JP2020036589A - Method and apparatus for suppressing growth of microorganisms using visible light LED - Google Patents

Method and apparatus for suppressing growth of microorganisms using visible light LED Download PDF

Info

Publication number
JP2020036589A
JP2020036589A JP2019157391A JP2019157391A JP2020036589A JP 2020036589 A JP2020036589 A JP 2020036589A JP 2019157391 A JP2019157391 A JP 2019157391A JP 2019157391 A JP2019157391 A JP 2019157391A JP 2020036589 A JP2020036589 A JP 2020036589A
Authority
JP
Japan
Prior art keywords
group
irradiation
visible light
linear
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019157391A
Other languages
Japanese (ja)
Other versions
JP7425456B2 (en
Inventor
昭博 白井
Akihiro Shirai
昭博 白井
優子 安友
Yuko Yasutomo
優子 安友
由佳 菅野
Yuka Kanno
由佳 菅野
岡田 宏
Hiroshi Okada
宏 岡田
知裕 板東
Tomohiro Bando
知裕 板東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokushima NUC
Sun Electronic Industries Corp
Original Assignee
University of Tokushima NUC
Sun Electronic Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokushima NUC, Sun Electronic Industries Corp filed Critical University of Tokushima NUC
Publication of JP2020036589A publication Critical patent/JP2020036589A/en
Application granted granted Critical
Publication of JP7425456B2 publication Critical patent/JP7425456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

To provide a method and apparatus in which the growth of microorganisms can effectively be suppressed.SOLUTION: Provided is a method for suppressing growth of microorganisms in a subject, comprising a step for performing visible light ray irradiation to the subject using a visible light LED as a light source, and in which, characterized, the irradiation is performed such that the peak wavelength of visible light LED is in the range of 405 to 421 nm, the illumination intensity is 4 mW/cmor more, and the irradiation energy is 7.5 J/cmor more, and an apparatus using said method is also provided.SELECTED DRAWING: None

Description

本発明は、可視光LEDを用いた微生物の増殖抑制方法及び増殖抑制装置に関する。   The present invention relates to a method and an apparatus for suppressing the growth of microorganisms using visible light LEDs.

保存技術や流通網が発達するにつれて、様々な食材が消費者に広く届くようになってきている。しかし、水産物や青果、これらの加工食品をはじめとする食品に存在する微生物は時間と共に増殖し、これは食品の品質低下、ひいては腐敗につながる。このため、微生物の増殖を抑制することは重要である。   As preservation techniques and distribution networks have developed, various foodstuffs have become widely available to consumers. However, microorganisms present in foods such as marine products, fruits and vegetables, and processed foods thereof grow over time, which leads to deterioration of food quality and, consequently, putrefaction. Therefore, it is important to suppress the growth of microorganisms.

微生物の増殖を抑制する方法として、従来、加熱処理、加圧処理、紫外線照射、オゾン水や亜塩素酸ナトリウム溶液等による洗浄といった様々な手段が知られている。例えば、亜塩素酸ナトリウム溶液は生食用野菜の洗浄に使用できることが従来知られており、今日においてもなお、次亜塩素酸ナトリウム溶液を用いたより使い勝手のよい新たな方法(ウルトラファインバブルを含有した弱アルカリ性の安定型次亜塩素酸ナトリウム溶液を用いた方法、特許文献1)が報告されている。   As a method for suppressing the growth of microorganisms, conventionally, various means such as heat treatment, pressure treatment, ultraviolet irradiation, and washing with ozone water or a sodium chlorite solution are known. For example, it is conventionally known that sodium chlorite solution can be used for washing raw vegetables, and even today, a new method (e.g., containing ultrafine bubbles containing ultrafine bubbles) using a sodium hypochlorite solution is more convenient. A method using a weakly alkaline stable sodium hypochlorite solution, Patent Document 1) has been reported.

特開2018−102174号公報JP 2018-102174 A

本発明は、微生物の増殖を効果的に抑制できる方法及び装置を提供することを目的とする。   An object of the present invention is to provide a method and an apparatus that can effectively suppress the growth of microorganisms.

本発明者は、前記課題に鑑み鋭意検討を行ったところ、可視光LED(発光ダイオード)のピーク波長が405〜421nmの範囲にあり、照度4mW/cm以上で、照射エネルギーが7.5J/cm以上となるように、対象物に可視光LEDを光源とする可視光線照射を行うことにより、微生物の増殖を効果的に抑制できることを見出した。本発明は該知見に基づき更に検討を重ねた結果完成されたものであり、次に掲げるものである。項1.対象物に可視光LEDを光源とする可視光線照射を行う工程を含む、対象物における微生物の増殖抑制方法、ここで、該照射が、可視光LEDのピーク波長が405〜421nmの範囲にあり、照度が4mW/cm以上であり、照射エネルギーが7.5J/cm以上となるように行われることを特徴とする、方法。
項2.照度が4〜500mW/cmである、項1に記載の方法。
項3.照射エネルギーが7.5〜500J/cmである、項1または2に記載の方法。項4.照射時間が1〜60分である、項1〜3のいずれかに記載の方法。
項5.対象物が、水産物、農作物、畜産物及びこれらの加工物からなる群より選択される少なくとも1種である、項1〜4のいずれかに記載の方法。
項6.更に、対象物にピーク波長が265nm以上405nm未満の範囲にある紫外線または可視光線を照射する工程を含む、項1〜5のいずれかに記載の方法。
項7.更に、対象物に、次の一般式(1)で表される化合物を接触させる工程を含む、項1〜6のいずれかに記載の方法:
(式中、Rは、炭素数1〜4の直鎖状または分岐鎖状アルキル基を示し、Rは、水素原子、ハロゲン原子、炭素数1〜4の直鎖状もしくは分岐鎖状アルコキシ基または炭素数1〜4の直鎖状もしくは分岐鎖状アルキル基を示し、Rは、直接結合、炭素数1〜12の直鎖状アルキレン基、炭素数2〜12の直鎖状アルケニレン基または炭素数2〜12の直鎖状アルキニレン基を示し、Rは、水素原子、水酸基または炭素数1〜18の直鎖状アルコキシ基を示す。
ここで、Rで示される炭素数1〜12の直鎖状アルキレン基、炭素数2〜12の直鎖状アルケニレン基及び炭素数2〜12の直鎖状アルキニレン基ならびにRで示される炭素数1〜18の直鎖状アルコキシ基上には、それぞれ独立して、ハロゲン原子、水酸基、アミノ基、スルホ基、ニトロ基、シアノ基、ケト基、イソシアネート基、イソチオシアネート基、炭素数1〜18の直鎖状または分岐鎖状のアルキル基、フェニル基及びシクロヘキシル基からなる群より選択される少なくとも1種の基が置換していてもよい。)
項8.対象物における微生物の増殖を抑制するために使用される可視光線照射装置であって、可視光LEDを光源として対象物に可視光線照射を行う照射部を備え、前記照射部は、ピーク波長が405〜421nmの範囲にあり、照度が4mW/cm以上であり、照射エネルギーが7.5J/cm以上となるように可視光線を照射する、可視光線照射装置。
項9.対象物を支持する支持部を更に備え、前記照射部は、前記支持部に支持された対象物に対して可視光線を照射するように配置されている、項8に記載の可視光線照射装置。項10.前記支持部は、対象物を搬送するコンベヤであり、前記照射部は、前記コンベヤで搬送される対象物に対して可視光線を照射するように配置されている、項9に記載の可視光線照射装置。
項11.前記支持部は、対象物の少なくとも一部を収容する収容体であり、前記照射部は、前記収容体に収容される対象物に対して可視光線を照射するように配置されている、項9に記載の可視光線照射装置。
項12.前記照射部は、ピーク波長が265nm以上405nm未満の範囲にある紫外線または可視光線を対象物に照射する光源を更に有する、項8〜11のいずれかに記載の可視光線照射装置。
項13.対象物に、次の一般式(1)で表される化合物を接触させる接触部を更に備える、項8〜12のいずれかに記載の可視光線照射装置:
(式中、Rは、炭素数1〜4の直鎖状または分岐鎖状アルキル基を示し、Rは、水素原子、ハロゲン原子、炭素数1〜4の直鎖状もしくは分岐鎖状アルコキシ基または炭素数1〜4の直鎖状もしくは分岐鎖状アルキル基を示し、Rは、直接結合、炭素数1〜12の直鎖状アルキレン基、炭素数2〜12の直鎖状アルケニレン基または炭素数2〜12の直鎖状アルキニレン基を示し、Rは、水素原子、水酸基または炭素数1〜18の直鎖状アルコキシ基を示す。
ここで、Rで示される炭素数1〜12の直鎖状アルキレン基、炭素数2〜12の直鎖状アルケニレン基及び炭素数2〜12の直鎖状アルキニレン基ならびにRで示される炭素数1〜18の直鎖状アルコキシ基上には、それぞれ独立して、ハロゲン原子、水酸基、アミノ基、スルホ基、ニトロ基、シアノ基、ケト基、イソシアネート基、イソチオシアネート基、炭素数1〜18の直鎖状または分岐鎖状のアルキル基、フェニル基及びシクロヘキシル基からなる群より選択される少なくとも1種の基が置換していてもよい。)
The present inventor has conducted intensive studies in view of the above problems, and found that the peak wavelength of a visible light LED (light emitting diode) is in the range of 405 to 421 nm, the illuminance is 4 mW / cm 2 or more, and the irradiation energy is 7.5 J /. It has been found that the growth of microorganisms can be effectively suppressed by irradiating a target object with visible light using a visible light LED as a light source so as to have a cm 2 or more. The present invention has been completed as a result of further studies based on the findings, and is as follows. Item 1. Including a step of irradiating the target with visible light using a visible light LED as a light source, a method for suppressing the growth of microorganisms in the target, wherein the irradiation has a peak wavelength of the visible light LED in the range of 405 to 421 nm, A method characterized in that the irradiance is 4 mW / cm 2 or more and the irradiation energy is 7.5 J / cm 2 or more.
Item 2. Item 2. The method according to Item 1, wherein the illuminance is 4 to 500 mW / cm 2 .
Item 3. Item 3. The method according to Item 1 or 2, wherein the irradiation energy is 7.5 to 500 J / cm 2 . Item 4. Item 4. The method according to any one of Items 1 to 3, wherein the irradiation time is 1 to 60 minutes.
Item 5. Item 5. The method according to any one of Items 1 to 4, wherein the object is at least one selected from the group consisting of marine products, agricultural products, livestock products, and processed products thereof.
Item 6. Item 6. The method according to any one of Items 1 to 5, further comprising a step of irradiating the object with ultraviolet light or visible light having a peak wavelength in a range from 265 nm to less than 405 nm.
Item 7. Item 7. The method according to any one of Items 1 to 6, further comprising a step of contacting the object with a compound represented by the following general formula (1):
(Wherein, R 1 represents a linear or branched alkyl group having 1 to 4 carbon atoms, and R 2 represents a hydrogen atom, a halogen atom, or a linear or branched alkoxy group having 1 to 4 carbon atoms. R 3 represents a direct bond, a linear alkylene group having 1 to 12 carbon atoms, a linear alkenylene group having 2 to 12 carbon atoms, or a linear or branched alkyl group having 1 to 4 carbon atoms. Alternatively, it represents a linear alkynylene group having 2 to 12 carbon atoms, and R 4 represents a hydrogen atom, a hydroxyl group, or a linear alkoxy group having 1 to 18 carbon atoms.
Here, a linear alkylene group having 1 to 12 carbon atoms represented by R 3 , a linear alkenylene group having 2 to 12 carbon atoms and a linear alkynylene group having 2 to 12 carbon atoms, and a carbon atom represented by R 4 On the linear alkoxy groups of formulas 1 to 18, each independently represents a halogen atom, a hydroxyl group, an amino group, a sulfo group, a nitro group, a cyano group, a keto group, an isocyanate group, an isothiocyanate group, a carbon number of 1 to 18. At least one group selected from the group consisting of 18 linear or branched alkyl groups, phenyl groups and cyclohexyl groups may be substituted. )
Item 8. A visible light irradiation device used to suppress the growth of microorganisms in an object, comprising: an irradiation unit that irradiates the object with visible light using a visible light LED as a light source, wherein the irradiation unit has a peak wavelength of 405. A visible light irradiation device that irradiates visible light so as to have an illuminance of 4 mW / cm 2 or more and an irradiation energy of 7.5 J / cm 2 or more.
Item 9. Item 9. The visible light irradiation device according to Item 8, further comprising a support unit that supports the object, wherein the irradiation unit is arranged to irradiate the object supported by the support unit with visible light. Item 10. Item 10. The visible light irradiation according to item 9, wherein the support unit is a conveyor that conveys the object, and the irradiation unit is arranged to irradiate the object conveyed by the conveyor with visible light. apparatus.
Item 11. Item 9. The supporting unit is a container that stores at least a part of the target object, and the irradiation unit is arranged to irradiate the target object stored in the container with visible light. 6. The visible light irradiation device according to item 5.
Item 12. Item 12. The visible light irradiation device according to any one of Items 8 to 11, wherein the irradiation unit further includes a light source that irradiates an object with ultraviolet light or visible light having a peak wavelength in a range from 265 nm to less than 405 nm.
Item 13. Item 13. The visible light irradiation device according to any one of Items 8 to 12, further comprising a contact portion for bringing a compound represented by the following general formula (1) into contact with an object:
(Wherein, R 1 represents a linear or branched alkyl group having 1 to 4 carbon atoms, and R 2 represents a hydrogen atom, a halogen atom, or a linear or branched alkoxy group having 1 to 4 carbon atoms. R 3 represents a direct bond, a linear alkylene group having 1 to 12 carbon atoms, a linear alkenylene group having 2 to 12 carbon atoms, or a linear or branched alkyl group having 1 to 4 carbon atoms. Alternatively, it represents a linear alkynylene group having 2 to 12 carbon atoms, and R 4 represents a hydrogen atom, a hydroxyl group, or a linear alkoxy group having 1 to 18 carbon atoms.
Here, a linear alkylene group having 1 to 12 carbon atoms represented by R 3 , a linear alkenylene group having 2 to 12 carbon atoms and a linear alkynylene group having 2 to 12 carbon atoms, and a carbon atom represented by R 4 On the linear alkoxy groups of formulas 1 to 18, each independently represents a halogen atom, a hydroxyl group, an amino group, a sulfo group, a nitro group, a cyano group, a keto group, an isocyanate group, an isothiocyanate group, a carbon number of 1 to 18. At least one group selected from the group consisting of 18 linear or branched alkyl groups, phenyl groups and cyclohexyl groups may be substituted. )

本発明の方法及び装置によれば、微生物の増殖を効果的に抑制することができる。   According to the method and apparatus of the present invention, the growth of microorganisms can be effectively suppressed.

図1は本発明の一実施形態の可視光線照射装置の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a visible light irradiation device according to an embodiment of the present invention. 図2は本発明の他の実施形態の可視光線照射装置の概略構成を示す図である。FIG. 2 is a diagram showing a schematic configuration of a visible light irradiation device according to another embodiment of the present invention. 図3は本発明の他の実施形態の可視光線照射装置の概略構成を示す図である。FIG. 3 is a diagram showing a schematic configuration of a visible light irradiation device according to another embodiment of the present invention. 図4は本発明の他の実施形態の可視光線照射装置の概略構成を示す図である。FIG. 4 is a diagram showing a schematic configuration of a visible light irradiation device according to another embodiment of the present invention. 図5は本発明の他の実施形態の可視光線照射装置の概略構成を示す図である。FIG. 5 is a diagram showing a schematic configuration of a visible light irradiation device according to another embodiment of the present invention. 図6は本発明の他の実施形態の可視光線照射装置の概略構成を示す図である。FIG. 6 is a diagram showing a schematic configuration of a visible light irradiation device according to another embodiment of the present invention. 図7は本発明の他の実施形態の可視光線照射装置の概略構成を示す図である。FIG. 7 is a diagram showing a schematic configuration of a visible light irradiation device according to another embodiment of the present invention. 図8は本発明の他の実施形態の可視光線照射装置の概略構成を示す図である。FIG. 8 is a diagram showing a schematic configuration of a visible light irradiation device according to another embodiment of the present invention. 図9は本発明の他の実施形態の可視光線照射装置の概略構成を示す図である。FIG. 9 is a diagram showing a schematic configuration of a visible light irradiation device according to another embodiment of the present invention. 図10は本発明の他の実施形態の可視光線照射装置の概略構成を示す図である。FIG. 10 is a diagram showing a schematic configuration of a visible light irradiation device according to another embodiment of the present invention. 図11は本発明の他の実施形態の可視光線照射装置の概略構成を示す図である。FIG. 11 is a diagram showing a schematic configuration of a visible light irradiation device according to another embodiment of the present invention. 図12は釜揚げしらすをシャーレに広げた様子を上から撮影した写真である。FIG. 12 is a photograph taken from above of a state in which the pot-fried whitebait is spread on a petri dish. 図13はピーク波長405nmまたは465nmでのLED照射結果を示す図である。FIG. 13 is a diagram showing the results of LED irradiation at a peak wavelength of 405 nm or 465 nm. 図14はピーク波長405nm、412nm、421nmまたは455nmでのLED照射結果を示す図である。FIG. 14 shows the results of LED irradiation at peak wavelengths of 405 nm, 412 nm, 421 nm, and 455 nm. 図15は照度12.48mW/cm2または1.71mW/cm2でのLED照射結果を示す図である。FIG. 15 is a view showing the results of LED irradiation at an illuminance of 12.48 mW / cm 2 or 1.71 mW / cm 2 . 図16は照度12.48mW/cm2でのLED照射結果を示す図である。FIG. 16 is a view showing an LED irradiation result at an illuminance of 12.48 mW / cm 2 . 図17は照度12.48mW/cm2でのLED照射結果を示す図である。FIG. 17 is a diagram showing the results of LED irradiation at an illuminance of 12.48 mW / cm 2 . 図18は照度12.48mW/cm2でのLED照射結果を示す図である。FIG. 18 shows the results of LED irradiation at an illuminance of 12.48 mW / cm 2 . 図19は照度12.48mW/cm2でのLED照射結果を示す図である。FIG. 19 shows the results of LED irradiation at an illuminance of 12.48 mW / cm 2 . 図20はちりめんへのLED照射結果を示す図である。FIG. 20 is a diagram showing the results of LED irradiation on the crepe. 図21はミニトマトヘタ部へのLED照射の写真を示す図である。FIG. 21 is a view showing a photograph of LED irradiation on the mini tomato spatula. 図22はミニトマトヘタ部へのLED照射結果を示す図である。FIG. 22 is a diagram showing the results of LED irradiation on the mini tomato spatula. 図23はミニトマトヘタ部へのLED照射結果を示す図である。FIG. 23 is a diagram showing the results of LED irradiation on the mini tomato spatula. 図24は照度120.3mW/cm2でのLED照射の写真を示す図である。FIG. 24 is a view showing a photograph of LED irradiation at an illuminance of 120.3 mW / cm 2 . 図25は照度120.3mW/cm2でのLED照射結果を示す図である。FIG. 25 is a diagram showing the results of LED irradiation at an illuminance of 120.3 mW / cm 2 . 図26は照度120.3mW/cm2でのLED照射結果を示す図である。FIG. 26 is a diagram showing the results of LED irradiation at an illuminance of 120.3 mW / cm 2 . 図27は照度10mW/cm2でのLED照射結果を示す図である。FIG. 27 is a diagram showing the results of LED irradiation at an illuminance of 10 mW / cm 2 . 図28は照度208mW/cm2でのLED照射結果を示す図である。FIG. 28 is a diagram showing the results of LED irradiation at an illuminance of 208 mW / cm 2 . 図29は味覚試験結果を示す図である。FIG. 29 is a diagram showing a taste test result. 図30は味覚試験結果を示す図である。FIG. 30 is a diagram showing a taste test result. 図31は化合物とLED照射の併用結果を示す図である。FIG. 31 is a diagram showing the results of using the compound and LED irradiation together. 図32は化合物を用いLED照射を行わなかった結果を示す図である。FIG. 32 is a view showing the result of using a compound and not performing LED irradiation. 図33は化合物とLED照射の併用結果を示す図である。FIG. 33 is a view showing the results of the combined use of the compound and LED irradiation. 図34は化合物を用いLED照射を行わなかった結果を示す図である。FIG. 34 is a view showing a result of using a compound and not performing LED irradiation.

微生物の増殖抑制方法
本発明は、対象物に可視光LEDを光源とする可視光線照射を行う工程を含み、ここで、該照射が、可視光LEDのピーク波長が405〜421nmの範囲にあり、照度が4mW/cm以上であり、照射エネルギーが7.5J/cm以上となるように行われることを特徴とする、対象物における微生物の増殖抑制方法を提供する。
The present invention comprises a step of irradiating the object with visible light using a visible light LED as a light source, wherein the irradiation has a peak wavelength of the visible light LED in a range of 405 to 421 nm, Provided is a method for suppressing the growth of microorganisms in an object, which is performed so that the illuminance is 4 mW / cm 2 or more and the irradiation energy is 7.5 J / cm 2 or more.

本発明において対象物は、水産物、農作物、畜産物、これらの加工食品、養液栽培に用いられる養液等が例示される。対象物は可食性(可食部)、非可食性(非可食部)を問わず、微生物の増殖が問題となりやすい点から、対象物は可食性であることが好ましく例示される。また、可食性の対象物として、例えば、次の例示から選択される少なくとも1種が好ましく例示される。   In the present invention, examples of the target object include marine products, agricultural crops, livestock products, processed foods thereof, nutrient solutions used for hydroponics, and the like. Regardless of whether the target object is edible (edible portion) or non-edible (non-edible portion), the growth of microorganisms is likely to be a problem, and thus the target object is preferably edible. Further, as the edible object, for example, at least one selected from the following examples is preferably exemplified.

本発明を制限するものではないが、水産物及びその加工物としては、生しらす、釜揚げしらす、乾燥しらす(ちりめん)、わかめ、海苔、昆布、生食用魚介類(さしみ等)、一夜干し魚介類、加熱済み魚介類(ゆでがに、ゆでだこ等)、魚肉練り製品(かまぼこ、ちくわ等)等が例示される。農作物及びその加工物としては、トマト、ピーマン、人参、レタス、ミズナ、ホウレンソウ、キャベツ、ネギ、ジャガイモ、レンコン、ニンニク、香辛料、ブドウ、イチゴ、スダチ、ミカン、モモ、ナシ等、これらがカットされたもの、油揚げ等が例示される。畜産物及びその加工物としては、生肉(ミンチを含む、生食用、非生食用を含む)、家禽卵、乾燥肉製品(干し肉等)、つくね、ハンバーグ、ソーセージ等が例示される。   Although not limited to the present invention, marine products and processed products thereof include fresh shirasu, fried white shirasu, dried shirasu (crepe), seaweed, laver, kelp, seafood (sashimi, etc.), and dried seafood overnight , Heated seafood (boiled rice, boiled octopus, etc.), fish meat dough products (kamaboko, chikuwa, etc.) and the like. As crops and their processed products, tomatoes, peppers, carrots, lettuce, mizuna, spinach, cabbage, leeks, potatoes, lotus root, garlic, spices, grapes, strawberries, sudachi, tangerines, peaches, pears, etc. were cut. Stuff, fried food and the like are exemplified. Examples of livestock products and processed products thereof include raw meat (including minced foods, including raw and non-raw foods), poultry eggs, dried meat products (dried meats and the like), meatballs, hamburgers, sausages, and the like.

また、本発明を制限するものではないが、可食性の対象物として、15℃以下での保存が好ましい水産物、農作物、畜産物、これらの加工食品等が例示され、より好ましくは−30〜10℃での保存が好ましい水産物、農作物、畜産物、これらの加工食品等が例示される。   Further, the present invention is not limited thereto, and as the edible target, marine products, agricultural products, livestock products, processed foods thereof, and the like, which are preferably stored at 15 ° C. or lower, are exemplified, and more preferably −30 to 10 Examples include marine products, agricultural products, livestock products, processed foods thereof, and the like, which are preferably stored at ° C.

本発明において可視光LEDを光源とする可視光線照射は、可視光LEDのピーク波長が405〜421nmの範囲にある限り、公知の光源を用いて行えば良い。   In the present invention, visible light irradiation using a visible light LED as a light source may be performed using a known light source as long as the peak wavelength of the visible light LED is in the range of 405 to 421 nm.

ピーク波長が405〜421nmの範囲にある限り、そのスペクトルの半値全幅は制限されないが、半値全幅は、好ましくは波長380〜455nmの間にあるもの、より好ましくは波長395〜430nmの間にあるものが例示される。   As long as the peak wavelength is in the range of 405 to 421 nm, the full width at half maximum of the spectrum is not limited, but the full width at half maximum is preferably between 380 and 455 nm, more preferably between 395 and 430 nm. Is exemplified.

前記照射において、照度(放射照度)は4mW/cm以上であればよく、好ましくは4〜500mW/cm、より好ましくは10〜480mW/cm、更に好ましくは10〜280mW/cmが例示される。ここで照度は、対象物表面における照度を意味する。 In the irradiation, illuminance (irradiance) may if 4 mW / cm 2 or more, preferably 4~500mW / cm 2, more preferably 10~480mW / cm 2, more preferably 10~280mW / cm 2 is exemplified Is done. Here, the illuminance means the illuminance on the surface of the object.

前記照射において、照射時間は制限されないが、好ましくは1分以上、より好ましくは1〜60分、更に好ましくは1〜50分、特に好ましくは1〜40分、更に特に好ましくは1〜30分が例示される。   In the irradiation, the irradiation time is not limited, but is preferably 1 minute or more, more preferably 1 to 60 minutes, further preferably 1 to 50 minutes, particularly preferably 1 to 40 minutes, and still more preferably 1 to 30 minutes. Is exemplified.

前記照射において、照射エネルギーは7.5J/cm以上であればよく、好ましくは7.5〜500J/cm、より好ましくは15〜433J/cm、更に好ましくは22〜433J/cm、特に好ましくは45〜217J/cmが例示される。 In the irradiation, the irradiation energy may be 7.5 J / cm 2 or more, preferably 7.5 to 500 J / cm 2 , more preferably 15 to 433 J / cm 2 , and still more preferably 22 to 433 J / cm 2 . Particularly preferably, 45 to 217 J / cm 2 is exemplified.

ここで照射エネルギーは、対象物表面における照度(mW/cm)と照射時間(秒)との積から求める。後述する実施例2のように、照射が対象物の上下両側から行われる場合、本明細書において照射エネルギー7.5J/cm以上は、上側において算出した照射エネルギーと下側において算出した照射エネルギーの和である。 Here, the irradiation energy is obtained from the product of the illuminance (mW / cm 2 ) on the surface of the object and the irradiation time (second). When the irradiation is performed from both the upper and lower sides of the object as in Example 2 described later, the irradiation energy of 7.5 J / cm 2 or more in this specification is the irradiation energy calculated on the upper side and the irradiation energy calculated on the lower side. Is the sum of

本発明の方法では、このようにLEDを対象物の一方向のみから照射してもよく、二方向以上から照射してもよく、対象物の大きさ、厚み等の形状等に応じて適宜決定すればよい。より具体的には、例えば、LEDを対象物の上側から照射(設置)してもよく、下側から照射してもよく、上側下側の両方から照射してもよく、これらの側面(上側(下側)に対して垂直になる面側)から照射してもよい。また、これらの任意の組み合わせであってもよい。前述のように、対象物の上側下側の両側から照射が行われる場合、前記「照射エネルギー7.5J/cm以上」は、上側について算出した照射エネルギーと下側について算出した照射エネルギーの和を意味する。同様に、例えば、対象物の上下左右前後の全ての面からLED照射(設置)する場合、前記「照射エネルギー7.5J/cm以上」は、上側、下側、左側、右側、前側(手前側)、後側の各側について算出した照射エネルギーの和(6側面の和)を意味する。 In the method of the present invention, the LED may be irradiated from only one direction of the object as described above, may be irradiated from two or more directions, and is appropriately determined according to the size, thickness, etc. of the object. do it. More specifically, for example, the LED may be irradiated (installed) from the upper side of the object, may be irradiated from the lower side, may be irradiated from both the upper side and the lower side, and these side surfaces (the upper side) Irradiation may be performed from the side perpendicular to (lower side). Also, any combination of these may be used. As described above, when the irradiation is performed from both the upper and lower sides of the object, the “irradiation energy of 7.5 J / cm 2 or more” is the sum of the irradiation energy calculated for the upper side and the irradiation energy calculated for the lower side. Means Similarly, for example, when the LED is illuminated (installed) from all sides of the object, up, down, left, right, front and back, the “irradiation energy of 7.5 J / cm 2 or more” is defined as upper, lower, left, right, front (front) Side), and the sum of the irradiation energies calculated for each side on the rear side (sum of six side surfaces).

対象物への可視光線照射時の温度は制限されず、冷凍温度、冷蔵温度、また、しらす等の釜揚げ時の温度等のいずれの温度であってもよいが、例えば、対象物の品質劣化をなるべく回避したり、照射が容易である点から、好ましくは28℃以下、より好ましくは−30℃〜28℃の温度(周囲温度)で実施することが例示される。また、これらの範囲で好ましく実施できることから、該温度は0〜25℃や4〜10℃であってもよい。   The temperature at the time of irradiating the target with visible light is not limited, and may be any temperature such as a freezing temperature, a refrigeration temperature, and a temperature at the time of frying of a whitebait or the like. From the viewpoint of avoiding as much as possible and irradiating easily, it is exemplified that the process is preferably performed at a temperature of 28 ° C. or lower, more preferably at a temperature of -30 ° C. to 28 ° C. (ambient temperature). In addition, the temperature may be 0 to 25 ° C or 4 to 10 ° C, since the operation can be preferably performed in these ranges.

可視光線照射時の対象物の状態は制限されず、例えば冷凍、解凍、半解凍、冷蔵、加熱後等のいずれの状態であってもよく、また、これらの処理が何らなされていない状態であってもよい。水産物やその加工食品等の消費期限が比較的短い食品は、冷凍、解凍、半解凍、冷蔵、加熱等の処理を行われることも多いが、本方法においては、これらのいずれの処理が行われたものに対しても適用できる。   The state of the object at the time of irradiation with visible light is not limited, and may be, for example, any state such as frozen, thawed, semi-thawed, refrigerated, heated, or a state in which these processes have not been performed. You may. Foods with relatively short expiration dates, such as marine products and processed foods, are often subjected to processing such as freezing, thawing, semi-thawing, refrigeration, and heating.In the present method, any of these processings is performed. Can also be applied to

本発明によれば、前述のようにして対象物に可視光線を照射することにより、対象物において微生物の増殖を抑制することができる。また、本発明によれば、可視光線の照射後に、冷蔵や冷凍、また、冷凍に続き解凍を行った場合等においても、微生物の増殖を抑制できる。また、微生物の増殖が問題になりやすい対象物は、冷蔵や冷凍等の−30〜15℃での保存が推奨されることが多いが、本発明の方法は、このような微生物の増殖が問題になりやすい対象物に対しても好ましく適用することができる。   According to the present invention, by irradiating the object with visible light as described above, it is possible to suppress the growth of microorganisms in the object. Further, according to the present invention, the growth of microorganisms can be suppressed even when refrigeration, freezing, or thawing is performed after freezing after irradiation with visible light. In addition, it is often recommended to store at -30 to 15 ° C. such as refrigeration or freezing for an object in which the growth of microorganisms is liable to be a problem. The present invention can be preferably applied to an object that is likely to become unstable.

このように本発明において微生物は、対象物においてその増殖が問題となるものであれば制限されず、細菌、カビや酵母といった真菌等が例示される。   As described above, in the present invention, the microorganism is not limited as long as its growth in the object is a problem, and examples thereof include bacteria, fungi such as mold and yeast.

この観点から、本発明の方法は、更に、対象物を−30〜15℃で保持する工程を含むものが、好ましく例示されるといえる。該方法において、対象物を−30〜15℃で保持する工程は、前記可視光線照射を行う工程よりも前に実施されてもよく、前記可視光線照射を行う工程よりも後に実施されてもよく、前後の両方で実施されてもよい。   From this viewpoint, it can be said that the method of the present invention preferably further includes a step of holding the object at −30 to 15 ° C. In the method, the step of holding the object at −30 to 15 ° C. may be performed before the step of performing the visible light irradiation, or may be performed after the step of performing the visible light irradiation. , Both before and after.

また、本発明の方法においてLED照射は、対象物が何ら包装等されていない状態で行ってもよく、対象物の一部または全部が包装等されている状態で行ってもよい。包装等がされている対象物に照射する場合、より良い効率の点から、包装等は可視光透過性を有する包装であることが好ましい。また、対象物がトレー等の容器上にある場合であって、該容器の可視光透過性が乏しい場合、より良い効率の点から、該照射は、トレー等によって対象物へのLED照射が妨げられない方向から行うことが好ましい。   Further, in the method of the present invention, the LED irradiation may be performed in a state where the object is not wrapped at all, or may be performed in a state where a part or all of the object is wrapped or the like. When irradiating the packaged object, it is preferable from the viewpoint of better efficiency that the package or the like is a package having visible light transmittance. In addition, when the object is on a container such as a tray and the visible light transmittance of the container is poor, the irradiation is prevented by the tray or the like from irradiating the LED to the object from the viewpoint of better efficiency. It is preferable to perform from the direction which cannot be performed.

また、本発明の方法は、更に、対象物にピーク波長が265nm以上405nm未満の範囲にある紫外線または可視光線を照射する工程を含んでいてもよい。ピーク波長が265nm以上405nm未満の範囲にある紫外線または可視光線の照射手順等は制限されず、従来公知の手順等に従い実施すればよい。本発明の方法において、該工程は、前記可視光線照射(前記LED照射)を行う工程よりも前に実施されてもよく、前記可視光線照射を行う工程よりも後に実施されてもよく、前記可視光線照射を行う工程と同時に行われてもよく、また、前、後及び同時の少なくとも2つを組み合わせて実施されてもよい。この限りにおいて制限されないが、一実施形態として、例えば、該工程は、前記可視光線照射を行う工程よりも前に実施され、前記可視光線照射を行う工程後に、前述の対象物を−30〜15℃で保持する工程を実施してもよい。このように、本発明の方法において、該工程の実施と前述の対象物を−30〜15℃で保持する工程の実施の前後も問わない。   Further, the method of the present invention may further include a step of irradiating the object with ultraviolet light or visible light having a peak wavelength in a range from 265 nm to less than 405 nm. Irradiation procedures or the like of ultraviolet or visible light having a peak wavelength in the range of 265 nm to less than 405 nm are not limited, and may be performed according to conventionally known procedures and the like. In the method of the present invention, the step may be performed before the step of performing the visible light irradiation (the LED irradiation), or may be performed after the step of performing the visible light irradiation. It may be performed simultaneously with the step of performing light irradiation, or may be performed by combining at least two of before, after, and simultaneously. Although not limited thereto, as one embodiment, for example, the step is performed before the step of performing the visible light irradiation, and after the step of performing the visible light irradiation, the above-described target is -30 to 15 A step of maintaining the temperature at ° C may be performed. As described above, in the method of the present invention, it does not matter before or after the execution of the step and the step of holding the object at −30 to 15 ° C.

また、本発明の方法は、更に、対象物に、次の一般式(1)で表される化合物を接触させる工程を含んでいてもよい。   Further, the method of the present invention may further include a step of contacting the object with a compound represented by the following general formula (1).

(式中、Rは、炭素数1〜4の直鎖状または分岐鎖状アルキル基を示し、Rは、水素原子、ハロゲン原子、炭素数1〜4の直鎖状もしくは分岐鎖状アルコキシ基または炭素数1〜4の直鎖状もしくは分岐鎖状アルキル基を示し、Rは、直接結合、炭素数1〜12の直鎖状アルキレン基、炭素数2〜12の直鎖状アルケニレン基または炭素数2〜12の直鎖状アルキニレン基を示し、Rは、水素原子、水酸基または炭素数1〜18の直鎖状アルコキシ基を示す。
ここで、Rで示される炭素数1〜12の直鎖状アルキレン基、炭素数2〜12の直鎖状アルケニレン基及び炭素数2〜12の直鎖状アルキニレン基ならびにRで示される炭素数1〜18の直鎖状アルコキシ基上には、それぞれ独立して、ハロゲン原子、水酸基、アミノ基、スルホ基、ニトロ基、シアノ基、ケト基、イソシアネート基、イソチオシアネート基、炭素数1〜18の直鎖状または分岐鎖状のアルキル基、フェニル基及びシクロヘキシル基からなる群より選択される少なくとも1種の基が置換していてもよい。)
(Wherein, R 1 represents a linear or branched alkyl group having 1 to 4 carbon atoms, and R 2 represents a hydrogen atom, a halogen atom, or a linear or branched alkoxy group having 1 to 4 carbon atoms. R 3 represents a direct bond, a linear alkylene group having 1 to 12 carbon atoms, a linear alkenylene group having 2 to 12 carbon atoms, or a linear or branched alkyl group having 1 to 4 carbon atoms. Alternatively, it represents a linear alkynylene group having 2 to 12 carbon atoms, and R 4 represents a hydrogen atom, a hydroxyl group, or a linear alkoxy group having 1 to 18 carbon atoms.
Here, a linear alkylene group having 1 to 12 carbon atoms represented by R 3 , a linear alkenylene group having 2 to 12 carbon atoms and a linear alkynylene group having 2 to 12 carbon atoms, and a carbon atom represented by R 4 On the linear alkoxy groups of formulas 1 to 18, each independently represents a halogen atom, a hydroxyl group, an amino group, a sulfo group, a nitro group, a cyano group, a keto group, an isocyanate group, an isothiocyanate group, a carbon number of 1 to 18. At least one group selected from the group consisting of 18 linear or branched alkyl groups, phenyl groups and cyclohexyl groups may be substituted. )

このように、Rは、炭素数1〜4の直鎖状または分岐鎖状アルキル基である限り制限されない。本発明を制限するものではないが、Rで示される炭素数1〜4の直鎖状または分岐鎖状アルキル基として、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基、tert−ブチル基が挙げられる。
として、本発明を制限するものではないが、好ましくは炭素数1〜3の直鎖状または分岐鎖状アルキル基、より好ましくは炭素数1または2の直鎖状または分岐鎖状アルキル基、更に好ましくはメチル基が例示される。
As described above, R 1 is not limited as long as it is a linear or branched alkyl group having 1 to 4 carbon atoms. Although not limiting the present invention, examples of the linear or branched alkyl group having 1 to 4 carbon atoms represented by R 1 include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, and a sec. -Butyl group, isobutyl group and tert-butyl group.
Although not limiting the present invention, R 1 is preferably a straight-chain or branched-chain alkyl group having 1 to 3 carbon atoms, more preferably a straight-chain or branched-chain alkyl group having 1 or 2 carbon atoms. And more preferably a methyl group.

は、水素原子、ハロゲン原子、炭素数1〜4の直鎖状もしくは分岐鎖状アルコキシ基または炭素数1〜4の直鎖状もしくは分岐鎖状アルキル基である限り制限されない。 R 2 represents a hydrogen atom, a halogen atom, but are not limited as long as it is a linear or branched alkyl group having 1 to 4 carbon straight or branched alkoxy group or a C 1 to 4 carbon atoms.

で示されるハロゲン原子として、本発明を制限するものではないが、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が例示される。 Examples of the halogen atom represented by R 2 include, but are not limited to, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

で示される炭素数1〜4の直鎖状または分岐鎖状アルコキシ基として、本発明を制限するものではないが、メチルオキシ基(メトキシ基)、エチルオキシ基(エトキシ基)、プロピルオキシ基、イソプロピルオキシ基、n−ブチルオキシ基、sec−ブチルオキシ基、イソブチルオキシ基、tert−ブチルオキシ基が挙げられる。 The linear or branched alkoxy group having 1 to 4 carbon atoms represented by R 2 is not limited to the present invention, but may be a methyloxy group (methoxy group), an ethyloxy group (ethoxy group), or a propyloxy group. Isopropyloxy group, n-butyloxy group, sec-butyloxy group, isobutyloxy group and tert-butyloxy group.

で示される炭素数1〜4の直鎖状または分岐鎖状アルキル基として、本発明を制限するものではないが、前述のRで示される炭素数1〜4の直鎖状または分岐鎖状アルキル基と同様に説明される。 The linear or branched alkyl group having 1 to 4 carbon atoms represented by R 2 is not limited to the present invention, but may be a linear or branched alkyl group having 1 to 4 carbon atoms represented by R 1 described above. It is explained similarly to the chain alkyl group.

として、本発明を制限するものではないが、好ましくは水素原子、炭素数1〜4の直鎖状または分岐鎖状アルコキシ基、より好ましくは水素原子、炭素数1〜3の直鎖状または分岐鎖状アルコキシ基、更に好ましくは水素原子、炭素数1または2の直鎖状または分岐鎖状アルコキシ基、特に好ましくは水素原子、メトキシ基が例示される。 R 2 is not limited to the present invention, but is preferably a hydrogen atom, a linear or branched alkoxy group having 1 to 4 carbon atoms, and more preferably a hydrogen atom and a linear alkoxy group having 1 to 3 carbon atoms. Or a branched alkoxy group, more preferably a hydrogen atom, a linear or branched C1 or C2 alkoxy group, particularly preferably a hydrogen atom or a methoxy group.

は、直接結合、炭素数1〜12の直鎖状アルキレン基、炭素数2〜12の直鎖状アルケニレン基または炭素数2〜12の直鎖状アルキニレン基である限り制限されない。 R 3 is not limited as long as it is a direct bond, a linear alkylene group having 1 to 12 carbon atoms, a linear alkenylene group having 2 to 12 carbon atoms, or a linear alkynylene group having 2 to 12 carbon atoms.

で示される炭素数1〜12の直鎖状アルキレン基として、本発明を制限するものではないが、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基が挙げられる。 Examples of the linear alkylene group having 1 to 12 carbon atoms represented by R 3 include, but are not limited to, a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, Examples include an octylene group, a nonylene group, a decylene group, an undecylene group, and a dodecylene group.

で示される炭素数2〜12の直鎖状アルケニレン基として、本発明を制限するものではないが、ビニレン基、プロペニレン基、ブテニレン基、ペンテニレン基等が例示される。炭素数3〜12の直鎖状アルケニレン基において、二重結合の位置や数は制限されない。 Examples of the linear alkenylene group having 2 to 12 carbon atoms represented by R 3 include, but are not limited to, a vinylene group, a propenylene group, a butenylene group, a pentenylene group, and the like. In the linear alkenylene group having 3 to 12 carbon atoms, the position and the number of double bonds are not limited.

で示される炭素数2〜12の直鎖状アルキニレン基として、本発明を制限するものではないが、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基等が挙げられる。炭素数3〜12の直鎖状アルキニレン基において、三重結合の位置や数は制限されない。 Examples of the straight-chain alkynylene group having 2 to 12 carbon atoms represented by R 3 include, but are not limited to, an ethynylene group, a propynylene group, a butynylene group, and a pentynylene group. In the linear alkynylene group having 3 to 12 carbon atoms, the position and the number of triple bonds are not limited.

として、本発明を制限するものではないが、好ましくは直接結合、炭素数1〜12の直鎖状アルキレン基、炭素数2〜12の直鎖状アルケニレン基、炭素数2〜12の直鎖状アルキニレン基、より好ましくは直接結合、炭素数1〜6の直鎖状アルキレン基、炭素数2〜6の直鎖状アルケニレン基、炭素数2〜6の直鎖状アルキニレン基、更に好ましくは直接結合、炭素数2〜4の直鎖状アルケニレン基、炭素数2〜4の直鎖状アルキニレン基が例示される。 R 3 is not limited to the present invention, but is preferably a direct bond, a linear alkylene group having 1 to 12 carbon atoms, a linear alkenylene group having 2 to 12 carbon atoms, or a straight chain having 2 to 12 carbon atoms. Linear alkynylene group, more preferably a direct bond, a linear alkylene group having 1 to 6 carbon atoms, a linear alkenylene group having 2 to 6 carbon atoms, a linear alkynylene group having 2 to 6 carbon atoms, still more preferably Examples thereof include a direct bond, a linear alkenylene group having 2 to 4 carbon atoms, and a linear alkynylene group having 2 to 4 carbon atoms.

は、水素原子、水酸基または炭素数1〜18の直鎖状アルコキシ基である限り制限されない。 R 4 is not limited as long as it is a hydrogen atom, a hydroxyl group, or a linear alkoxy group having 1 to 18 carbon atoms.

で示される炭素数1〜18の直鎖状アルコキシ基として、本発明を制限するものではないが、メチルオキシ基(メトキシ基)、エチルオキシ基(エトキシ基)、プロピルオキシ基、ブチルオキシ基、ペンチルオキシ基、へキシルオキシ基等が例示される。 Examples of the linear alkoxy group having 1 to 18 carbon atoms represented by R 4 include, but are not limited to, a methyloxy group (methoxy group), an ethyloxy group (ethoxy group), a propyloxy group, a butyloxy group, Examples include a pentyloxy group and a hexyloxy group.

として、本発明を制限するものではないが、好ましくは水素原子、水酸基、炭素数1〜18の直鎖状アルコキシ基、より好ましくは水素原子、水酸基、炭素数1〜12の直鎖状アルコキシ基、更に好ましくは水素原子、水酸基、炭素数1〜4の直鎖状アルコキシ基が例示される。 R 4 is not limited to the present invention, but is preferably a hydrogen atom, a hydroxyl group, a linear alkoxy group having 1 to 18 carbon atoms, more preferably a hydrogen atom, a hydroxyl group, and a linear alkoxy group having 1 to 12 carbon atoms. An alkoxy group, more preferably, a hydrogen atom, a hydroxyl group, a linear alkoxy group having 1 to 4 carbon atoms is exemplified.

また、Rで示される炭素数1〜12の直鎖状アルキレン基、炭素数2〜12の直鎖状アルケニレン基及び炭素数2〜12の直鎖状アルキニレン基ならびにRで示される炭素数1〜18の直鎖状アルコキシ基上には、それぞれ独立して、ハロゲン原子、水酸基、アミノ基、スルホ基、ニトロ基、シアノ基、ケト基、イソシアネート基、イソチオシアネート基、炭素数1〜18の直鎖状または分岐鎖状のアルキル基、フェニル基及びシクロヘキシル基からなる群より選択される少なくとも1種の基が置換していてもよい。 Further, a straight-chain alkylene group having 1 to 12 carbon atoms represented by R 3, the number of carbon atoms represented by linear alkynylene group and R 4 having 2 to 12 carbon linear alkenylene group and the carbon 2 to 12 carbon atoms A halogen atom, a hydroxyl group, an amino group, a sulfo group, a nitro group, a cyano group, a keto group, an isocyanate group, an isothiocyanate group, a carbon number of 1 to 18 At least one group selected from the group consisting of a linear or branched alkyl group, a phenyl group and a cyclohexyl group may be substituted.

ここで、ハロゲン原子は前述と同様に説明される。炭素数1〜18の直鎖状または分岐鎖状のアルキル基としては、本発明を制限するものではないが、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基、tert−ブチル基、n−オクチル基、n−オクタデシル基、2−エチルヘキサデシル基、2−ブチルテトラデシル基、2,3,4,5,6,7−ヘキサメチルドデシル基等が例示される。   Here, the halogen atom is described in the same manner as described above. Examples of the linear or branched alkyl group having 1 to 18 carbon atoms include, but are not limited to, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, and a sec-butyl group. , Isobutyl group, tert-butyl group, n-octyl group, n-octadecyl group, 2-ethylhexadecyl group, 2-butyltetradecyl group, 2,3,4,5,6,7-hexamethyldodecyl group and the like Is exemplified.

前記一般式(1)で表される化合物のベンゼン環上に示されるHO−、RO−、R−の位置も制限されず、これらはベンゼン環上の2〜6位にそれぞれ異なって存在(置換)していればよい。該化合物として、本発明を制限するものではない、好ましくはベンゼン環上の4位にHO−が置換する化合物が例示され、より好ましくは4位にHO−が置換し且つ3位及び5位にRO−、R−がそれぞれ異なって置換する化合物が例示される。 The positions of HO—, R 1 O—, and R 2 — on the benzene ring of the compound represented by the general formula (1) are not limited. It only has to be present (substituted). Examples of the compound include, but are not limited to, the present invention, preferably a compound in which HO- is substituted at the 4-position on the benzene ring, and more preferably HO- is substituted at the 4-position and 3 and 5 are substituted. Compounds in which R 1 O— and R 2 — are each differently substituted are exemplified.

本発明を制限するものではないが、一例として、前記一般式(1)において、4位にHO−が置換し、3位にRO−が置換し、5位にR−が置換し、Rがメチル基、Rが水素原子、Rが炭素数2の直鎖状アルケニレン基(ビニレン基)、Rが水酸基で示す化合物はフェルラ酸といえる。また、本発明を制限するものではないが、一例として、前記一般式(1)において、4位にHO−が置換し、3位にRO−が置換し、5位にR−が置換し、Rがメチル基、Rが水素原子、Rが直接結合、Rが水素原子で示す化合物はバニリンといえる。 Although not limiting to the present invention, by way of example, in the general formula (1), the 4-position HO- is substituted, R 1 O-it is substituted at the 3-position, R 2 in the 5-position - is substituted , R 1 is a methyl group, R 2 is a hydrogen atom, R 3 is a linear alkenylene group (vinylene group) having 2 carbon atoms, and a compound in which R 4 is a hydroxyl group can be said to be ferulic acid. Further, the present invention is not limited thereto. For example, in the general formula (1), HO- is substituted at the 4-position, R 1 O- is substituted at the 3-position, and R 2 -is substituted at the 5-position. A compound in which R 1 is a methyl group, R 2 is a hydrogen atom, R 3 is a direct bond, and R 4 is a hydrogen atom can be said to be vanillin.

前記化合物は市販品を用いてもよく、公知の手順により化学合成して得てもよい。また、前記化合物において、幾何異性体、光学異性体といった立体異性体はいずれであってもよい。また、前記化合物は1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。   The compound may be a commercially available product, or may be obtained by chemical synthesis according to a known procedure. Further, in the compound, any of stereoisomers such as geometric isomers and optical isomers may be used. Further, the compounds may be used alone or in combination of two or more.

該工程は、対象物と一般式(1)で表される化合物とを接触させることができる限り制限されない。例えば、これらの接触は、一般式(1)で表される化合物を必要に応じて溶媒と混合し、得られた混合物を対象物の一部または全部にスプレー(噴霧)、滴下、含浸等して行ってもよく、また、得られた混合物に対象物の一部または全部を浸漬等して行ってもよく、スプレーや浸漬等の回数、その方法等は制限されず、適宜決定すればよい。溶媒としては、水、グリセロール、エタノール、ジメチルスルホキシド(Dimethyl sulfoxide(DMSO))等の任意の溶媒、また、該溶媒の任意の混合物であってもよく、本発明の効果が得られる限り制限されない。   The step is not limited as long as the target can be brought into contact with the compound represented by the general formula (1). For example, these contacts are performed by mixing the compound represented by the general formula (1) with a solvent as necessary, and spraying, dripping, impregnating, or the like the obtained mixture on a part or the whole of an object. May be performed by immersing part or all of the object in the obtained mixture, and the number of spraying or immersion, the method, etc. are not limited and may be determined as appropriate. . The solvent may be any solvent such as water, glycerol, ethanol, dimethyl sulfoxide (DMSO), or any mixture of the solvents, and is not limited as long as the effects of the present invention can be obtained.

また、本発明を制限するものではないが、これらにおいて、例えば、養液栽培に用いられる養液等(養水分、液状肥料、培養液等)に前記化合物を混合して、得られた混合物を対象物と接触させてもよい。該対象物は制限されず、本発明を制限するものではないが、養液栽培を行いながら前記化合物と簡便に接触させることができるという観点からは、前記化合物を混合した養液と接触させる対象物として、農作物の根等が好ましく例示される。また、このように養液等に前記化合物を混合した場合、該養液等に前記化合物が接触しているともいえることから、該養液等自体を対象物としてもよい。   Further, the present invention is not limited thereto. In these, for example, the compound is mixed with a nutrient solution used for nutrient solution cultivation (nutrition water, liquid fertilizer, culture solution, etc.), and the obtained mixture is mixed. It may be brought into contact with an object. The object is not limited and does not limit the present invention, but from the viewpoint that it can be easily contacted with the compound while performing nutrient solution cultivation, an object to be brought into contact with the nutrient solution mixed with the compound. Preferred examples of the product include roots of agricultural crops. When the compound is mixed with a nutrient solution or the like, it can be said that the compound is in contact with the nutrient solution or the like. Therefore, the nutrient solution or the like may be used as an object.

対象物と接触させる一般式(1)で表される化合物の量、接触時間等も制限されず、使用する化合物の種類、対象物等に応じて適宜決定すればよい。本発明を制限するものではないが、一例として、モル濃度0.1〜50mMの前記化合物を対象物に接触させることが挙げられ、より好ましくは0.5〜25mM、更に好ましくは1〜15mMの該化合物を対象物に接触させることが挙げられる。   The amount of the compound represented by the general formula (1) to be brought into contact with the object, the contact time, and the like are not limited, and may be appropriately determined depending on the type of the compound to be used, the object, and the like. Although the present invention is not limited thereto, examples include contacting the compound with a molar concentration of 0.1 to 50 mM with an object, more preferably 0.5 to 25 mM, and still more preferably 1 to 15 mM. Contacting the compound with an object.

該接触工程は、例えば、前記LED照射を行う工程よりも前に実施されてもよく、前記LED照射を行う工程と同時に行われてもよく、その順序は問わず、また、前、同時及び後の少なくとも2つを組み合わせて実施されてもよい。この限りにおいて制限されないが、好ましくは前記LED照射時に該化合物が対象物に接触していること例示され、この観点から、好ましい一実施形態として、例えば、該接触工程は、前記LED照射を行う工程よりも前及び/または前記LED照射を行う工程と同時に実施される。   The contacting step may be performed, for example, before the step of irradiating the LED, or may be performed simultaneously with the step of irradiating the LED, regardless of the order, and before, simultaneously and after. May be implemented in combination. It is not limited as long as the compound is in contact with the object at the time of the LED irradiation. From this viewpoint, as a preferred embodiment, for example, the contacting step is a step of performing the LED irradiation. Before and / or simultaneously with the step of performing the LED irradiation.

また、接触時の対象物の状態は前述と同様に制限されず、例えば冷凍、解凍、半解凍、冷蔵、加熱後等のいずれの状態であってもよく、また、これらの処理が何らなされていない状態であってもよい。このことから、本発明の方法において、例えば、該接触工程の実施と前述の対象物を−30〜15℃で保持する工程の実施の前後も問わない。また、該接触は、例えば、農作物等の対象物が収穫される前に行ってもよく、収穫された後に行ってもよく、これらは制限されない。   The state of the object at the time of contact is not limited as described above, and may be, for example, any state such as frozen, thawed, semi-thawed, refrigerated, and heated, and these treatments are not performed at all. There may be no state. For this reason, in the method of the present invention, for example, before and after the execution of the contacting step and the step of holding the aforementioned object at −30 to 15 ° C. The contact may be performed before or after the target object such as a crop is harvested, for example, and is not limited.

また、本発明の方法は、該接触工程よりも後に、対象物から前記一般式(1)で表される化合物を取り除くために、前記対象物を洗浄する工程を更に備えていてもよい。該洗浄工程は、対象物を洗浄できる限り制限されず、飲用適の水、殺菌した海水、飲用適の水を使用した人工海水、また、これらと同等の品質を備える液体等により行うことが好ましく例示できる。   The method of the present invention may further include a step of washing the object after the contacting step in order to remove the compound represented by the general formula (1) from the object. The washing step is not limited as long as the object can be washed, and is preferably performed with potable water, sterilized seawater, artificial seawater using potable water, or a liquid having the same quality as these. Can be illustrated.

また、本発明の方法は、該接触工程と、前述のピーク波長が265nm以上405nm未満の範囲にある紫外線または可視光線を照射する工程(紫外線/可視光線照射工程)とを含んでいてもよい。この場合も、該接触工程は、前記紫外線/可視光線照射工程よりも前に実施されてもよく、前記紫外線/可視光線照射工程よりも後に実施されてもよく、前記紫外線/可視光線照射工程と同時に行われてもよく、また、前、後及び同時の少なくとも2つを組み合わせて実施されてもよい。   Further, the method of the present invention may include the contacting step and a step of irradiating ultraviolet light or visible light having the above-mentioned peak wavelength in the range of 265 nm to less than 405 nm (ultraviolet / visible light irradiation step). Also in this case, the contacting step may be performed before the ultraviolet / visible light irradiation step, or may be performed after the ultraviolet / visible light irradiation step. It may be performed at the same time, or may be performed by combining at least two of before, after, and simultaneously.

このことから、該接触工程、前記LED照射を行う工程、前記紫外線/可視光線照射工程の3工程を併用する場合もこれらの順序は制限されず、適宜決定すればよい。本発明を制限するものではないが、一実施形態として、前記紫外線/可視光線照射工程、該接触工程、前記LED照射を行う工程の順で行ってもよく、別の実施形態として、該接触工程、前記LED照射を行う工程、前記紫外線/可視光線照射工程の順で行ってもよく、また、例えば、これらにおいて該接触工程と前記LED照射を行う工程とを同時に行ってもよい。   For this reason, when the three steps of the contacting step, the step of irradiating the LED, and the step of irradiating the ultraviolet / visible light ray are used in combination, the order of these steps is not limited and may be determined as appropriate. Although the present invention is not limited thereto, as one embodiment, the ultraviolet / visible light irradiation step, the contact step, and the LED irradiation step may be performed in this order. As another embodiment, the contact step may be performed. The step of irradiating the LED and the step of irradiating ultraviolet / visible light may be performed in this order. For example, in these, the contacting step and the step of irradiating the LED may be performed simultaneously.

本発明の方法によれば、対象物における微生物の増殖を効果的に抑制することができる。また、本発明の方法によれば、前記紫外線/可視光線照射工程及び/または前記接触工程を併用することによっても、対象物における微生物の増殖を効果的に抑制できる。特に、後述の実施例に示す通り、本発明の方法によれば、前記接触工程を併用することにより、細菌や真菌といった微生物のなかでも、特に酵母やカビといった真菌の増殖を効果的に抑制することができる。   According to the method of the present invention, it is possible to effectively suppress the growth of microorganisms in an object. Further, according to the method of the present invention, the use of the ultraviolet / visible light irradiation step and / or the contact step can also effectively suppress the growth of microorganisms in the object. In particular, as shown in Examples described later, according to the method of the present invention, by using the contacting step together, among microorganisms such as bacteria and fungi, the growth of fungi such as yeasts and molds can be effectively suppressed. be able to.

可視光線照射装置
本発明は、対象物における微生物の増殖を抑制するために使用される可視光線照射装置を提供する。本発明の可視光線照射装置は、可視光LEDを光源として対象物に可視光線照射を行う照射部を備え、前記照射部は、ピーク波長が405〜421nmの範囲にあり、照度が4mW/cm以上であり、照射エネルギーが7.5J/cm以上の可視光線を照射することを特徴としている。これらの照射等は前述と同様にして説明される。
Visible light irradiating device The present invention provides a visible light irradiating device used for suppressing the growth of microorganisms in an object. The visible light irradiating apparatus of the present invention includes an irradiating unit that irradiates a visible light to a target using a visible light LED as a light source, and the irradiating unit has a peak wavelength in a range of 405 to 421 nm and an illuminance of 4 mW / cm 2. As described above, irradiation is performed with visible light having an irradiation energy of 7.5 J / cm 2 or more. The irradiation and the like are described in the same manner as described above.

可視光線照射装置は、例えば対象物を支持する支持部を備えていて、照射部が支持部に支持された対象物に対して可視光線を照射するように配置されている、照射部及び支持部が予め一体化された装置として構成することができる。当該装置としては、例えば、支持部として対象物を搬送するコンベヤに照射部が一体化された装置、支持部として対象物の少なくとも一部を収容する収容体に照射部が一体化された装置等を例示することができる。収容体としては、例えば、冷蔵庫、冷凍庫、コンテナ、収納庫、物置、倉庫、容器、水槽、釜等を例示することができる。   The visible light irradiation device includes, for example, a support unit that supports the object, and the irradiation unit is arranged so as to emit visible light to the object supported by the support unit. Can be configured as a device integrated in advance. As the device, for example, a device in which an irradiation unit is integrated with a conveyor that conveys an object as a support unit, a device in which an irradiation unit is integrated with a container that accommodates at least a part of the object as a support unit, and the like Can be exemplified. Examples of the container include a refrigerator, a freezer, a container, a storage, a storage, a warehouse, a container, a water tank, a pot, and the like.

コンベヤに照射部が一体化された装置としては、例えば図1及び図2に示すように、コンベヤ3により搬送される対象物2に対して上側から可視光線Lが照射されるように照射部1を設置する。対象物2に対して上側とは、図1に示すように真上であってもよいし、図2に示すように斜め上であってもよい。図1では、コンベヤ3を覆うように照射部1を設置することで、コンベヤ3により搬送される対象物2の全体に対して均一に可視光線Lの照射を行うことができる。また、図2では、コンベヤ3の幅方向の両側縁に中央に向けて可視光線Lが照射されるよう照射部1を設置するとともに、コンベヤ3の幅方向中央にも両側縁に向けて可視光線Lが照射されるよう照射部1を設置することで、コンベヤ3により搬送される対象物2の全体に対して均一に可視光線Lの照射を行うことができる。   As an apparatus in which the irradiation unit is integrated with the conveyor, for example, as shown in FIGS. 1 and 2, the irradiation unit 1 is configured to irradiate the object 2 conveyed by the conveyor 3 with visible light L from above. Is installed. The upper side with respect to the target object 2 may be directly above as shown in FIG. 1 or may be obliquely above as shown in FIG. In FIG. 1, by arranging the irradiation unit 1 so as to cover the conveyor 3, it is possible to uniformly irradiate the visible light L to the entire object 2 conveyed by the conveyor 3. In FIG. 2, the irradiating unit 1 is installed so that the visible light L is emitted toward the center on both side edges in the width direction of the conveyor 3, and the visible light is also directed toward the center on the width direction of the conveyor 3. By arranging the irradiating unit 1 so as to irradiate L, the entirety of the object 2 conveyed by the conveyor 3 can be uniformly irradiated with the visible light L.

また、コンベヤ3により搬送される対象物2に対して下側(対象物2と接触する搬送面30側)から可視光線Lが照射されるように照射部1を設置してもよい。対象物2に対して下側とは、真下であってもよいし、斜め下であってもよい。照射部1は、コンベヤ3の搬送面30に設けてもよいし、搬送面30が光透過性を有する場合には搬送面30の下側に設けてもよい。   Further, the irradiating unit 1 may be installed so that the visible light L is emitted from below (the side of the conveying surface 30 that comes into contact with the object 2) onto the object 2 conveyed by the conveyor 3. The lower side of the target object 2 may be directly below or may be obliquely below. The irradiation unit 1 may be provided on the transport surface 30 of the conveyor 3, or may be provided below the transport surface 30 when the transport surface 30 has light transmittance.

なお、コンベヤ3は、対象物2を水平方向に搬送するものだけでなく、対象物2を斜め方向に搬送するものであってもよい。コンベヤ3は上下に多段式に並べられていて、対象物2を下方向または上方向に連続して搬送するものであってもよい。コンベヤ3の種類としては、ベルトコンベヤ、スラットコンベヤ、ローラコンベヤ、チェーンコンベヤ等、種々の構成のものであってよい。コンベヤ3は、常温環境下、冷蔵環境下、冷凍環境下に置かれていてもよい。   In addition, the conveyor 3 may convey not only the object 2 in a horizontal direction but also the object 3 in a diagonal direction. The conveyors 3 may be arranged in multiple stages vertically, and may convey the object 2 continuously downward or upward. As the type of the conveyor 3, various configurations such as a belt conveyor, a slat conveyor, a roller conveyor, and a chain conveyor may be used. The conveyor 3 may be placed in a normal temperature environment, a refrigerated environment, or a frozen environment.

次に、対象物を冷蔵または冷凍保存する冷蔵庫または冷凍庫に照射部が一体化された装置としては、例えば図3に示すように、冷蔵庫または冷凍庫4内の棚40上に置かれる対象物2に対して上側から可視光線Lが照射されるように照射部1を設置する。具体的には、冷蔵庫または冷凍庫4内の天面や各棚40の下面の全域にわたって照射部1を設置する。これにより、冷蔵庫または冷凍庫4内に保存される対象物2の全体に対して均一に可視光線Lの照射を行うことができる。なお、冷蔵庫または冷凍庫4内の天面や各棚40の下面に加えてまたは代えて、冷蔵庫または冷凍庫4内の側面や底面、各棚40の上面に照射部1を設置してもよい。   Next, as an apparatus in which the irradiation unit is integrated with a refrigerator or a freezer for refrigerated or frozen storage of an object, for example, as shown in FIG. 3, the object 2 placed on a shelf 40 in the refrigerator or the freezer 4 On the other hand, the irradiation unit 1 is installed so that the visible light L is irradiated from above. Specifically, the irradiation unit 1 is installed over the entire top surface of the refrigerator or freezer 4 or the lower surface of each shelf 40. Thus, the entirety of the object 2 stored in the refrigerator or the freezer 4 can be uniformly irradiated with the visible light L. In addition, in addition to or instead of the top surface in the refrigerator or freezer 4 or the lower surface of each shelf 40, the irradiation unit 1 may be installed on the side surface or the bottom surface in the refrigerator or freezer 4, or the upper surface of each shelf 40.

次に、対象物を搬送するコンテナに照射部が一体化された装置としては、例えば図4に示すように、コンテナ5内に内部空間を左右方向に複数の区画50に仕切る仕切り51を複数設け、隣り合う2つの仕切り51の対向する側面同士に照射部1を設置する。これにより、コンテナ5内の各区画50に収納される対象物2の全体に対して均一に可視光線Lの照射を行うことができる。なお、各仕切り51の側面に加えてまたは代えて、コンテナ5内の前後の側面、底面、天面に照射部1を設置してもよい。   Next, as an apparatus in which an irradiation unit is integrated with a container for transporting an object, for example, as shown in FIG. 4, a plurality of partitions 51 are provided in the container 5 to partition the internal space into a plurality of sections 50 in the left-right direction. Then, the irradiation unit 1 is installed on opposing side surfaces of two adjacent partitions 51. Thereby, the entirety of the target object 2 stored in each section 50 in the container 5 can be uniformly irradiated with the visible light L. In addition, in addition to or instead of the side surface of each partition 51, the irradiation unit 1 may be installed on the front and rear side surfaces, the bottom surface, and the top surface in the container 5.

次に、対象物を収納する容器に照射部が一体化された装置としては、図示は省略するが、容器の底壁及び前後左右の側壁の少なくとも一つの壁の内面、好ましくは前後左右の側壁の対向する2つの壁の内面に照射部1を設置する。容器の天井は開放されていてもよいし、蓋により閉じられるようにしてもよい。蓋の内面に照射部1を設置してもよい。この対象物2を収納可能な容器に照射部1を設置した装置を、対象物2を容器内に収納した状態で、冷蔵庫や冷凍庫内に入れることで、可視光線Lの照射により微生物の増殖を抑制しながら対象物2の鮮度低下を防止することもできる。なお、容器が透明等の透光性を有していれば、容器の各壁や蓋の外面に照射部1を設置してもよい。   Next, as a device in which the irradiation unit is integrated with the container for storing the object, although not shown, the inner surface of at least one of the bottom wall and the front, rear, left, and right side walls, preferably the front, rear, left, and right side walls The irradiation unit 1 is installed on the inner surfaces of two opposing walls. The ceiling of the container may be open or closed by a lid. The irradiation unit 1 may be provided on the inner surface of the lid. By placing the device in which the irradiation unit 1 is installed in a container capable of storing the target object 2 in a refrigerator or a freezer in a state where the target object 2 is stored in the container, the growth of microorganisms by irradiation with visible light L is performed. It is also possible to prevent a decrease in the freshness of the target object 2 while suppressing it. If the container has translucency such as transparency, the irradiation unit 1 may be provided on each wall of the container or on the outer surface of the lid.

収納庫、物置、倉庫、水槽、釜等の他の収容体についても、冷蔵庫、冷凍庫、コンテナ、容器と同様に、照射部を一体化することができる。なお、上述した照射部及び支持部が一体化された装置はあくまでも例示であり、支持部により支持された対象物に可視光線を照射可能に照射部が設置されたものであれば、種々の構成のものが含まれる。   The irradiation unit can be integrated with other containers such as a storage, a storage, a warehouse, a water tank, and a pot similarly to the refrigerator, the freezer, the container, and the container. It should be noted that the above-described apparatus in which the irradiation unit and the support unit are integrated is merely an example, and various configurations may be used as long as the irradiation unit is installed so as to irradiate an object supported by the support unit with visible light. Stuff is included.

可視光線照射装置は、支持部を備えず、対象物を搬送する既存のコンベヤ、対象物を冷蔵または冷凍保存する既存の冷蔵庫または冷凍庫、対象物を輸送する既存のコンテナ、対象物を収納する既存の容器等に照射部を設置可能に構成されたものであってもよい。例えば図5に示すように、天板部60の下面に照射部1が取り付けられた移動テーブル6を例示することができる。天板部60は複数の脚部61により支持されており、脚部61の下端に車輪62が取り付けられていることで、移動テーブル6が移動可能である。天板部60の下方の空間に例えば対象物2を載置する台や対象物2を搬送するコンベヤ等が位置するように移動テーブル6を配置し、天板部60の下面の照射部1より可視光線Lを対象物2に照射することで、対象物2の全体に対して均一に可視光線Lの照射を行うことができる。   The visible light irradiator does not have a supporting part, and has an existing conveyor for transporting objects, an existing refrigerator or freezer for refrigerated or frozen storage of objects, an existing container for transporting objects, and an existing container for storing objects. The irradiation unit may be configured to be installed in a container or the like. For example, as shown in FIG. 5, a moving table 6 in which the irradiation unit 1 is attached to the lower surface of the top plate unit 60 can be exemplified. The top plate 60 is supported by a plurality of legs 61, and the movable table 6 can be moved by attaching wheels 62 to the lower ends of the legs 61. The moving table 6 is arranged so that, for example, a table for placing the object 2 or a conveyor for transporting the object 2 is located in a space below the top plate 60, and the irradiation unit 1 on the lower surface of the top plate 60. By irradiating the object 2 with the visible light L, the entire object 2 can be uniformly irradiated with the visible light L.

更に、例えば図6に示すように、ガラス製やプラスチック製の透明容器80内に照射部1を封入した投げ込み型の照射器8を例示することができる。照射器8をしらす等の対象物2をゆでる釜9の中に投入することで、釜揚げ中の対象物2に対して可視光線Lを照射することが可能である。この場合、透明容器80は可視光線Lを透過できる。   Further, as shown in FIG. 6, for example, a throw-in type irradiator 8 in which the irradiation unit 1 is sealed in a transparent container 80 made of glass or plastic can be exemplified. It is possible to irradiate the visible light L to the object 2 being fried by putting the object 2 such as irradiating the irradiator 8 into the boiler 9. In this case, the transparent container 80 can transmit the visible light L.

上述した可視光線照射装置は、対象物に、前記一般式(1)で表される化合物を接触させる接触部を更に備えていてもよい。接触部は、対象物と前記化合物とを接触させることができる限り制限されない。例えば、接触部は、前記化合物を必要に応じて溶媒と混合して得られる混合物を対象物の一部または全部にスプレー(噴霧)、滴下、含浸等するものであってもよく、また、混合物に対象物の一部または全部を浸漬等するものであってもよく、スプレーや浸漬等の回数、その方法等は制限されない。溶媒としては、水、グリセロール、エタノール、ジメチルスルホキシド(Dimethyl sulfoxide(DMSO))等の任意の溶媒、また、該溶媒の任意の混合物であってもよく、本発明の効果が得られる限り制限されない。   The above-described visible light irradiation device may further include a contact portion for bringing the compound represented by the general formula (1) into contact with the object. The contact portion is not limited as long as the object can be brought into contact with the compound. For example, the contact portion may spray (spray), drip, impregnate, or the like, a mixture obtained by mixing the compound with a solvent, if necessary, on a part or all of the target object. A part or all of the target object may be immersed or the like, and the number of times of spraying or immersion, the method, and the like are not limited. The solvent may be any solvent such as water, glycerol, ethanol, dimethyl sulfoxide (DMSO), or any mixture of the solvents, and is not limited as long as the effects of the present invention can be obtained.

前記化合物の量、接触時間等も制限されず、使用する化合物の種類、対象物等に応じて適宜決定すればよい。本発明を制限するものではないが、一例として、モル濃度0.1〜50mMの前記化合物を対象物に接触させることが挙げられ、より好ましくは0.5〜25mM、更に好ましくは1〜15mMの該化合物を対象物に接触させることが挙げられる。   The amount of the compound, the contact time, and the like are not limited, and may be appropriately determined depending on the type of the compound to be used, the object, and the like. Although the present invention is not limited thereto, examples include contacting the compound with a molar concentration of 0.1 to 50 mM with an object, more preferably 0.5 to 25 mM, and still more preferably 1 to 15 mM. Contacting the compound with an object.

接触部による対象物と前記化合物との接触は、照射部1による対象物への前記可視光線照射(LED照射)よりも前に実施されてもよく、前記LED照射と同時に実施されてもよく、その順序は問わず、また、前、同時及び後の少なくとも2つを組み合わせて実施されてもよい。この限りにおいて制限されないが、前記LED照射時に前記化合物が対象物に接触していることが好ましく、この観点からは、対象物と前記化合物との接触は、対象物への前記LED照射よりも前及び/または同時に実施されることが好ましい。   The contact between the object and the compound by the contact unit may be performed before the visible light irradiation (LED irradiation) on the object by the irradiation unit 1 or may be performed simultaneously with the LED irradiation, The order is not limited, and at least two of before, simultaneous, and after may be performed in combination. Although not limited thereto, it is preferable that the compound is in contact with the object at the time of the LED irradiation, and from this viewpoint, the contact between the object and the compound is performed before the LED irradiation on the object. And / or simultaneously.

例えば図7に示すように、コンベヤ3により搬送される対象物2に対して上側から可視光線Lを照射する照射部1よりも、対象物2の搬送方向を基準にして上流側に、接触部7を設置する。本実施形態では、接触部7は、前記化合物を溶媒に混合して得られる混合物Mの液滴Dを対象物2に対して上側から噴霧する噴霧装置70である。前記混合物Mの液滴Dの大きさは特に制限されない。対象物2に対して上側とは、真上であってもよいし、斜め上であってもよい。これにより、対象物2にLED照射する前に、対象物2を前記化合物と接触させることができる。   For example, as shown in FIG. 7, the contact portion is located on the upstream side with respect to the transport direction of the object 2 from the irradiation unit 1 that irradiates the object 2 conveyed by the conveyor 3 with visible light L from above. 7 is installed. In the present embodiment, the contact unit 7 is a spray device 70 that sprays the droplet D of the mixture M obtained by mixing the compound with the solvent onto the object 2 from above. The size of the droplet D of the mixture M is not particularly limited. The upper side with respect to the target object 2 may be directly above or may be obliquely above. Thus, the object 2 can be brought into contact with the compound before the object 2 is irradiated with the LED.

なお、図示は省略するが、照射部1をコンベヤ3により搬送される対象物2に対して下側から可視光線Lが照射されるように設置するとともに、接触部7(噴霧装置70)を混合物の液滴を対象物に対して上側から噴霧するように設置してもよい。また、図示は省略するが、照射部1をコンベヤ3により搬送される対象物2に対して上側から可視光線Lが照射されるように設置するとともに、接触部7(噴霧装置70)を混合物の液滴を対象物に対して上側から噴霧するように設置してもよい。これにより、対象物にLED照射するのと同時に、対象物を前記化合物と接触させることができる。   Although not shown, the irradiating unit 1 is installed so that the object 2 conveyed by the conveyor 3 is irradiated with visible light L from below, and the contact unit 7 (spraying device 70) is mixed with the mixture. May be installed so as to spray the droplet of the liquid onto the object from above. Although not shown, the irradiating unit 1 is installed so that the object 2 conveyed by the conveyor 3 is irradiated with visible light L from above, and the contact unit 7 (spraying device 70) is The droplets may be set so as to be sprayed onto the target from above. Thereby, the object can be brought into contact with the compound at the same time that the object is irradiated with the LED.

接触部7は、図8に示すように、前記混合物を貯留する水槽71であってもよく、水槽71中の前記混合物Mに対象物2の少なくとも一部を所定時間浸漬させた後、手動又は自動で対象物2を水槽71から取り出してコンベヤ3で搬送してもよい。これにより、対象物2にLED照射する前に、対象物2を前記化合物と接触させることができる。なお、前記混合物Mに少なくとも一部を所定時間浸漬させた後の対象物2を、手動又は自動で水槽71から取り出して、照射部1を備えた冷蔵庫、冷凍庫、コンテナ、収納庫、物置、倉庫、容器、釜内に収容してもよい。   As shown in FIG. 8, the contact portion 7 may be a water tank 71 for storing the mixture, and after immersing at least a part of the object 2 in the mixture M in the water tank 71 for a predetermined time, manually or The object 2 may be automatically taken out of the water tank 71 and transported by the conveyor 3. Thus, the object 2 can be brought into contact with the compound before the object 2 is irradiated with the LED. The object 2 after at least a part of the object M is immersed in the mixture M for a predetermined time is taken out of the water tank 71 manually or automatically, and a refrigerator, a freezer, a container, a storage, a storage, and a storage provided with the irradiation unit 1 are provided. , A container or a kettle.

なお、図9に示すように、水槽71の底壁、及び前後左右の側壁の少なくとも一つの壁の内面に照射部1を設置してもよい。水槽71の天井は開放されていてもよいし、蓋により閉じられるようにしてもよく、蓋の内面に照射部1を設置してもよい。水槽71に前記混合物Mを貯留した状態で、前記混合物Mに対象物2を少なくとも一部浸漬させることで、対象物2にLED照射するのと同時に、対象物2を前記化合物と接触させることができる。照射部1は、透明等の透光性を有するケース内に収納した状態で水槽71の内面に設置される。なお、水槽71が透明等の透光性を有していれば、水槽71の各壁や蓋の外面に照射部1を設置してもよい。また、図示は省略するが、水槽71の周りに照射部1を設置し、水槽71の外側から水槽71内の対象物2に対してLED照射してもよい。   In addition, as shown in FIG. 9, the irradiation unit 1 may be installed on the bottom wall of the water tank 71 and at least one of the front, rear, left and right side walls. The ceiling of the water tank 71 may be open, may be closed by a lid, or the irradiation unit 1 may be installed on the inner surface of the lid. In a state where the mixture M is stored in the water tank 71, at least a part of the object 2 is immersed in the mixture M, so that the object 2 is irradiated with the LED and at the same time, the object 2 is brought into contact with the compound. it can. The irradiating unit 1 is installed on the inner surface of the water tank 71 in a state of being housed in a case having translucency such as transparency. If the water tank 71 has translucency such as transparency, the irradiation unit 1 may be installed on the outer surface of each wall or lid of the water tank 71. Although not shown, the irradiation unit 1 may be provided around the water tank 71 and the object 2 in the water tank 71 may be irradiated with the LED from outside the water tank 71.

前記化合物は、例えば、養液栽培に用いられる養液(養水分、液状肥料、培養液等)に混合し、得られた混合物を対象物と接触させてもよい。例えば図10に示すように、栽培容器72内で前記化合物を混合した養液に対象物2の一部を浸漬させた状態で、対象物2に照射部1よりLED照射してもよい。本実施形態では、照射部1は、栽培容器72の底壁、及び前後左右の側壁の少なくとも一つの壁の内面又は外面に設置されている。照射部1は、透明等の透光性を有するケース内に収納した状態で栽培容器72の内面に設置される。なお、水槽71が透明等の透光性を有していれば、水槽71の各壁や蓋の外面に照射部1を設置してもよい。また、図示は省略するが、栽培容器72の周りに照射部1を設置し、栽培容器72の外側から栽培容器72内の対象物2に対してLED照射してもよい。   The compound may be mixed with, for example, a nutrient solution (nutrition water, a liquid fertilizer, a culture solution, etc.) used for nutrient solution cultivation, and the resulting mixture may be brought into contact with an object. For example, as shown in FIG. 10, the object 2 may be irradiated with the LED from the irradiation unit 1 in a state where a part of the object 2 is immersed in a nutrient solution in which the compound is mixed in the cultivation container 72. In the present embodiment, the irradiation unit 1 is installed on an inner surface or an outer surface of at least one of the bottom wall of the cultivation container 72 and the front, rear, left and right side walls. The irradiation unit 1 is installed on the inner surface of the cultivation container 72 in a state of being housed in a case having translucency such as transparency. If the water tank 71 has translucency such as transparency, the irradiation unit 1 may be installed on the outer surface of each wall or lid of the water tank 71. Although not shown, the irradiating unit 1 may be provided around the cultivation container 72, and the object 2 in the cultivation container 72 may be irradiated with the LED from outside the cultivation container 72.

可視光線照射装置は、図11に示すように、照射部1、及び、接触部7としての噴霧装置70を一体に備えたものであってもよい。これにより、対象物2が例えば農作物である場合に、収穫前の農作物に対して、前記化合物との接触と、前記LED照射とを同時に行うことができる。また、図11において、対象物2が例えば農作物である場合、収穫後の農作物であってもよい。   As shown in FIG. 11, the visible light irradiating device may be integrally provided with the irradiating unit 1 and the spray device 70 as the contact unit 7. Thereby, when the target object 2 is a crop, for example, the contact with the compound and the LED irradiation can be performed simultaneously on the crop before harvesting. In FIG. 11, when the target object 2 is, for example, a crop, the crop may be a harvested crop.

前記化合物との接触時の対象物2の状態は制限されず、例えば冷凍、解凍、半解凍、冷蔵、加熱後等のいずれの状態であってもよく、また、これらの処理が何らなされていない状態であってもよい。   The state of the target object 2 at the time of contact with the compound is not limited, and may be, for example, any state such as frozen, thawed, semi-thawed, refrigerated, and heated, and these treatments are not performed at all. It may be in a state.

上述した可視光線照射装置は、対象物に接触した前記化合物を取り除くために、前記対象物を洗浄する洗浄部を更に備えていてもよい。洗浄部における洗浄は、対象物を洗浄できる限り制限されず、飲用適の水、殺菌した海水、飲用適の水を使用した人工海水、また、これらと同等の品質を備える液体等により行うことができる。   The above-described visible light irradiation device may further include a cleaning unit that cleans the object in order to remove the compound that has come into contact with the object. Washing in the washing unit is not limited as long as the object can be washed, and may be performed with potable water, sterilized seawater, artificial seawater using potable water, or a liquid having the same quality as these. it can.

上述した可視光線照射装置において、照射部1は、ピーク波長が405〜421nmの範囲にある可視光線を照射する光源(主光源)に加えて、ピーク波長が265nm以上405nm未満の範囲にある紫外線または可視光線を照射する光源(補助光源)を更に有していてもよい。この補助光源は、ピーク波長が405〜421nmの範囲にある可視光線が対象物2に照射される前及び/または後に、ピーク波長が265nm以上405nm未満の範囲にある紫外線または可視光線が対象物2に照射されるように照射部1に設けられていてもよい。また、補助光源は、ピーク波長が405〜421nmの範囲にある可視光線と同時にピーク波長が265nm以上405nm未満の範囲にある紫外線または可視光線が対象物2に照射されるように照射部1に設けられていてもよい。例えば、主光源および補助光源を交互に配置したり、主光源および補助光源を対象物2を間にして対向配置することで、異なるピーク波長の光線を対象物2に同時に照射することができる。   In the above-described visible light irradiation device, the irradiation unit 1 includes, in addition to a light source (main light source) that emits visible light having a peak wavelength in a range of 405 to 421 nm, ultraviolet light or a peak wavelength in a range of 265 nm or more and less than 405 nm. A light source (auxiliary light source) that emits visible light may be further provided. The auxiliary light source emits ultraviolet light or visible light having a peak wavelength in the range of 265 nm to less than 405 nm before and / or after the visible light having a peak wavelength in the range of 405 to 421 nm is irradiated on the object 2. May be provided in the irradiation unit 1 so as to be irradiated. The auxiliary light source is provided in the irradiation unit 1 so that the target object 2 is irradiated with ultraviolet light or visible light having a peak wavelength in the range of 265 nm to less than 405 nm simultaneously with visible light having a peak wavelength in the range of 405 to 421 nm. It may be. For example, by alternately arranging the main light source and the auxiliary light source, or by arranging the main light source and the auxiliary light source to face each other with the object 2 interposed therebetween, it is possible to simultaneously irradiate the object 2 with light beams having different peak wavelengths.

本発明の可視光線照射装置によれば、対象物への前記LED照射により、対象物における微生物の増殖を効果的に抑制することができる。また、本発明の可視光線照射装置によれば、対象物への前記化合物の接触や、対象物への前記紫外線または可視光線照射を併用することによっても、対象物における微生物の増殖を効果的に抑制できる。特に、後述の実施例に示す通り、本発明の可視光線照射装置によれば、対象物への前記化合物の接触を行うことにより、細菌や真菌といった微生物のなかでも、特に酵母やカビといった真菌の増殖を効果的に抑制することができる。   According to the visible light irradiation device of the present invention, the irradiation of the LED on the object can effectively suppress the growth of microorganisms in the object. Further, according to the visible light irradiation device of the present invention, the contact of the compound on the object, or by using the ultraviolet or visible light irradiation on the object in combination, effectively increases the growth of microorganisms in the object. Can be suppressed. In particular, as shown in Examples below, according to the visible light irradiation device of the present invention, by contacting the compound with the object, among microorganisms such as bacteria and fungi, particularly fungi such as yeast and mold. Proliferation can be effectively suppressed.

以下、実施例を示して本発明をより詳細に説明するが、本発明はこれらに限定されない。
試験例1
試験手順
市販の徳島県産釜揚げしらす(-30℃で冷凍され、2.6℃で16時間かけて解凍されたもの)約1gを、滅菌プラスチックシャーレ(直径53mm)に重ならないように広げた。釜揚げしらすをシャーレに広げた様子を上から撮影した写真を図12に示す。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
Test example 1
Test procedure Approximately 1 g of commercially available Tokushima pot-fried Shirasu (frozen at −30 ° C. and thawed at 2.6 ° C. for 16 hours) was spread so as not to overlap a sterile plastic petri dish (53 mm in diameter). FIG. 12 shows a photograph taken from above of a state in which the pot-fried whitebait is spread on a petri dish.

25℃に設定したインキュベーター内でLEDをしらすに照射した。光源にはピーク波長405nm LED(NCSU275T、日亜化学工業株式会社製)を用い、シャーレ下の2箇所から照射した。光源からしらすまでの距離をそれぞれ30mmに調整して、しらす表面(下側の表面(シャーレを通過))における照度(放射照度)を4.72mW/cm2とした。照度は、レーザパワー/エネルギメータNOVA II(OPPHIR社製)を用いて測定し、しらす表面(2個のLED間の中心(等しい距離)で測定した値であり、シャーレに広げたしらす表面の最も高い照度の値(下側面のピーク照度)といえる(IF=0.5A)。照射時間は60分間、照射エネルギーは17J/cm2とした。照射エネルギー(J/cm2)は、照度(mW/cm2)と照射時間(秒)とを乗じて算出した。 The LED was irradiated in the incubator set at 25 ° C. The light source was a 405 nm peak wavelength LED (NCSU275T, manufactured by Nichia Corporation), and the light was emitted from two places below the petri dish. The distance from the light source to the whitebait was adjusted to 30 mm, and the illuminance (irradiance) on the surface of the whitebait (the lower surface (passing through the petri dish)) was set to 4.72 mW / cm 2 . The illuminance is measured using a laser power / energy meter NOVA II (manufactured by OPPHIR), and measured at the center of the white ground (equal distance) between the two LEDs. be satisfactory illuminance value (peak irradiance of the lower surface) (IF = 0.5A). the irradiation time is 60 minutes, and the irradiation energy was 17 J / cm 2. irradiation energy (J / cm 2), the illuminance (mW / cm 2 ) and the irradiation time (seconds).

LEDを照射後、食品、添加物等の規格基準における生菌数測定法に準じて、しらすを滅菌ストマッキング用ポリ袋(滅菌パック)に移し、滅菌リン酸緩衝液(0.3 mM KH2PO4、pH 7.2)を10倍希釈となるように加え、1.5分間ホモジナイズした。得られたホモジナイズ溶液を、同組成の滅菌リン酸緩衝液で10倍段階希釈し、標準寒天培地(日水製薬社製)に塗布後、35℃で48時間培養し、コロニーをカウントすることにより一般細菌数を決定した(これを照射直後とする)。LED無照射のしらすについても同様にして一般細菌数を決定した(これを無照射とする)。 After irradiating the LED, according to the viable cell count method according to the standard for food, additives, etc., the whitebait is transferred to a sterilized stomaching plastic bag (sterilized pack), and sterilized phosphate buffer solution (0.3 mM KH 2 PO 4 , pH 7.2) was added so as to be 10-fold diluted, and homogenized for 1.5 minutes. The obtained homogenized solution was serially diluted 10-fold with a sterilized phosphate buffer having the same composition, applied to a standard agar medium (manufactured by Nissui Pharmaceutical Co., Ltd.), cultured at 35 ° C. for 48 hours, and counted for colonies. The number of general bacteria was determined (this is immediately after irradiation). The number of general bacteria was determined in the same manner also for the shirasu without LED irradiation (this was designated as non-irradiation).

また、前記LED照射後に2.6℃で48時間冷蔵保存したしらすについても、同様にして一般細菌数を決定した。また、LED無照射のしらすを同様に2.6℃で48時間冷蔵保存したものについても、同様にして一般細菌数を決定した。   In addition, the number of common bacteria was determined in the same manner for whitebait stored refrigerated at 2.6 ° C. for 48 hours after the LED irradiation. In addition, the number of general bacteria was determined in the same manner for the shirasu which had not been irradiated with the LED and was similarly refrigerated at 2.6 ° C. for 48 hours.

また、ピーク波長465nm LED(日亜化学工業株式会社製)を用いる以外は前述と同様にしてLED照射した釜揚げしらすについても、同様に、保存前後の一般細菌数を決定した。但し、照度は6.47mW/cm2、照射エネルギーは23J/cm2とした。 In addition, the number of general bacteria before and after storage was similarly determined for the fried potato radish that had been irradiated with the LED in the same manner as described above, except that a peak wavelength 465 nm LED (manufactured by Nichia Corporation) was used. However, the illuminance was 6.47 mW / cm 2 and the irradiation energy was 23 J / cm 2 .

なお、前述と同じ標準寒天培地を用いて釜揚げしらすから予め分離した一般細菌50株のうち主な細菌は、Psychrobacter sp.(グラム陰性菌、19株)、Kocuria sp.(グラム陽性菌、15株)、Staphylococcus sp.(グラム陽性菌、8株)、Macrococcus sp.(グラム陽性菌、3株)であった。また、LED照射によるしらすの温度上昇は実質的に認められず、細菌数への加熱の影響を考慮する必要はなかった。   In addition, the main bacteria among 50 strains of general bacteria previously isolated from fried rice sardine using the same standard agar medium as described above are Psychrobacter sp. (Gram-negative bacteria, 19 strains) and Kocuria sp. (Gram-positive bacteria, 15 strains). Strain, Staphylococcus sp. (Gram-positive bacteria, 8 strains), and Macrococcus sp. (Gram-positive bacteria, 3 strains). In addition, there was no substantial increase in the temperature of whitebait due to LED irradiation, and it was not necessary to consider the effect of heating on the bacterial count.

結果
結果を図13に示す。図13に示す通り、LED無照射と比較して、ピーク波長405nmのLED照射直後にコロニー数が17%減少し、殺菌効果が認められた。これに対して、図13に示す通り、ピーク波長465nmのLEDを使用した場合は、LED無照射と比較して、LED照射直後にコロニー数の減少は認められなかった。なお、ここで、コロニー数が17%減少とは、LED無照射において決定したコロニー数を100%とした場合に、LED照射することにより減少したコロニー数の割合を示す。
Results The results are shown in FIG. As shown in FIG. 13, the number of colonies was reduced by 17% immediately after the irradiation with the LED having the peak wavelength of 405 nm as compared with the case without irradiation with the LED, and a bactericidal effect was observed. On the other hand, as shown in FIG. 13, when the LED having the peak wavelength of 465 nm was used, no decrease in the number of colonies was observed immediately after the LED irradiation, as compared with the case where the LED was not irradiated. Here, the 17% decrease in the number of colonies indicates the ratio of the number of colonies reduced by irradiation with the LED, when the number of colonies determined in the absence of LED irradiation is 100%.

また、図には示さないが、ピーク波長405nmのLEDを使用した場合、48時間冷蔵保存後も、LED無照射と比較して、LED照射試料においてコロニー数が減少した。これに対して、ピーク波長465nmのLEDを使用した場合は、むしろ冷蔵保存後は、LED無照射よりもLED照射を行った場合のほうがコロニー数が大幅に増加した。   Although not shown in the figure, when an LED having a peak wavelength of 405 nm was used, the number of colonies in the LED-irradiated sample was reduced even after refrigeration for 48 hours, as compared with the case where no LED was irradiated. On the other hand, when the LED having the peak wavelength of 465 nm was used, the number of colonies after the refrigerated storage increased significantly when the LED irradiation was performed than when the LED was not irradiated.

このことから、ピーク波長405nm、照度4.72mW/cm2、照射時間60分、照射エネルギー17J/cm2でのLED照射によれば食品に付着した細菌の増殖を効果的に抑制できるのに対して、ピーク波長465nm、照度6.47mW/cm2、照射時間60分、照射エネルギー23J/cm2でのLED照射では望ましい増殖抑制効果は得られないことが分かった。 Therefore, the peak wavelength of 405 nm, illuminance 4.72mW / cm 2, 60 minutes irradiation time, whereas the growth of bacteria adhered to the food according to the LED irradiation at an irradiation energy 17 J / cm 2 can be effectively suppressed It was found that a desirable growth inhibitory effect could not be obtained by LED irradiation at a peak wavelength of 465 nm, an illuminance of 6.47 mW / cm 2 , an irradiation time of 60 minutes, and an irradiation energy of 23 J / cm 2 .

試験例2
試験手順
前記試験例1と同様にして入手した釜揚げしらすを約1g量り取り、前述と同様にして滅菌シャーレに広げて、25℃に設定したインキュベーター内でLEDを照射した。光源としてピーク波長405nm LED(NCSU275T、日亜化学工業株式会社製)を用い、光源からしらすまでの距離を調整して、シャーレの上下4箇所(上側2箇所、下側2箇所、光源からしらすまでの距離は上側27.5mm、下側28mm)から照射した。しらす表面(上下各表面)の2個のLED間の中心における照度を12.48mW/cm2とした。照度は、前述のNOVA IIを用いて前述と同様にしてしらす表面で測定し、片側表面の照度(ピーク照度)が12.48mW/cm2であることを意味する。照射時間15分間、照射エネルギーは上下合計で22J/cm2とした。前記試験例1と同様にして、LED照射、LED無照射のしらすについて、冷蔵保存前後の一般細菌数を決定した。
Test example 2
Test procedure Approximately 1 g of pot fried whitebait obtained in the same manner as in Test Example 1 was weighed, spread in a sterilized petri dish in the same manner as described above, and irradiated with LED in an incubator set at 25 ° C. Using a 405 nm peak wavelength LED (NCSU275T, manufactured by Nichia Corporation) as the light source, adjust the distance from the light source to the shirasu and adjust the distance from the light source to the top and bottom of the petri dish (upper two places, lower two places, from the light source to the shirasu) (27.5 mm above, 28 mm below). The illuminance at the center between the two LEDs on the shirasu surface (upper and lower surfaces) was set to 12.48 mW / cm 2 . The illuminance is measured on the surface of the shirasu in the same manner as described above using the above-described NOVA II, and means that the illuminance (peak illuminance) on one surface is 12.48 mW / cm 2 . The irradiation time was 15 minutes and the irradiation energy was 22 J / cm 2 in total. In the same manner as in Test Example 1, the number of general bacteria before and after refrigerated storage was determined for white radish with and without LED irradiation.

ピーク波長412nmのLED(ILH-XC01-S410-SC211-WIR200、Intelligent LED Solutions Ltd.、距離は上側35mm、下側36mm(0.2A))、ピーク波長421nmのLED(3W 3535 420nm-430nm Star base、tiaochongyi、距離は上側30mm、下側31mm(0.3A))、ピーク波長455nmのLED(LZ4-40B208-0000、LED Engin Inc.、距離は上側30mm、下側31mm(34.7mA))についても、同様に照射条件を照度12.48mW/cm2、照射時間15分間、照射エネルギーは上下合計22J/cm2として一般細菌数の決定を行った。 LED with a peak wavelength of 412nm (ILH-XC01-S410-SC211-WIR200, Intelligent LED Solutions Ltd., distance is upper 35mm, lower 36mm (0.2A)), LED with peak wavelength 421nm (3W 3535 420nm-430nm Star base, tiaochongyi, distance is upper 30mm, lower 31mm (0.3A)), LED with peak wavelength 455nm (LZ4-40B208-0000, LED Engin Inc., distance is upper 30mm, lower 31mm (34.7mA)) illuminance 12.48mW / cm 2, irradiation time 15 min irradiation condition, the irradiation energy was carried out to determine the number of viable bacteria as a vertical sum 22J / cm 2.

結果
結果を図14に示す。図14に示す通り、LED無照射と比較して、ピーク波長405nm、412nm、421nmのLED照射直後にコロニー数は38〜55%減少した。また、冷蔵保存後は、LED無照射と比較して、LED照射によりコロニー数が55〜88%減少した。特に、LED照射且つ保存後のコロニー数は、LED無照射且つ保存前のコロニー数を下回っていた。このことから、これらのLED照射によれば、食品に付着した細菌の増殖を非常に効果的に抑制することができ、特に、これらのLED照射によれば保存後において静菌(無照射且つ保存前の細菌数を下回る効果)という非常に優れた効果が得られることが分かった。
Results The results are shown in FIG. As shown in FIG. 14, the number of colonies decreased by 38 to 55% immediately after the irradiation of the LEDs with the peak wavelengths of 405 nm, 412 nm, and 421 nm, as compared to the case without the LED irradiation. In addition, after refrigerated storage, the number of colonies decreased by 55 to 88% due to LED irradiation as compared with the case without LED irradiation. In particular, the number of colonies after LED irradiation and storage was lower than the number of colonies without LED irradiation and before storage. From these facts, according to these LED irradiations, the growth of bacteria attached to food can be suppressed very effectively. In particular, according to these LED irradiations, bacteriostasis (no irradiation and storage (An effect lower than the previous number of bacteria).

これに対して、ピーク波長455nmのLEDを照射した場合、保存前後のいずれにおいてもLED無照射と比較してコロニー数の減少したものの、保存後はコロニー数の望ましい減少は認められなかった(LED無照射と比較して、照射直後は12%減少、保存後は19%減少)。このことから、照度、照射時間、照射エネルギーが同じであっても、ピーク波長が455nmの場合は望ましい増殖抑制効果が得られないことが分かった。   In contrast, when irradiating an LED with a peak wavelength of 455 nm, the number of colonies was reduced before and after storage, compared to no irradiation, but a desirable decrease in the number of colonies was not observed after storage (LED (Compared with non-irradiation, 12% decrease immediately after irradiation, 19% decrease after storage). From this, it was found that even if the illuminance, the irradiation time, and the irradiation energy were the same, the desired growth suppression effect could not be obtained when the peak wavelength was 455 nm.

試験例3
試験手順
前記試験例2と同様にして入手した釜揚げしらす約1gを、前記試験例2同様にして滅菌シャーレに広げて、25℃に設定したインキュベーター内でLEDを照射し、LED照射、LED無照射のしらすについて、保存前後の一般細菌数を決定した。
Test example 3
Test procedure Approximately 1 g of pot fried shirasu obtained in the same manner as in Test Example 2 was spread on a sterile petri dish in the same manner as in Test Example 2, and irradiated with LEDs in an incubator set at 25 ° C. The number of general bacteria before and after storage was determined for the white radish.

本試験例では、ピーク波長421nm LEDを用い、前記試験例2と同様に照度12.48mW/cm2、照射15分間、照射エネルギー22J/cm2(上下合計)とした。また、本試験例では、更に、卵黄加マンニット食塩培地(日水製薬社製)を用いる以外は一般細菌数の測定と同様にして、ブドウ球菌数も決定した。(これらを条件Aとする)。 In this test example, an illuminance of 12.48 mW / cm 2 , irradiation for 15 minutes, and irradiation energy of 22 J / cm 2 (total of upper and lower) were used in the same manner as in Test Example 2 using an LED having a peak wavelength of 421 nm. In this test example, the number of staphylococci was also determined in the same manner as in the measurement of the number of general bacteria except that a yolk-added mannitol salt medium (manufactured by Nissui Pharmaceutical Co., Ltd.) was used. (These are the conditions A).

また、前記条件A(照度12.48mW/cm2、照射15分間、照射エネルギー22J/cm2)に代えて、照度1.71mW/cm2、照射4時間、照射エネルギー24.6J/cm2(シャーレ上側2箇所から照射)とする条件B、照度1.71mW/cm2、照射2時間、照射エネルギー24.6J/cm2(上下合計、シャーレの上下4箇所(上側2箇所、下側2箇所)から照射)とする条件Cとして、前述と同様にして一般細菌数、ブドウ球菌数も決定した。これらにおいて照度は前述と同様にそれぞれ上側面、下側面ピーク照度を意味し、以下の試験例でも同様に照度はピーク照度を意味する。 Further, the condition A (illuminance 12.48mW / cm 2, irradiation for 15 minutes, irradiation energy 22J / cm 2) in place of the illuminance 1.71mW / cm 2, irradiation 4 hours, the irradiation energy 24.6J / cm 2 (dish upper 2 Condition B), irradiance 1.71 mW / cm 2 , irradiation 2 hours, irradiation energy 24.6 J / cm 2 (total of top and bottom, irradiation from top and bottom of petri dish (upper 2 places, lower 2 places)) As the condition C, the number of general bacteria and the number of staphylococci were determined in the same manner as described above. In these, the illuminance means the upper surface and the lower surface peak illuminance, respectively, as described above, and the illuminance also means the peak illuminance in the following test examples.

結果
結果を図15に示す。図15に示す通り、条件Aでは、LED無照射と比較して、LED照射直後においてコロニー数が38%減少した。また、保存後も、LED無照射と比較して、LED照射においてコロニー数が減少した。特に、条件Aでは、LED照射且つ保存後のコロニー数は、無照射且つ保存前のコロニー数を下回っており、すなわち、静菌効果が認められた。このことから、条件Aによれば、食品に付着した細菌の増殖を顕著に抑制することができることが分かった。また、この場合、ブドウ球菌の細菌数にも同様の傾向が認められ、例えば、保存後であっても、LED無照射と比較して、LED照射によりコロニー数が86%減少し、このように、LED照射且つ保存後のコロニー数が、無照射且つ保存前のコロニー数を下回り、静菌効果が得られた。
Results The results are shown in FIG. As shown in FIG. 15, under the condition A, the number of colonies was reduced by 38% immediately after the LED irradiation, as compared with the case without the LED irradiation. In addition, even after storage, the number of colonies decreased during LED irradiation as compared to the case without LED irradiation. In particular, under condition A, the number of colonies after LED irradiation and storage was lower than the number of colonies without irradiation and before storage, that is, a bacteriostatic effect was observed. From this, it was found that, under the condition A, the growth of bacteria adhering to food could be significantly suppressed. Also, in this case, a similar tendency was observed in the number of bacteria of staphylococci. For example, even after storage, the number of colonies was reduced by 86% by LED irradiation as compared to non-LED irradiation. The number of colonies after LED irradiation and storage was lower than that before no irradiation and storage, and a bacteriostatic effect was obtained.

これに対して、条件B及び条件Cでは、条件Aで認められたような顕著な増殖抑制は認められなかった。条件B及び条件Cは、条件Aよりもむしろ照射エネルギーが高かったことから、細胞増殖抑制効果は、照射エネルギーのみに左右されるものではないことが分かった。   On the other hand, under the conditions B and C, no remarkable growth inhibition as observed under the condition A was not observed. Since the irradiation energy was higher in the conditions B and C than in the condition A, it was found that the cell growth inhibitory effect was not dependent only on the irradiation energy.

試験例4
試験手順
前記試験例2と同様にして、入手した釜揚げしらすを同様に滅菌シャーレに広げ、ピーク波長405nm LED、照度12.48mW/cm2にて5、10、15、30分間照射を行い、一般細菌数を決定した。前記試験例3と同様の手順でブドウ球菌数も決定した。照射エネルギーは、5分間照射時が7.5J/cm2、10分間照射時が15J/cm2、15分間照射時が22J/cm2、30分間照射時が45J/cm2である。
Test example 4
In the same manner as Test Procedure Test Example 2, spread similarly sterile Petri dish kettle fried shirasu, obtained, performed 5, 10, 15, 30 min irradiation the peak wavelength of 405 nm LED, at an illuminance 12.48mW / cm 2, generally The bacterial count was determined. The number of staphylococci was also determined in the same procedure as in Test Example 3. The irradiation energy is 5 minutes irradiation time is 7.5J / cm 2, 10 minutes during the irradiation is 15 J / cm 2, 15 minutes during the irradiation is 22J / cm 2, 30 minutes during the irradiation is 45 J / cm 2.

結果
結果を図16及び17に示す。図16は、LED照射直後(冷蔵保存なし)の菌数を示す。図17は、LED照射且つ冷蔵保存後の菌数を示す。図16に示す通り、LED無照射と比較して、LED照射により一般細菌数、ブドウ球菌数のいずれもが著しく減少した。特に、10分以上の照射により、より効果的な増殖抑制が認められた。このように、照射により殺菌効果が得られた。また、図17に示す通り、保存後であっても、LED照射により一般細菌数、ブドウ球菌数に減少が認められ、特に、10分以上の照射により一層顕著な増殖抑制効果(静菌効果)が認められた。
Results The results are shown in FIGS. FIG. 16 shows the number of bacteria immediately after LED irradiation (without refrigeration). FIG. 17 shows the bacterial count after LED irradiation and refrigerated storage. As shown in FIG. 16, both the number of general bacteria and the number of staphylococci were significantly reduced by LED irradiation as compared with the case without LED irradiation. In particular, more effective growth suppression was observed by irradiation for 10 minutes or more. Thus, a sterilizing effect was obtained by the irradiation. Further, as shown in FIG. 17, even after storage, the number of general bacteria and the number of staphylococci were reduced by irradiation with LED, and more remarkable growth inhibitory effect (bacteriostatic effect) by irradiation for 10 minutes or more. Was observed.

試験例5
試験手順
前記試験例2と同様にして、入手した釜揚げしらすをシャーレに広げ、ピーク波長405nm、照度12.48mW/cm2、照射15分間、照射エネルギー22J/cm2(上下合計)として、25℃に設定したインキュベーター内でLEDを照射した(測定1)。次いで、該照射後のしらすを-30℃で3日間保存し、次いで、2.6℃で16時間かけて解凍した(測定2)。また、該解凍後、更に2.6℃で48時間保存した(測定3)。これらの照射または保存後に、前述と同様にして一般細菌数、ブドウ球菌数を測定した(測定1〜3)。これらの結果を図18に示す。
Test example 5
Test procedure In the same manner as in Test Example 2, the obtained pot-fried whitebait was spread on a petri dish, the peak wavelength was 405 nm, the illuminance was 12.48 mW / cm 2 , the irradiation was 15 minutes, and the irradiation energy was 22 J / cm 2 (upper and lower) at 25 ° C. The LED was irradiated in the incubator set at (1). Then, the irradiated whitebait was stored at -30 ° C for 3 days, and then thawed at 2.6 ° C for 16 hours (measurement 2). After the thawing, it was further stored at 2.6 ° C. for 48 hours (measurement 3). After irradiation or storage, the numbers of general bacteria and staphylococci were measured in the same manner as described above (measurement 1 to 3). These results are shown in FIG.

また、-30℃の冷凍状態にある釜揚げしらす約1gを前記滅菌シャーレにしらすが重ならないように広げた。10℃に設定したインキュベーター内で、試験例2と同様にしてLEDを照射し、2.6℃で48時間保存し、一般細菌数を決定し、更に、試験例3と同様にしてブドウ球菌数を決定した。この場合、LED照射が終了した時点で、しらす表面は解凍されていたが、しらす内部は冷凍状態であった。この結果を図19に示す。   Approximately 1 g of fried rice in a pot at -30 ° C in a frozen state was spread in the sterilized petri dish so as not to overlap. In an incubator set at 10 ° C., irradiate the LED in the same manner as in Test Example 2, store at 2.6 ° C. for 48 hours, determine the number of general bacteria, and further determine the number of staphylococci as in Test Example 3. did. In this case, when the LED irradiation was completed, the surface of the whitebait was thawed, but the inside of the whitebait was frozen. The result is shown in FIG.

結果
図18に示す通り、測定1〜3のいずれにおいても、LED無照射に対して、LED照射において菌数の減少が認められた。このことから、LED照射後に冷凍及び解凍を伴う場合であっても、前記LED照射により細菌の増殖を抑制できることがわかった。特に、測定2及び3におけるLED照射の菌数は、測定1における無照射の菌数と比較して同等以下であり、LED照射後に冷凍及び解凍を伴う場合であっても、静菌と同等の優れた増殖抑制効果が得られることが分かった。
Results As shown in FIG. 18, in all of Measurements 1 to 3, a decrease in the number of bacteria was observed in LED irradiation compared to no LED irradiation. From this, it was found that even when freezing and thawing were involved after LED irradiation, bacterial growth could be suppressed by the LED irradiation. In particular, the number of bacteria of the LED irradiation in Measurements 2 and 3 is equal to or less than the number of unirradiated bacteria in Measurement 1, and even when freezing and thawing is performed after LED irradiation, the number of bacteria is equivalent to that of bacteriostatic. It was found that an excellent growth inhibitory effect was obtained.

また、図19に示す通り、解凍工程中のLED照射であっても、LED無照射と比較して、菌数の減少が認められ、この場合も、一層顕著な増殖抑制効果(静菌効果)が認められた。   Further, as shown in FIG. 19, even with the LED irradiation during the thawing step, a decrease in the number of bacteria was observed as compared with the case without LED irradiation, and in this case also, a more remarkable growth inhibitory effect (bacteriostatic effect). Was observed.

試験例6
試験手順
市販の徳島県産ちりめんを用いた以外は、試験例2と同様にしてLED照射を行った。なお、光源からちりめんまでの距離を上側LEDはそれぞれ27.5mm、下側LEDはそれぞれ28mmに調整し、片側表面の照度12.48mW/cm2、照射時間15分間、照射エネルギー22J/cm2(上下合計)とした。照射後、3℃、長時間(10日間、本試験で用いたちりめんの賞味期限に相当)の冷蔵保存を行い、前述と同様にして一般細菌数、ブドウ球菌数を決定した。無照射わかめについても同様にして菌数を決定した。
Test example 6
Test procedure LED irradiation was carried out in the same manner as in Test Example 2, except that commercially available crimson from Tokushima Prefecture was used. Incidentally, each of the upper LED is the distance from the light source to the crepe 27.5 mm, and adjusted to each lower LED 28mm, illuminance 12.48mW / cm 2 on one side surface, irradiation time 15 min, irradiation energy 22J / cm 2 (upper and lower total ). After irradiation, refrigerated storage was performed at 3 ° C. for a long time (10 days, corresponding to the expiration date of the ramen used in this test), and the numbers of general bacteria and staphylococci were determined in the same manner as described above. For non-irradiated seaweed, the number of bacteria was determined in the same manner.

結果
結果を図20に示す。図20から明らかなように、釜揚げしらすよりも水分含有量が少ないちりめんに対しても、LED照射による著しい増殖抑制効果が得られた。特に、ちりめんでは賞味期限内に相当する10日間の冷蔵保存中に菌数が増殖しやすいものの、LED照射により、細菌数を9割以上減少させることができた。
Results The results are shown in FIG. As is clear from FIG. 20, a remarkable growth inhibitory effect by LED irradiation was obtained even for crepe having a lower moisture content than fried shirasu. In particular, although the number of bacteria easily proliferated during refrigerated storage for 10 days corresponding to the expiration date, the number of bacteria could be reduced by 90% or more by LED irradiation.

試験例7
試験手順
市販の刺身用わかめ(ボイル済み)を正方形型に切り取り(約0.5g)、直径53mmの滅菌プラスチックシャーレの中央に置き、前記試験例6と同様にして、25℃に設定したインキュベーター内でLED照射を行った。前記試験例6と同様にして、片側表面の照度12.48mW/cm2、照射時間15分間、照射エネルギー22J/cm2(上下合計)とした。
Test example 7
Test Procedure A commercially available sashimi seaweed (boiled) was cut into a square shape (about 0.5 g), placed in the center of a sterile plastic petri dish having a diameter of 53 mm, and placed in an incubator set at 25 ° C. in the same manner as in Test Example 6 above. LED irradiation was performed. In the same manner as in Test Example 6, the illuminance on one surface was 12.48 mW / cm 2 , the irradiation time was 15 minutes, and the irradiation energy was 22 J / cm 2 (upper and lower).

LEDを照射後、わかめを滅菌パックに移し、前述と同様にして一般細菌数、ブドウ球菌数を決定した。また、LED照射後に2.6℃で2日間(刺身用わかめの賞味期限)または4日間保存し、同様にして一般細菌数、ブドウ球菌数を決定した。無照射わかめについても同様にして菌数を決定した。   After irradiation with the LED, the wakame was transferred to a sterile pack, and the number of general bacteria and the number of staphylococci were determined in the same manner as described above. After LED irradiation, the cells were stored at 2.6 ° C. for 2 days (expiration date of sashimi seaweed) or for 4 days, and the numbers of general bacteria and staphylococci were similarly determined. For non-irradiated seaweed, the number of bacteria was determined in the same manner.

結果
その結果、一般細菌数、ブドウ球菌数のいずれにおいても、LED無照射では、2日間冷蔵保存、4日冷蔵保存の両方において菌数の増加が認められたが、LED照射では、2日間冷蔵保存、4日冷蔵保存の両方において菌数の減少が認められた。このことから、わかめに対しても、LED照射によって、細菌の増殖を抑制することができた。
Results As a result, in both the number of general bacteria and the number of staphylococci, the increase in the number of bacteria was observed in both cold storage for 2 days and cold storage for 4 days without LED irradiation. A decrease in the number of bacteria was observed in both storage and refrigerated storage for 4 days. From this, it was possible to suppress the growth of bacteria in the seaweed by LED irradiation.

試験例8
試験手順
3℃、16時間で解凍した市販の一夜干しカマス(開き)の腹の部分の身をメスで約1g切り取り(約12.5mm四角形型、厚み6.3〜6.9mm)、直径53mmの滅菌プラスチックシャーレの中央に置き、10℃に設定したインキュベーター内で、前記試験例6と同様にしてLED照射を行った。光源としてピーク波長405nm LED(NVSU333AE、日亜化学工業株式会社製)を用い、光源からカマスまでの距離を上側LEDはそれぞれ29.5mm、下側LEDはそれぞれ30mmに調整し(IF=3.01A)、片側表面の照度120.3mW/cm2、照射時間15分間、照射エネルギー217J/cm2(上下合計)とした。
Test Example 8
Procedure of test
Cut off about 1 g of the belly part of a commercially available overnight dried cabbage (open) thawed at 3 ° C for 16 hours with a scalpel (about 12.5 mm square, 6.3 to 6.9 mm thick), and the center of a sterile plastic petri dish with a diameter of 53 mm And irradiating the LED in the incubator set at 10 ° C. in the same manner as in Test Example 6. Using a 405 nm peak wavelength LED (NVSU333AE, manufactured by Nichia Corporation) as the light source, adjust the distance from the light source to the camas to 29.5 mm for the upper LED and 30 mm for the lower LED (IF = 3.01 A), The illuminance on one surface was 120.3 mW / cm 2 , the irradiation time was 15 minutes, and the irradiation energy was 217 J / cm 2 (upper and lower).

LEDを照射後、カマスを滅菌パックに移し、前述と同様にして一般細菌数を決定した。また、LED照射後に2.6℃で長時間(6日間、一夜干しカマスの賞味期限)保存したカマスについても同様にして一般細菌数を決定した。LED照射を行わないカマスについても、同様にして菌数を決定した。無照射カマスについても同様にして菌数を決定した。   After irradiating the LED, the camas were transferred to a sterile pack, and the number of general bacteria was determined in the same manner as described above. In addition, the number of general bacteria was determined in the same manner for camas stored at 2.6 ° C. for a long time (6 days, expiration date of dried cabbage overnight) after LED irradiation. The number of bacteria was determined in the same manner also for camas without LED irradiation. The number of bacteria was determined in the same manner for non-irradiated camas.

結果
結果を表1に示す。表1中、各値は、LED無照射カマス(LED照射なし)、LED照射カマス(LED照射あり)のそれぞれにおいて、長時間(6日間)保存後の菌数(保存後菌数)を保存前の菌数(保存前菌数)で徐した値であり、長時間保存による菌数変化(比)を示す。試験を3回行い、表中、算出1〜3はLED照射なし、算出4〜6はLED照射ありの結果である。表1から明らかなように、LEDを照射しない場合と比較して、LEDを照射することにより、長時間保存による菌数の増加を著しく抑制することができた。カマスは、しらす等と比較して厚みがあるが、このような厚みのある食品に対してもLED照射により細菌増殖を著しく抑制できることがわかった。
Results The results are shown in Table 1. In Table 1, each value indicates the number of bacteria after storage for a long time (6 days) (number of bacteria after storage) in each of the LED non-irradiated camas (without LED irradiation) and the LED irradiated camas (with LED irradiation) before storage And the change (ratio) of the number of bacteria after storage for a long time. The test was performed three times. In the table, Calculations 1 to 3 are results without LED irradiation, and Calculations 4 to 6 are results with LED irradiation. As is clear from Table 1, by irradiating the LED, an increase in the number of bacteria due to long-term storage was significantly suppressed as compared with the case where the LED was not irradiated. Although camas are thicker than whitebait and the like, it has been found that bacterial growth can be significantly suppressed by irradiation with LEDs even for foods having such a thickness.

試験例9
試験手順
市販のミニトマトを次亜塩素酸ナトリウム溶液(有効塩素濃度1%)に15分間浸漬させ、滅菌水で2回洗浄後、ヘタ部の水分を乾燥させた。乾燥させたヘタ部を、Acinetobacter baumanniiの菌液10mL(105cells/mL)に2回浸し、乾燥させた。A. baumanniiは、露地栽培トマトのヘタ部から分離し、16S rDNA配列から同定した。A. baumanniiは、農作物に付着するグラム陰性菌の代表菌として使用した。
Test example 9
Test Procedure A commercially available mini tomato was immersed in a sodium hypochlorite solution (effective chlorine concentration: 1%) for 15 minutes, washed twice with sterilized water, and then dried at the bottom. The dried fly part was immersed twice in 10 mL of a bacterial solution of Acinetobacter baumannii (10 5 cells / mL) and dried. A. baumannii was isolated from the grouper of open-field cultivated tomatoes and identified from the 16S rDNA sequence. A. baumannii was used as a representative gram-negative bacterium attached to crops.

10℃に設定したインキュベーター内で、ヘタが上になるように置いたトマトの斜め上方向2箇所からLED照射を行った(図21)。光源には、405nm LED(NVSU333AE、日亜化学工業株式会社製)を用い、光源からヘタまでの距離を左側用LED29.5mm、右側用LED30mmに調整し、ミニトマトのヘタ部で、LED放射光の角度が90度で上方から交わるように照射して、照度を120.3mW/cm2(但し、該照度はLED1個あたり、ヘタ表面、前述のNOVA IIを用いて測定、IF=3.01A)とした。また、照射時間は15分、照射エネルギー217J/cm2(両方向合計)とした。 In the incubator set at 10 ° C., LED irradiation was performed from two obliquely upward positions of the tomato with the stake facing up (FIG. 21). Using a 405nm LED (NVSU333AE, manufactured by Nichia Corporation) as the light source, adjust the distance from the light source to the left LED to 29.5mm and the right LED to 30mm. At an angle of 90 degrees to cross each other from above, and the illuminance was 120.3 mW / cm 2 (however, the illuminance per LED, the surface of the letter, measured using the above-mentioned NOVA II, IF = 3.01 A) did. The irradiation time was 15 minutes, and the irradiation energy was 217 J / cm 2 (total in both directions).

LED無照射及びLED照射のミニトマトのヘタをピンセットで採取し、滅菌ストマッキング用ポリ袋に入れて重量を計り、10倍希釈となるように滅菌リン酸緩衝液を加え、1分間ホモジナイズ後、標準寒天培地に塗布し、35℃で48時間培養した。次いで、コロニー形態(色、形)からA. baumanniiと一般細菌を判別し、各コロニー数をカウントすることにより菌数を決定した。この結果を図22に示す。   Collect the non-irradiated and LED-irradiated mini tomato stalks with tweezers, put them in a sterile stomaching plastic bag, weigh them, add a sterile phosphate buffer so as to make 10-fold dilution, homogenize for 1 minute, It was spread on an agar medium and cultured at 35 ° C. for 48 hours. Next, A. baumannii and general bacteria were distinguished from the colony morphology (color, shape), and the number of each colony was counted to determine the number of bacteria. The result is shown in FIG.

また、次亜塩素酸ナトリウム溶液で処理をしていないミニトマトを使用(A. baumanniiの接種なし)して、前述と同様にして、試験を行った。この結果を図23に示す。   In addition, a test was performed in the same manner as described above using mini tomatoes not treated with the sodium hypochlorite solution (without inoculation of A. baumannii). The result is shown in FIG.

結果
図22及び23から明らかなように、トマトのヘタに対しても、LED照射によって、一般細菌、A. baumannii、また、ミニトマトに付着した微生物の増殖を抑制することができた。
Results As is evident from FIGS. 22 and 23, the growth of common bacteria, A. baumannii, and microorganisms attached to mini tomatoes could be suppressed by LED irradiation also on tomato scabs.

試験例10
試験手順
前記試験例2と同様にして入手した釜揚げしらす約1gを、前記試験例2同様にして滅菌シャーレに広げた。10℃に設定したインキュベーター内でLEDを照射した。光源として、ピーク波長405nm LED(NVSU333A(U405)、日亜化学工業株式会社製)を、シャーレ中心から左右に10mmずらして上下に1箇所ずつ設置した(図24)。しらす表面の照度は120.3mW/cm2(上下それぞれLED直下(直上)のしらす表面、前述のNOVA IIを用いて測定、IF=3.01A、光源からしらすまでの距離は上用LED29.5mm、下用LED30mm)とし、5分間、照射エネルギー72J/cm2(上下合計)とした。照射後、前述と同様にして一般細菌数、ブドウ球菌数を決定した。また、LED照射後に2.6℃で48時間冷蔵保存したしらすについても、一般細菌数、ブドウ球菌数を決定した。LED無照射のしらすについても同様にして一般細菌数、ブドウ球菌数を決定した。
Test example 10
Test Procedure Approximately 1 g of pot fried shirasu obtained in the same manner as in Test Example 2 was spread on a sterilized petri dish in the same manner as in Test Example 2. The LED was irradiated in an incubator set at 10 ° C. An LED (NVSU333A (U405), manufactured by Nichia Corporation) having a peak wavelength of 405 nm was installed as a light source, one at each of the top and bottom, shifted 10 mm left and right from the center of the petri dish (FIG. 24). Shirasu surface illuminance of Shirasu surface 120.3mW / cm 2 (top and bottom, respectively LED directly below (directly above), measured using NOVA II described above, IF = 3.01 A, the distance to the Shirasu from the light source for upward LED29.5Mm, lower And the irradiation energy was 72 J / cm 2 (total for upper and lower) for 5 minutes. After irradiation, the number of general bacteria and the number of staphylococci were determined in the same manner as described above. In addition, the number of general bacteria and the number of staphylococci were determined for whitebait stored refrigerated at 2.6 ° C. for 48 hours after LED irradiation. The number of general bacteria and the number of staphylococci were determined in the same manner for the white radish without LED.

また、同様の照度で、15分間、照射エネルギー217J/cm2(上下合計)、30分間、照射エネルギー433J/cm2(上下合計)として試験を行い、同様にして一般細菌数、ブドウ球菌数を決定した。 In addition, under the same illuminance, the test was performed with irradiation energy of 217 J / cm 2 (total of upper and lower) for 15 minutes and irradiation energy of 433 J / cm 2 (total of upper and lower) for 30 minutes. Were determined.

結果
結果を図25及び26に示す。図25及び26のいずれにおいても、LED照射による増殖抑制効果が得られ、特に、静菌という一層顕著な増殖抑制効果が認められた。但し、30分照射後のしらすは、照射前のしらすと比較して、その重量が15%減少した。このため、品質変化のリスクを一層低減する点からは、特に120.3mW/cm2といった高照度での可視光LED照射の場合は、照射時間を30分以内とすることがより良いことが分かった。
Results The results are shown in FIGS. In both FIGS. 25 and 26, a growth suppression effect by LED irradiation was obtained, and in particular, a more remarkable growth suppression effect of bacteriostasis was observed. However, the weight of the shirasu after irradiation for 30 minutes was reduced by 15% as compared with the shirasu before irradiation. For this reason, from the point of further reducing the risk of quality change, it was found that it is better to set the irradiation time to 30 minutes or less, particularly in the case of visible light LED irradiation at high illuminance such as 120.3 mW / cm 2 . .

試験例11
試験手順
前記試験例2と同様にして入手した釜揚げしらすを滅菌シャーレに広げ、前記試験例2と同様にピーク波長405nm LEDを用いて、照度10mW/cm2、照射15分間、照射エネルギー18J/cm2(上下合計)として、25℃に設定したインキュベーター内でLEDを照射し、前述と同様に一般細菌数、ブドウ球菌数を決定した。
結果
結果を図27に示す。図27に示す通り、LED照射による著しい増殖抑制効果が得られた。特に静菌という一層顕著な増殖抑制効果が認められた。
Test Example 11
Test Procedure The pot-fried whitebait obtained in the same manner as in Test Example 2 was spread on a sterile petri dish, and an illuminance of 10 mW / cm 2 , irradiation for 15 minutes, and irradiation energy of 18 J / The LED was irradiated in an incubator set at 25 ° C. as cm 2 (total of upper and lower sides), and the number of general bacteria and the number of staphylococci were determined as described above.
Results The results are shown in FIG. As shown in FIG. 27, a remarkable growth suppression effect by LED irradiation was obtained. In particular, a more remarkable growth inhibitory effect of bacteriostatic was observed.

試験例12
試験手順
前記試験例10と同様にして入手した釜揚げしらすを滅菌シャーレに広げ、前記試験例10と同様にピーク波長405nm LEDを用いて、照度208mW/cm2、照射1分間、照射エネルギー25J/cm2(上下合計)として、10℃に設定したインキュベーター内でLEDを照射し、前述と同様に一般細菌数を決定した。
結果
結果を図28に示す。図28に示す通り、LED照射による著しい増殖抑制効果が得られた。特に静菌という一層顕著な増殖抑制効果が認められた。
Test Example 12
Test Procedure The pot-fried whitebait obtained in the same manner as in Test Example 10 was spread on a sterile petri dish, and a peak wavelength of 405 nm was used in the same manner as in Test Example 10, illuminance 208 mW / cm 2 , irradiation for 1 minute, irradiation energy 25 J / The LED was irradiated in an incubator set at 10 ° C. as cm 2 (total of upper and lower), and the number of general bacteria was determined as described above.
Results The results are shown in FIG. As shown in FIG. 28, a remarkable growth suppression effect by LED irradiation was obtained. In particular, a more remarkable growth inhibitory effect of bacteriostatic was observed.

試験例13
試験手順
前記試験例2と同様にして、入手した釜揚げしらす約1gを滅菌シャーレに広げた。試験例10と同様にして、10℃に設定したインキュベーター内でLEDを照射した。具体的には、光源として、ピーク波長405nm LED(NVSU333A(U405)、日亜化学工業株式会社製)を、シャーレ中心から左右に10mmずらして上下に1箇所ずつ設置した。しらす表面の照度は120.3mW/cm2(上下それぞれLED直下(直上)のしらす表面、前述のNOVA IIを用いて測定、IF=3.01A、光源からしらすまでの距離は上用LED29.5mm、下用LED30mm)とし、5分間、照射エネルギー72J/cm2(上下合計)とした。照射後、前述と同様にして一般細菌数、ブドウ球菌数を決定した。また、LED照射後に2.6℃で5日間、7日間冷蔵保存したしらすについても、一般細菌数、ブドウ球菌数を決定した。LED無照射のしらすについても同様にして一般細菌数、ブドウ球菌数を決定した。
Test Example 13
Test Procedure In the same manner as in Test Example 2, about 1 g of the obtained pot-fried whitebait was spread on a sterile petri dish. In the same manner as in Test Example 10, the LED was irradiated in an incubator set at 10 ° C. Specifically, as a light source, an LED (NVSU333A (U405), manufactured by Nichia Corporation) having a peak wavelength of 405 nm was placed one by one vertically above and below the center of the petri dish by 10 mm. Shirasu surface illuminance of Shirasu surface 120.3mW / cm 2 (top and bottom, respectively LED directly below (directly above), measured using NOVA II described above, IF = 3.01 A, the distance to the Shirasu from the light source for upward LED29.5Mm, lower And the irradiation energy was 72 J / cm 2 (total for upper and lower) for 5 minutes. After irradiation, the number of general bacteria and the number of staphylococci were determined in the same manner as described above. In addition, the number of general bacteria and the number of staphylococci were determined for shirasu refrigerated at 2.6 ° C. for 5 days and 7 days after LED irradiation. The number of general bacteria and the number of staphylococci were determined in the same manner for the white radish without LED.

結果
その結果、保存3、5及び7日目のいずれにおいても、LED無照射の場合と比較して、LED照射した場合において菌数の著しい増殖抑制が認められた。一般生菌数は、食品の微生物汚染の程度を示す最も代表的な指標であり、微生物汚染の状況を反映する指標として知られている。一般的な基準として、一般細菌数は、加熱された食品では105CFU/g以下、未加熱の食品では106CFU/g以下といわれている。本試験例においてLED無照射の場合、保存3日後に105CFU/gを超えたため、基準に従えば、消費期限を2日間とする必要がある。これに対して、LED照射を行った場合、保存5日後でも104CFU/gに満たず、7日後でも105CFU/gに満たなかった。このため、本試験例のLED照射により、少なくとも消費期限を7日間とすることができ、すなわち、無照射の場合と比較して、消費期限を2日から7日間に延長することができる。
Results As a result, on all of the third, fifth, and seventh days of storage, remarkable growth suppression of the number of bacteria was observed when irradiated with LED, as compared with the case without LED irradiation. The general viable cell count is the most representative index indicating the degree of microbial contamination of food, and is known as an index reflecting the state of microbial contamination. As a general criterion, the general bacterial count is less than 10 5 CFU / g for cooked foods and less than 10 6 CFU / g for unheated foods. In this test example, in the case of no LED irradiation, the expiration date had to be 2 days according to the standard because it exceeded 10 5 CFU / g after 3 days of storage. In contrast, when the LED irradiation was performed, it was less than 10 4 CFU / g even after 5 days of storage, and was less than 10 5 CFU / g even after 7 days. Therefore, by the LED irradiation of this test example, the expiration date can be at least 7 days, that is, the expiration date can be extended from 2 days to 7 days as compared with the case of no irradiation.

試験例14
前記試験例の一部について、ピーク波長405nmを用いた場合の菌数変化を次の表2に示した。なお、前記試験例には示していないが、照度21.2 mW/cm2、照射時間10分、照射エネルギー25J/cm2とする以外は試験例2と同様にして一般細菌数を決定した結果も表2に示す。
Test Example 14
Table 2 below shows the change in the number of bacteria when a peak wavelength of 405 nm was used for some of the test examples. Although not shown in the test example, the results of determining the number of general bacteria in the same manner as in test example 2 except that the illuminance was 21.2 mW / cm 2 , the irradiation time was 10 minutes, and the irradiation energy was 25 J / cm 2 were also shown in the table. It is shown in FIG.

表2中、例えば、照度12.48mW/cm2、照射エネルギー7.5J/cm2の欄に示す「16/34(5分)」は、照度12.48mW/cm2、照射エネルギー7.5J/cm2、照射5分間でLEDを照射した場合、照射直後は、LED無照射に対してLED照射により一般細菌数が16%減少し、2.6℃48時間冷蔵保存後は、LED無照射に対してLED照射により一般細菌数が34%減少したことを示す。また、表2中の網掛け部分は、2.6℃48時間冷蔵保存後であっても、LED照射により静菌効果が得られたことを示す。 In Table 2, for example, the illuminance 12.48mW / cm 2, shown in the column of the irradiation energy 7.5J / cm 2 "16/34 (5 min)", the illuminance 12.48mW / cm 2, irradiation energy 7.5J / cm 2, When the LED is irradiated for 5 minutes, immediately after irradiation, the number of general bacteria decreases by 16% by LED irradiation compared to LED non-irradiation. This indicates that the number of general bacteria has been reduced by 34%. The shaded portion in Table 2 indicates that the bacteriostatic effect was obtained by LED irradiation even after refrigerated storage at 2.6 ° C. for 48 hours.

表2から理解できる通り、照度且つ照射エネルギーを一定の範囲内とすることにより、より効果的に細菌の増殖を抑制することができ、特に、照射直後の顕著な殺菌や、冷蔵保存後の顕著な細菌増殖抑制効果(静菌効果)が得られることが分かった。   As can be understood from Table 2, by setting the illuminance and irradiation energy within a certain range, it is possible to more effectively suppress the growth of bacteria, and in particular, remarkable sterilization immediately after irradiation and remarkable after refrigerated storage. It was found that an excellent bacterial growth inhibitory effect (bacteriostatic effect) was obtained.

試験例15
試験手順
前記試験例2と同様にして釜揚げしらすを滅菌シャーレに広げ、25℃に設定したインキュベーター内でピーク波長280nmとする紫外線LED(NCSU234AE、日亜化学工業株式会社製)を800mm×600mmの基板に8×4=32個を備えた光源を用い1分間照射を行った。照射は上方からの一方向とし、照射距離10mmとした。その照度は、1個のLED直下で11.1mW/cm2であり、照射エネルギー0.67J/cm2とした。
Test Example 15
Test procedure In the same manner as in Test Example 2 above, the pot fried white sardine was spread on a sterile petri dish, and an ultraviolet LED (NCSU234AE, manufactured by Nichia Chemical Industry Co., Ltd.) having a peak wavelength of 280 nm in an incubator set at 25 ° C. was 800 mm × 600 mm. Irradiation was performed for 1 minute using a light source having 8 × 4 = 32 substrates. The irradiation was performed in one direction from above, and the irradiation distance was 10 mm. The illuminance was 11.1 mW / cm 2 immediately below one LED, and the irradiation energy was 0.67 J / cm 2 .

次いで、試験例2に記載するピーク波長405nm、照度12.48mW/cm2、10分間、照射エネルギー15J/cm2での照射を行った。また、該ピーク波長405nmでの別の照射条件として、照度21.2mW/cm2、10分間、照射エネルギー25J/cm2での照射を行った(光源からしらすまでの距離は上側19mm、下側20mm)。 Next, irradiation was performed at a peak wavelength of 405 nm, an illuminance of 12.48 mW / cm 2 , and an irradiation energy of 15 J / cm 2 for 10 minutes as described in Test Example 2. Further, as another irradiation condition at the peak wavelength of 405 nm, irradiation was performed at an illuminance of 21.2 mW / cm 2 for 10 minutes and an irradiation energy of 25 J / cm 2 (the distance from the light source to the upper part was 19 mm on the upper side and 20 mm on the lower side. ).

照射直後、2.6℃48時間冷蔵保存し、保存後の一般細菌数及びブドウ球菌数を決定した。また、紫外線LED照射のみ、可視光LED照射のみについても、照射直後、保存後の一般細菌数及びブドウ球菌数を決定した。   Immediately after the irradiation, the cells were refrigerated at 2.6 ° C. for 48 hours, and the numbers of general bacteria and staphylococci after storage were determined. In addition, the number of general bacteria and the number of staphylococci immediately after irradiation and after storage were determined for only UV LED irradiation and visible light LED irradiation.

結果
その結果、紫外線LEDと可視光LEDとを併用することにより、紫外線LED照射単独または可視光LED照射単独の場合と比較して、より高い細菌増殖抑制効果が得られた。特に、照度21.2mW/cm2、照射エネルギー25J/cm2とした場合は、紫外線LEDと組み合わせることによる相乗的な細菌増殖抑制効果が認められた。このように、前記可視光LED照射と組み合わせて、紫外線LED照射をはじめとする他の波長による照射を使用することができることが分かった。
Results As a result, by using the ultraviolet LED and the visible light LED together, a higher bacterial growth inhibitory effect was obtained as compared with the case of the ultraviolet LED irradiation alone or the case of the visible light LED irradiation alone. In particular, when the illuminance was 21.2 mW / cm 2 and the irradiation energy was 25 J / cm 2 , a synergistic effect of suppressing bacterial growth by combining with an ultraviolet LED was observed. Thus, it was found that irradiation with other wavelengths, including UV LED irradiation, could be used in combination with the visible LED irradiation.

試験例16
試験手順
前記試験例10と同様(但し、照射距離は上側を30.5mm、下側を31mmとし、上下ともに照度120.1mW/cm2に調整した)にして、入手した釜揚げしらすを滅菌シャーレに広げて、10℃に設定したインキュベーター内で、光源としてピーク波長405nm LED(NVSU333A(U405)、日亜化学工業株式会社製)、照度120.1mW/cm2にて、照射5分間、照射エネルギー72J/cm2(上下合計)、または照射34.7分間、照射エネルギー500J/cm2(上下合計)にて、LEDを照射した。
Test Example 16
Test procedure In the same manner as in Test Example 10 above (the irradiation distance was 30.5 mm on the upper side, 31 mm on the lower side, and the illuminance was adjusted to 120.1 mW / cm 2 on both the upper and lower sides), and the obtained pot-fried whitebait was spread on a sterile petri dish. In an incubator set at 10 ° C., a peak wavelength of 405 nm LED (NVSU333A (U405), manufactured by Nichia Corporation) was used as a light source at an illuminance of 120.1 mW / cm 2 for 5 minutes with an irradiation energy of 72 J / cm 2. The LED was irradiated at an irradiation energy of 500 J / cm 2 (total of upper and lower) for 2 (upper and lower) or irradiation for 34.7 minutes.

次いで、釜揚げしらすの味覚試験は、味認識装置(Insent Taste Sensing System,SA402B,インテリジェントセンサーテクノロジー社製)を用いて、該装置の評価手順に従い行った。   Next, the taste test of the pot-fried whitebait was performed using a taste recognition device (Insent Taste Sensing System, SA402B, manufactured by Intelligent Sensor Technology Co., Ltd.) according to the evaluation procedure of the device.

照射5分間の試験においては、(1)無照射0日、(2)照射直後、(3)無照射3℃保存2日後、(4)照射後3℃保存2日後、(5)無照射3℃保存5日後、(6)照射後3℃保存5日後、(7)無照射3℃保存7日後、(8)照射後3℃保存7日後のしらすを、それぞれ14-15g用いて評価した。(1)〜(8)の釜揚げしらすを滅菌パックに移し、10倍希釈となるよう滅菌超純水を加え、1〜2分間ホモジナイズ後上清を濾紙(FIRTER PAPER,glade2,ADVANTEC)で濾過し、70mL以上のろ液を得た。得られたろ液を-80℃で冷凍保存し、測定前日に2.6℃に移し、測定当日30℃で完全解凍した。   In the test for 5 minutes of irradiation, (1) 0 days without irradiation, (2) immediately after irradiation, (3) 2 days after storage at 3 ° C without irradiation, (4) 2 days after storage at 3 ° C after irradiation, (5) 3 days without irradiation Five days after storage at 5 ° C., (6) 5 days after storage at 3 ° C. after irradiation, (7) 7 days after storage at 3 ° C. without irradiation, and (8) white rice after 7 days after storage at 3 ° C. after irradiation, were evaluated using 14 to 15 g, respectively. Transfer the pot-fried whitebait (1) to (8) to a sterile pack, add sterile ultrapure water to make a 10-fold dilution, homogenize for 1 to 2 minutes, and filter the supernatant with filter paper (FIRTER PAPER, glade2, ADVANTEC). Then, a filtrate of 70 mL or more was obtained. The obtained filtrate was stored frozen at -80 ° C, transferred to 2.6 ° C the day before the measurement, and completely thawed at 30 ° C on the day of the measurement.

照射34.7分間の試験においては、(1)無照射0日、(2)照射直後のしらすを、それぞれ14-15g用いて、前述と同様にして処理、解凍した。   In the test for 34.7 minutes of irradiation, (1) 0 days without irradiation, and (2) 14 to 15 g of immediately after irradiation were used and treated and thawed in the same manner as described above.

前記味認識装置による味覚評価基準は次の通りである。これは該装置の規定の基準に従うものである。
<味覚評価>
(1)無照射0日試料を基準値0とし、他の試料(2)〜(8)の先味(酸味、苦味雑味、渋味刺激、旨味、塩味)、後味(苦味、渋味、旨味コク)を調べた。酸味は-13で除外、塩味は-6、その他はマイナス値で除外できるので、釜揚げしらすでは、塩味、旨味、苦味雑味、渋味刺激、旨味コクを調べることにより、味覚を評価した。該装置による味覚変化量1以上(味覚のプロでは0.5以上)でヒトの舌で感知できるとされる。
The taste evaluation criteria by the taste recognition device are as follows. This follows the prescribed criteria of the device.
<Taste evaluation>
(1) The non-irradiated 0-day sample was set as the reference value 0, and the other samples (2) to (8) had a first taste (acidity, bitterness, astringency, astringency, umami, saltiness) and a finish (bitterness, astringency, Umami koku) was examined. The sourness can be excluded by -13, the saltyness can be excluded by -6, and the others can be excluded by negative values. In the case of pot-fried whitebait, the taste was evaluated by examining the saltiness, umami, bitterness, astringency, and umami richness. It is said that a human tongue can sense a change in taste of 1 or more (0.5 or more for taste professionals) by the device.

結果
照射5分間における味覚試験の結果を次の図29に示す。変化量1以上でヒトの舌で感知できるとされるので、塩味、旨味、苦味雑味、渋味刺激、旨味コクの変化は、ヒトの舌で感知できないレベルであることが分かった。従って、該照射処理は、1週間冷蔵保存においても味覚品質に影響しないことが分かった。
Results The results of the taste test for 5 minutes of irradiation are shown in FIG. 29 below. Since the change amount of 1 or more is considered to be detectable by the human tongue, it was found that the changes in salty taste, umami, bitter taste, astringency stimulus, and umami richness were at levels that could not be detected by the human tongue. Therefore, it was found that the irradiation treatment did not affect the taste quality even in refrigerated storage for one week.

照射34.7分間における味覚試験の結果を次の図30に示す。高照射エネルギー500J/cm2で処理することにより、塩味が1.02増加した。この変化は、前記5分間照射直後の試料の塩味と比較すると顕著であったが、その他の味覚変化は、ヒトの舌では感知できないレベルであることが分かった。塩味の増加は、LED放射熱によるしらす含水量の減少に起因したと考えられた。従って、120mW/cm2での長時間照射は、釜揚げしらすの味覚品質を変化させ得るため、味覚変化抑制の点からは、該照度での照射時間は34.7分間未満にしたほうが良いことが分かった。 The results of the taste test for 34.7 minutes of irradiation are shown in the following FIG. Treatment with high irradiation energy of 500 J / cm 2 increased saltiness by 1.02. This change was remarkable when compared with the salty taste of the sample immediately after the 5-minute irradiation, but it was found that other taste changes were at levels that could not be detected by the human tongue. The increase in saltiness was thought to be due to a decrease in the water content of shirasu caused by LED radiant heat. Therefore, irradiation for a long time at 120 mW / cm 2 can change the taste quality of fried whitebait, and from the viewpoint of suppressing taste change, it is better to set the irradiation time at the illuminance to less than 34.7 minutes. Was.

試験例17
試験手順
真菌(Cladosporium cladosporioides IFM63149(カビ))をポテトデキストロース培地(PDA培地、日水製薬株式会社製)に植菌し、25℃で14日間、倒立で静置培養した。培養後、培地に0.1%(w/v) Tween 80含有0.85%(w/v) 塩化ナトリウム水溶液を添加し、コンラージ棒で胞子をかき取った。このようにして得た懸濁液から滅菌済みのガーゼ入りチップを用いて菌糸を取り除き、6570×g(3分、4℃)で遠心分離により集菌し、0.8%塩化ナトリウム水溶液で洗菌した。洗菌操作は2回行った。滅菌水で再懸濁後、血球計算盤(手動式血球計数装置、エルマ販売株式会社製)を用いて分生子数を計数し、分生子懸濁液の濃度を算出し、滅菌水で希釈し5×106conidia/mLとなるように調製した。
Test Example 17
Test Procedure A fungus (Cladosporium cladosporioides IFM63149 (mold)) was inoculated into a potato dextrose medium (PDA medium, manufactured by Nissui Pharmaceutical Co., Ltd.) and allowed to stand still at 25 ° C. for 14 days. After the culture, a 0.85% (w / v) aqueous sodium chloride solution containing 0.1% (w / v) Tween 80 was added to the medium, and the spores were scraped off with a conical rod. The mycelium was removed from the suspension thus obtained by using a sterilized gauze-containing chip, and the cells were collected by centrifugation at 6570 × g (3 minutes, 4 ° C.) and washed with a 0.8% aqueous sodium chloride solution. . The washing operation was performed twice. After resuspension in sterile water, the number of conidia is counted using a hemocytometer (manual blood cell counter, manufactured by Elma Sales Co., Ltd.), the concentration of the conidia suspension is calculated, and the suspension is diluted with sterile water. It was adjusted to 5 × 10 6 conidia / mL.

本試験例では、試験化合物として、フェルラ酸、フェルラ酸メチルエステル、カフェ酸、クマル酸、クロロゲン酸、バニリン酸、没食子酸、バニリンを用いた。フェルラ酸メチルエステル以外は市販品を用いた(フェルラ酸:商品名trans-ferulic acid、カフェ酸:商品名caffeic acid、クマル酸:商品名trans-p-coumaric acid、バニリン酸:商品名vanillic acid、没食子酸:商品名gallic acid hydrate、バニリン:商品名vanillin(いずれも東京化成工業株式会社製)、クロロゲン酸:商品名chlorogenic acid(シグマアルドリッチジャパン製))。フェルラ酸メチルエステルは、下記のように化学合成により得た。   In this test example, ferulic acid, ferulic acid methyl ester, caffeic acid, coumaric acid, chlorogenic acid, vanillic acid, gallic acid, and vanillin were used as test compounds. Commercial products were used except for ferulic acid methyl ester (ferulic acid: trade name trans-ferulic acid, caffeic acid: trade name caffeic acid, coumaric acid: trade name trans-p-coumaric acid, vanillic acid: trade name vanillic acid, Gallic acid: trade name gallic acid hydrate, vanillin: trade name vanillin (all manufactured by Tokyo Chemical Industry Co., Ltd.), chlorogenic acid: trade name chlorogenic acid (product made by Sigma-Aldrich Japan)). Ferulic acid methyl ester was obtained by chemical synthesis as described below.

フェルラ酸310mg(1.596mmol)をメタノール7 mLに溶解し、濃硫酸31.3mg(0.2eq.)を添加した。窒素気流下で還流させることで反応させた。4時間反応後、エバポレーターで溶媒を除去し、水を添加し超音波処理することにより残渣を洗浄した。シリカゲルカラム(Silica gel 120、spherical、70-230 mesh、ナカライテクス株式会社製)を用い、移動相をヘキサンと酢酸エチルの混合溶媒として精製した。精製物(colorless oil、278 mg、収率84%)は、薄層クロマトグラフィー(Silica gel 60 F254、Merck KGaA製)により1成分であることを確認し、1H-NMR(CDCl3)スペクトル解析により、目的化合物(フェルラ酸メチルエステル)の構造であることを確認した。 310 mg (1.596 mmol) of ferulic acid was dissolved in 7 mL of methanol, and 31.3 mg (0.2 eq.) Of concentrated sulfuric acid was added. The reaction was carried out by refluxing under a nitrogen stream. After the reaction for 4 hours, the solvent was removed by an evaporator, water was added, and the residue was washed by sonication. The mobile phase was purified as a mixed solvent of hexane and ethyl acetate using a silica gel column (Silica gel 120, spherical, 70-230 mesh, manufactured by Nacalai Tex Corporation). The purified product (colorless oil, 278 mg, yield 84%) was confirmed to be one component by thin layer chromatography (Silica gel 60 F254, manufactured by Merck KGaA), and 1 H-NMR (CDCl 3 ) spectrum analysis was performed. As a result, it was confirmed that the compound had the structure of the target compound (ferulic acid methyl ester).

1H NMR (400 MHz, CDCl3, δin ppm): 3.73 (s, 3H, OCH3), 3.86 (s, 3H, COOCH3), 6.22 (d, 1H, J = 15.9 Hz, ethylene α-CH), 6.85 (d, J = 8.2 Hz, 1H, 4-hydroxy-3-methoxyphenyl group 5-position-CH), 6.96 (s, 1H, 4hydroxy-3-methoxyphenyl group 2-position-CH), 7.01 (d, J = 8.2 Hz, 1H, 4-hydroxy-3-methoxyphenyl group 6-position-CH), 7.55 (d, 1H, J = 15.9 Hz, ethylene β-CH) 1 H NMR (400 MHz, CDCl 3 , δin ppm): 3.73 (s, 3H, OCH 3 ), 3.86 (s, 3H, COOCH 3 ), 6.22 (d, 1H, J = 15.9 Hz, ethylene α-CH) , 6.85 (d, J = 8.2 Hz, 1H, 4-hydroxy-3-methoxyphenyl group 5-position-CH), 6.96 (s, 1H, 4hydroxy-3-methoxyphenyl group 2-position-CH), 7.01 (d, J = 8.2 Hz, 1H, 4-hydroxy-3-methoxyphenyl group 6-position-CH), 7.55 (d, 1H, J = 15.9 Hz, ethylene β-CH)

なお、一例を説明すると、フェルラ酸は、前記一般式(1)において、4位にHO−が置換し、3位にRO−が置換し、5位にR−が置換し、Rがメチル基、Rが水素原子、Rが炭素数2の直鎖状アルケニレン基(ビニレン基)、Rが水酸基で示される。 Note that, as an example, ferulic acid can be obtained by substituting HO— in the 4-position, R 1 O— in the 3-position, R 2 — in the 5-position, and R 2 in the general formula (1). 1 is a methyl group, R 2 is a hydrogen atom, R 3 is a linear alkenylene group (vinylene group) having 2 carbon atoms, and R 4 is a hydroxyl group.

フェルラ酸メチルエステルは、前記一般式(1)において、4位にHO−が置換し、3位にRO−が置換し、5位にR−が置換し、Rがメチル基、Rが水素原子、Rが炭素数2の直鎖状アルケニレン基(ビニレン基)、Rが炭素数1の直鎖状アルコキシ基(メトキシ基)で示される。 Ferulic acid methyl ester, the general formula (1), the 4-position HO- is substituted, R 1 O-is substituted at the 3-position, R 2 in the 5-position - is substituted, R 1 is a methyl group, R 2 is a hydrogen atom, R 3 is a straight-chain alkenylene group having 2 carbon atoms (vinylene group), and R 4 is a straight-chain alkoxy group having 1 carbon atom (methoxy group).

バニリン酸は、前記一般式(1)において、4位にHO−が置換し、3位にRO−が置換し、5位にR−が置換し、Rがメチル基、Rが水素原子、Rが直接結合、Rが水酸基で示される。 Vanillic acid, in the general formula (1), 4-position HO- is substituted, R 1 O-is substituted at the 3-position, R 2 in the 5-position - is substituted, R 1 is a methyl group, R 2 Is a hydrogen atom, R 3 is a direct bond, and R 4 is a hydroxyl group.

バニリンは、前記一般式(1)において、4位にHO−が置換し、3位にRO−が置換し、5位にR−が置換し、Rがメチル基、Rが水素原子、Rが直接結合、Rが水素原子で示される。 Vanillin, in the general formula (1), the 4-position HO- is substituted, R 1 O-is substituted at the 3-position, R 2 in the 5-position - is substituted, R 1 is a methyl group, R 2 is A hydrogen atom, R 3 is a direct bond, and R 4 is a hydrogen atom.

各試験化合物は、80%ジメチルスルホキシド(DMSO、和光特級、和光純薬株式会社製)を用いて、試験濃度の200倍濃度に調製した。後述の試験における菌液中でのDMSO最終濃度は0.4%とした。   Each test compound was adjusted to a concentration 200 times the test concentration using 80% dimethyl sulfoxide (DMSO, Wako Special Grade, manufactured by Wako Pure Chemical Industries, Ltd.). The final concentration of DMSO in the bacterial solution in the test described below was 0.4%.

前述のようにして得た菌懸濁液を滅菌水で希釈して、24穴プレート(IWAKI)の撹拌子を入れたウェルに入れ(終濃度5×104conidia/mL)、前記試験化合物を2.5mMまたは3.0mMになるように各ウェルにそれぞれ添加した(全量2.65mL)。直ちに初発菌数測定のために、菌液150μLを採取し、0.1%(w/v) Tween 80含有サブロー液体培地1.35mL(1L中にBactoTM Peptone10g(BD社製)、D(+)-グルコース40g(和光純薬工業株式会社製))に希釈した。次いで、25℃に設定したインキュベーター内で、スターラーを用いて菌液を撹拌しながら、1ウェルに対して1個のLEDを用い上方から下方に向けてLED照射を行った。光源として、ピーク波長405 nm LED(NVSU333A(U405)、日亜化学工業株式会社製)を24穴プレートのウェル底面から上方に38.0mmの距離で設置した。その照射距離での照度は、試験前に測定し84.6mW/cm2であった。 The bacterial suspension obtained as described above was diluted with sterile water and placed in a well of a 24-well plate (IWAKI) containing a stirrer (final concentration 5 × 10 4 conidia / mL), and the test compound was added to the suspension. 2.5 mM or 3.0 mM was added to each well (total amount: 2.65 mL). Immediately for initial bacterial count measurement, 150 μL of bacterial solution was collected, and 1.35 mL of Sabouraud liquid medium containing 0.1% (w / v) Tween 80 (10 g of Bacto Peptone in 1 L (manufactured by BD), D (+)-glucose 40 g (manufactured by Wako Pure Chemical Industries, Ltd.). Then, in a incubator set at 25 ° C., while stirring the bacterial solution using a stirrer, one well was irradiated with LED from above using one LED downward. As a light source, a 405 nm peak wavelength LED (NVSU333A (U405), manufactured by Nichia Corporation) was installed at a distance of 38.0 mm above the bottom of the well of the 24-well plate. The illuminance at the irradiation distance was measured before the test, and was 84.6 mW / cm 2 .

60分間照射後(照射エネルギー305J/cm2)、ウェルから菌液を150μL採取し、0.1%(w/v) Tween 80含有サブロー液体培地1.35mLに希釈した。更に、この希釈液を0.1%(w/v) Tween 80入り0.8%塩化ナトリウム水溶液で希釈して、10倍段階希釈系列を作製した。各段階希釈液100μLをPDA培地に塗布し、25℃で3日間培養した。培養後にコロニーカウントを行い、生菌数を算出した。試験データはn=3で、結果は3回の実験の平均値である。 After irradiation for 60 minutes (irradiation energy: 305 J / cm 2 ), 150 μL of the bacterial solution was collected from the well and diluted into 1.35 mL of Sabouraud liquid medium containing 0.1% (w / v) Tween 80. Further, this diluted solution was diluted with a 0.8% aqueous sodium chloride solution containing 0.1% (w / v) Tween 80 to prepare a 10-fold serial dilution series. 100 μL of each serial dilution was applied to a PDA medium and cultured at 25 ° C. for 3 days. After the culture, colony count was performed to calculate the number of viable bacteria. The test data is n = 3 and the results are the average of three experiments.

また、前記手順において、試験化合物を添加しない以外は同様にして(すなわち滅菌水で希釈した菌懸濁液をDMSO 0.4%溶液と混合)LED照射を行った場合、前記試験化合物を同様に添加したもののLED照射を行わない場合(暗所)、前記試験化合物を添加せずLED照射も行わない場合(暗所)についても試験を行い、同様にして生菌数を算出した。   In the above procedure, when the LED irradiation was performed in the same manner except that the test compound was not added (that is, the bacterial suspension diluted with sterile water was mixed with a 0.4% DMSO solution), the test compound was similarly added. However, when no LED irradiation was performed (dark place) and when the test compound was not added and LED irradiation was not performed (dark place), the test was also performed, and the viable cell count was calculated in the same manner.

結果
前記手順において、試験化合物を添加せずLED照射も行わない場合、60分後の菌数は初発菌数と同程度であった。これに対して、前記手順において、試験化合物を添加しない以外は同様にしてLED照射を行った場合、60分後の菌数は初発菌数と比較して53%減少した。このように、前記試験化合物を用いない場合であっても、前記LED照射により、細菌と同様に、真菌の増殖も効果的に抑制することができた。
Results In the above procedure, when the test compound was not added and the LED irradiation was not performed, the number of bacteria after 60 minutes was almost the same as the initial number of bacteria. On the other hand, when the LED irradiation was performed in the same manner except that the test compound was not added in the above procedure, the number of bacteria after 60 minutes was reduced by 53% compared to the number of initial bacteria. Thus, even when the test compound was not used, the LED irradiation could effectively suppress the growth of fungi as well as bacteria.

また、前記手順において、試験化合物を添加し且つLED照射を行った結果(前記試験化合物の添加量2.5mM)を図31に示す。図31において、FAはフェルラ酸、VAはバニリン酸、Vaniはバニリン、FAOMeはフェルラ酸メチルエステル、CaAはカフェ酸、GAは没食子酸、CAはクマル酸、ChAはクロロゲン酸を示し、DMSOは試験化合物を添加していない場合を示し、Initialは初発菌数、60minは60分間のLED照射後(照射エネルギー305J/cm2)の菌数を示す。 FIG. 31 shows the results of adding a test compound and performing LED irradiation in the above procedure (2.5 mM of the test compound added). In FIG. 31, FA indicates ferulic acid, VA indicates vanillic acid, Vani indicates vanillin, FAOMe indicates ferulic acid methyl ester, CaA indicates caffeic acid, GA indicates gallic acid, CA indicates coumaric acid, ChA indicates chlorogenic acid, and DMSO indicates test. The case where no compound is added is shown. Initial shows the initial number of bacteria, and 60 min shows the number of bacteria after 60 minutes of LED irradiation (irradiation energy of 305 J / cm 2 ).

図31に示す通り、試験化合物としてCaA、GA、ChAを用いた場合は、試験化合物を用いない場合(図中DMSO)と同程度以下の菌数の減少しか認められなかった。例えば、GAを用いた場合、60分後の菌数は初発菌数と比較して51%の減少にとどまった。これに対して、試験化合物としてFA、VA、Vani、FAOMeを用いた場合は、著しい菌数の減少が認められ、初発菌数と比較して、60分後の菌数がFA、Vani、FAOMeでは99%以上減少し、VAでも94%減少した。試験化合物としてCAを用いた場合は、CaA、GA、ChAを用いた場合よりも一層の菌数減少が認められたが、60分後の菌数は、初発菌数と比較して83%の減少であった。このことから、化合物としてFA、VA、Vani、FAOMeを用いた場合は、真菌の増殖を著しく抑制できることが確認された。   As shown in FIG. 31, when CaA, GA, and ChA were used as test compounds, a decrease in the number of bacteria was observed, which was about the same or less as when no test compound was used (DMSO in the figure). For example, when GA was used, the number of bacteria after 60 minutes was reduced by only 51% as compared with the number of initial bacteria. In contrast, when FA, VA, Vani, and FAOMe were used as test compounds, a remarkable decrease in the number of bacteria was observed, and the number of bacteria 60 minutes later was FA, Vani, and FAOMe, compared to the initial number of bacteria. , And VA decreased by 94%. When CA was used as the test compound, a further decrease in the number of bacteria was observed than when CaA, GA, and ChA were used, but the number of bacteria after 60 minutes was 83% of the initial number of bacteria. It was a decrease. From this, it was confirmed that when FA, VA, Vani, and FAOMe were used as compounds, the growth of fungi could be remarkably suppressed.

また、前記手順において、試験化合物を同様に添加したもののLED照射を行わなかった結果(前記試験化合物の添加量2.5mM)を図32に示す。図32に示す通り、前記試験化合物を同様に添加したもののLED照射を行わない場合、試験化合物の種類によらず、60分後に有意な菌数の減少は認められず、いずれも前記試験化合物を添加せずLED照射も行わない場合(図32のDMSO)と同程度であった。このことから、前記試験化合物を微生物に接触させるだけでは菌数の減少は認められないことが分かった。また、図31及び32の結果から、FA、VA、Vani、FAOMeとの接触とLED照射との併用によれば、菌数の一層著しい減少が認められ、従って、微生物の増殖を著しく抑制できることが確認された。   In addition, FIG. 32 shows the results of the procedure in which the test compound was similarly added but LED irradiation was not performed (the amount of the test compound added was 2.5 mM). As shown in FIG. 32, when the test compound was similarly added but LED irradiation was not performed, a significant decrease in the number of bacteria was not observed after 60 minutes regardless of the type of the test compound. It was almost the same as the case where no LED was added and no LED irradiation was performed (DMSO in FIG. 32). From this, it was found that the number of bacteria was not reduced only by bringing the test compound into contact with the microorganism. Further, from the results of FIGS. 31 and 32, the use of the LED irradiation in combination with the contact with FA, VA, Vani, and FAOMe resulted in a further remarkable decrease in the number of bacteria, and therefore, it was possible to significantly suppress the growth of microorganisms. confirmed.

なお、結果には示さないが前記試験化合物の添加量が3.0mMである場合も、同様の傾向が認められ、例えば、VAとの接触とLED照射とを併用した場合、60分後(照射エネルギー305J/cm2)の菌数は、初発菌数と比較して99%以上減少していた。また、結果には示さないが、FAの添加量を5.1mMとし、LED照射時間を20分(照射エネルギー102J/cm2)とした以外は前述と同様に試験を行った場合も、20分後の菌数は、初発菌数と比較して99%以上減少し、微生物の増殖を著しく抑制することができることが確認された。 Although not shown in the results, the same tendency was observed when the amount of the test compound added was 3.0 mM. For example, when both the contact with VA and the LED irradiation were used, 60 minutes later (irradiation energy) The bacterial count of 305 J / cm 2 ) was reduced by 99% or more compared to the initial bacterial count. Although not shown in the results, the test was performed in the same manner as above except that the amount of FA added was 5.1 mM and the LED irradiation time was 20 minutes (irradiation energy: 102 J / cm 2 ). The number of bacteria decreased by 99% or more as compared with the number of bacteria that started, and it was confirmed that the growth of microorganisms could be remarkably suppressed.

試験例18
試験手順
真菌(Candida albicans NBRC 1385(酵母))をサブロー液体培地に1白金耳植菌し、28℃で24時間、振盪培養した。培養後、6570×g(3分、4℃)で遠心分離により集菌し、0.8%塩化ナトリウム水溶液で洗菌した。洗菌操作は2回行った。集菌した菌を6mLの滅菌水で再懸濁し、菌液を分光光度計(OD=660 nm)で測定し、OD660=0.158(2×106cells/mL)になるように濁度を調整した。
Test Example 18
Test Procedure A fungus (Candida albicans NBRC 1385 (yeast)) was inoculated with one platinum loop into Sabouraud's liquid medium and cultured with shaking at 28 ° C for 24 hours. After the culture, the cells were collected by centrifugation at 6570 × g (3 minutes, 4 ° C.), and washed with a 0.8% aqueous sodium chloride solution. The washing operation was performed twice. The collected bacteria are resuspended in 6 mL of sterile water, and the bacterial solution is measured with a spectrophotometer (OD = 660 nm), and the turbidity is adjusted so that OD 660 = 0.158 (2 × 10 6 cells / mL). It was adjusted.

本試験例では、試験化合物として、フェルラ酸、フェルラ酸メチルエステル、カフェ酸、クマル酸、クロロゲン酸、バニリン酸、没食子酸、バニリンを用いた。これらは、前記試験例17と同じ化合物であり、前述と同様に、各試験化合物は、80%ジメチルスルホキシドを用いて、試験濃度の200倍濃度に調製した。後述の試験における菌液中でのDMSO最終濃度は0.4%とした。   In this test example, ferulic acid, ferulic acid methyl ester, caffeic acid, coumaric acid, chlorogenic acid, vanillic acid, gallic acid, and vanillin were used as test compounds. These are the same compounds as in Test Example 17 described above, and each test compound was prepared at a concentration 200 times the test concentration using 80% dimethyl sulfoxide in the same manner as described above. The final concentration of DMSO in the bacterial solution in the test described below was 0.4%.

前述のようにして得た菌懸濁液を滅菌水で希釈して、24穴プレートの撹拌子を入れたウェルに入れ(終濃度2×105cells/mL)、前記試験化合物を2.5mMになるように各ウェルにそれぞれ添加した(全量2.65mL)。直ちに初発菌数測定のために、菌液150μLを採取し、0.1%(w/v) Tween 80含有サブロー液体培地1.35mLに希釈した。次いで、25℃に設定したインキュベーター内で、スターラーを用いて菌液を撹拌しながら、1ウェルに対して1個のLEDを用い上方から下方に向けてLED照射を行った。光源として、前記試験例17と同じLEDを用い、24穴プレートのウェル底面から上方に38.0mmの距離で設置した。その照射距離での照度は、試験前に測定し84.6mW/cm2であった。 The bacterial suspension obtained as described above was diluted with sterile water, and placed in a well of a 24-well plate containing a stirrer (final concentration 2 × 10 5 cells / mL), and the test compound was adjusted to 2.5 mM. Each well was added to each well (total amount: 2.65 mL). Immediately, for the measurement of the number of initial bacteria, 150 μL of the bacterial solution was collected and diluted with 1.35 mL of Sabouraud liquid medium containing 0.1% (w / v) Tween 80. Then, in a incubator set at 25 ° C., while stirring the bacterial solution using a stirrer, one well was irradiated with LED from above using one LED downward. The same LED as in Test Example 17 was used as a light source, and the LED was installed at a distance of 38.0 mm above the bottom of the well of the 24-well plate. The illuminance at the irradiation distance was measured before the test, and was 84.6 mW / cm 2 .

40分間照射後(照射エネルギー203J/cm2)、ウェルから菌液を150μL採取し、0.1%(w/v) Tween 80含有サブロー液体培地1.35mLに希釈した。更に、この希釈液を0.1%(w/v) Tween 80入り0.8%塩化ナトリウム水溶液で希釈して、10倍段階希釈系列を作製した。各段階希釈液100μLをサブロー寒天培地(日水製薬株式会社製)に塗布し、28℃で3日間培養した。培養後にコロニーカウントを行い、生菌数を算出した。試験データはn=3で、結果は3回の実験の平均値である。 After irradiation for 40 minutes (irradiation energy: 203 J / cm 2 ), 150 μL of the bacterial solution was collected from the well and diluted into 1.35 mL of Sabouraud liquid medium containing 0.1% (w / v) Tween 80. Further, this diluted solution was diluted with a 0.8% aqueous sodium chloride solution containing 0.1% (w / v) Tween 80 to prepare a 10-fold serial dilution series. 100 μL of each serial dilution was applied to Sabouraud agar medium (manufactured by Nissui Pharmaceutical Co., Ltd.) and cultured at 28 ° C. for 3 days. After the culture, colony count was performed to calculate the number of viable bacteria. The test data is n = 3 and the results are the average of three experiments.

また、前記手順において、試験化合物を添加しない以外は同様にして(すなわち滅菌水で希釈した菌懸濁液をDMSO 0.4%溶液と混合)LED照射を行った場合、前記試験化合物を同様に添加したもののLED照射を行わない場合(暗所)、前記試験化合物を添加せずLED照射も行わない場合(暗所)についても試験を行い、同様にして生菌数を算出した。   In the above procedure, when the LED irradiation was performed in the same manner except that the test compound was not added (that is, the bacterial suspension diluted with sterile water was mixed with a 0.4% DMSO solution), the test compound was similarly added. However, when no LED irradiation was performed (dark place) and when the test compound was not added and LED irradiation was not performed (dark place), the test was also performed, and the viable cell count was calculated in the same manner.

結果
前記手順において、試験化合物を添加せずLED照射も行わない場合、40分後の菌数は初発菌数と同程度であった。これに対して、前記手順において、試験化合物を添加しない以外は同様にしてLED照射を行った場合、40分後の菌数は初発菌数と比較して45%減少した。このように、前記試験化合物を用いない場合であっても、前記LED照射により、細菌と同様に、真菌の増殖も効果的に抑制することができた。
Results In the above procedure, when the test compound was not added and LED irradiation was not performed, the number of bacteria after 40 minutes was almost the same as the initial number of bacteria. On the other hand, in the above procedure, when LED irradiation was performed in the same manner except that the test compound was not added, the number of bacteria after 40 minutes was reduced by 45% as compared with the number of initial bacteria. Thus, even when the test compound was not used, the LED irradiation could effectively suppress the growth of fungi as well as bacteria.

前記手順において、試験化合物を添加し且つLED照射を行った結果を図33に示す。図33においても、図31と同様に、FAはフェルラ酸、VAはバニリン酸、Vaniはバニリン、FAOMeはフェルラ酸メチルエステル、CaAはカフェ酸、GAは没食子酸、CAはクマル酸、ChAはクロロゲン酸を示し、DMSOは試験化合物を添加していない場合を示し、Initialは初発菌数、40minは40分間のLED照射後(照射エネルギー203J/cm2)の菌数を示す。 FIG. 33 shows the results of adding the test compound and irradiating the LED in the above procedure. 33, as in FIG. 31, FA is ferulic acid, VA is vanillic acid, Vani is vanillin, FAOMe is ferulic acid methyl ester, CaA is caffeic acid, GA is gallic acid, CA is coumaric acid, and ChA is chlorogen. DMSO indicates the case where the test compound was not added, Initial indicates the initial bacterial count, and 40 min indicates the bacterial count after LED irradiation for 40 minutes (irradiation energy of 203 J / cm 2 ).

図33に示す通り、試験化合物としてCaA、GA、CA、ChAを用いた場合は、試験化合物を用いない場合(表中DMSO)よりも菌数が減少したが、それぞれの40分後の菌数は初発菌数と比較して72%、58%、78%、81%の減少にとどまった。これに対して、試験化合物としてFA、VA、Vani、FAOMeを用いた場合は著しい菌数の減少が認められ、初発菌数と比較して、いずれも99%以上減少した。このことから、化合物としてFA、VA、Vani、FAOMeを用いた場合は、真菌の増殖を著しく抑制できることが確認された。   As shown in FIG. 33, when CaA, GA, CA, and ChA were used as test compounds, the number of bacteria was smaller than when no test compound was used (DMSO in the table). Decreased by 72%, 58%, 78% and 81% compared to the number of new bacteria. On the other hand, when FA, VA, Vani, and FAOMe were used as test compounds, a remarkable decrease in the number of bacteria was observed, and all of them decreased by 99% or more compared with the number of initial bacteria. From this, it was confirmed that when FA, VA, Vani, and FAOMe were used as compounds, the growth of fungi could be remarkably suppressed.

また、前記手順において、試験化合物を同様に添加したもののLED照射を行わなかった結果を図34に示す。図34に示す通り、前記試験化合物を同様に添加したもののLED照射を行わない場合、試験化合物の種類によらず、40分後に有意な菌数の減少は認められず、いずれも前記試験化合物を添加せずLED照射も行わない場合(図34のDMSO)と同程度であった。このことから、前記試験化合物を微生物に接触させるだけでは菌数の減少は認められないことが分かった。また、図33及び34の結果からも、FA、VA、Vani、FAOMeとの接触とLED照射との併用によれば、菌数の一層著しい減少が認められ、従って、微生物の増殖を著しく抑制できることが確認された。   In addition, FIG. 34 shows the result of the above procedure, in which the test compound was similarly added but LED irradiation was not performed. As shown in FIG. 34, when the test compound was similarly added but LED irradiation was not performed, no significant decrease in the number of bacteria was observed after 40 minutes regardless of the type of the test compound. The result was almost the same as the case where no LED was added and no LED irradiation was performed (DMSO in FIG. 34). From this, it was found that the number of bacteria was not reduced only by bringing the test compound into contact with the microorganism. In addition, from the results of FIGS. 33 and 34, the use of the combination of the contact with FA, VA, Vani, and FAOMe together with the LED irradiation resulted in a further remarkable decrease in the number of bacteria, and therefore, the growth of microorganisms was significantly suppressed. Was confirmed.

Claims (13)

対象物に可視光LEDを光源とする可視光線照射を行う工程を含む、対象物における微生物の増殖抑制方法、
ここで、該照射が、可視光LEDのピーク波長が405〜421nmの範囲にあり、照度が4mW/cm以上であり、照射エネルギーが7.5J/cm以上となるように行われることを特徴とする、方法。
Including a step of irradiating the target with visible light using a visible light LED as a light source, a method for suppressing the growth of microorganisms in the target,
Here, the irradiation is performed such that the peak wavelength of the visible light LED is in the range of 405 to 421 nm, the illuminance is 4 mW / cm 2 or more, and the irradiation energy is 7.5 J / cm 2 or more. Features, methods.
照度が4〜500mW/cmである、請求項1に記載の方法。 Illuminance is 4~500mW / cm 2, The method of claim 1. 照射エネルギーが7.5〜500J/cmである、請求項1または2に記載の方法。 The method according to claim 1, wherein the irradiation energy is 7.5 to 500 J / cm 2 . 照射時間が1〜60分である、請求項1〜3のいずれかに記載の方法。 The method according to claim 1, wherein the irradiation time is 1 to 60 minutes. 対象物が、水産物、農作物、畜産物及びこれらの加工物からなる群より選択される少なくとも1種である、請求項1〜4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the object is at least one selected from the group consisting of marine products, agricultural products, livestock products, and processed products thereof. 更に、対象物にピーク波長が265nm以上405nm未満の範囲にある紫外線または可視光線を照射する工程を含む、請求項1〜5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, further comprising a step of irradiating the object with ultraviolet light or visible light having a peak wavelength in a range from 265 nm to less than 405 nm. 更に、対象物に、次の一般式(1)で表される化合物を接触させる工程を含む、請求項1〜6のいずれかに記載の方法:
(式中、Rは、炭素数1〜4の直鎖状または分岐鎖状アルキル基を示し、Rは、水素原子、ハロゲン原子、炭素数1〜4の直鎖状もしくは分岐鎖状アルコキシ基または炭素数1〜4の直鎖状もしくは分岐鎖状アルキル基を示し、Rは、直接結合、炭素数1〜12の直鎖状アルキレン基、炭素数2〜12の直鎖状アルケニレン基または炭素数2〜12の直鎖状アルキニレン基を示し、Rは、水素原子、水酸基または炭素数1〜18の直鎖状アルコキシ基を示す。
ここで、Rで示される炭素数1〜12の直鎖状アルキレン基、炭素数2〜12の直鎖状アルケニレン基及び炭素数2〜12の直鎖状アルキニレン基ならびにRで示される炭素数1〜18の直鎖状アルコキシ基上には、それぞれ独立して、ハロゲン原子、水酸基、アミノ基、スルホ基、ニトロ基、シアノ基、ケト基、イソシアネート基、イソチオシアネート基、炭素数1〜18の直鎖状または分岐鎖状のアルキル基、フェニル基及びシクロヘキシル基からなる群より選択される少なくとも1種の基が置換していてもよい。)
The method according to any one of claims 1 to 6, further comprising a step of contacting the object with a compound represented by the following general formula (1):
(Wherein, R 1 represents a linear or branched alkyl group having 1 to 4 carbon atoms, and R 2 represents a hydrogen atom, a halogen atom, or a linear or branched alkoxy group having 1 to 4 carbon atoms. R 3 represents a direct bond, a linear alkylene group having 1 to 12 carbon atoms, a linear alkenylene group having 2 to 12 carbon atoms, or a linear or branched alkyl group having 1 to 4 carbon atoms. Alternatively, it represents a linear alkynylene group having 2 to 12 carbon atoms, and R 4 represents a hydrogen atom, a hydroxyl group, or a linear alkoxy group having 1 to 18 carbon atoms.
Here, a linear alkylene group having 1 to 12 carbon atoms represented by R 3 , a linear alkenylene group having 2 to 12 carbon atoms and a linear alkynylene group having 2 to 12 carbon atoms, and a carbon atom represented by R 4 On the linear alkoxy groups of formulas 1 to 18, each independently represents a halogen atom, a hydroxyl group, an amino group, a sulfo group, a nitro group, a cyano group, a keto group, an isocyanate group, an isothiocyanate group, a carbon number of 1 to 18. At least one group selected from the group consisting of 18 linear or branched alkyl groups, phenyl groups and cyclohexyl groups may be substituted. )
対象物における微生物の増殖を抑制するために使用される可視光線照射装置であって、
可視光LEDを光源として対象物に可視光線照射を行う照射部を備え、
前記照射部は、ピーク波長が405〜421nmの範囲にあり、照度が4mW/cm以上であり、照射エネルギーが7.5J/cm以上となるように可視光線を照射する、可視光線照射装置。
A visible light irradiation device used to suppress the growth of microorganisms in an object,
Equipped with an irradiator that irradiates visible light to the object using a visible light LED as a light source,
The irradiating unit irradiates visible light so that the peak wavelength is in a range of 405 to 421 nm, the illuminance is 4 mW / cm 2 or more, and the irradiation energy is 7.5 J / cm 2 or more. .
対象物を支持する支持部を更に備え、
前記照射部は、前記支持部に支持された対象物に対して可視光線を照射するように配置されている、請求項8に記載の可視光線照射装置。
Further comprising a support portion for supporting the object,
The visible light irradiation device according to claim 8, wherein the irradiation unit is arranged to irradiate visible light to an object supported by the support unit.
前記支持部は、対象物を搬送するコンベヤであり、
前記照射部は、前記コンベヤで搬送される対象物に対して可視光線を照射するように配置されている、請求項9に記載の可視光線照射装置。
The support unit is a conveyor that conveys an object,
The visible light irradiation device according to claim 9, wherein the irradiation unit is arranged to irradiate the object conveyed by the conveyor with visible light.
前記支持部は、対象物の少なくとも一部を収容する収容体であり、
前記照射部は、前記収容体に収容される対象物に対して可視光線を照射するように配置されている、請求項9に記載の可視光線照射装置。
The support unit is a container that stores at least a part of the target object,
The visible light irradiation device according to claim 9, wherein the irradiation unit is arranged to irradiate a visible light to an object stored in the storage body.
前記照射部は、ピーク波長が265nm以上405nm未満の範囲にある紫外線または可視光線を対象物に照射する光源を更に有する、請求項8〜11のいずれかに記載の可視光線照射装置。 The visible light irradiation device according to claim 8, wherein the irradiation unit further includes a light source that irradiates an object with ultraviolet light or visible light having a peak wavelength in a range from 265 nm to less than 405 nm. 対象物に、次の一般式(1)で表される化合物を接触させる接触部を更に備える、請求項8〜12のいずれかに記載の可視光線照射装置:
(式中、Rは、炭素数1〜4の直鎖状または分岐鎖状アルキル基を示し、Rは、水素原子、ハロゲン原子、炭素数1〜4の直鎖状もしくは分岐鎖状アルコキシ基または炭素数1〜4の直鎖状もしくは分岐鎖状アルキル基を示し、Rは、直接結合、炭素数1〜12の直鎖状アルキレン基、炭素数2〜12の直鎖状アルケニレン基または炭素数2〜12の直鎖状アルキニレン基を示し、Rは、水素原子、水酸基または炭素数1〜18の直鎖状アルコキシ基を示す。
ここで、Rで示される炭素数1〜12の直鎖状アルキレン基、炭素数2〜12の直鎖状アルケニレン基及び炭素数2〜12の直鎖状アルキニレン基ならびにRで示される炭素数1〜18の直鎖状アルコキシ基上には、それぞれ独立して、ハロゲン原子、水酸基、アミノ基、スルホ基、ニトロ基、シアノ基、ケト基、イソシアネート基、イソチオシアネート基、炭素数1〜18の直鎖状または分岐鎖状のアルキル基、フェニル基及びシクロヘキシル基からなる群より選択される少なくとも1種の基が置換していてもよい。)
The visible light irradiation device according to any one of claims 8 to 12, further comprising a contact portion for bringing a compound represented by the following general formula (1) into contact with the target object:
(Wherein, R 1 represents a linear or branched alkyl group having 1 to 4 carbon atoms, and R 2 represents a hydrogen atom, a halogen atom, or a linear or branched alkoxy group having 1 to 4 carbon atoms. R 3 represents a direct bond, a linear alkylene group having 1 to 12 carbon atoms, a linear alkenylene group having 2 to 12 carbon atoms, or a linear or branched alkyl group having 1 to 4 carbon atoms. Alternatively, it represents a linear alkynylene group having 2 to 12 carbon atoms, and R 4 represents a hydrogen atom, a hydroxyl group, or a linear alkoxy group having 1 to 18 carbon atoms.
Here, a linear alkylene group having 1 to 12 carbon atoms represented by R 3 , a linear alkenylene group having 2 to 12 carbon atoms and a linear alkynylene group having 2 to 12 carbon atoms, and a carbon atom represented by R 4 On the linear alkoxy groups of formulas 1 to 18, each independently represents a halogen atom, a hydroxyl group, an amino group, a sulfo group, a nitro group, a cyano group, a keto group, an isocyanate group, an isothiocyanate group, a carbon number of 1 to 18. At least one group selected from the group consisting of 18 linear or branched alkyl groups, phenyl groups and cyclohexyl groups may be substituted. )
JP2019157391A 2018-08-31 2019-08-29 Method and device for inhibiting microbial growth using visible light LED Active JP7425456B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018163762 2018-08-31
JP2018163762 2018-08-31

Publications (2)

Publication Number Publication Date
JP2020036589A true JP2020036589A (en) 2020-03-12
JP7425456B2 JP7425456B2 (en) 2024-01-31

Family

ID=69736956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019157391A Active JP7425456B2 (en) 2018-08-31 2019-08-29 Method and device for inhibiting microbial growth using visible light LED

Country Status (1)

Country Link
JP (1) JP7425456B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022153956A1 (en) * 2021-01-14 2022-07-21 シャープ株式会社 Blower device and method for sterilizing filter for blower device
WO2023058144A1 (en) * 2021-10-06 2023-04-13 日本電信電話株式会社 Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2023084668A1 (en) * 2021-11-11 2023-05-19 日本電信電話株式会社 Ultraviolet light radiation system and control method
JP7385818B2 (en) 2020-02-18 2023-11-24 ウシオ電機株式会社 Bacteriostatic method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105581A1 (en) 2006-03-10 2007-09-20 Yuuzou Tsuchida Antimicrobial agent and antimicrobial composition
CN104832825A (en) 2014-02-12 2015-08-12 昆山东大智汇技术咨询有限公司 Seven-color LED preservation lamp
WO2016157343A1 (en) 2015-03-27 2016-10-06 中国電力株式会社 Method for preventing formation of biofilm
CN107183150A (en) 2017-06-13 2017-09-22 扬州大学 A kind of preservation method of belt leather Xiangsha dasheen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7385818B2 (en) 2020-02-18 2023-11-24 ウシオ電機株式会社 Bacteriostatic method
WO2022153956A1 (en) * 2021-01-14 2022-07-21 シャープ株式会社 Blower device and method for sterilizing filter for blower device
WO2023058144A1 (en) * 2021-10-06 2023-04-13 日本電信電話株式会社 Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2023084668A1 (en) * 2021-11-11 2023-05-19 日本電信電話株式会社 Ultraviolet light radiation system and control method

Also Published As

Publication number Publication date
JP7425456B2 (en) 2024-01-31

Similar Documents

Publication Publication Date Title
JP7425456B2 (en) Method and device for inhibiting microbial growth using visible light LED
Bhavya et al. Pulsed light processing of foods for microbial safety
Wang et al. Effect of UV-C treatment on the quality of fresh-cut lotus (Nelumbo nucifera Gaertn.) root
Kramer et al. Recent findings in pulsed light disinfection
Nicola et al. Fresh-cut produce quality: implications for a systems approach
Lacroix et al. Combined industrial processes with irradiation to assure innocuity and preservation of food products—a review
Artes et al. Minimal processing of fresh fruit, vegetables, and juices
Tomás-Callejas et al. Neutral and acidic electrolyzed water as emergent sanitizers for fresh-cut mizuna baby leaves
Shin et al. Effect of a combined treatment of rice bran protein film packaging with aqueous chlorine dioxide washing and ultraviolet-C irradiation on the postharvest quality of ‘Goha’strawberries
JP6010240B1 (en) Heating / cooling integrated food processing system
JP2001061459A (en) Retention of high freshness and high quality of food and apparatus therefor
CN102144662A (en) Storage and fresh-keeping method for fresh water caltrop
EP0906727A2 (en) Compositions and processes for maintaining the integrity of freshly-cut apples
KR101422763B1 (en) System and processing method of Fresh-cut Produce
Huang et al. Technological innovations enhance postharvest fresh food resilience from a supply chain perspective
Baicu et al. Trends in prolonging the post-harvest life of strawberries–a review
Ahmed Minimal processing and novel technologies applied to vegetables
RU2344681C1 (en) Method of production of preserved food &#34;fish with garnish and horseradish&#34;
Priss et al. Investigation of the respiration rate during storage of fruit vegetables under the influence of abiotic factors
Nicola et al. Fresh-cut produce: postharvest critical issues
US20190029293A1 (en) Method and device for disinfection and/or purification of a product
Nicola et al. Fresh-cut produce quality: Implications for postharvest
Inam-ur-Raheem et al. Effect of various minimal processing treatments on quality characteristics and nutritional value of spinach
KR100653733B1 (en) A method for making a frozen kimchi
Junaid et al. Preservation Strategies for Fruits and Vegetables: Past, Present, and Future Scope

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190924

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191009

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220817

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240112

R150 Certificate of patent or registration of utility model

Ref document number: 7425456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150