WO2024105873A1 - Light spot shaper and optical transmission system - Google Patents

Light spot shaper and optical transmission system Download PDF

Info

Publication number
WO2024105873A1
WO2024105873A1 PCT/JP2022/042822 JP2022042822W WO2024105873A1 WO 2024105873 A1 WO2024105873 A1 WO 2024105873A1 JP 2022042822 W JP2022042822 W JP 2022042822W WO 2024105873 A1 WO2024105873 A1 WO 2024105873A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
irradiation
optical fiber
unit
Prior art date
Application number
PCT/JP2022/042822
Other languages
French (fr)
Japanese (ja)
Inventor
亜弥子 岩城
聖 成川
誉人 桐原
勝久 田口
和秀 中島
隆 松井
千里 深井
悠途 寒河江
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/042822 priority Critical patent/WO2024105873A1/en
Publication of WO2024105873A1 publication Critical patent/WO2024105873A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Definitions

  • This disclosure relates to an optical spot shaper that can change the spot shape of irradiated light, and an optical transmission system equipped with the same.
  • Non-Patent Document 1 Mobile sterilization robot
  • the product of Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light.
  • the robot can irradiate ultraviolet light while moving around a room in a building such as a hospital room, thereby automatically sterilizing a wide area without human intervention.
  • Non-Patent Document 2 Freestanding Air Purifier
  • the product in Non-Patent Document 2 is a device that is installed on the ceiling or a predetermined location in a room and circulates the air in the room while sterilizing, etc.
  • Non-Patent Document 3 is a portable device equipped with an ultraviolet light source. A user can take the device to a desired area and irradiate ultraviolet light. Therefore, the device can be used in various places.
  • Non-Patent Document 1 irradiates high-power ultraviolet light, so the device is large-scale and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
  • the product of Non-Patent Document 2 sterilizes the circulated indoor air, and therefore cannot irradiate the location where sterilization is desired with ultraviolet light directly.
  • Non-Patent Document 3 cannot irradiate ultraviolet light onto, for example, narrow pipes or areas where people cannot enter.
  • the products described in non-patent literature have a problem in that they lack the versatility to irradiate ultraviolet light anywhere.
  • (3) Operability The product of Non-Patent Document 3 is portable and can irradiate ultraviolet light in various locations. However, in order to obtain sufficient sterilization effects at the target location, the user is required to have skills and knowledge, and there are problems with operability.
  • an ultraviolet light irradiation system 300 using optical fibers as shown in FIG. 1 can be considered.
  • ultraviolet light is transmitted from the ultraviolet light source unit 11a using a thin and easily bendable optical fiber as the optical transmission path 16, and the ultraviolet light output from the tip of the optical fiber, which is the path 14, is irradiated to the irradiation target area AR where pinpoint sterilization is desired. Since ultraviolet light can be irradiated to any location simply by moving the irradiation unit 13 at the tip of the path 14, the versatility of the above issue (2) can be resolved.
  • UV light irradiation systems in general have the following problems.
  • Deep ultraviolet light which is used in systems for sterilization using ultraviolet light, can cause cataracts and skin cancer when it is irradiated onto the eyes or skin of humans and other animals.
  • measures are required such as not irradiating ultraviolet light onto objects to be avoided, such as people and animals, or using ultraviolet light with a low illuminance that is not harmful to such objects.
  • an ultraviolet light irradiation system equipped with optical fiber irradiates the target irradiation area with ultraviolet light in a concentric pattern with the core of the optical fiber at the center.
  • the target irradiation area may include not only areas where sterilization, etc. is required (hereinafter, such areas will be referred to as “irradiation-required areas”), but also areas where sterilization, etc. is not required or areas where irradiation of ultraviolet light should be avoided (hereinafter, such areas will be referred to as "non-irradiation target areas").
  • the present invention aims to provide a light spot shaper and an optical transmission system that can irradiate light in a concentrated manner onto an area requiring irradiation, and can perform efficient light irradiation in a short period of time.
  • the light spot shaper of the present invention is provided with a mechanism for changing the physical arrangement of each of a plurality of optical fibers, thereby changing the light spot shape in the irradiation target area.
  • the "light spot shape” refers to the shape of the light irradiated on a surface perpendicular to the optical axis.
  • the light spot shape is, for example, a circle, an ellipse, a polygon, or an irregular shape like an amoeba (see FIG. 14).
  • the light spot shaper of the present invention is provided with an action part that applies force to an optical fiber group in which multiple optical fibers are gathered together so that their optical axis directions are the same, and changes the position of the optical fibers in a cross section perpendicular to the optical axis direction.
  • the action portion is a structure that applies the force to each of the optical fibers and changes the position of each of the optical fibers.
  • the action portion may be structured to apply the force to the entire optical fiber group, thereby changing the shape of the optical fiber group in the cross section.
  • the light spot shaper can suppress light irradiation to non-irradiation target areas by the function of the action portion, and can concentrate the irradiation light on the irradiation-required area by the amount of the suppressed optical power. For example, if the irradiation light is ultraviolet light, irradiation of the human body can be avoided. Also, since there is no need to operate at such low power that exposure of the human body to ultraviolet light can be ignored, sterilization of the irradiation target area (irradiation required area) can be completed in a short time. Furthermore, ultraviolet light can be suppressed in areas other than the irradiation target area, and ultraviolet light can be concentrated and irradiated to the irradiation required area, improving energy efficiency for sterilization and other effects.
  • the present invention can provide a light spot shaper that can irradiate light in a concentrated manner to an area requiring irradiation, and can perform efficient light irradiation in a short period of time.
  • a first optical transmission system comprises: A light source unit that outputs light; an optical transmission path for propagating the light; an optical branching unit that branches the light propagated through the optical transmission line into a plurality of branch optical fibers; an irradiation unit having the light spot shaper with the branched optical fiber as the optical fiber, and irradiating the light passing through the light spot shaper onto an irradiation target area; Equipped with.
  • a second optical transmission system comprises: A light source unit that outputs light; an optical transmission line that propagates the light through a plurality of cores of an optical bundle formed by bundling a plurality of single-core optical fibers; a separation unit that separates the bundle optical fiber into the single-core optical fiber; an irradiation unit that has the light spot shaper that uses the single-core optical fiber disassembled by the separation unit as the optical fiber, and irradiates the light that has passed through the light spot shaper onto an irradiation target area; Equipped with.
  • a third optical transmission system comprises: A light source unit that outputs light; an optical transmission line that propagates the light through a plurality of cores of an optical bundle formed by bundling a plurality of single-core optical fibers; a separation and branching unit that separates the bundle optical fiber into the single-core optical fibers and groups them into N groups (N is an integer of 2 or more); N irradiation units each irradiating N irradiation target areas with light propagating through the single-core optical fibers grouped into the group; Equipped with At least one of the irradiation units has a light spot shaper that uses the single-core optical fibers grouped together in the group as the optical fiber, and is characterized in that the light that has passed through the light spot shaper is irradiated onto the irradiation target area.
  • the first to third optical transmission systems are equipped with the optical spot shaper. Therefore, it is possible to provide an optical transmission system that can irradiate light in a concentrated manner to an area requiring irradiation, and can perform efficient light irradiation in a short time.
  • the first to third optical transmission systems include a sensor unit that detects whether or not an object to be avoided from being exposed to the light is present in an area including the irradiation object area and outputs sensor information; a control unit that instructs the action unit of the light spot shaper on how to apply the force based on the sensor information from the sensor unit;
  • the present invention is characterized by further comprising: Since the present optical transmission system is equipped with a sensor unit and a control unit, even if the positions of the irradiation-required area and the non-irradiation area within the irradiation target area change, the light spot shape can be changed accordingly.
  • the second and third optical transmission systems are a control unit that outputs a control signal to the action unit of the light spot shaper to instruct how to apply the force;
  • the control unit is characterized in that it transmits the control signal to the light spot shaper by utilizing at least one of the cores of the bundle optical fiber.
  • the control signal can be transmitted by wire or wirelessly, but it can also be transmitted by optical communication using the core of the optical transmission line. In this case, resources can be used efficiently if the outer core of the optical transmission line, which transmits a relatively small amount of optical power, is used for optical communication.
  • the present invention is a light irradiation method in which light propagating through an optical fiber group, in which multiple optical fibers are gathered so that their optical axis directions are the same, is emitted as irradiation light from the end of the optical fiber group, and is characterized in that a force is applied to the optical fiber group, changing the position of the optical fiber in a cross section perpendicular to the optical axis direction, thereby changing the spot shape of the irradiation light.
  • the light irradiation method comprises:
  • the present invention can further comprise generating sensor information that detects whether or not there is an object to be avoided that should be avoided from being exposed to the light in an area including an irradiation target area to which the irradiation light is irradiated, and instructing how to apply the force to the optical fiber group based on the sensor information.
  • the present invention provides a light spot shaper and optical transmission system that can irradiate light in a concentrated manner on an area requiring irradiation, and can perform efficient light irradiation in a short period of time.
  • FIG. 1 is a diagram illustrating a problem to be solved by the present invention.
  • FIG. 2 is a diagram illustrating a light spot shaper according to the present invention.
  • FIG. 2 is a diagram illustrating a light spot shaper according to the present invention.
  • FIG. 2 is a diagram illustrating a light spot shaper according to the present invention.
  • 1A to 1C are diagrams illustrating the effect of a light spot shaper according to the present invention.
  • 1 is a diagram illustrating an optical transmission system according to the present invention
  • FIG. 2 is a diagram illustrating the structure of an optical fiber.
  • 1 is a diagram illustrating an optical transmission system according to the present invention;
  • FIG. 1 is a diagram for explaining the advantages of an optical fiber bundle.
  • FIG. 1 is a diagram illustrating an optical transmission system according to the present invention
  • 1 is a diagram illustrating an optical transmission system according to the present invention
  • 1 is a diagram illustrating an optical transmission system according to the present invention
  • 1 is a diagram illustrating an optical transmission system according to the present invention
  • FIG. 13 is a diagram illustrating a spot shape.
  • FIG. 2 is a diagram illustrating the light spot shaper 70 of the present embodiment.
  • the light spot shaper 70 is
  • the optical fiber group includes an action portion that applies a force to an optical fiber group in which a plurality of optical fibers are gathered so that their optical axes are aligned, thereby changing the positions of the optical fibers in a cross section perpendicular to the optical axis direction.
  • FIG. 3 is a diagram for explaining the structure of the action unit 72.
  • the action unit 72 is characterized by applying the force to each of the optical fibers 55, changing the position of each optical fiber 55.
  • the action unit 72 includes a housing 72a and an electromagnet 72b.
  • a plurality of optical fibers 55 are arranged in a movable state inside the housing 72a.
  • An electromagnet 72b is attached to the side of each optical fiber 55, and power is applied by an electric circuit (not shown).
  • the electromagnet 72b to which power is applied generates a magnetic force between itself and the electromagnet 72b of another nearby optical fiber 55.
  • the position of each optical fiber 55 is shifted by the repulsive or attractive force caused by the magnetic force.
  • the light spot shaper 70 including the action unit 72 of the structure shown in FIG. 3 changes the shape of the light spot by increasing or decreasing the magnetic force of the electromagnet 72b by electrical control, and narrowing or widening the gap between the optical fibers 55.
  • FIG. 4 is a diagram illustrating another structure of the action unit 72.
  • the action unit 72 is characterized by applying the force to the entire optical fiber group 38, changing the shape of the optical fiber group 38 in cross section.
  • the action unit 72 includes a housing 72a, a band 72d that contains multiple optical fibers 55, and a pressing unit 72c that applies force to the band 72d to apply force to the optical fiber group 38.
  • the multiple optical fibers 55 are loosely bundled in the band 72d to the extent that the shape of the optical fiber group 38 in cross section changes when a force is applied from the outside.
  • the "shape of the optical fiber group 38 in cross section” means the following.
  • the “cross section” refers to a plane perpendicular to the optical axis direction of the optical fiber 55. Strictly speaking, the optical axis direction of each optical fiber 55 is different, but here, the average direction of the optical axis directions of all the optical fibers 55 is defined as the optical axis direction of the optical fiber 55.
  • the “shape of the optical fiber group 38" is the shape of a polygon formed by connecting the centers of adjacent optical fibers 55 that are currently the outermost optical fibers 55 among all the optical fibers 55.
  • the optical fiber group 38 passes through the inside of the housing 72a.
  • the inside of the housing 72a is provided with multiple pressing parts 72c, which are structured to press the optical fiber group 38 from above the band 72d.
  • the shape of the optical fiber group 38 changes depending on the pressing part 72c used for pressing and the pressing force.
  • the light spot shaper 70 which has an action part 72 with the structure of Figure 4, adjusts the position and inclination of the tip of the pressing part 72c by electrical control so that the shape of the optical fiber group 38 becomes the desired shape, thereby changing the light spot shape.
  • FIG. 5 is a diagram explaining the effect of the light spot shaper 70.
  • the light spot shaper 70 is provided in the irradiation unit 13.
  • the light L2 emitted from the irradiation unit 13 irradiates the irradiation target area AR.
  • the irradiation range L2a of the light L2 becomes almost a perfect circle.
  • the light L2 is irradiated not only to the irradiation target 91 but also to the avoidance target 92.
  • the irradiation unit 13 has the light spot shaper 70 and shapes the light spot to avoid irradiation of the avoidance target 92, the light L2 becomes the irradiation range L2b.
  • the light spot shaper 70 matches the spot shape of the light L2 to the irradiation target 91, and also adjusts the light spot shape so that the irradiation range is expanded and does not hit the avoidance target 92.
  • the irradiation unit 13 By equipping the irradiation unit 13 with the light spot shaper 70, it becomes possible to concentrate the irradiation of the light L2 only on the irradiation target 91, and the efficiency of the light irradiation can be improved. In addition, it is possible to avoid the irradiation of the light on the avoidance target 92, and safety can be ensured.
  • FIG. 6 is a diagram illustrating an optical transmission system 301 according to the present embodiment.
  • the optical transmission system 301 includes: A light source unit 11 that outputs light L1; an optical transmission path 26 that propagates light L1; an optical branching unit 12e that branches the light propagated through the optical transmission line 26 into a plurality of branch optical fibers; an irradiation unit 13 having the light spot shaper 70 described in the first embodiment in which the branch optical fiber is the optical fiber 55, and irradiating the light passing through the light spot shaper 70 to an irradiation target area AR; Equipped with.
  • the light source unit 11 is an LED (Light Emitting Diode) that outputs ultraviolet light, visible light, or infrared light L1.
  • the light source unit 11 is not limited to an LED, and may be a light source (for example, an incandescent lamp or a discharge lamp) having the following optical characteristics. - There is variation in wavelength, amplitude, or phase. ⁇ Light is scattered. ⁇ It is a natural release.
  • an optical system 11c is present that couples the light L1 from the light source unit 11 to one end T1 of the optical transmission path 26, but depending on the spot diameter of the light L1 output by the light source unit 11 and the diameter of one end T1 of the optical transmission path 26, the optical system 11c may not be necessary.
  • the optical transmission line 26 is an optical fiber that propagates light L1 inputted to one end T1 to the other end T2.
  • Fig. 7 is a cross-sectional view for explaining the structure of the optical fiber used in the optical transmission line 26.
  • an optical fiber having a hole structure as shown in Fig. 7(2) to (4), an optical fiber having multiple core regions as shown in Fig. 7(5) and (6), or an optical fiber having a structure combining these (Fig. 7(7) to (10)) may be used.
  • (1) Solid-core Optical Fiber This optical fiber has one solid core 52 in a cladding 60, the solid core having a higher refractive index than the cladding 60.
  • Solid means "not hollow.”
  • a solid core can also be realized by forming an annular low-refractive-index region in the cladding.
  • Hole-assisted optical fiber This optical fiber has a solid core 52 and a number of holes 53 arranged around the solid core 52 in a cladding 60.
  • the medium of the holes 53 is air, and the refractive index of air is sufficiently smaller than that of silica-based glass. Therefore, the hole-assisted optical fiber has a function of returning light that has leaked from the core 52 due to bending or the like back to the core 52, and is characterized by small bending loss.
  • This optical fiber has a group of holes 53a of a plurality of holes 53 in the cladding 60, and has an effective refractive index lower than that of the host material (glass, etc.).
  • This structure is called a photonic crystal fiber.
  • This structure can have a structure in which a high refractive index core with a changed refractive index does not exist, and the region 52a surrounded by the holes 53 can be used as an effective core region to confine light.
  • photonic crystal fibers can reduce the effects of absorption and scattering loss due to additives in the core, and can achieve optical properties that cannot be achieved with solid optical fibers, such as reduced bending loss and control of nonlinear effects.
  • Hollow-core optical fiber In this optical fiber, the core region is made of air. By forming a photonic band gap structure with multiple air holes in the cladding region or an anti-resonant structure with a thin glass wire, light can be confined to the core region. This optical fiber has a small nonlinear effect and can supply high-output or high-energy laser. (5) Coupled-core optical fiber In this optical fiber, multiple solid cores 52 with a high refractive index are arranged closely together in a cladding 60. This optical fiber guides light by optical wave coupling between the solid cores 52. A coupled-core optical fiber can disperse and transmit light in proportion to the number of cores, allowing for high power output for efficient sterilization, etc.
  • a coupled-core optical fiber has the advantage of being able to mitigate fiber deterioration caused by ultraviolet rays and extend the lifespan.
  • (6) Solid-core type multi-core optical fiber In this optical fiber, multiple solid cores 52 with a high refractive index are arranged at a distance from each other in the cladding 60. In this optical fiber, the optical wave coupling between the solid cores 52 is sufficiently small so that the influence of the optical wave coupling can be ignored, and light is guided in this state. Therefore, the solid-core type multi-core optical fiber has the advantage that each core can be treated as an independent waveguide.
  • Hole-assisted multi-core optical fiber This optical fiber has a structure in which a plurality of the hole structures and core regions described above in (2) are arranged in the cladding 60.
  • Hole-Structure-Type Multi-Core Optical Fiber This optical fiber has a structure in which a plurality of the hole structures described above in (3) are arranged in the cladding 60.
  • Hollow-core-type multi-core optical fiber This optical fiber has a structure in which a plurality of the above-mentioned hole structures (4) are arranged in the cladding 60.
  • Coupled-core-type multi-core optical fiber This optical fiber has a structure in which a plurality of the coupled-core structures described above in (5) are arranged in the cladding 60.
  • the optical branching unit 12e connects the optical transmission path 26 to a plurality of branch optical fibers (optical fibers 55), and branches the light transmitted by the optical transmission path 26 to each of the branch optical fibers (optical fibers 55).
  • the optical branching unit 12e is, for example, a coupler, a splitter, or a fan-out device.
  • the irradiation unit 13 irradiates the irradiation target area AR with light that has propagated through the optical fiber group 38, which includes multiple optical fibers 55, as light L2.
  • the irradiation unit 13 has a light spot shaper 70, as described in the first embodiment, which changes the shape of the optical fiber group 38 in cross section and shapes the light L2 into an arbitrary spot shape.
  • the optical transmission system 301 uses the light spot shaper 70 to match the spot shape of the light L2 to the irradiation target 91, and can adjust the light spot shape so that the irradiation range is expanded and does not hit the avoidance target 92. Furthermore, by providing the irradiation unit 13 with the light spot shaper 70, it becomes possible to concentrate the irradiation of the light L2 only on the irradiation target 91, and the efficiency of the light irradiation can be improved. Furthermore, it is possible to avoid the irradiation of the light to the avoidance target 92, and safety can be ensured.
  • FIG. 8 is a diagram illustrating an optical transmission system 302 according to the present embodiment.
  • the optical transmission system 302 includes: a light source unit 11 that outputs light; an optical transmission line 26 that propagates the light through a plurality of cores of an optical bundle 36 in which a plurality of single-core optical fibers 51 a are bundled; a separation unit 12c for separating the bundle optical fiber 36 into single-core optical fibers 51a; an irradiation unit 13 having the light spot shaper 70 described in the first embodiment, which uses the single-core optical fiber 51 a separated by the separation unit 12 c as the optical fiber 55, and which irradiates the light L2 passing through the light spot shaper 70 onto an irradiation target area AR; Equipped with.
  • the optical fiber of the optical transmission path 26 of the optical transmission system 301 described in FIG. 6 is replaced with an optical fiber bundle 36, and the optical branching section 12e is replaced with a separation section 12c.
  • the bundle optical fiber 36 is a bundle of a plurality of single-core optical fibers 51a.
  • One end T1 is irradiated with light L1 from the light source unit 11.
  • the single-core optical fibers 51a are disassembled by a separation unit 12c described later, and the individual single-core optical fibers 51a are connected to the irradiation unit 13 as optical fibers 55.
  • the light emitting surface is wider than that of a laser, so even if the light L1 output from the LED is coupled to one single-core optical fiber 51a, the core area in the cross section is narrow, and most of the light is not coupled, resulting in low coupling efficiency (FIG. 9(A)). This is the same even if the light L1 output from the LED is narrowed down by an optical system such as a lens (FIG. 9(B)).
  • an LED is used for the light source unit 11
  • This problem is not limited to optical transmission systems that transmit ultraviolet light, but is a common problem in optical transmission systems that transmit infrared light and visible light.
  • the optical transmission system 302 uses the light spot shaper 70 to match the spot shape of the light L2 to the irradiation target 91, and can adjust the light spot shape so that the irradiation range is expanded and does not hit the avoidance target 92. Furthermore, by providing the irradiation unit 13 with the light spot shaper 70, it becomes possible to concentrate the irradiation of the light L2 only on the irradiation target 91, and the efficiency of the light irradiation can be improved. Furthermore, it is possible to avoid the irradiation of the light to the avoidance target 92, and safety can be ensured.
  • FIG. 10 is a diagram illustrating an optical transmission system 303 according to the present embodiment.
  • the optical transmission system 303 includes: A light source unit 11 that outputs light L1; an optical transmission line 26 that transmits light L1 through a plurality of cores of a bundle optical fiber 36 in which a plurality of single-core optical fibers 51a are bundled; a separation/branching unit 12f for separating the bundle optical fiber into the single-core optical fibers and grouping the single-core optical fibers into N groups (N is an integer of 2 or more); N irradiation units 13 each irradiating N irradiation target areas ARn (n is an integer from 1 to N) with light propagating through the grouped single-core optical fibers 51a; Equipped with At least one of the irradiation units 13 has the light spot shaper 70 described in embodiment 1 in which the single-core optical fibers 51a grouped together are used as optical fibers 55, and is characterized in that the light L2 that passes through the
  • the optical transmission system 303 is a P-MP configuration of the optical transmission system 302 described in FIG. 8, using a splitter 12f.
  • the splitter 12f connects the optical transmission path 26 (bundle optical fiber 36) and N paths 14 (optical fiber group 38), and splits the light propagating through the bundle optical fiber 36 as a whole into the optical fiber group 38 of each path 14.
  • the number I of single-core optical fibers 51a bundled in the bundle optical fiber 36 and the number J of optical fibers 55 included in the optical fiber group 38 may be the same or different.
  • the splitter 12f is, for example, a coupler, a splitter, or a fan-out device.
  • the optical transmission system 303 can also use the light spot shaper 70 to match the spot shape of the light L2 to the irradiation target 91, and can adjust the spot shape of the light so that the irradiation range is expanded and the light does not hit the avoidance target 92. Furthermore, by providing the irradiation unit 13 with the light spot shaper 70, it becomes possible to intensively irradiate the light L2 only to the irradiation target 91, and the efficiency of light irradiation can be improved. Furthermore, it is possible to avoid irradiating the avoidance target 92 with light, and safety can be ensured. Furthermore, the optical transmission system 303 has the advantage that the light L1 from one light source unit 11 can be shared by a plurality of irradiation target areas ARn, thereby reducing system costs.
  • the optical transmission systems (301 to 303) described in Fig. 6, Fig. 8, and Fig. 10 may further include a control unit 15c that outputs a control signal instructing the action unit 72 of the light spot shaper 70 how to apply the force.
  • Fig. 11 is a diagram illustrating an optical transmission system 302 including the control unit 15c as an example.
  • the optical transmission system 302 in Fig. 11 can change the spot shape of the light L2 depending on the condition of the irradiation target area AR.
  • control unit 15c Information on the spot shape of light L2 to be shaped by light spot shaper 70 is input to control unit 15c (this may be input by an operator, or may be information from a sensor, etc., as described below). Based on this information, control unit 15c outputs a control signal to light spot shaper 70 to create the desired light spot shape.
  • Light spot shaper 70 receives the control signal from control unit 15c and shapes the spot shape of light L2.
  • the control signal from control unit 15c to light spot shaper 70 may be an electrical signal via an electric wire, an optical signal via an optical fiber, or a wireless signal such as radio waves or light.
  • the optical transmission system (301-303) equipped with the control unit 15c can optimize the light spot shape according to the conditions of the irradiation target 91 and the avoidance target 92 when the position of the avoidance target 92 changes over time within the irradiation target area (AR or ARn) due to human movement or the irradiation target 91 is a moving object and the position of the irradiation target 91 changes over time.
  • control unit 15c may be disposed away from the light spot shaper 70. This allows remote control of shaping the light spot.
  • Figure 12 is a diagram illustrating a configuration in which the control unit 15c is disposed away from the light spot shaper 70.
  • FIG. 12(A) is a diagram explaining an optical transmission system 302 in which the control unit 15c is disposed on the light source unit 11 side and is connected to the light spot shaper 70 using a control signal transmission cable Cs.
  • the control signal from the control unit 15c to the light spot shaper 70 may be not only an electrical signal via an electric wire that is the control signal transmission cable Cs or an optical signal via an optical fiber, but also a wireless signal such as an electric wave or light that does not use the control signal transmission cable Cs.
  • the optical transmission systems 301 and 303 can also adopt this configuration.
  • FIG. 12B is a diagram for explaining an optical transmission system 302 in which the control unit 15c transmits the control signal to the light spot shaper 70 using at least one of the cores of the bundle optical fiber 36.
  • the control unit 15c transmits the control signal to the light spot shaper 70 using at least one of the cores of the bundle optical fiber 36.
  • one of the cores of the bundle optical fiber 36 is allocated for control signal transmission, and the control unit 15c outputs a control signal to the light spot shaper 70 using the one core.
  • the separation unit 12c converts the light (control signal) of the one core into an electrical signal and outputs it to a control signal transmission cable Cs connected to the light spot shaper 70.
  • control signal from the control unit 15c to the light spot shaper 70 can be varied as follows.
  • the section from the separation unit 12c to the light spot shaper 70 The signal may be not only an electrical signal via an electric wire that is the control signal transmission cable Cs, or an optical signal via an optical fiber, but also a wireless signal such as radio waves or light that does not use the control signal transmission cable Cs.
  • This configuration can also be adopted in the optical transmission system 303, which is a P-MP.
  • the single-core optical fibers 51a bundled in the bundle optical fiber 36 are allocated for each path 14 for control signal transmission.
  • the number of single-core optical fibers 51a allocated for control signal transmission will also be N.
  • the control signal is transmitted via electric wire, optical fiber, or wirelessly between the separation unit 12c or the separation branching unit 12f and the irradiation unit 13.
  • the control signal transmission cable Cs is optical fiber, one optical fiber 55 of the optical fiber group 38 may be allocated for transmitting the control signal.
  • the optical transmission systems (301 to 303) described in FIG. 6, FIG. 8, and FIG. 10 are as follows: A sensor unit 31 that outputs sensor information indicating whether or not an avoidance target 92 that should be avoided from being exposed to the light L2 is present in an area including an irradiation target area (AR or ARn); a control unit that instructs an action unit of the light spot shaper on how to apply the force based on the sensor information from the sensor unit;
  • the present invention is characterized by further comprising:
  • FIG. 13 is a diagram illustrating an example of an optical transmission system 302 equipped with a sensor unit 31 and a control unit 15c.
  • the optical transmission system 302 in FIG. 13 can change the shape of the light spot based on sensor information from the sensor unit 31 (e.g., position information of an object to be avoided 92 within the irradiation target area AR).
  • the sensor unit 31 detects the presence or absence and movement of each irradiation target area AR and an avoidance target (such as a person or an animal) H in the vicinity thereof. For example, the sensor unit 31 acquires temperature using a thermometer, infrared rays using an infrared sensor, images using a camera, light using LiDAR (Light Detection and Ranging), etc., and performs information processing (shape, face, fingerprint, veins, iris, etc.) to detect the presence or absence and movement of an avoidance target. The sensor unit 31 then notifies the control unit 15c of the detection result as sensor information. The notification to the control unit 15c may be made by wire or wirelessly.
  • the control unit 15c outputs a control signal to the light spot shaper 70 to form the desired light spot shape based on the sensor information from the sensor unit 13.
  • the light spot shaper 70 receives a control signal from the control unit 15c and shapes the spot shape of the light L2.
  • the optical transmission system (301-303) equipped with the control unit 15c can identify the position of the irradiation target 91 or the avoidance target 92 within the irradiation target area (AR or ARn) by sensing, and can optimize the spot shape of the light L2 by tracking their movements in real time.
  • the optical transmission system (301 to 303) performs light irradiation using the following light irradiation method.
  • This light irradiation method is a method in which light that has propagated through an optical fiber group 38 in which a plurality of optical fibers 55 are gathered so that their optical axis directions are the same is emitted as irradiation light L2 from the end of the optical fiber group 38, and is characterized in that a force is applied to the optical fiber group 38 to change the position of the optical fiber 55 in a cross section perpendicular to the optical axis direction, thereby changing the spot shape of the irradiation light L2.
  • generating sensor information that detects whether or not there is an avoidance target H that should be avoided from being exposed to the light in an area including the irradiation target area (AR or ARn) where the irradiation light L2 is irradiated.
  • Optical transmission path 11 Light source unit 11a: Ultraviolet light source unit 11c: Optical system 12: Light branching unit (equal branching) 12c: Separation section 12e: Optical branching section 12f: Separation and branching section 13, 13-1, ..., 13-n, ..., 13-N: Irradiation section 14: Path 15c: Control section 16: Optical transmission path 26: Optical transmission path 31: Sensor section 36: Bundle optical fiber 38: Optical fiber group 51a: Single-core optical fiber 52: Solid core 52a: Region 53: Hole 53a: Hole group 55: Single-core optical fiber 60 of path: Cladding 70: Light spot shaper 72: Action section 72a: Housing 72b: Electromagnet 72c: Pressing section 72d: Bands 300 to 303: Optical transmission system L1, L2: Light AR, AR1, AR2, ..., ARn, ..., ARN: Irradiation target area

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

The purpose of present invention is to provide a light spot shaper and an optical transmission system which can irradiate an irradiation-requiring area with concentrated light, and which can perform short and efficient light irradiation. An optical transmission system (301) according to the present invention comprises: a light source unit (11) which outputs light (L1); an optical transmission path (26) through which the light (L1) propagates; an optical branching unit (12e) which branches the light that has propagated through the optical transmission path (26) to a plurality of branched optical fibers; and an irradiation unit (13) which has a light spot shaper (70) that uses the branched optical fibers as optical fibers (55) and which irradiates an irradiation target area (AR) with the light that has passed through the light spot shaper (70). The light spot shaper (70) is provided with an operation part (72) that applies a force to an optical fiber group (38) in which the plurality of optical fibers (55) are gathered such that the optical axis directions thereof are the same, and that changes the position of the optical fibers in a cross-section perpendicular to said optical axis directions.

Description

光スポット整形器及び光伝送システムOptical spot shaper and optical transmission system
 本開示は、照射光のスポット形状を変化させることができる光スポット整形器、及びそれを備える光伝送システムに関する。 This disclosure relates to an optical spot shaper that can change the spot shape of irradiated light, and an optical transmission system equipped with the same.
 感染症予防などの目的から、紫外光を用いた殺菌やウィルスの不活化を行うシステムの需要が高まっている。当該システムには、大きく3つのカテゴリの製品がある。なお、本明細書では、「殺菌等」と記載する場合、殺菌とウィルスの不活化を意味するものとする。
(I)移動型殺菌ロボット
 非特許文献1の製品は、紫外光を照射する自律移動型のロボットである。当該ロボットは、病室などの建物内の部屋の中を移動しながら紫外光を照射することで、人手を介さず、自動で広い範囲の殺菌等を実現できる。
(II)据え置き型空気清浄機
 非特許文献2の製品は、天井や室内の所定の場所に設置され、室内の空気を循環しながら殺菌等する装置である。当該装置は、直接紫外光を照射せず、人体への影響がないため、安全性の高い殺菌等が可能である。
(III)ポータブル型殺菌装置
 非特許文献3の製品は、紫外光源を搭載したポータブル型の装置である。ユーザが当該装置を所望のエリアに持って行って紫外光を照射できる。このため、当該装置は様々な場所で使用可能である。
There is an increasing demand for systems that use ultraviolet light to sterilize and inactivate viruses for the purpose of preventing infectious diseases. There are three main categories of such systems. In this specification, the term "sterilization, etc." refers to sterilization and inactivation of viruses.
(I) Mobile sterilization robot The product of Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light. The robot can irradiate ultraviolet light while moving around a room in a building such as a hospital room, thereby automatically sterilizing a wide area without human intervention.
(II) Freestanding Air Purifier The product in Non-Patent Document 2 is a device that is installed on the ceiling or a predetermined location in a room and circulates the air in the room while sterilizing, etc. This device does not directly irradiate ultraviolet light and has no effect on the human body, so it is possible to sterilize, etc. with a high degree of safety.
(III) Portable sterilization device The product of Non-Patent Document 3 is a portable device equipped with an ultraviolet light source. A user can take the device to a desired area and irradiate ultraviolet light. Therefore, the device can be used in various places.
 しかし、非特許文献に記載される装置には次のような課題がある。
(1)経済性
 非特許文献1の製品は、高出力の紫外光を照射するため、装置が大掛かりとなり高価となる。このため、非特許文献1の製品には経済的なシステムの実現が困難という課題がある。
(2)汎用性
 非特許文献1の製品は、紫外光照射箇所がロボットが移動/進入できる場所に限定されるため、細かい場所や奥まった場所などへの紫外光の照射が困難である。
 非特許文献2の製品は、循環させた室内の空気を殺菌等するため、殺菌等をしたい場所に直接紫外光を照射することができない。
 非特許文献3の製品は、例えば、細い管路や人が入られないエリアについては紫外光を照射することができない。
 このように、非特許文献の製品には、任意の場所に紫外光を照射できるという汎用性に課題がある。
(3)操作性
 非特許文献3の製品は、可搬性であり様々な場所で紫外光の照射が可能である。しかし、対象箇所で十分な殺菌等の効果が得られるためには、ユーザにスキルや知識を要求しており、操作性に課題がある。
However, the devices described in the non-patent literature have the following problems.
(1) Economic Efficiency The product of Non-Patent Document 1 irradiates high-power ultraviolet light, so the device is large-scale and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
(2) Versatility With the product of Non-Patent Document 1, the areas to be irradiated with ultraviolet light are limited to areas where a robot can move/enter, making it difficult to irradiate narrow or deep areas with ultraviolet light.
The product of Non-Patent Document 2 sterilizes the circulated indoor air, and therefore cannot irradiate the location where sterilization is desired with ultraviolet light directly.
The product of Non-Patent Document 3 cannot irradiate ultraviolet light onto, for example, narrow pipes or areas where people cannot enter.
As described above, the products described in non-patent literature have a problem in that they lack the versatility to irradiate ultraviolet light anywhere.
(3) Operability The product of Non-Patent Document 3 is portable and can irradiate ultraviolet light in various locations. However, in order to obtain sufficient sterilization effects at the target location, the user is required to have skills and knowledge, and there are problems with operability.
 これらの課題に対して、図1のような光ファイバを用いた紫外光照射システム300が考えられる。この紫外光照射システムは、光伝送路16として細くて曲げやすい光ファイバを用いて紫外光源部11aから紫外光を伝送し、方路14である光ファイバの先端から出力される紫外光をピンポイントで殺菌等したい照射対象域ARへ照射する。方路14の先端の照射部13を移動させるだけで任意の場所に紫外光を照射できるため上記課題(2)の汎用性を解消できる。また、紫外光光源の移動や設定が不要でユーザにスキルや知識を求めないため、上記課題(3)の操作性も解消できる。さらに、光スプリッタのような光分配部12を光伝送路16に設け、FTTH(Fiber To The Home)のようなP-MP(Point to MultiPoint)のシステム構成とすることで、単一の光源をシェアすることで複数の箇所を殺菌等できる。このため、上記課題(1)の経済性も解消できる。 To address these issues, an ultraviolet light irradiation system 300 using optical fibers as shown in FIG. 1 can be considered. In this ultraviolet light irradiation system, ultraviolet light is transmitted from the ultraviolet light source unit 11a using a thin and easily bendable optical fiber as the optical transmission path 16, and the ultraviolet light output from the tip of the optical fiber, which is the path 14, is irradiated to the irradiation target area AR where pinpoint sterilization is desired. Since ultraviolet light can be irradiated to any location simply by moving the irradiation unit 13 at the tip of the path 14, the versatility of the above issue (2) can be resolved. In addition, since there is no need to move or set up the ultraviolet light source, and no skills or knowledge are required of the user, the operability of the above issue (3) can also be resolved. Furthermore, by providing an optical distribution unit 12 such as an optical splitter in the optical transmission path 16 and configuring a system of P-MP (Point to Multipoint) such as FTTH (Fiber To The Home), multiple locations can be sterilized by sharing a single light source. This also solves the economic problem of problem (1) above.
 一方、P-MP構成に限らず、一般的に紫外光照射システムには次のような課題がある。
 紫外光を用いた殺菌等のシステムに使用される深紫外の光に関しては、人をはじめとする動物の目や皮膚に照射した場合、白内障や皮膚がんの原因となる。このため、居住空間等、常時人や動物などが滞在する空間においては、人や動物などの回避対象に対して紫外光を照射しない、あるいは回避対象に対して害のない程度の弱い照度の紫外光としておく、などの対策が求められる。
On the other hand, not only P-MP configurations, but ultraviolet light irradiation systems in general have the following problems.
Deep ultraviolet light, which is used in systems for sterilization using ultraviolet light, can cause cataracts and skin cancer when it is irradiated onto the eyes or skin of humans and other animals. For this reason, in spaces where people and animals are constantly present, such as residential spaces, measures are required such as not irradiating ultraviolet light onto objects to be avoided, such as people and animals, or using ultraviolet light with a low illuminance that is not harmful to such objects.
 ここで、回避対象への紫外光の被ばくを回避するために、非常に小さなパワーで照射した場合、不活化の完了までに長時間を要することになり、短時間での不活化が求められるような箇所への適用が困難となる。 If a very low power is used to irradiate the target in order to avoid exposing it to ultraviolet light, it will take a long time to complete the inactivation, making it difficult to apply to areas where inactivation is required in a short period of time.
 また、光ファイバを備える紫外光照射システムは、照射対象域に対して光ファイバのコアを中央とした同心円状に紫外光を照射する。照射対象域内においても、殺菌等が求められるエリア(以下、このようなエリアを「照射要求エリア」と記載する。)ばかりではなく、殺菌等が不要なエリアや紫外光の照射を回避すべきエリア(以下、このようなエリアを「照射対象外エリア」と記載する。)が含まれることがある。光ファイバを備える紫外光照射システムでは、照射要求エリアに紫外光を照射しようとしても照射対象域全体に紫外光を照射してしまうため、照射要求エリアの照度が下がる。期待される殺菌等の効果を得るために、光源部が出力する紫外光のパワーを上げる、又は照射時間を長くする必要があり、殺菌等の効果に対するエネルギー効率が低下する。 In addition, an ultraviolet light irradiation system equipped with optical fiber irradiates the target irradiation area with ultraviolet light in a concentric pattern with the core of the optical fiber at the center. The target irradiation area may include not only areas where sterilization, etc. is required (hereinafter, such areas will be referred to as "irradiation-required areas"), but also areas where sterilization, etc. is not required or areas where irradiation of ultraviolet light should be avoided (hereinafter, such areas will be referred to as "non-irradiation target areas"). In an ultraviolet light irradiation system equipped with optical fiber, even if an attempt is made to irradiate the irradiation-required area with ultraviolet light, the entire irradiation target area is irradiated with ultraviolet light, reducing the illuminance of the irradiation-required area. In order to achieve the expected sterilization effect, it is necessary to increase the power of the ultraviolet light output by the light source unit or extend the irradiation time, which reduces the energy efficiency for sterilization, etc.
 つまり、紫外光照射システムには、照射要求エリアに集中して紫外光を照射し、短時間で効率よく殺菌等を行うことが困難という課題があった。
 そこで、本発明は、上記課題を解決するために、照射要求エリアに集中して光を照射でき、短時間で効率のよい光照射を行うことができる光スポット整形器及び光伝送システムを提供することを目的とする。
In other words, ultraviolet light irradiation systems have had the problem that it is difficult to concentrate ultraviolet light on an area requiring irradiation and perform sterilization, etc. efficiently in a short period of time.
Therefore, in order to solve the above problems, the present invention aims to provide a light spot shaper and an optical transmission system that can irradiate light in a concentrated manner onto an area requiring irradiation, and can perform efficient light irradiation in a short period of time.
 上記目的を達成するために、本発明に係る光スポット整形器は、複数の光ファイバの各々の物理的配置を変更する機構を備え、照射対象域における光のスポット形状を変更することとした。なお、本明細書において、「光のスポット形状」とは、光軸に対して垂直な面に照射されている光の形を意味する。光のスポット形状は、例えば、円状、楕円状、多角形状、アメーバのような不規則な形状(図14参照)である。 In order to achieve the above object, the light spot shaper of the present invention is provided with a mechanism for changing the physical arrangement of each of a plurality of optical fibers, thereby changing the light spot shape in the irradiation target area. In this specification, the "light spot shape" refers to the shape of the light irradiated on a surface perpendicular to the optical axis. The light spot shape is, for example, a circle, an ellipse, a polygon, or an irregular shape like an amoeba (see FIG. 14).
 具体的には、本発明に係る光スポット整形器は、光軸方向が同じになるように複数の光ファイバが集められた光ファイバ群に対して力を与え、前記光軸方向に垂直な断面における前記光ファイバの位置を変化させる作用部を備える。
 例えば、前記作用部は、前記光ファイバのそれぞれに前記力を与え、個々の前記光ファイバの位置を変化させる構造である。
 また、前記作用部は、前記光ファイバ群全体に前記力を与え、前記断面における前記光ファイバ群の形状を変化させる構造であってもよい。
Specifically, the light spot shaper of the present invention is provided with an action part that applies force to an optical fiber group in which multiple optical fibers are gathered together so that their optical axis directions are the same, and changes the position of the optical fibers in a cross section perpendicular to the optical axis direction.
For example, the action portion is a structure that applies the force to each of the optical fibers and changes the position of each of the optical fibers.
The action portion may be structured to apply the force to the entire optical fiber group, thereby changing the shape of the optical fiber group in the cross section.
 本発明に係る光スポット整形器は、前記作用部の機能により照射対象外エリアへの光照射を抑制でき、抑制できた光パワー分だけ照射要求エリアに照射光を集中させることができる。
 例えば、照射光が紫外光であれば、人体への照射を回避することができる。また、人体への紫外光の被ばくを無視できるほどの低パワーで動作する必要がなくなるため、照射対象域(照射要求エリア)の殺菌等を短時間で終了させることできる。さらに、照射対象外エリアへの紫外光を抑制でき、照射要求エリアへ紫外光を集中して照射できるので殺菌等の効果に対するエネルギー効率が改善する。
The light spot shaper according to the present invention can suppress light irradiation to non-irradiation target areas by the function of the action portion, and can concentrate the irradiation light on the irradiation-required area by the amount of the suppressed optical power.
For example, if the irradiation light is ultraviolet light, irradiation of the human body can be avoided. Also, since there is no need to operate at such low power that exposure of the human body to ultraviolet light can be ignored, sterilization of the irradiation target area (irradiation required area) can be completed in a short time. Furthermore, ultraviolet light can be suppressed in areas other than the irradiation target area, and ultraviolet light can be concentrated and irradiated to the irradiation required area, improving energy efficiency for sterilization and other effects.
 従って、本発明は、照射要求エリアに集中して光を照射でき、短時間で効率のよい光照射を行うことができる光スポット整形器を提供することができる。 Therefore, the present invention can provide a light spot shaper that can irradiate light in a concentrated manner to an area requiring irradiation, and can perform efficient light irradiation in a short period of time.
 本発明に係る第1の光伝送システムは、
 光を出力する光源部と、
 前記光を伝搬する光伝送路と、
 前記光伝送路が伝搬した前記光を複数の分岐光ファイバそれぞれに分岐する光分岐部と、
 前記分岐光ファイバを前記光ファイバとする前記光スポット整形器を有し、前記光スポット整形器を通過した前記光を照射対象域へ照射する照射部と、
を備える。
A first optical transmission system according to the present invention comprises:
A light source unit that outputs light;
an optical transmission path for propagating the light;
an optical branching unit that branches the light propagated through the optical transmission line into a plurality of branch optical fibers;
an irradiation unit having the light spot shaper with the branched optical fiber as the optical fiber, and irradiating the light passing through the light spot shaper onto an irradiation target area;
Equipped with.
 本発明に係る第2の光伝送システムは、
 光を出力する光源部と、
 複数のシングルコア光ファイバを束ねたバンドル光ファイバの複数のコアで前記光を伝搬する光伝送路と、
 前記バンドル光ファイバを前記シングルコア光ファイバに解体する分離部と、
 前記分離部で解体された前記シングルコア光ファイバを前記光ファイバとする前記光スポット整形器を有し、前記光スポット整形器を通過した前記光を照射対象域へ照射する照射部と、
を備える。
A second optical transmission system according to the present invention comprises:
A light source unit that outputs light;
an optical transmission line that propagates the light through a plurality of cores of an optical bundle formed by bundling a plurality of single-core optical fibers;
a separation unit that separates the bundle optical fiber into the single-core optical fiber;
an irradiation unit that has the light spot shaper that uses the single-core optical fiber disassembled by the separation unit as the optical fiber, and irradiates the light that has passed through the light spot shaper onto an irradiation target area;
Equipped with.
 本発明に係る第3の光伝送システムは、
 光を出力する光源部と、
 複数のシングルコア光ファイバを束ねたバンドル光ファイバの複数のコアで前記光を伝搬する光伝送路と、
 前記バンドル光ファイバを前記シングルコア光ファイバに解体し、N個のグループ(Nは2以上の整数)にまとめる分離分岐部と、
 前記グループにまとめられた前記シングルコア光ファイバを伝搬する光をN個の照射対象域へそれぞれ照射するN個の照射部と、
を備え、
 前記照射部の少なくとも1つは、前記グループにまとめられた前記シングルコア光ファイバを前記光ファイバとする前記光スポット整形器を有し、前記光スポット整形器を通過した前記光を前記照射対象域へ照射することを特徴とする。
A third optical transmission system according to the present invention comprises:
A light source unit that outputs light;
an optical transmission line that propagates the light through a plurality of cores of an optical bundle formed by bundling a plurality of single-core optical fibers;
a separation and branching unit that separates the bundle optical fiber into the single-core optical fibers and groups them into N groups (N is an integer of 2 or more);
N irradiation units each irradiating N irradiation target areas with light propagating through the single-core optical fibers grouped into the group;
Equipped with
At least one of the irradiation units has a light spot shaper that uses the single-core optical fibers grouped together in the group as the optical fiber, and is characterized in that the light that has passed through the light spot shaper is irradiated onto the irradiation target area.
 第1から第3の光伝送システムは、前記光スポット整形器を備える。従って、照射要求エリアに集中して光を照射でき、短時間で効率のよい光照射を行うことができる光伝送システムを提供することができる。 The first to third optical transmission systems are equipped with the optical spot shaper. Therefore, it is possible to provide an optical transmission system that can irradiate light in a concentrated manner to an area requiring irradiation, and can perform efficient light irradiation in a short time.
 第1から第3の光伝送システムは、
 前記照射対象域を含む領域に前記光の被ばくを回避すべき回避対象が存在するか否かを検知したセンサ情報を出力するセンサ部と、
 前記センサ部からの前記センサ情報に基づいて、前記光スポット整形器の前記作用部へ前記力の与え方を指示する制御部と、
をさらに備えることを特徴とする。
 本光伝送システムがセンサ部と制御部と備えることで、照射対象域の中で照射要求エリアや照射対象外エリアの位置が変わったとしても、それに応じて光のスポット形状を変化させることができる。
The first to third optical transmission systems include
a sensor unit that detects whether or not an object to be avoided from being exposed to the light is present in an area including the irradiation object area and outputs sensor information;
a control unit that instructs the action unit of the light spot shaper on how to apply the force based on the sensor information from the sensor unit;
The present invention is characterized by further comprising:
Since the present optical transmission system is equipped with a sensor unit and a control unit, even if the positions of the irradiation-required area and the non-irradiation area within the irradiation target area change, the light spot shape can be changed accordingly.
 また、第2と第3の光伝送システムは、
 前記光スポット整形器の前記作用部へ前記力の与え方を指示する制御信号を出力する制御部をさらに備え、
 前記制御部は、前記バンドル光ファイバの前記コアの少なくとも1つを利用して前記制御信号を前記光スポット整形器へ送信することを特徴とする。
In addition, the second and third optical transmission systems are
a control unit that outputs a control signal to the action unit of the light spot shaper to instruct how to apply the force;
The control unit is characterized in that it transmits the control signal to the light spot shaper by utilizing at least one of the cores of the bundle optical fiber.
 制御信号の送信は有線や無線で行ってもよいが、光伝送路のコアを利用した光通信で行ってもよい。その場合、伝送する光のパワーが比較的小さい光伝送路の外周部のコアを光通信に利用すれば、資源を有効に利用することができる。 The control signal can be transmitted by wire or wirelessly, but it can also be transmitted by optical communication using the core of the optical transmission line. In this case, resources can be used efficiently if the outer core of the optical transmission line, which transmits a relatively small amount of optical power, is used for optical communication.
 すなわち、本発明は、光軸方向が同じになるように複数の光ファイバが集められた光ファイバ群を伝搬してきた光を前記光ファイバ群の端部から照射光として出射させる光照射方法であって、前記光ファイバ群に対して力を与え、前記光軸方向に垂直な断面における前記光ファイバの位置を変化させて前記照射光のスポット形状を変化させることを特徴とする。 In other words, the present invention is a light irradiation method in which light propagating through an optical fiber group, in which multiple optical fibers are gathered so that their optical axis directions are the same, is emitted as irradiation light from the end of the optical fiber group, and is characterized in that a force is applied to the optical fiber group, changing the position of the optical fiber in a cross section perpendicular to the optical axis direction, thereby changing the spot shape of the irradiation light.
 ここで、本発明に係る光照射方法は、
 前記照射光が照射される照射対象域を含む領域に前記光の被ばくを回避すべき回避対象が存在するか否かを検知したセンサ情報を発生すること、及び
 前記センサ情報に基づいて前記光ファイバ群に対する前記力の与え方を指示すること
をさらに行うことができる。
Here, the light irradiation method according to the present invention comprises:
The present invention can further comprise generating sensor information that detects whether or not there is an object to be avoided that should be avoided from being exposed to the light in an area including an irradiation target area to which the irradiation light is irradiated, and instructing how to apply the force to the optical fiber group based on the sensor information.
 なお、上記各発明は、可能な限り組み合わせることができる。 The above inventions can be combined as much as possible.
 本発明は、照射要求エリアに集中して光を照射でき、短時間で効率のよい光照射を行うことができる光スポット整形器及び光伝送システムを提供することができる。 The present invention provides a light spot shaper and optical transmission system that can irradiate light in a concentrated manner on an area requiring irradiation, and can perform efficient light irradiation in a short period of time.
本発明の課題を説明する図である。FIG. 1 is a diagram illustrating a problem to be solved by the present invention. 本発明に係る光スポット整形器を説明する図である。FIG. 2 is a diagram illustrating a light spot shaper according to the present invention. 本発明に係る光スポット整形器を説明する図である。FIG. 2 is a diagram illustrating a light spot shaper according to the present invention. 本発明に係る光スポット整形器を説明する図である。FIG. 2 is a diagram illustrating a light spot shaper according to the present invention. 本発明に係る光スポット整形器の効果を説明する図である。1A to 1C are diagrams illustrating the effect of a light spot shaper according to the present invention. 本発明に係る光伝送システムを説明する図である。1 is a diagram illustrating an optical transmission system according to the present invention; 光ファイバの構造を説明する図である。FIG. 2 is a diagram illustrating the structure of an optical fiber. 本発明に係る光伝送システムを説明する図である。1 is a diagram illustrating an optical transmission system according to the present invention; バンドル光ファイバのメリットを説明する図である。FIG. 1 is a diagram for explaining the advantages of an optical fiber bundle. 本発明に係る光伝送システムを説明する図である。1 is a diagram illustrating an optical transmission system according to the present invention; 本発明に係る光伝送システムを説明する図である。1 is a diagram illustrating an optical transmission system according to the present invention; 本発明に係る光伝送システムを説明する図である。1 is a diagram illustrating an optical transmission system according to the present invention; 本発明に係る光伝送システムを説明する図である。1 is a diagram illustrating an optical transmission system according to the present invention; スポット形状を説明する図である。FIG. 13 is a diagram illustrating a spot shape.
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 The following describes an embodiment of the present invention with reference to the attached drawings. The embodiment described below is an example of the present invention, and the present invention is not limited to the following embodiment. Note that components with the same reference numerals in this specification and drawings are mutually identical.
(実施形態1)
 図2は、本実施形態の光スポット整形器70を説明する図である。光スポット整形器70は、
 光軸方向が同じになるように複数の光ファイバ55が集められた光ファイバ群38に対して力を与え、前記光軸方向に垂直な断面における前記光ファイバの位置を変化させる作用部72を備える。
(Embodiment 1)
FIG. 2 is a diagram illustrating the light spot shaper 70 of the present embodiment. The light spot shaper 70 is
The optical fiber group includes an action portion that applies a force to an optical fiber group in which a plurality of optical fibers are gathered so that their optical axes are aligned, thereby changing the positions of the optical fibers in a cross section perpendicular to the optical axis direction.
 図3は、作用部72の構造を説明する図である。作用部72は、光ファイバ55のそれぞれに前記力を与え、個々の光ファイバ55の位置を変化させることを特徴とする。具体的には、作用部72は、筐体72aと電磁石72bを備える。筐体72aの内部に複数の光ファイバ55が可動状態で配列されている。そして、各光ファイバ55の側面には電磁石72bが貼り付けられており、図示しない電気回路で電力が与えられる。電力が与えられた電磁石72bは、近接する他の光ファイバ55の電磁石72bとの間で磁力を発生する。各光ファイバ55は、当該磁力による反発力又は引力によりその位置がずれる。つまり、図3の構造の作用部72を備える光スポット整形器70は、電気的制御で電磁石72bの磁力を増減させ、光ファイバ55間の間隙を狭く又は広くすることで、光のスポット形状を変化させる。 FIG. 3 is a diagram for explaining the structure of the action unit 72. The action unit 72 is characterized by applying the force to each of the optical fibers 55, changing the position of each optical fiber 55. Specifically, the action unit 72 includes a housing 72a and an electromagnet 72b. A plurality of optical fibers 55 are arranged in a movable state inside the housing 72a. An electromagnet 72b is attached to the side of each optical fiber 55, and power is applied by an electric circuit (not shown). The electromagnet 72b to which power is applied generates a magnetic force between itself and the electromagnet 72b of another nearby optical fiber 55. The position of each optical fiber 55 is shifted by the repulsive or attractive force caused by the magnetic force. In other words, the light spot shaper 70 including the action unit 72 of the structure shown in FIG. 3 changes the shape of the light spot by increasing or decreasing the magnetic force of the electromagnet 72b by electrical control, and narrowing or widening the gap between the optical fibers 55.
 図4は、作用部72の他の構造を説明する図である。作用部72は、光ファイバ群38全体に前記力を与え、断面における光ファイバ群38の形状を変化させることを特徴とする。具体的には、作用部72は、筐体72a、複数の光ファイバ55を内包する帯72d、及び光ファイバ群38に力を与えるため帯72dに力を加える押圧部72cを備える。複数の光ファイバ55は、外から力を加えることで断面における光ファイバ群38の形状が変化する程度に帯72dに緩く束ねられている。 FIG. 4 is a diagram illustrating another structure of the action unit 72. The action unit 72 is characterized by applying the force to the entire optical fiber group 38, changing the shape of the optical fiber group 38 in cross section. Specifically, the action unit 72 includes a housing 72a, a band 72d that contains multiple optical fibers 55, and a pressing unit 72c that applies force to the band 72d to apply force to the optical fiber group 38. The multiple optical fibers 55 are loosely bundled in the band 72d to the extent that the shape of the optical fiber group 38 in cross section changes when a force is applied from the outside.
 ここで、「断面における光ファイバ群38の形状」とは次を意味する。
 「断面」は光ファイバ55の光軸方向に垂直な平面を指す。なお、厳密にはそれぞれの光ファイバ55の光軸方向は異なるが、ここでは全ての光ファイバ55の光軸方向を平均した方向を光ファイバ55の光軸方向とする。
 「光ファイバ群38の形状」は、全ての光ファイバ55のうち、現在最も外側にある複数の光ファイバ55であって、隣接する光ファイバ55の中心を結んでできた多角形の形状である。
Here, the "shape of the optical fiber group 38 in cross section" means the following.
The "cross section" refers to a plane perpendicular to the optical axis direction of the optical fiber 55. Strictly speaking, the optical axis direction of each optical fiber 55 is different, but here, the average direction of the optical axis directions of all the optical fibers 55 is defined as the optical axis direction of the optical fiber 55.
The "shape of the optical fiber group 38" is the shape of a polygon formed by connecting the centers of adjacent optical fibers 55 that are currently the outermost optical fibers 55 among all the optical fibers 55.
 筐体72aの内部を光ファイバ群38が貫通している。筐体72aの内部には複数の押圧部72cが備えられ、帯72dの上から光ファイバ群38を押圧する構造になっている。押圧に使用する押圧部72cやその押圧力によって光ファイバ群38の形状が変化する。つまり、図4の構造の作用部72を備える光スポット整形器70は、光ファイバ群38の形状が所望の形状になるように電気的制御で押圧部72cの先端部の位置および傾きを調整し、光のスポット形状を変化させる。 The optical fiber group 38 passes through the inside of the housing 72a. The inside of the housing 72a is provided with multiple pressing parts 72c, which are structured to press the optical fiber group 38 from above the band 72d. The shape of the optical fiber group 38 changes depending on the pressing part 72c used for pressing and the pressing force. In other words, the light spot shaper 70, which has an action part 72 with the structure of Figure 4, adjusts the position and inclination of the tip of the pressing part 72c by electrical control so that the shape of the optical fiber group 38 becomes the desired shape, thereby changing the light spot shape.
 図5は、光スポット整形器70の効果を説明する図である。光スポット整形器70は、照射部13に備えられている。照射部13から出射した光L2は照射対象域ARを照射する。そこには、光L2を照射すべき照射対象91と光L2の照射を回避すべき回避対象92が存在している。照射部13が光スポット整形器70を備えないとき、あるいは光スポット整形器70が光スポットの整形を行わないとき、光L2の照射範囲L2aはほぼ真円となる。この状態であると、光L2は照射対象91だけでなく回避対象92にも照射されることになる。一方、照射部13が光スポット整形器70を備え、回避対象92の照射を回避するように光スポットの整形をした場合、光L2は照射範囲L2bとなる。 FIG. 5 is a diagram explaining the effect of the light spot shaper 70. The light spot shaper 70 is provided in the irradiation unit 13. The light L2 emitted from the irradiation unit 13 irradiates the irradiation target area AR. There are an irradiation target 91 to be irradiated with the light L2 and an avoidance target 92 to be avoided from being irradiated with the light L2. When the irradiation unit 13 does not have the light spot shaper 70, or when the light spot shaper 70 does not shape the light spot, the irradiation range L2a of the light L2 becomes almost a perfect circle. In this state, the light L2 is irradiated not only to the irradiation target 91 but also to the avoidance target 92. On the other hand, when the irradiation unit 13 has the light spot shaper 70 and shapes the light spot to avoid irradiation of the avoidance target 92, the light L2 becomes the irradiation range L2b.
 このように、光スポット整形器70は、光L2のスポット形状を照射対象91に合わせ、また、照射範囲が広がって回避対象92に当たらないように光のスポット形状を調整する。照射部13が光スポット整形器70を備えることで、照射対象91のみに集中的に光L2の照射が可能になり、光照射の効率化を図ることができる。また、回避対象92への光照射を回避することができ、安全性も担保できる。 In this way, the light spot shaper 70 matches the spot shape of the light L2 to the irradiation target 91, and also adjusts the light spot shape so that the irradiation range is expanded and does not hit the avoidance target 92. By equipping the irradiation unit 13 with the light spot shaper 70, it becomes possible to concentrate the irradiation of the light L2 only on the irradiation target 91, and the efficiency of the light irradiation can be improved. In addition, it is possible to avoid the irradiation of the light on the avoidance target 92, and safety can be ensured.
(実施形態2)
 図6は、本実施形態の光伝送システム301を説明する図である。光伝送システム301は、
 光L1を出力する光源部11と、
 光L1を伝搬する光伝送路26と、
 光伝送路26が伝搬した前記光を複数の分岐光ファイバそれぞれに分岐する光分岐部12eと、
 前記分岐光ファイバを光ファイバ55とする実施形態1で説明した光スポット整形器70を有し、光スポット整形器70を通過した前記光を照射対象域ARへ照射する照射部13と、
を備える。
(Embodiment 2)
FIG. 6 is a diagram illustrating an optical transmission system 301 according to the present embodiment. The optical transmission system 301 includes:
A light source unit 11 that outputs light L1;
an optical transmission path 26 that propagates light L1;
an optical branching unit 12e that branches the light propagated through the optical transmission line 26 into a plurality of branch optical fibers;
an irradiation unit 13 having the light spot shaper 70 described in the first embodiment in which the branch optical fiber is the optical fiber 55, and irradiating the light passing through the light spot shaper 70 to an irradiation target area AR;
Equipped with.
 光源部11は、紫外光、可視光、又は赤外光の光L1を出力するLED(Light Emitting Diode)である。なお、光源部11がLEDに限らず次のような光学特性を持つ光源(例えば、白熱ランプ、または放電ランプ)であってもよい。
・波長、振幅、又は位相にばらつきがある。
・光が散乱する。
・自然放出である。
The light source unit 11 is an LED (Light Emitting Diode) that outputs ultraviolet light, visible light, or infrared light L1. Note that the light source unit 11 is not limited to an LED, and may be a light source (for example, an incandescent lamp or a discharge lamp) having the following optical characteristics.
- There is variation in wavelength, amplitude, or phase.
・Light is scattered.
・It is a natural release.
 なお、本実施形態では、光源部11からの光L1を光伝送路26の一端T1に結合する光学系11cが存在するが、光源部11が出力する光L1のスポット径や光伝送路26の一端T1の直径によっては光学系11cを不要とすることもできる。 In this embodiment, an optical system 11c is present that couples the light L1 from the light source unit 11 to one end T1 of the optical transmission path 26, but depending on the spot diameter of the light L1 output by the light source unit 11 and the diameter of one end T1 of the optical transmission path 26, the optical system 11c may not be necessary.
 光伝送路26は、一端T1に入力された光L1を他端T2まで伝搬する光ファイバである。図7は、光伝送路26に使用される光ファイバの構造を説明する断面図である。図7(1)のような一般的な添加物を用いた充実型光ファイバの他、図7(2)~(4)に記載した空孔構造を有する光ファイバ、図7(5)、(6)に記載した複数のコア領域を有する光ファイバ、もしくはそれらを組み合わせた構造を有する光ファイバ(図7(7)~(10))であっても良い。
(1)充実コア光ファイバ
 この光ファイバは、クラッド60の中にクラッド60より高屈折率である1つの充実コア52を有する。「充実」とは「空洞ではない」という意味である。尚、充実コアは、クラッド内に円環状の低屈折率領域を形成することでも実現できる。
(2)空孔アシスト光ファイバ
 この光ファイバは、クラッド60の中に充実コア52とその外周に配置された複数の空孔53を有する。空孔53の媒質は空気であり、空気の屈折率は石英系ガラスに比べ十分小さい。このため、空孔アシスト光ファイバは、曲げなどでコア52から漏れた光を再びコア52に戻す機能があり、曲げ損失が小さいという特徴がある。
(3)空孔構造光ファイバ
この光ファイバは、クラッド60の中に複数の空孔53の空孔群53aを有し、ホスト材料(ガラス等)よりも実効的に屈折率が低い。本構造は、フォトニック結晶ファイバと呼ばれる。本構造には、屈折率を変化させた高屈折率コアが存在しない構造をとることができ、空孔53に取り囲まれた領域52aを実効的なコア領域として、光を閉じ込めることができる。充実コアを有する光ファイバに比べ、フォトニック結晶ファイバは、コアの添加剤による吸収や散乱損失の影響を低減することができるとともに、曲げ損失の低減や非線形効果の制御等、充実型光ファイバでは実現し得ない光学特性を実現できる。
(4)中空コア光ファイバ
この光ファイバは、コア領域が空気で形成される。クラッド領域に複数の空孔によるフォトニックバンドギャップ構造もしくはガラス細線によるアンチレゾナント構造をとることによって光をコア領域に閉じ込めることができる。この光ファイバは、非線形効果が小さく、高出力または高エネルギーレーザ供給が可能である。
(5)結合コア型光ファイバ
 この光ファイバは、クラッド60の中に複数の高屈折率である充実コア52が近接して配置される。この光ファイバは、充実コア52間で光波結合で光を導波する。結合コア型光ファイバは、コア数分だけ光を分散して送れるので、その分ハイパワー化して効率的な殺菌等ができる、また、結合コア型光ファイバは、紫外線によるファイバ劣化を緩和し長寿命化できるというメリットがある。
(6)充実コア型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に複数の高屈折率である充実コア52が離れて配置される。この光ファイバは、充実コア52間で光波結合を十分小さくして光波結合の影響が無視できる状態で光を導波する。このため、充実コア型マルチコア光ファイバは、各コアを独立な導波路として扱えるというメリットがある。
(7)空孔アシスト型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に上記(2)の空孔構造およびコア領域が複数配置された構造である。
(8)空孔構造型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に上記(3)の空孔構造が複数配置された構造である。
(9)中空コア型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に上記(4)の空孔構造が複数配置された構造である。
(10)結合コア型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に上記(5)の結合コア構造が複数配置された構造である。
The optical transmission line 26 is an optical fiber that propagates light L1 inputted to one end T1 to the other end T2. Fig. 7 is a cross-sectional view for explaining the structure of the optical fiber used in the optical transmission line 26. In addition to a solid optical fiber using a general additive as shown in Fig. 7(1), an optical fiber having a hole structure as shown in Fig. 7(2) to (4), an optical fiber having multiple core regions as shown in Fig. 7(5) and (6), or an optical fiber having a structure combining these (Fig. 7(7) to (10)) may be used.
(1) Solid-core Optical Fiber This optical fiber has one solid core 52 in a cladding 60, the solid core having a higher refractive index than the cladding 60. "Solid" means "not hollow." A solid core can also be realized by forming an annular low-refractive-index region in the cladding.
(2) Hole-assisted optical fiber This optical fiber has a solid core 52 and a number of holes 53 arranged around the solid core 52 in a cladding 60. The medium of the holes 53 is air, and the refractive index of air is sufficiently smaller than that of silica-based glass. Therefore, the hole-assisted optical fiber has a function of returning light that has leaked from the core 52 due to bending or the like back to the core 52, and is characterized by small bending loss.
(3) Hole-structure optical fiber This optical fiber has a group of holes 53a of a plurality of holes 53 in the cladding 60, and has an effective refractive index lower than that of the host material (glass, etc.). This structure is called a photonic crystal fiber. This structure can have a structure in which a high refractive index core with a changed refractive index does not exist, and the region 52a surrounded by the holes 53 can be used as an effective core region to confine light. Compared to optical fibers with a solid core, photonic crystal fibers can reduce the effects of absorption and scattering loss due to additives in the core, and can achieve optical properties that cannot be achieved with solid optical fibers, such as reduced bending loss and control of nonlinear effects.
(4) Hollow-core optical fiber: In this optical fiber, the core region is made of air. By forming a photonic band gap structure with multiple air holes in the cladding region or an anti-resonant structure with a thin glass wire, light can be confined to the core region. This optical fiber has a small nonlinear effect and can supply high-output or high-energy laser.
(5) Coupled-core optical fiber In this optical fiber, multiple solid cores 52 with a high refractive index are arranged closely together in a cladding 60. This optical fiber guides light by optical wave coupling between the solid cores 52. A coupled-core optical fiber can disperse and transmit light in proportion to the number of cores, allowing for high power output for efficient sterilization, etc. In addition, a coupled-core optical fiber has the advantage of being able to mitigate fiber deterioration caused by ultraviolet rays and extend the lifespan.
(6) Solid-core type multi-core optical fiber In this optical fiber, multiple solid cores 52 with a high refractive index are arranged at a distance from each other in the cladding 60. In this optical fiber, the optical wave coupling between the solid cores 52 is sufficiently small so that the influence of the optical wave coupling can be ignored, and light is guided in this state. Therefore, the solid-core type multi-core optical fiber has the advantage that each core can be treated as an independent waveguide.
(7) Hole-assisted multi-core optical fiber This optical fiber has a structure in which a plurality of the hole structures and core regions described above in (2) are arranged in the cladding 60.
(8) Hole-Structure-Type Multi-Core Optical Fiber This optical fiber has a structure in which a plurality of the hole structures described above in (3) are arranged in the cladding 60.
(9) Hollow-core-type multi-core optical fiber This optical fiber has a structure in which a plurality of the above-mentioned hole structures (4) are arranged in the cladding 60.
(10) Coupled-core-type multi-core optical fiber This optical fiber has a structure in which a plurality of the coupled-core structures described above in (5) are arranged in the cladding 60.
 光分岐部12eは、光伝送路26と複数本の分岐光ファイバ(光ファイバ55)と接続し、光伝送路26が伝送した光をそれぞれの分岐光ファイバ(光ファイバ55)分岐する。光分岐部12eは、例えば、カプラ、スプリッタ、又はファンアウトデバイスである。 The optical branching unit 12e connects the optical transmission path 26 to a plurality of branch optical fibers (optical fibers 55), and branches the light transmitted by the optical transmission path 26 to each of the branch optical fibers (optical fibers 55). The optical branching unit 12e is, for example, a coupler, a splitter, or a fan-out device.
 照射部13は、複数の光ファイバ55が含まれる光ファイバ群38を一体として伝搬してきた光を照射対象域ARに光L2として照射する。照射部13は、実施形態1で説明した光スポット整形器70を有しており、断面における光ファイバ群38の形状を変化させ、光L2を任意のスポット形状に整形する。 The irradiation unit 13 irradiates the irradiation target area AR with light that has propagated through the optical fiber group 38, which includes multiple optical fibers 55, as light L2. The irradiation unit 13 has a light spot shaper 70, as described in the first embodiment, which changes the shape of the optical fiber group 38 in cross section and shapes the light L2 into an arbitrary spot shape.
 光伝送システム301は、図5で説明したように、光スポット整形器70により光L2のスポット形状を照射対象91に合わせ、また、照射範囲が広がって回避対象92に当たらないように光のスポット形状を調整することができる。また、照射部13が光スポット整形器70を備えることで、照射対象91のみに集中的に光L2の照射が可能になり、光照射の効率化を図ることができる。また、回避対象92への光照射を回避することができ、安全性も担保できる。 As described in FIG. 5, the optical transmission system 301 uses the light spot shaper 70 to match the spot shape of the light L2 to the irradiation target 91, and can adjust the light spot shape so that the irradiation range is expanded and does not hit the avoidance target 92. Furthermore, by providing the irradiation unit 13 with the light spot shaper 70, it becomes possible to concentrate the irradiation of the light L2 only on the irradiation target 91, and the efficiency of the light irradiation can be improved. Furthermore, it is possible to avoid the irradiation of the light to the avoidance target 92, and safety can be ensured.
(実施形態3)
 図8は、本実施形態の光伝送システム302を説明する図である。光伝送システム302は、
 光を出力する光源部11と、
 複数のシングルコア光ファイバ51aを束ねたバンドル光ファイバ36の複数のコアで前記光を伝搬する光伝送路26と、
 バンドル光ファイバ36をシングルコア光ファイバ51aに解体する分離部12cと、
 分離部12cで解体されたシングルコア光ファイバ51aを光ファイバ55とする実施形態1で説明した光スポット整形器70を有し、光スポット整形器70を通過した光L2を照射対象域ARへ照射する照射部13と、
を備える。
(Embodiment 3)
FIG. 8 is a diagram illustrating an optical transmission system 302 according to the present embodiment. The optical transmission system 302 includes:
a light source unit 11 that outputs light;
an optical transmission line 26 that propagates the light through a plurality of cores of an optical bundle 36 in which a plurality of single-core optical fibers 51 a are bundled;
a separation unit 12c for separating the bundle optical fiber 36 into single-core optical fibers 51a;
an irradiation unit 13 having the light spot shaper 70 described in the first embodiment, which uses the single-core optical fiber 51 a separated by the separation unit 12 c as the optical fiber 55, and which irradiates the light L2 passing through the light spot shaper 70 onto an irradiation target area AR;
Equipped with.
 光伝送システム302は、図6で説明した光伝送システム301の光伝送路26の光ファイバがバンドル光ファイバ36となり、光分岐部12eが分離部12cとなっている。
 バンドル光ファイバ36は、図8のように、複数の単一コア光ファイバ51aを束ねたものである。一端T1に光源部11からの光L1が照射される。一方、他端T2で、後述する分離部12cで解体され、ばらばらになった単一コア光ファイバ51aが光ファイバ55として照射部13に接続される。
In the optical transmission system 302, the optical fiber of the optical transmission path 26 of the optical transmission system 301 described in FIG. 6 is replaced with an optical fiber bundle 36, and the optical branching section 12e is replaced with a separation section 12c.
8, the bundle optical fiber 36 is a bundle of a plurality of single-core optical fibers 51a. One end T1 is irradiated with light L1 from the light source unit 11. On the other hand, at the other end T2, the single-core optical fibers 51a are disassembled by a separation unit 12c described later, and the individual single-core optical fibers 51a are connected to the irradiation unit 13 as optical fibers 55.
 光伝送路26にバンドル光ファイバ36を採用するメリットを図9で説明する。
 光源部11がLEDである場合、発光面がレーザに比べて広いため、LEDが出力した光L1を1本の単一コア光ファイバ51aに結合しようとしてもその断面におけるコア面積が狭く、ほとんどが結合されないため結合効率が低い(図9(A))。これは、レンズなどの光学系でLEDが出力した光L1を絞ったとしても同じである(図9(B))。つまり、光源部11にLEDを使用した場合、光源部11の出力パワーの大半が有効活用できないという課題がある。なお、この課題は紫外光を伝送する光伝送システムに限らず、赤外光や可視光を伝送する光伝送システムに共通する課題である。
The advantage of using the bundle optical fiber 36 in the optical transmission line 26 will be described with reference to FIG.
When the light source unit 11 is an LED, the light emitting surface is wider than that of a laser, so even if the light L1 output from the LED is coupled to one single-core optical fiber 51a, the core area in the cross section is narrow, and most of the light is not coupled, resulting in low coupling efficiency (FIG. 9(A)). This is the same even if the light L1 output from the LED is narrowed down by an optical system such as a lens (FIG. 9(B)). In other words, when an LED is used for the light source unit 11, there is a problem that most of the output power of the light source unit 11 cannot be effectively utilized. This problem is not limited to optical transmission systems that transmit ultraviolet light, but is a common problem in optical transmission systems that transmit infrared light and visible light.
 ここで、マルチコア光ファイバ(MCF)や複数の単一コア光ファイバを束ねたバンドル光ファイバのように断面に存在する複数のコアに光を結合すれば、結合効率が向上し、光源の出力パワーの無駄を低減できるというメリットがある(図9(C))。 Here, if light is coupled to multiple cores present in the cross section, such as in a multi-core optical fiber (MCF) or a bundled optical fiber consisting of multiple single-core optical fibers, the coupling efficiency is improved and the waste of output power from the light source can be reduced (Figure 9 (C)).
 光伝送システム302は、図5で説明したように、光スポット整形器70により光L2のスポット形状を照射対象91に合わせ、また、照射範囲が広がって回避対象92に当たらないように光のスポット形状を調整することができる。また、照射部13が光スポット整形器70を備えることで、照射対象91のみに集中的に光L2の照射が可能になり、光照射の効率化を図ることができる。また、回避対象92への光照射を回避することができ、安全性も担保できる。 As described in FIG. 5, the optical transmission system 302 uses the light spot shaper 70 to match the spot shape of the light L2 to the irradiation target 91, and can adjust the light spot shape so that the irradiation range is expanded and does not hit the avoidance target 92. Furthermore, by providing the irradiation unit 13 with the light spot shaper 70, it becomes possible to concentrate the irradiation of the light L2 only on the irradiation target 91, and the efficiency of the light irradiation can be improved. Furthermore, it is possible to avoid the irradiation of the light to the avoidance target 92, and safety can be ensured.
(実施形態4)
 図10は、本実施形態の光伝送システム303を説明する図である。光伝送システム303は、
 光L1を出力する光源部11と、
 複数のシングルコア光ファイバ51aを束ねたバンドル光ファイバの36複数のコアで光L1を伝搬する光伝送路26と、
 前記バンドル光ファイバを前記シングルコア光ファイバに解体し、N個のグループ(Nは2以上の整数)にまとめる分離分岐部12fと、
 前記グループにまとめられたシングルコア光ファイバ51aを伝搬する光をN個の照射対象域ARn(nは1からNの整数)へそれぞれ照射するN個の照射部13と、
を備え、
 照射部13の少なくとも1つは、前記グループにまとめられたシングルコア光ファイバ51aを光ファイバ55とする実施形態1で説明した光スポット整形器70を有し、光スポット整形器70を通過した光L2を照射対象域ARnへ照射すること
を特徴とする。
(Embodiment 4)
FIG. 10 is a diagram illustrating an optical transmission system 303 according to the present embodiment. The optical transmission system 303 includes:
A light source unit 11 that outputs light L1;
an optical transmission line 26 that transmits light L1 through a plurality of cores of a bundle optical fiber 36 in which a plurality of single-core optical fibers 51a are bundled;
a separation/branching unit 12f for separating the bundle optical fiber into the single-core optical fibers and grouping the single-core optical fibers into N groups (N is an integer of 2 or more);
N irradiation units 13 each irradiating N irradiation target areas ARn (n is an integer from 1 to N) with light propagating through the grouped single-core optical fibers 51a;
Equipped with
At least one of the irradiation units 13 has the light spot shaper 70 described in embodiment 1 in which the single-core optical fibers 51a grouped together are used as optical fibers 55, and is characterized in that the light L2 that passes through the light spot shaper 70 is irradiated onto the irradiation target area ARn.
 光伝送システム303は、図8で説明した光伝送システム302を分離分岐部12fを利用してP-MP構成としたものである。分離分岐部12fは、光伝送路26(バンドル光ファイバ36)とN本の方路14(光ファイバ群38)と接続しており、バンドル光ファイバ36を一体として伝搬してきた光をそれぞれの方路14の光ファイバ群38へ分岐する。バンドル光ファイバ36に束ねられている単一コア光ファイバ51aの数Iと光ファイバ群38に含まれる光ファイバ55の数Jとは同じであってもよいし、異なっていてもよい。分離分岐部12fは、例えば、カプラ、スプリッタ、又はファンアウトデバイスである。 The optical transmission system 303 is a P-MP configuration of the optical transmission system 302 described in FIG. 8, using a splitter 12f. The splitter 12f connects the optical transmission path 26 (bundle optical fiber 36) and N paths 14 (optical fiber group 38), and splits the light propagating through the bundle optical fiber 36 as a whole into the optical fiber group 38 of each path 14. The number I of single-core optical fibers 51a bundled in the bundle optical fiber 36 and the number J of optical fibers 55 included in the optical fiber group 38 may be the same or different. The splitter 12f is, for example, a coupler, a splitter, or a fan-out device.
 光伝送システム303も、図5で説明したように、光スポット整形器70により光L2のスポット形状を照射対象91に合わせ、また、照射範囲が広がって回避対象92に当たらないように光のスポット形状を調整することができる。また、照射部13が光スポット整形器70を備えることで、照射対象91のみに集中的に光L2の照射が可能になり、光照射の効率化を図ることができる。また、回避対象92への光照射を回避することができ、安全性も担保できる。
 さらに、光伝送システム303は、一つの光源部11からの光L1を、複数の照射対象域ARnで共用でき、システムコストを低減できる効果がある。
5, the optical transmission system 303 can also use the light spot shaper 70 to match the spot shape of the light L2 to the irradiation target 91, and can adjust the spot shape of the light so that the irradiation range is expanded and the light does not hit the avoidance target 92. Furthermore, by providing the irradiation unit 13 with the light spot shaper 70, it becomes possible to intensively irradiate the light L2 only to the irradiation target 91, and the efficiency of light irradiation can be improved. Furthermore, it is possible to avoid irradiating the avoidance target 92 with light, and safety can be ensured.
Furthermore, the optical transmission system 303 has the advantage that the light L1 from one light source unit 11 can be shared by a plurality of irradiation target areas ARn, thereby reducing system costs.
 なお、全ての照射部13が光スポット整形器70を有する必要はない。光スポットの整形が必要である照射対象域ARnを担当する照射部13に光スポット整形器70を備えればよい。 It should be noted that not all irradiation units 13 need to have a light spot shaper 70. It is sufficient to provide a light spot shaper 70 in the irradiation unit 13 responsible for the irradiation target area ARn where light spot shaping is required.
(実施形態5)
 図6、図8及び図10で説明した光伝送システム(301~303)は、光スポット整形器70の作用部72へ前記力の与え方を指示する制御信号を出力する制御部15cをさらに備えてもよい。図11は、例として制御部15cを備えた光伝送システム302を説明する図である。図11の光伝送システム302は、照射対象域ARの状況に応じて光L2のスポット形状を変化させることができる。
(Embodiment 5)
The optical transmission systems (301 to 303) described in Fig. 6, Fig. 8, and Fig. 10 may further include a control unit 15c that outputs a control signal instructing the action unit 72 of the light spot shaper 70 how to apply the force. Fig. 11 is a diagram illustrating an optical transmission system 302 including the control unit 15c as an example. The optical transmission system 302 in Fig. 11 can change the spot shape of the light L2 depending on the condition of the irradiation target area AR.
 制御部15cには光スポット整形器70で整形する光L2のスポット形状の情報が入力される(作業者が入力してもよいし、後述のようにセンサなどからの情報であってもよい。)。制御部15cは、当該情報に基づき、所望の光のスポット形状とする制御信号を光スポット整形器70へ出力する。光スポット整形器70は、制御部15cから制御信号を受け取り、光L2のスポット形状を整形する。なお、制御部15cから光スポット整形器70への制御信号は、電線を介した電気信号、光ファイバを介した光信号、電波や光などの無線信号のいずれであってもよい。 Information on the spot shape of light L2 to be shaped by light spot shaper 70 is input to control unit 15c (this may be input by an operator, or may be information from a sensor, etc., as described below). Based on this information, control unit 15c outputs a control signal to light spot shaper 70 to create the desired light spot shape. Light spot shaper 70 receives the control signal from control unit 15c and shapes the spot shape of light L2. The control signal from control unit 15c to light spot shaper 70 may be an electrical signal via an electric wire, an optical signal via an optical fiber, or a wireless signal such as radio waves or light.
 制御部15cを備えた光伝送システム(301~303)は、照射対象域(AR又はARn)内において、人の動きなど時間の経過とともに回避対象92の位置が変わる場合、また、照射対象91が移動体であるなど時間の経過とともに照射対象91の位置が変わる場合に、照射対象91や回避対象92の状況に応じて光のスポット形状を最適化することができる。 The optical transmission system (301-303) equipped with the control unit 15c can optimize the light spot shape according to the conditions of the irradiation target 91 and the avoidance target 92 when the position of the avoidance target 92 changes over time within the irradiation target area (AR or ARn) due to human movement or the irradiation target 91 is a moving object and the position of the irradiation target 91 changes over time.
 ここで、制御部15cを光スポット整形器70から離して配置されてもよい。光スポットを整形することの遠隔操作が可能となる。図12は、制御部15cを光スポット整形器70から離して配置する構成を説明する図である。 Here, the control unit 15c may be disposed away from the light spot shaper 70. This allows remote control of shaping the light spot. Figure 12 is a diagram illustrating a configuration in which the control unit 15c is disposed away from the light spot shaper 70.
 図12(A)は、制御部15cを光源部11側に配置し、制御信号伝送用ケーブルCsを用いて光スポット整形器70と接続する構成の光伝送システム302を説明する図である。なお、制御部15cから光スポット整形器70への制御信号は、制御信号伝送用ケーブルCsである電線を介した電気信号や光ファイバを介した光信号だけでなく、制御信号伝送用ケーブルCsを使用しない電波や光などの無線信号であってもよい。光伝送システム301及び303も本構成を採用することができる。 FIG. 12(A) is a diagram explaining an optical transmission system 302 in which the control unit 15c is disposed on the light source unit 11 side and is connected to the light spot shaper 70 using a control signal transmission cable Cs. The control signal from the control unit 15c to the light spot shaper 70 may be not only an electrical signal via an electric wire that is the control signal transmission cable Cs or an optical signal via an optical fiber, but also a wireless signal such as an electric wave or light that does not use the control signal transmission cable Cs. The optical transmission systems 301 and 303 can also adopt this configuration.
 光伝送路26がバンドル光ファイバ36であれば、図12(B)のような構成とすることができる。図12(B)は、制御部15cが、バンドル光ファイバ36の前記コアの少なくとも1つを利用して前記制御信号を光スポット整形器70へ送信する構成の光伝送システム302を説明する図である。図12(B)の光伝送システム302は、バンドル光ファイバ36のコアのうち1コアを制御信号伝送用に割当ており、制御部15cは当該1コアを利用して光スポット整形器70へ制御信号を出力する。分離部12cは、当該1コアの光(制御信号)を電気信号へ変換し、光スポット整形器70に接続する制御信号伝送用ケーブルCsに出力する。光伝送路26の区間の制御信号伝送用ケーブルを別途用意する必要がないため、システムコストを低減する効果がある。
 なお、制御部15cから光スポット整形器70への制御信号は、次のようなバリエーションが可能である。
・制御部15cから分離部12cまでの区間(特にバンドルファイバ36を伝送する部分)
 途中に光電変換しうる機能部や無線トランシーバがないため、制御信号は光信号のみであり、この区間の制御信号伝送用ケーブルCsは光ファイバである。
・分離部12cから光スポット整形器70までの区間
 制御信号伝送用ケーブルCsである電線を介した電気信号や光ファイバを介した光信号だけでなく、制御信号伝送用ケーブルCsを使用しない電波や光などの無線信号であってもよい。
If the optical transmission path 26 is a bundle optical fiber 36, the configuration can be as shown in FIG. 12B. FIG. 12B is a diagram for explaining an optical transmission system 302 in which the control unit 15c transmits the control signal to the light spot shaper 70 using at least one of the cores of the bundle optical fiber 36. In the optical transmission system 302 in FIG. 12B, one of the cores of the bundle optical fiber 36 is allocated for control signal transmission, and the control unit 15c outputs a control signal to the light spot shaper 70 using the one core. The separation unit 12c converts the light (control signal) of the one core into an electrical signal and outputs it to a control signal transmission cable Cs connected to the light spot shaper 70. Since there is no need to prepare a separate control signal transmission cable for the section of the optical transmission path 26, there is an effect of reducing system costs.
The control signal from the control unit 15c to the light spot shaper 70 can be varied as follows.
The section from the control unit 15c to the separation unit 12c (particularly the portion transmitting the bundle fiber 36)
Since there are no functional parts capable of photoelectric conversion or wireless transceivers along the way, the control signals are only optical signals, and the cable Cs for transmitting control signals in this section is optical fiber.
The section from the separation unit 12c to the light spot shaper 70 The signal may be not only an electrical signal via an electric wire that is the control signal transmission cable Cs, or an optical signal via an optical fiber, but also a wireless signal such as radio waves or light that does not use the control signal transmission cable Cs.
 P-MPである光伝送システム303も本構成を採用することができる。この場合、路14毎にバンドル光ファイバ36に束ねられている単一コア光ファイバ51aを制御信号伝送用に割り当てる。つまり、方路14がN本であれば、制御信号用に割り当てられる単一コア光ファイバ51aもN本となる。一方、光伝送路26の区間において各方路14への制御信号を多重することでバンドル光ファイバ36に束ねられている単一コア光ファイバ51aの1つのみを制御信号用とすることができる。
 なお、分離部12c又は分離分岐部12fから照射部13までの間において、制御信号は電線、光ファイバ、又は無線で伝送されるのは前述の通りであるが、制御信号伝送用ケーブルCsが光ファイバである場合、光ファイバ群38のうちの1光ファイバ55を制御信号伝送用に割り当ててもよい。
This configuration can also be adopted in the optical transmission system 303, which is a P-MP. In this case, the single-core optical fibers 51a bundled in the bundle optical fiber 36 are allocated for each path 14 for control signal transmission. In other words, if there are N paths 14, the number of single-core optical fibers 51a allocated for control signal transmission will also be N. On the other hand, by multiplexing the control signals to each path 14 in the section of the optical transmission path 26, only one of the single-core optical fibers 51a bundled in the bundle optical fiber 36 can be used for the control signal.
As described above, the control signal is transmitted via electric wire, optical fiber, or wirelessly between the separation unit 12c or the separation branching unit 12f and the irradiation unit 13. However, if the control signal transmission cable Cs is optical fiber, one optical fiber 55 of the optical fiber group 38 may be allocated for transmitting the control signal.
(実施形態6)
 図6、図8及び図10で説明した光伝送システム(301~303)は、
 照射対象域(AR又はARn)を含む領域に光L2の被ばくを回避すべき回避対象92が存在するか否かを検知したセンサ情報を出力するセンサ部31と、
 センサ部31からの前記センサ情報に基づいて、光スポット整形器70の作用部92へ前記力の与え方を指示する制御部15cと、
をさらに備えることを特徴とする。
(Embodiment 6)
The optical transmission systems (301 to 303) described in FIG. 6, FIG. 8, and FIG. 10 are as follows:
A sensor unit 31 that outputs sensor information indicating whether or not an avoidance target 92 that should be avoided from being exposed to the light L2 is present in an area including an irradiation target area (AR or ARn);
a control unit that instructs an action unit of the light spot shaper on how to apply the force based on the sensor information from the sensor unit;
The present invention is characterized by further comprising:
 図13は、例としてセンサ部31と制御部15cを備えた光伝送システム302を説明する図である。図13の光伝送システム302は、センサ部31によるセンサ情報(例えば、照射対象域AR内の回避対象92の位置情報)を基に光のスポット形状を変化させることができる。 FIG. 13 is a diagram illustrating an example of an optical transmission system 302 equipped with a sensor unit 31 and a control unit 15c. The optical transmission system 302 in FIG. 13 can change the shape of the light spot based on sensor information from the sensor unit 31 (e.g., position information of an object to be avoided 92 within the irradiation target area AR).
 センサ部31は、それぞれの照射対象域ARとその周辺にある回避対象(人や動物など)Hの存否や動きを検知する。例えば、センサ部31は、温度計による温度取得、赤外線センサによる赤外線取得、カメラによる画像取得、LiDAR(Light Detection and Ranging)による光取得等を行い、情報処理(形、顔、指紋、静脈、虹彩など)を施し、回避対象の存否や動きを検知する。
 そして、センサ部31は、その検知結果をセンサ情報として制御部15cへ通知する。制御部15cへの通知は有線でも無線でもよい。
The sensor unit 31 detects the presence or absence and movement of each irradiation target area AR and an avoidance target (such as a person or an animal) H in the vicinity thereof. For example, the sensor unit 31 acquires temperature using a thermometer, infrared rays using an infrared sensor, images using a camera, light using LiDAR (Light Detection and Ranging), etc., and performs information processing (shape, face, fingerprint, veins, iris, etc.) to detect the presence or absence and movement of an avoidance target.
The sensor unit 31 then notifies the control unit 15c of the detection result as sensor information. The notification to the control unit 15c may be made by wire or wirelessly.
 制御部15cは、センサ部13からの前記センサ情報に基づいて、所望の光のスポット形状とする制御信号を光スポット整形器70へ出力する。光スポット整形器70は、制御部15cから制御信号を受け取り、光L2のスポット形状を整形する。 The control unit 15c outputs a control signal to the light spot shaper 70 to form the desired light spot shape based on the sensor information from the sensor unit 13. The light spot shaper 70 receives a control signal from the control unit 15c and shapes the spot shape of the light L2.
 制御部15cを備えた光伝送システム(301~303)は、照射対象域(AR又はARn)内において、照射対象91又は回避対象92の位置をセンシングによって特定し、それらの動きにリアルタイムに追従して光L2のスポット形状を最適化することができる。 The optical transmission system (301-303) equipped with the control unit 15c can identify the position of the irradiation target 91 or the avoidance target 92 within the irradiation target area (AR or ARn) by sensing, and can optimize the spot shape of the light L2 by tracking their movements in real time.
 すなわち、光伝送システム(301~303)は、次の光照射方法で光照射を行う。
 当該光照射方法は、光軸方向が同じになるように複数の光ファイバ55が集められた光ファイバ群38を伝搬してきた光を光ファイバ群38の端部から照射光L2として出射させる光照射方法であって、光ファイバ群38に対して力を与え、前記光軸方向に垂直な断面における光ファイバ55の位置を変化させて照射光L2のスポット形状を変化させることを特徴とする。
That is, the optical transmission system (301 to 303) performs light irradiation using the following light irradiation method.
This light irradiation method is a method in which light that has propagated through an optical fiber group 38 in which a plurality of optical fibers 55 are gathered so that their optical axis directions are the same is emitted as irradiation light L2 from the end of the optical fiber group 38, and is characterized in that a force is applied to the optical fiber group 38 to change the position of the optical fiber 55 in a cross section perpendicular to the optical axis direction, thereby changing the spot shape of the irradiation light L2.
 ここで、
 照射光L2が照射される照射対象域(AR又はARn)を含む領域に前記光の被ばくを回避すべき回避対象Hが存在するか否かを検知したセンサ情報を発生すること、及び
 前記センサ情報に基づいて光ファイバ群38に対する前記力の与え方を指示すること
をさらに行うこと
が好ましい。
here,
It is preferable to further perform the following: generating sensor information that detects whether or not there is an avoidance target H that should be avoided from being exposed to the light in an area including the irradiation target area (AR or ARn) where the irradiation light L2 is irradiated; and instructing how to apply the force to the optical fiber group 38 based on the sensor information.
11:光源部
11a:紫外光源部
11c:光学系
12:光分岐部(等分岐)
12c:分離部
12e:光分岐部
12f:分離分岐部
13、13-1、・・・、13-n、・・・、13-N:照射部
14:方路
15c:制御部
16:光伝送路
26:光伝送路
31:センサ部
36:バンドル光ファイバ
38:光ファイバ群
51a:単一コア光ファイバ
52:充実コア
52a:領域
53:空孔
53a:空孔群
55:方路の単一コア光ファイバ
60:クラッド
70:光スポット整形器
72:作用部
72a:筐体
72b:電磁石
72c:押圧部
72d:帯
300~303:光伝送システム
L1、L2:光
AR、AR1、AR2、・・・、ARn、・・・、ARN:照射対象域
11: Light source unit 11a: Ultraviolet light source unit 11c: Optical system 12: Light branching unit (equal branching)
12c: Separation section 12e: Optical branching section 12f: Separation and branching section 13, 13-1, ..., 13-n, ..., 13-N: Irradiation section 14: Path 15c: Control section 16: Optical transmission path 26: Optical transmission path 31: Sensor section 36: Bundle optical fiber 38: Optical fiber group 51a: Single-core optical fiber 52: Solid core 52a: Region 53: Hole 53a: Hole group 55: Single-core optical fiber 60 of path: Cladding 70: Light spot shaper 72: Action section 72a: Housing 72b: Electromagnet 72c: Pressing section 72d: Bands 300 to 303: Optical transmission system L1, L2: Light AR, AR1, AR2, ..., ARn, ..., ARN: Irradiation target area

Claims (8)

  1.  光軸方向が同じになるように複数の光ファイバが集められた光ファイバ群に対して力を与え、前記光軸方向に垂直な断面における前記光ファイバの位置を変化させる作用部を備える光スポット整形器。 A light spot shaper that applies force to a group of optical fibers in which multiple optical fibers are gathered together so that the optical axis direction is the same, and has an action part that changes the position of the optical fibers in a cross section perpendicular to the optical axis direction.
  2.  前記作用部は、前記光ファイバのそれぞれに前記力を与え、個々の前記光ファイバの位置を変化させることを特徴とする請求項1に記載の光スポット整形器。 The optical spot shaper of claim 1, characterized in that the action unit applies the force to each of the optical fibers, changing the position of each of the optical fibers.
  3.  前記作用部は、前記光ファイバ群全体に前記力を与え、前記断面における前記光ファイバ群の形状を変化させることを特徴とする請求項1に記載の光スポット整形器。 The optical spot shaper of claim 1, characterized in that the action part applies the force to the entire optical fiber group, changing the shape of the optical fiber group in the cross section.
  4.  光を出力する光源部と、
     前記光を伝搬する光伝送路と、
     前記光伝送路が伝搬した前記光を複数の分岐光ファイバそれぞれに分岐する光分岐部と、
     前記分岐光ファイバを前記光ファイバとする請求項1に記載の光スポット整形器を有し、前記光スポット整形器を通過した前記光を照射対象域へ照射する照射部と、
    を備える光伝送システム。
    A light source unit that outputs light;
    an optical transmission path for propagating the light;
    an optical branching unit that branches the light propagated through the optical transmission line into a plurality of branch optical fibers;
    an irradiation unit having the light spot shaper according to claim 1 , the light spot shaper being the branched optical fiber, and irradiating the light passing through the light spot shaper onto an irradiation target area;
    An optical transmission system comprising:
  5.  光を出力する光源部と、
     複数のシングルコア光ファイバを束ねたバンドル光ファイバの複数のコアで前記光を伝搬する光伝送路と、
     前記バンドル光ファイバを前記シングルコア光ファイバに解体する分離部と、
     前記分離部で解体された前記シングルコア光ファイバを前記光ファイバとする請求項1に記載の光スポット整形器を有し、前記光スポット整形器を通過した前記光を照射対象域へ照射する照射部と、
    を備える光伝送システム。
    A light source unit that outputs light;
    an optical transmission line that propagates the light through a plurality of cores of an optical bundle formed by bundling a plurality of single-core optical fibers;
    a separation unit that separates the bundle optical fiber into the single-core optical fiber;
    an irradiation unit having the light spot shaper according to claim 1 , the light spot shaper being the single-core optical fiber separated by the separation unit, and irradiating the light passing through the light spot shaper onto an irradiation target area;
    An optical transmission system comprising:
  6.  光を出力する光源部と、
     複数のシングルコア光ファイバを束ねたバンドル光ファイバの複数のコアで前記光を伝搬する光伝送路と、
     前記バンドル光ファイバを前記シングルコア光ファイバに解体し、N個のグループ(Nは2以上の整数)にまとめる分離分岐部と、
     前記グループにまとめられた前記シングルコア光ファイバを伝搬する光をN個の照射対象域へそれぞれ照射するN個の照射部と、
    を備え、
     前記照射部の少なくとも1つは、前記グループにまとめられた前記シングルコア光ファイバを前記光ファイバとする請求項1に記載の光スポット整形器を有し、前記光スポット整形器を通過した前記光を前記照射対象域へ照射すること
    を特徴とする光伝送システム。
    A light source unit that outputs light;
    an optical transmission line that propagates the light through a plurality of cores of an optical bundle formed by bundling a plurality of single-core optical fibers;
    a separation and branching unit that separates the bundle optical fiber into the single-core optical fibers and groups them into N groups (N is an integer of 2 or more);
    N irradiation units each irradiating N irradiation target areas with light propagating through the single-core optical fibers grouped into the group;
    Equipped with
    An optical transmission system characterized in that at least one of the irradiation units has a light spot shaper as described in claim 1, in which the single-core optical fibers grouped together in the group are the optical fibers, and the light that has passed through the light spot shaper is irradiated onto the irradiation target area.
  7.  前記照射対象域を含む領域に前記光の被ばくを回避すべき回避対象が存在するか否かを検知したセンサ情報を出力するセンサ部と、
     前記センサ部からの前記センサ情報に基づいて、前記光スポット整形器の前記作用部へ前記力の与え方を指示する制御部と、
    をさらに備えることを特徴とする請求項4から6のいずれかに記載の光伝送システム。
    a sensor unit that detects whether or not an object to be avoided from being exposed to the light is present in an area including the irradiation object area and outputs sensor information;
    a control unit that instructs the action unit of the light spot shaper on how to apply the force based on the sensor information from the sensor unit;
    7. The optical transmission system according to claim 4, further comprising:
  8.  光軸方向が同じになるように複数の光ファイバが集められた光ファイバ群を伝搬してきた光を前記光ファイバ群の端部から照射光として出射させる光照射方法であって、
     前記光ファイバ群に対して力を与え、前記光軸方向に垂直な断面における前記光ファイバの位置を変化させて前記照射光のスポット形状を変化させることを特徴とする光照射方法。
    A light irradiation method for emitting light propagating through an optical fiber group, in which a plurality of optical fibers are gathered so that their optical axes are aligned, as irradiation light from an end of the optical fiber group, comprising:
    A light irradiation method comprising the steps of: applying a force to the optical fiber group; and changing the position of the optical fibers in a cross section perpendicular to the optical axis direction, thereby changing the spot shape of the irradiation light.
PCT/JP2022/042822 2022-11-18 2022-11-18 Light spot shaper and optical transmission system WO2024105873A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042822 WO2024105873A1 (en) 2022-11-18 2022-11-18 Light spot shaper and optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042822 WO2024105873A1 (en) 2022-11-18 2022-11-18 Light spot shaper and optical transmission system

Publications (1)

Publication Number Publication Date
WO2024105873A1 true WO2024105873A1 (en) 2024-05-23

Family

ID=91084188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042822 WO2024105873A1 (en) 2022-11-18 2022-11-18 Light spot shaper and optical transmission system

Country Status (1)

Country Link
WO (1) WO2024105873A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121836A (en) * 1998-10-09 2000-04-28 Sony Corp Light source device, illuminating method and device therefor and optical device
JP2007065280A (en) * 2005-08-31 2007-03-15 Matsushita Electric Ind Co Ltd Bundle fiber and optical processing device
JP2007219536A (en) * 2007-03-15 2007-08-30 Sumitomo Electric Ind Ltd Bundle fiber and light-source device using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121836A (en) * 1998-10-09 2000-04-28 Sony Corp Light source device, illuminating method and device therefor and optical device
JP2007065280A (en) * 2005-08-31 2007-03-15 Matsushita Electric Ind Co Ltd Bundle fiber and optical processing device
JP2007219536A (en) * 2007-03-15 2007-08-30 Sumitomo Electric Ind Ltd Bundle fiber and light-source device using same

Similar Documents

Publication Publication Date Title
HUP0301300A2 (en) Method and apparatus for photobiostimulation of biological tissue, biostimulation device and method for the treatment of tissue
BR0012719A (en) Optical waveguide having negative dispersion and large a and f
JP2024059974A (en) Ultraviolet Light Irradiation System
WO2024105873A1 (en) Light spot shaper and optical transmission system
WO2023058144A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
US20230390436A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2022085142A1 (en) Ultraviolet light irradiation system and method
JP2019521761A5 (en)
WO2023084677A1 (en) Ultraviolet light emission system
WO2022024405A1 (en) Ultraviolet light irradiation system and disinfection method
WO2024084561A1 (en) Optical transmission system design method and design device
WO2022024406A1 (en) Ultraviolet light irradiation system
WO2024084562A1 (en) Bundled optical fiber
WO2023276148A1 (en) Ultraviolet light irradiation system and control method
WO2024100862A1 (en) Optical transmission system
WO2023073774A1 (en) Uv irradiation system
WO2023084675A1 (en) Uv irradiation system
WO2023084668A1 (en) Ultraviolet light radiation system and control method
WO2022085122A1 (en) Uv light irradiation system and uv light irradiation method
WO2023073771A1 (en) Ultraviolet light irradiation system
WO2023084666A1 (en) Ultraviolet light irradiation system
WO2024105875A1 (en) Optical transfer system and optical transfer method
WO2023084669A1 (en) Ultraviolet light radiation system and radiation method
WO2022185458A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2023073885A1 (en) Ultraviolet light irradiation system