16 of the present embodiment includes the first correction section for each wavelength, the influence of chromatic dispersion in the optical fiber transmission line 14 can be reduced (attenuation of the irradiation power can be suppressed). For example, the first corrector (16a #1, #2) is a spatial optical system using a fiber Bragg grating (FBG), a circulator, or the like. This spatial optical system performs dispersion compensation for a desired wavelength band according to the length of the optical fiber transmission section 14 .
 なお、光通信帯域(約1000nmから1675nmのT-bandからU-band)の光ファイバ伝送においては、例えば分散シフトファイバや分散補償ファイバが利用されており、光ファイバの屈折率分布を変更することによって実現している。本実施形態の紫外光照射システムも、特に光ファイバ伝送部14の距離が長い場合にはそれぞれの光の伝搬特性が異なるため、光ファイバ伝送部14に分散シフトファイバや分散補償ファイバを使用することで波長分散による影響を小さくすることができる。 In optical fiber transmission in the optical communication band (T-band to U-band of about 1000 nm to 1675 nm), for example, dispersion-shifted fiber and dispersion-compensating fiber are used, and it is possible to change the refractive index profile of the optical fiber. realized by In the ultraviolet light irradiation system of this embodiment as well, especially when the distance of the optical fiber transmission section 14 is long, the propagation characteristics of each light are different. can reduce the influence of chromatic dispersion.
[光ファイバ伝送部の実施例]
 光ファイバ伝送部14は、光ファイバ結合部16で入射された紫外光と可視光を照射部13まで伝搬する。光ファイバ伝送部14は光ファイバである。光ファイバなので従来技術のロボットや装置が入り込めない細かい場所などにも敷設することができる。
[Embodiment of optical fiber transmission unit]
The optical fiber transmission section 14 propagates the ultraviolet light and the visible light that are incident at the optical fiber coupling section 16 to the irradiation section 13 . The optical fiber transmission section 14 is an optical fiber. Since it is an optical fiber, it can be installed in narrow places where conventional robots and devices cannot enter.
 光ファイバ伝送部14には、前述のように、
(α)単一コア(またはコア部)に紫外光と可視光の2波長を波長多重して結合させる構成と、
(β)異なるコアにそれぞれ紫外光と可視光を結合させる構成(図9参照)
がある。
As described above, the optical fiber transmission unit 14 includes:
(α) a configuration in which two wavelengths of ultraviolet light and visible light are wavelength-multiplexed and coupled to a single core (or core portion);
(β) Configuration in which ultraviolet light and visible light are coupled to different cores (see FIG. 9)
There is
 光ファイバ伝送部14の光ファイバは、図13に示すような断面を持つ光ファイバを使用することができる。図13(1)のような一般的な添加物を用いた充実型光ファイバの他、図13(2)~(4)に記載した空孔構造を有する光ファイバ、図13(5)、(6)に記載した複数のコア領域を有するマルチコア光ファイバ、もしくはそれらを組み合わせた構造を有する光ファイバ(図13(7)~(10))であっても良い。 An optical fiber having a cross section as shown in FIG. 13 can be used for the optical fiber of the optical fiber transmission section 14 . In addition to the solid optical fiber using a general additive as shown in FIG. 13 (1), the optical fiber having the hole structure described in FIGS. It may be a multi-core optical fiber having a plurality of core regions described in 6) or an optical fiber having a structure combining them (FIGS. 13(7) to 13(10)).
 上記(α)の単一コア光ファイバのバリエーションを説明する。図13の(1)から(5)の構造の光ファイバである。
(1)充実コア光ファイバ
 この光ファイバは、クラッド60の中にクラッド60より高屈折率である1つの充実コア52を有する。「充実」とは「空洞ではない」という意味である。尚、充実コアは、クラッド内に円環状の低屈折率領域を形成することでも実現できる。
(2)空孔アシスト光ファイバ
 この光ファイバは、クラッド60の中に充実コア52とその外周に配置された複数の空孔53を有する。空孔53の媒質は空気であり、空気の屈折率は石英系ガラスに比べ十分小さい。このため、空孔アシスト光ファイバは、曲げなどでコア52から漏れた光を再びコア52に戻す機能があり、曲げ損失が小さいという特徴がある。
(3)空孔構造光ファイバ
この光ファイバは、クラッド60の中に複数の空孔53の空孔群53aを有し、ホスト材料(ガラス等)よりも実効的に屈折率が低い。本構造は、フォトニック結晶ファイバと呼ばれる。本構造には、屈折率を変化させた高屈折率コアが存在しない構造をとることができ、空孔53に取り囲まれた領域52aを実効的なコア領域として、光を閉じ込めることができる。充実コアを有する光ファイバに比べ、フォトニック結晶ファイバは、コアの添加剤による吸収や散乱損失の影響を低減することができるとともに、曲げ損失の低減や非線形効果の制御等、充実型光ファイバでは実現し得ない光学特性を実現できる。
(4)中空コア光ファイバ
この光ファイバは、コア領域が空気で形成される。クラッド領域に複数の空孔によるフォトニックバンドギャップ構造もしくはガラス細線によるアンチレゾナント構造をとることによって光をコア領域に閉じ込めることができる。この光ファイバは、非線形効果が小さく、高出力または高エネルギーレーザ供給が可能である。
(5)結合コア型光ファイバ
 この光ファイバは、クラッド60の中に複数の高屈折率である充実コア52が近接して配置される。この光ファイバは、充実コア52間で光波結合で光を導波する。結合コア型光ファイバは、コア数分だけ光を分散して送れるので、その分ハイパワー化して効率的な殺菌ができる、また、結合コア型光ファイバは、紫外線によるファイバ劣化を緩和し長寿命化できるというメリットがある。
A variation of the above single-core optical fiber (α) will be described. It is an optical fiber having a structure of (1) to (5) in FIG.
(1) Solid Core Optical Fiber This optical fiber has one solid core 52 in the clad 60 having a higher refractive index than the clad 60 . "Full" means "not hollow". The solid core can also be realized by forming an annular low refractive index region in the clad.
(2) Hole-assisted optical fiber This optical fiber has a solid core 52 in the clad 60 and a plurality of holes 53 arranged around the core. The medium of the holes 53 is air, and the refractive index of air is sufficiently smaller than that of quartz-based glass. Therefore, the hole-assisted optical fiber has a function of returning light leaking from the core 52 due to bending or the like back to the core 52, and is characterized by a small bending loss.
(3) Hole structure optical fiber This optical fiber has a hole group 53a of a plurality of holes 53 in the clad 60, and has an effective refractive index lower than that of the host material (glass or the like). This structure is called a photonic crystal fiber. This structure can take a structure in which a high-refractive-index core with a changed refractive index does not exist, and light can be confined using the region 52a surrounded by the holes 53 as an effective core region. Compared to optical fibers with solid cores, photonic crystal fibers can reduce the effects of absorption and scattering losses due to additives in the core. Optical characteristics that cannot be realized can be realized.
(4) Hollow core optical fiber This optical fiber has a core region made of air. Light can be confined in the core region by forming a photonic bandgap structure with a plurality of holes in the cladding region or an anti-resonant structure with glass wires. This optical fiber has low nonlinear effects and is capable of delivering high power or high energy lasers.
(5) Coupling Core Optical Fiber In this optical fiber, a plurality of solid cores 52 having a high refractive index are closely arranged in a clad 60 . This optical fiber guides light by optical wave coupling between solid cores 52 . Coupling-core type optical fibers can disperse and send light as many times as the number of cores, so high power can be used for efficient sterilization.Coupling-core type optical fibers mitigate fiber deterioration due to ultraviolet rays and have a long life. It has the advantage of being able to
 上記(β)のうちマルチコア光ファイバのバリエーションを説明する。図13の(6)から(10)の構造の光ファイバである。
(6)充実コア型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に複数の高屈折率である充実コア52が離れて配置される。この光ファイバは、充実コア52間で光波結合を十分小さくして光波結合の影響が無視できる状態で光を導波する。このため、充実コア型マルチコア光ファイバは、各コアを独立な導波路として扱えるというメリットがある。
(7)空孔アシスト型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に上記(2)の空孔構造およびコア領域が複数配置された構造である。
(8)空孔構造型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に上記(3)の空孔構造が複数配置された構造である。
(9)中空コア型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に上記(4)の空孔構造が複数配置された構造である。
(10)結合コア型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に上記(5)の結合コア構造が複数配置された構造である。
A variation of the multi-core optical fiber among the above (β) will be explained. It is an optical fiber having a structure of (6) to (10) in FIG.
(6) Solid-core type multi-core optical fiber In this optical fiber, a plurality of solid cores 52 with a high refractive index are spaced apart in a clad 60 . This optical fiber guides light in such a manner that the optical wave coupling between the solid cores 52 is sufficiently small so that the effect of the optical wave coupling can be ignored. Therefore, the solid-core multi-core optical fiber has the advantage that each core can be treated as an independent waveguide.
(7) Hole-Assisted Multi-Core Optical Fiber This optical fiber has a structure in which a plurality of hole structures and core regions of (2) above are arranged in a clad 60 .
(8) Hole structure type multi-core optical fiber This optical fiber has a structure in which a plurality of the hole structures of (3) above are arranged in the clad 60 .
(9) Hollow-core multi-core optical fiber This optical fiber has a structure in which a plurality of the hole structures of (4) above are arranged in the clad 60 .
(10) Coupling-core type multi-core optical fiber This optical fiber has a structure in which a plurality of coupling-core structures of (5) above are arranged in a clad 60 .
 上記(β)は、上述した構造の光ファイバを複数含む光ファイバケーブルであってもよい(図9参照。)。 The above (β) may be an optical fiber cable including a plurality of optical fibers having the structure described above (see FIG. 9).
(実施形態2)
 図14は、紫外光照射システム(301、302)が行う紫外光照射方法を説明する図である。本紫外光照射方法は、
 光源部11で紫外光と可視光を出力すること(ステップS01)、
 光ファイバ伝送部14で前記紫外光と前記可視光を伝搬すること(ステップS02)、
 前記紫外光と前記可視光を照射部13から同一の照射対象域ARに照射すること(ステップS03)、
を特徴とする。
(Embodiment 2)
FIG. 14 is a diagram for explaining the ultraviolet light irradiation method performed by the ultraviolet light irradiation system (301, 302). This ultraviolet light irradiation method is
outputting ultraviolet light and visible light from the light source unit 11 (step S01);
propagating the ultraviolet light and the visible light in the optical fiber transmission unit 14 (step S02);
irradiating the same irradiation target area AR with the ultraviolet light and the visible light from the irradiation unit 13 (step S03);
characterized by
11a:紫外光源部
11b:可視光源部
12:光分配部(等分岐)
13、13-1、・・・、13-N:照射部
14:光ファイバ伝送部
16:光ファイバ結合部
52:充実コア
52a:領域
53:空孔
53a:空孔群
53c:空孔
60:クラッド
300、301、302:紫外光照射システム
AR1、AR2、・・・、ARN:照射対象域(紫外光を照射しようとする領域)
11a: Ultraviolet light source section 11b: Visible light source section 12: Light distribution section (equally branched)
13, 13-1, ..., 13-N: irradiation section 14: optical fiber transmission section 16: optical fiber coupling section 52: solid core 52a: region 53: hole 53a: hole group 53c: hole 60: Claddings 300, 301, 302: UV light irradiation system AR1, AR2, ..., ARN: irradiation target area (area to be irradiated with ultraviolet light)

Claims (7)

  1.  紫外光と可視光を出力する光源部と、
     前記紫外光と前記可視光を伝搬する光ファイバ伝送部と、
     前記光ファイバ伝送部が伝搬した前記紫外光と前記可視光を同一の照射対象域に照射する照射部と、
    を備える紫外光照射システム。
    a light source unit that outputs ultraviolet light and visible light;
    an optical fiber transmission unit that propagates the ultraviolet light and the visible light;
    an irradiation unit that irradiates the same irradiation target area with the ultraviolet light and the visible light propagated by the optical fiber transmission unit;
    An ultraviolet light irradiation system.
  2.  前記照射部は、前記照射対象域において前記紫外光の照射領域より前記可視光の照射領域を大きくすることを特徴とする請求項1に記載の紫外光照射システム。 The ultraviolet light irradiation system according to claim 1, wherein the irradiation unit makes the irradiation area of the visible light larger than the irradiation area of the ultraviolet light in the irradiation target area.
  3.  前記紫外光より前に前記可視光を前記照射対象域に照射することを特徴とする請求項1に記載の紫外光照射システム。 The ultraviolet light irradiation system according to claim 1, wherein the irradiation target area is irradiated with the visible light before the ultraviolet light.
  4.  前記紫外光の強度を前記可視光で表現させる制御部をさらに備えることを特徴とする請求項1に記載の紫外光照射システム。 The ultraviolet light irradiation system according to claim 1, further comprising a controller that expresses the intensity of the ultraviolet light with the visible light.
  5.  前記光ファイバ伝送部は、前記紫外光と前記可視光を同一のコアで伝搬することを特徴とする請求項1に記載の紫外光照射システム。 The ultraviolet light irradiation system according to claim 1, wherein the optical fiber transmission section propagates the ultraviolet light and the visible light through the same core.
  6.  前記光ファイバ伝送部は、前記紫外光と前記可視光を異なるコアで伝搬することを特徴とする請求項1に記載の紫外光照射システム。 The ultraviolet light irradiation system according to claim 1, wherein the optical fiber transmission section propagates the ultraviolet light and the visible light through different cores.
  7.  紫外光照射方法であって、
     光源部で紫外光と可視光を出力すること、
     光ファイバ伝送部で前記紫外光と前記可視光を伝搬すること、及び
     前記紫外光と前記可視光を照射部から同一の照射対象域に照射すること、
    を特徴とする紫外光照射方法。
    An ultraviolet light irradiation method,
    outputting ultraviolet light and visible light from the light source;
    Propagating the ultraviolet light and the visible light through an optical fiber transmission unit, and irradiating the same irradiation target area with the ultraviolet light and the visible light from an irradiation unit;
    An ultraviolet light irradiation method characterized by:
PCT/JP2021/036936 2021-10-06 2021-10-06 Ultraviolet light irradiation system and ultraviolet light irradiation method WO2023058144A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/036936 WO2023058144A1 (en) 2021-10-06 2021-10-06 Ultraviolet light irradiation system and ultraviolet light irradiation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/036936 WO2023058144A1 (en) 2021-10-06 2021-10-06 Ultraviolet light irradiation system and ultraviolet light irradiation method

Publications (1)

Publication Number Publication Date
WO2023058144A1 true WO2023058144A1 (en) 2023-04-13

Family

ID=85803299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036936 WO2023058144A1 (en) 2021-10-06 2021-10-06 Ultraviolet light irradiation system and ultraviolet light irradiation method

Country Status (1)

Country Link
WO (1) WO2023058144A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204180A1 (en) * 2022-04-18 2023-10-26 ウシオ電機株式会社 Microbe or virus inactivation device, treatment device, discharge lamp

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004500316A (en) * 1998-07-21 2004-01-08 ガンブロ、 インコーポレイテッド Method and apparatus for inactivating biological contaminants using photosensitizers
JP2019145685A (en) * 2018-02-21 2019-08-29 パナソニックIpマネジメント株式会社 Light-emitting device and luminaire
JP2020036589A (en) * 2018-08-31 2020-03-12 国立大学法人徳島大学 Method and apparatus for suppressing growth of microorganisms using visible light LED
US20200105983A1 (en) * 2017-05-24 2020-04-02 Osram Opto Semiconductors Gmbh Light-emitting device and method of producing a light-emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004500316A (en) * 1998-07-21 2004-01-08 ガンブロ、 インコーポレイテッド Method and apparatus for inactivating biological contaminants using photosensitizers
US20200105983A1 (en) * 2017-05-24 2020-04-02 Osram Opto Semiconductors Gmbh Light-emitting device and method of producing a light-emitting device
JP2019145685A (en) * 2018-02-21 2019-08-29 パナソニックIpマネジメント株式会社 Light-emitting device and luminaire
JP2020036589A (en) * 2018-08-31 2020-03-12 国立大学法人徳島大学 Method and apparatus for suppressing growth of microorganisms using visible light LED

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204180A1 (en) * 2022-04-18 2023-10-26 ウシオ電機株式会社 Microbe or virus inactivation device, treatment device, discharge lamp

Similar Documents

Publication Publication Date Title
HUP0301300A2 (en) Method and apparatus for photobiostimulation of biological tissue, biostimulation device and method for the treatment of tissue
BR0012719A (en) Optical waveguide having negative dispersion and large a and f
WO2005016118A3 (en) Coaxial illuminated laser endoscopic probe and active numerical aperture control
WO2023058144A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2013160770A3 (en) Fiber laser system for medical applications
JP2024059974A (en) Ultraviolet Light Irradiation System
WO2022085123A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2022085142A1 (en) Ultraviolet light irradiation system and method
WO2022024406A1 (en) Ultraviolet light irradiation system
WO2022024405A1 (en) Ultraviolet light irradiation system and disinfection method
WO2024105873A1 (en) Light spot shaper and optical transmission system
WO2023276148A1 (en) Ultraviolet light irradiation system and control method
WO2023084669A1 (en) Ultraviolet light radiation system and radiation method
WO2023084668A1 (en) Ultraviolet light radiation system and control method
WO2023084677A1 (en) Ultraviolet light emission system
WO2023084666A1 (en) Ultraviolet light irradiation system
WO2023084675A1 (en) Uv irradiation system
US20240157003A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2024100862A1 (en) Optical transmission system
WO2023157281A1 (en) Optical transmission device, optical irradiation system, and optical transmission method
WO2023073774A1 (en) Uv irradiation system
EP4060389A4 (en) Fibre structure, optical combiner, laser beam source and laser device
WO2022185458A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2022085122A1 (en) Uv light irradiation system and uv light irradiation method
WO2024084561A1 (en) Optical transmission system design method and design device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959886

Country of ref document: EP

Kind code of ref document: A1