WO2023084675A1 - Uv irradiation system - Google Patents

Uv irradiation system Download PDF

Info

Publication number
WO2023084675A1
WO2023084675A1 PCT/JP2021/041489 JP2021041489W WO2023084675A1 WO 2023084675 A1 WO2023084675 A1 WO 2023084675A1 JP 2021041489 W JP2021041489 W JP 2021041489W WO 2023084675 A1 WO2023084675 A1 WO 2023084675A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
ultraviolet light
unit
irradiation
power supply
Prior art date
Application number
PCT/JP2021/041489
Other languages
French (fr)
Japanese (ja)
Inventor
友宏 谷口
亜弥子 岩城
聖 成川
誉人 桐原
和秀 中島
裕之 飯田
隆 松井
悠途 寒河江
千里 深井
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/041489 priority Critical patent/WO2023084675A1/en
Publication of WO2023084675A1 publication Critical patent/WO2023084675A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultra-violet radiation

Definitions

  • the present disclosure relates to an ultraviolet light irradiation system that uses ultraviolet light to sterilize and inactivate viruses.
  • Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light. By irradiating the robot with ultraviolet light while moving in a room in a building such as a hospital room, the robot can automatically realize sterilization in a wide range without human intervention.
  • Stationary air purifier The product of Non-Patent Document 2 is a device that is installed on the ceiling or at a predetermined place in a room, and performs sterilization while circulating the air in the room.
  • Non-Patent Document 3 is a portable apparatus equipped with an ultraviolet light source. A user can bring the device to a desired area and irradiate it with ultraviolet light. Therefore, the device can be used in various places.
  • Kantum Ushikata Co., Ltd. website https://www.kantum.co.jp/product/sakkin_robot/sakkinn_robot/UVD_robot
  • June 22, 2020 Iwasaki Electric Co., Ltd. website https://www.iwasaki.co.jp/optics/ARrilization/air/air03.html
  • June 22, 2020 Funakoshi Co., Ltd. website https://www.funakoshi.co.jp/contents/68182
  • Non-Patent Document 1 has the following problems.
  • Economy Since the product of Non-Patent Document 1 is irradiated with high-output ultraviolet light, the apparatus becomes large and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
  • Non-Patent Document 3 cannot irradiate ultraviolet light to narrow pipes or areas where people cannot enter.
  • the product of Non-Patent Literature has a problem of versatility in that it can irradiate any place with ultraviolet light.
  • (3) Operability The product of Non-Patent Document 3 is portable and can be irradiated with ultraviolet light at various locations. However, in order to obtain sufficient effects such as sterilization at the target location, the user is required to have skill and knowledge, and there is a problem in operability.
  • an ultraviolet light irradiation system 300 using an optical fiber as shown in FIG. 1 is conceivable.
  • This ultraviolet light irradiation system transmits ultraviolet light from the light source 11 using a thin and flexible optical fiber, and irradiates the ultraviolet light output from the tip of the optical fiber 14 to an irradiation target area AR to be sterilized or the like with pinpoint accuracy.
  • the versatility of the above problem (2) can be solved because the ultraviolet light can be irradiated to any place simply by moving the irradiation unit 13 at the tip of the optical fiber 14 .
  • the operability of the above problem (3) can be resolved.
  • an optical distribution unit 12 such as an optical splitter in the optical transmission line 16 to form a P-MP (Point to MultiPoint) system configuration such as FTTH (Fiber To The Home)
  • FTTH Fiber To The Home
  • the ultraviolet light irradiation system 301 of FIG. 2 detects the presence or absence of the avoidance target H by the sensor unit 31 installed near the irradiation target area AR, and turns on/off the output of the ultraviolet light source unit 11a or the light distribution unit 12 based on the result. Controls the branching ratio of -6 (optical switch or variable branching ratio coupler). A desired amount of ultraviolet light is supplied to the irradiation target area AR where there is no object to be avoided, and sterilization or the like is realized in a short time. On the other hand, by stopping or reducing the amount of ultraviolet light supplied to the irradiation target area AR where the avoidance target H exists or is about to enter, the avoidance target H is prevented from being exposed to ultraviolet light.
  • a P-MP configuration ultraviolet light irradiation system requires electrical work for supplying power to the light distribution section and the sensor section, making it difficult to reduce the system cost.
  • the present invention provides an ultraviolet light irradiation system with a P-MP configuration that does not require electrical work for power supply to the light distribution unit and the sensor unit and can reduce the system cost. aim.
  • the energy of ultraviolet light considering the time to be supplied to each direction and the energy of ultraviolet light considering the time to irradiate the irradiation target area AR is the integrated light amount (unit: J).
  • the energy per unit time is defined as power (unit: W)
  • the power per unit area of the ultraviolet light applied to the irradiation target area AR is defined as illuminance (W/m 2 ).
  • the energy per unit area in the irradiation target area AR will be described as the amount of ultraviolet rays (unit: J/m 2 or W ⁇ s/m 2 ).
  • the ultraviolet light irradiation system supplies power to the light distribution section and the sensor section using light propagated from the light source section side.
  • the "branching ratio" may be a power ratio when power is split like a coupler, or a time ratio due to route switching of an optical switch.
  • the ultraviolet light irradiation system includes: a light source unit having an ultraviolet light source for generating ultraviolet light and an optical feeding light source for generating feeding light having a wavelength other than the wavelength of the ultraviolet light; N irradiating units that irradiate N (N is a natural number of 2 or more) irradiation target areas with the ultraviolet light; a sensor unit that detects whether or not there is an avoidance target that should be avoided from being exposed to the ultraviolet light in a region that includes the irradiation target region; a light distribution unit that distributes the ultraviolet light and the power supply light to respective routes to the irradiation unit; a terminal photovoltaic unit arranged in each of the sensor units for receiving the power supply light and generating electric power for driving the sensor unit; an intermediate photovoltaic power generation unit disposed in the light distribution unit that receives the power supply light and generates electric power for driving the light distribution unit; Prepare.
  • the presence or absence of objects to be avoided is detected by the sensor unit installed near the irradiation target area, and the branching ratio of the light distribution unit (optical switch or branching ratio variable coupler) is controlled based on the result.
  • a desired amount of ultraviolet light is supplied to an irradiation target area where there is no object to be avoided, and sterilization or the like is realized in a short time.
  • the avoidance target is prevented from being exposed to ultraviolet light.
  • the light distribution section and the sensor section of this ultraviolet light irradiation system have a photovoltaic section.
  • the photovoltaic section receives the power supply light from the light source section to generate electric power, which is used to drive the light distribution section and the sensor section. Therefore, this ultraviolet light irradiation system does not require electrical work for driving the light distribution section and the sensor section.
  • the present invention can provide an ultraviolet light irradiation system with a P-MP configuration that does not require electrical work for power supply to the light distribution unit and the sensor unit, and can reduce system costs.
  • the ultraviolet light and the feeding light may be propagated through different paths. , may be multiplexed and propagated on the same route.
  • the sensor section of the ultraviolet light irradiation system may have a power storage section that stores electric power generated by the terminal photo-electric power generation section.
  • the light distribution section is an optical switch, there is a time when the power supply light does not reach the sensor section.
  • the optical distribution section is a variable branching ratio coupler, there is a time when the power supply light reaching the sensor section is insufficient. Therefore, it is possible to continuously detect the flow of people by accumulating power in the storage battery while the power supply light arrives and driving the sensor unit even when the power supply light does not arrive.
  • the present invention can provide an ultraviolet light irradiation system with a P-MP configuration that does not require electrical work for power supply to the light distribution unit and the sensor unit and can reduce system costs.
  • FIG. 3 is a diagram illustrating the ultraviolet light irradiation system 302 of this embodiment.
  • the ultraviolet light irradiation system 302 is a light source unit 11 having an ultraviolet light source unit 11a for generating ultraviolet light and an optical feeding light source unit 11b for generating feeding light having a wavelength other than the wavelength of the ultraviolet light; N irradiating units 13 that irradiate N (N is a natural number of 2 or more) irradiation target areas AR with the ultraviolet light; a sensor unit 31 for detecting whether or not there is an avoidance target to be avoided from being exposed to the ultraviolet light in an area including the irradiation target area AR; a light distribution unit 12-8 for distributing the ultraviolet light and the power supply light to respective routes to the irradiation unit 13; a terminal photovoltaic unit 32 which is arranged in each sensor unit 31 and receives the power supply light to generate electric power for driving the sensor unit 31; an intermediate photovoltaic power generation unit 35 which is arranged in the light distribution unit 12-8 and
  • the light source unit 11 has an ultraviolet light source unit 11a and a power supply light source unit 11b.
  • the ultraviolet light source unit 11a outputs light in the ultraviolet region (ultraviolet light) that is effective for sterilization and the like.
  • the power supply light source unit 11b outputs light for optical power supply (for example, infrared light).
  • the light source unit 11 and the light distribution unit 12-8 are connected by an optical transmission line 16, which is an optical fiber or space.
  • the optical splitter 12-8 is an optical switch or a variable splitting ratio coupler.
  • the optical distribution unit 12-8 which is an optical switch, distributes the ultraviolet light and the power supply light from the light source unit 11 to one of the plurality of output ports according to the instruction (switching timing) from the control unit 15-8. output to The ultraviolet light and the feeding light output from the output ports 1 to N are input to the irradiation section 13 via the route 14 .
  • the branch ratio of the optical splitter 12-8 which is a variable branch ratio coupler, is set by the controller 15-8.
  • the branching ratio variable coupler branches the power of the ultraviolet light and the feeding light from the light source unit 11 according to the branching ratio, and outputs the branched light to the route 14 connected to the plurality of output ports.
  • the variable branching ratio coupler has a configuration including a Mach-Zehnder interferometer that changes the branching ratio with a heater, as disclosed in Reference 1, for example.
  • the ultraviolet light and the feeding light output from the output ports 1 to N are input to the irradiation section 13 via the route 14 .
  • the optical distribution unit 12-8 has an intermediate photovoltaic power generation unit 35.
  • the intermediate photovoltaic section 35 is, for example, a photodiode.
  • the intermediate optical power generation unit 35 receives part of the power supply light transmitted through the optical transmission line 16 and generates electric power. The power is used for switching the optical switch and changing the branching ratio of the variable branching ratio coupler.
  • the irradiation unit 13 irradiates the ultraviolet light transmitted through the route 14 to a predetermined target location (irradiation target area AR) for sterilization or the like.
  • the irradiation unit 13 is composed of an optical system such as a lens designed for the wavelength of ultraviolet light.
  • the sensor unit 31-n detects the existence and movement of each irradiation target area ARn and avoidance targets (humans, animals, etc.) H in the vicinity thereof.
  • the sensor unit 31 performs temperature acquisition by a thermometer, infrared acquisition by an infrared sensor, image acquisition by a camera, light acquisition by LiDAR (Light Detection and Ranging), etc., and information processing (shape, face, fingerprint, vein, iris etc.) to detect the existence and movement of the avoidance target.
  • the sensor unit 31-n monitors not only whether or not the object to be avoided H exists within the irradiation target area ARn, but also the periphery of the irradiation target area ARn. Therefore, based on the movement of the avoidance target H, the sensor unit 31-n determines whether the avoidance target H will enter the irradiation target area ARn or not, or whether the avoidance target H will move away from the irradiation target area ARn. It is possible to detect whether the Then, the sensor section 31 notifies the control section 15-8 of the detection result.
  • the notification to the control unit 15-8 may be wired or wireless.
  • the sensor section 31 has a terminal photovoltaic section 32 .
  • the terminal photovoltaic unit 32 is, for example, a photodiode.
  • the terminal photovoltaic unit 32 receives the power supply light transmitted through the route 14 and generates power. The power is used for the operation of the sensor section 31 as described above.
  • the control unit 15-8 schedules the light distribution unit 12-8 to distribute the ultraviolet light to the route 14 when the sensor unit 31-n detects the avoidance target H in the area including the irradiation target area ARn. review. Specific examples are described below.
  • the control unit 15-8 confirms that the ultraviolet light is likely to hit the avoidance target H (the avoidance target H is about to enter the irradiation target area AR ) or hit (that the avoidance target H exists in the irradiation target area AR), and actively changes the branching characteristics of the variable branching ratio coupler. For example, assume that an object to be avoided H has entered an irradiation target area AR1 as shown in FIG. The sensor section 31-1 notifies the control section 15-8 of the detection result. The control unit 15-8 changes the branching ratio of the variable branching ratio coupler to lower the branching ratio of the output port 1 to the irradiation target area AR1.
  • the sensor unit 31-1 when the avoidance target H leaves the irradiation target area AR1, the sensor unit 31-1 notifies the control unit 15-8 of the detection result.
  • the control unit 15-8 restores the branching ratio of the variable branching ratio coupler.
  • the control unit 15-8 determines that the ultraviolet light is likely to hit the avoidance target H (that the avoidance target H is about to enter the irradiation target area AR). , or hit (that the avoidance target H exists in the irradiation target area AR), and actively switches the optical switch on/off. For example, assume that an object to be avoided H has entered an irradiation target area AR1 as shown in FIG. The sensor section 31-1 notifies the control section 15-8 of the detection result. The control unit 15-8 changes the operation schedule of the optical switch and keeps the optical switch off during the time (time slot) during which the ultraviolet light is supplied from the output port 1 to the irradiation target area AR1. On the other hand, when the avoidance target H leaves the irradiation target area AR1, the sensor unit 31-1 notifies the control unit 15-8 of the detection result. The controller 15-8 restores the operation schedule of the optical switch.
  • the control section 15-8 may receive the detection result from the sensor section 31-n and control the output of the ultraviolet light source section 11a.
  • the control unit 15-8 detects that the avoidance target H is likely to be hit by the ultraviolet light (that the avoidance target H is about to enter the irradiation target area AR) or that it is hit (that the avoidance target H exists in the irradiation target area AR). ), and stops outputting ultraviolet light from the ultraviolet light source section 11a.
  • the control unit 15-8 starts outputting ultraviolet light from the ultraviolet light source unit 11a. In this case, no ultraviolet light is applied to any irradiation target area AR during the period when the output of ultraviolet light from the ultraviolet light source section 11a is stopped.
  • the optical transmission line 16 propagates ultraviolet light and feeding light from the light source unit 11 to the light distribution unit 12-8.
  • the route 14 propagates the ultraviolet light and the feeding light distributed by the light distribution section 12-8 to the irradiation section 13 or the sensor section 31, respectively.
  • Optical transmission line 16 and path 14 are optical fibers. Since it is an optical fiber, it can be installed in narrow places where conventional robots and devices cannot enter.
  • both the optical transmission line 16 and the route 14 can combine the two and propagate through one core of the optical fiber.
  • the light source unit 11 multiplexes the ultraviolet light generated by the ultraviolet light source unit 11a and the feeding light generated by the feeding light source unit 11b into wavelength-multiplexed light, and converts the wavelength-multiplexed light into an optical fiber as the optical transmission line 16. Incident into one core.
  • the wavelength multiplexed light propagated through the optical transmission line 16 is distributed to the respective paths 14 by the optical distributor 12-8 as described above.
  • the optical distribution section 12 - 8 extracts part of the power supply light using a demultiplexer or the like and inputs it to the intermediate optical power generation section 35 .
  • the optical distribution unit 12-8 injects the distributed wavelength-multiplexed light into one core of the optical fiber, which is the route 14.
  • the wavelength-multiplexed light propagated through the route 14 is separated into ultraviolet light and feeding light by a demultiplexer or the like in front of the irradiation unit 13 .
  • the separated power supply light is input to the terminal photovoltaic power generation unit 32 of the sensor unit 31, and the separated ultraviolet light is input to the irradiation unit 13 and irradiated to the irradiation target area AR.
  • FIG. 5 is a diagram illustrating a cross section of a single-core optical fiber that can be used for the optical transmission lines 16 and 14.
  • Solid Core Optical Fiber This optical fiber has one solid core 52 in the clad 60 having a higher refractive index than the clad 60 .
  • Full means "not hollow”.
  • the solid core can also be realized by forming an annular low refractive index region in the clad.
  • Hole-assisted optical fiber This optical fiber has a solid core 52 in the clad 60 and a plurality of holes 53 arranged around the core.
  • the medium of the holes 53 is air, and the refractive index of air is sufficiently smaller than that of quartz-based glass.
  • the hole-assisted optical fiber has a function of returning light leaking from the core 52 due to bending or the like back to the core 52, and is characterized by a small bending loss.
  • This optical fiber has a hole group 53a of a plurality of holes 53 in the clad 60, and has an effective refractive index lower than that of the host material (glass or the like). This structure is called a photonic crystal fiber. This structure can take a structure in which a high-refractive-index core with a changed refractive index does not exist, and light can be confined using the region 52a surrounded by the holes 53 as an effective core region.
  • Photonic crystal fibers can reduce the effects of absorption and scattering losses due to additives in the core. Optical characteristics that cannot be realized can be realized.
  • Hollow core optical fiber This optical fiber has a core region made of air. Light can be confined in the core region by forming a photonic bandgap structure with a plurality of holes in the cladding region or an anti-resonant structure with glass wires. This optical fiber has low nonlinear effects and is capable of delivering high power or high energy lasers.
  • Coupling Core Optical Fiber In this optical fiber, a plurality of solid cores 52 having a high refractive index are closely arranged in a clad 60 .
  • This optical fiber guides light by optical wave coupling between solid cores 52 .
  • Coupling-core type optical fibers can disperse and transmit light as many times as the number of cores, so the power can be increased to that extent and efficient sterilization is possible. It has the advantage of being able to
  • the sensor section 31 has a power storage section (not shown) that stores the electric power generated by the terminal photovoltaic power generation section 32 .
  • the sensor unit 31 can monitor the state of the irradiation target area AR using the electric power of the storage unit even when the power supply light does not reach the end photovoltaic unit 32 .
  • the ultraviolet light and the feeding light may be propagated through different single-core optical fibers or different cores of one multi-core optical fiber.
  • the light source unit 11 does not combine the ultraviolet light generated by the ultraviolet light source unit 11a and the feeding light generated by the feeding light source unit 11b, and transmits the ultraviolet light to one single core optical fiber core or multi-core.
  • the light is injected into one core of the fiber, and the feeding light is injected into another core of a single-core optical fiber or another core of a multi-core fiber.
  • the ultraviolet light propagated through the optical transmission line 16 is sent to each path 14 by the optical splitter 12-8 as described above (according to the switching timing in the case of an optical switch, or in accordance with the set branching ratio in the case of a variable branching ratio coupler). distributed.
  • the feed light propagated through the optical transmission line 16 is distributed at a preset branch ratio in the optical distributor 12-8 regardless of the optical switch or the variable branch ratio coupler.
  • the optical distribution section 12-8 distributes the feeding light not only to the route 14 but also to the intermediate optical power generation section 35.
  • the light distribution unit 12-8 causes the distributed ultraviolet light and the feeding light to enter the route 14.
  • the light distribution unit 12-8 injects the distributed ultraviolet light into one core of a single-core optical fiber or one core of a multi-core fiber, and feeds the feeding light into another core of a single-core optical fiber or a core of a multi-core fiber. Incident to other cores.
  • the feeding light that has propagated along the route 14 is input to the terminal photo-electric power generating section 32 of the sensor section 31, and the ultraviolet light that has propagated along the route 14 is input to the irradiation section 13 and irradiated onto the irradiation target area AR.
  • FIG. 6 is a diagram illustrating a cross section of a usable multi-core optical fiber that can be used for the optical transmission lines 16 and 14.
  • Solid-core type multi-core optical fiber In this optical fiber, a plurality of solid cores 52 with a high refractive index are spaced apart in a clad 60 .
  • This optical fiber guides light in such a manner that the optical wave coupling between the solid cores 52 is sufficiently small so that the effect of the optical wave coupling can be ignored. Therefore, the solid-core multi-core optical fiber has the advantage that each core can be treated as an independent waveguide.
  • Hole-Assisted Multi-Core Optical Fiber This optical fiber has a structure in which a plurality of hole structures and core regions shown in (2) of FIG.
  • This optical fiber has a structure in which a plurality of hole structures of (3) in FIG. (9) Hollow Core Multi-Core Optical Fiber This optical fiber has a structure in which a plurality of hole structures shown in FIG. (10) Coupling-core type multi-core optical fiber This optical fiber has a structure in which a plurality of coupling-core structures of (5) in FIG. 5 are arranged in the clad 60 .
  • the power supply light can be delivered to the terminal photovoltaic unit 32 of the sensor unit 31 without interruption regardless of the distribution of the ultraviolet light. Therefore, even if the sensor unit 31 does not have a power storage unit, it is possible to constantly monitor the state of the irradiation target area AR.
  • the light distribution unit 12-8 and the sensor unit 31 of the ultraviolet light irradiation system 302 have photovoltaic units (35, 32). This photovoltaic unit receives the power supply light from the light source unit 11 to generate electric power, which is used to drive the light distribution unit 12-8 and the sensor unit 31.
  • FIG. Therefore, the ultraviolet light irradiation system 302 does not require electrical work for driving the light distribution section 12-8 and the sensor section 31.
  • FIG. even when the ultraviolet light and the feeding light are transmitted by different optical fibers, if the optical fiber for the feeding light is laid at the same time as the optical fiber for the ultraviolet light is laid, the additional cost for the feeding light can be reduced. can be suppressed.
  • the present invention can provide an ultraviolet light irradiation system with a P-MP configuration that does not require electrical work for power supply to the light distribution unit and the sensor unit, and can reduce system costs.
  • Light source section 11a Ultraviolet light source section 11b: Power supply light source section 12: Light distribution section (equally branched) 12-6: Light distribution unit 12-8: Light distribution units 13, 13-1, . , . 302: Ultraviolet light irradiation system AR1, AR2, ..., ARN: irradiation target area (area to be irradiated with ultraviolet light)

Abstract

The purpose of the present invention is to provide a UV irradiation system having a P-MP configuration in which electrical construction work or the like for supplying power to a light distribution unit or a sensor unit is unnecessary and with which system cost can be reduced. This UV irradiation system 302 comprises: a light source unit 11 having a UV light source unit for generating UV light and an optical power supply light source unit for generating power supply light having a wavelength other than that of the UV light; N irradiation units 13 (where N is a natural number equal to or greater than 2) for irradiating N regions AR subject to irradiation with the UV light; a sensor unit 31 for sensing whether an avoidance object, for which exposure to the UV light is to be avoided, is present in a region that includes the regions AR subject to irradiation; a light distribution unit 12-8 for distributing the UV light and the power supply light in the respective directions to each of the irradiation units; terminal photovoltaic units 32 positioned in respective sensor units 31, the terminal photovoltaic units 32 receiving the power supply light and generating electrical power for driving the sensor units 31; and an intermediate photovoltaic unit 35 positioned in the light distribution unit 12-8, the intermediate photovoltaic unit 35 receiving the power supply light and generating electrical power for driving the light distribution unit 12-8.

Description

紫外光照射システムUltraviolet light irradiation system
 本開示は、紫外光を用いて殺菌やウィルスの不活化を行う紫外光照射システムに関する。 The present disclosure relates to an ultraviolet light irradiation system that uses ultraviolet light to sterilize and inactivate viruses.
 感染症予防などの目的から、紫外光を用いた殺菌やウィルスの不活化を行うシステムの需要が高まっている。当該システムには、大きく3つのカテゴリの製品がある。なお、本明細書では、「殺菌等」と記載する場合、殺菌とウィルスの不活化を意味するものとする。
(I)移動型殺菌ロボット
 非特許文献1の製品は、紫外光を照射する自律移動型のロボットである。当該ロボットは、病室などの建物内の部屋の中を移動しながら紫外光を照射することで、人手を介さず、自動で広い範囲の殺菌等を実現できる。
(II)据え置き型空気清浄機
 非特許文献2の製品は、天井や室内の所定の場所に設置され、室内の空気を循環しながら殺菌等する装置である。当該装置は、直接紫外光を照射せず、人体への影響がないため、安全性の高い殺菌が可能である。
(III)ポータブル型殺菌装置
 非特許文献3の製品は、紫外光源を搭載したポータブル型の装置である。ユーザが当該装置を所望のエリアに持って行って紫外光を照射できる。このため、当該装置は様々な場所で使用可能である。
Demand is increasing for systems that perform sterilization and virus inactivation using ultraviolet light for the purpose of preventing infectious diseases. There are three main categories of products in this system. In this specification, the term “sterilization, etc.” shall mean sterilization and virus inactivation.
(I) Mobile sterilization robot The product of Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light. By irradiating the robot with ultraviolet light while moving in a room in a building such as a hospital room, the robot can automatically realize sterilization in a wide range without human intervention.
(II) Stationary air purifier The product of Non-Patent Document 2 is a device that is installed on the ceiling or at a predetermined place in a room, and performs sterilization while circulating the air in the room. Since this device does not directly irradiate ultraviolet light and has no effect on the human body, highly safe sterilization is possible.
(III) Portable Sterilization Apparatus The product of Non-Patent Document 3 is a portable apparatus equipped with an ultraviolet light source. A user can bring the device to a desired area and irradiate it with ultraviolet light. Therefore, the device can be used in various places.
 しかし、非特許文献に記載される装置には次のような課題がある。
(1)経済性
 非特許文献1の製品は、高出力の紫外光を照射するため、装置が大掛かりとなり高価となる。このため、非特許文献1の製品には経済的なシステムの実現が困難という課題がある。
(2)汎用性
 非特許文献1の製品は、紫外光照射箇所がロボットが移動/進入できる場所に限定されるため、細かい場所や奥まった場所などへの紫外光の照射が困難である。
 非特許文献2の製品は、循環させた室内の空気を殺菌するため、殺菌等をしたい場所に直接紫外光を照射することができない。
 非特許文献3の製品は、例えば、細い管路や人が入られないエリアについては紫外光を照射することができない。
 このように、非特許文献の製品には、任意の場所に紫外光を照射できるという汎用性に課題がある。
(3)操作性
 非特許文献3の製品は、可搬性であり様々な場所で紫外光の照射が可能である。しかし、対象箇所で十分な殺菌等の効果が得られるためには、ユーザにスキルや知識を要求しており、操作性に課題がある。
However, the device described in Non-Patent Document has the following problems.
(1) Economy Since the product of Non-Patent Document 1 is irradiated with high-output ultraviolet light, the apparatus becomes large and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
(2) Versatility In the product of Non-Patent Document 1, since the ultraviolet light irradiation position is limited to a place where the robot can move/enter, it is difficult to irradiate the ultraviolet light to a small place or a deep place.
Since the product of Non-Patent Document 2 sterilizes the circulated indoor air, it is not possible to directly irradiate a place to be sterilized with ultraviolet light.
The product of Non-Patent Document 3, for example, cannot irradiate ultraviolet light to narrow pipes or areas where people cannot enter.
Thus, the product of Non-Patent Literature has a problem of versatility in that it can irradiate any place with ultraviolet light.
(3) Operability The product of Non-Patent Document 3 is portable and can be irradiated with ultraviolet light at various locations. However, in order to obtain sufficient effects such as sterilization at the target location, the user is required to have skill and knowledge, and there is a problem in operability.
 これらの課題に対して、図1のような光ファイバを用いた紫外光照射システム300が考えられる。この紫外光照射システムは、細くて曲げやすい光ファイバを用いて光源11から紫外光を伝送し、光ファイバ14の先端から出力される紫外光をピンポイントで殺菌等したい照射対象域ARへ照射する。光ファイバ14の先端の照射部13を移動させるだけで任意の場所に紫外光を照射できるため上記課題(2)の汎用性を解消できる。また、紫外光光源の移動や設定が不要でユーザにスキルや知識を求めないため、上記課題(3)の操作性も解消できる。さらに、光スプリッタのような光分配部12を光伝送路16に設け、FTTH(Fiber To The Home)のようなP-MP(Point to MultiPoint)のシステム構成とすることで、単一の光源をシェアすることで複数の箇所を殺菌等できる。このため、上記課題(1)の経済性も解消できる。 For these problems, an ultraviolet light irradiation system 300 using an optical fiber as shown in FIG. 1 is conceivable. This ultraviolet light irradiation system transmits ultraviolet light from the light source 11 using a thin and flexible optical fiber, and irradiates the ultraviolet light output from the tip of the optical fiber 14 to an irradiation target area AR to be sterilized or the like with pinpoint accuracy. . The versatility of the above problem (2) can be solved because the ultraviolet light can be irradiated to any place simply by moving the irradiation unit 13 at the tip of the optical fiber 14 . In addition, since there is no need to move or set the ultraviolet light source, and the user is not required to have skills or knowledge, the operability of the above problem (3) can be resolved. Furthermore, by providing an optical distribution unit 12 such as an optical splitter in the optical transmission line 16 to form a P-MP (Point to MultiPoint) system configuration such as FTTH (Fiber To The Home), a single light source can be used. By sharing, you can sterilize multiple places. Therefore, it is possible to solve the problem (1) economically.
 一方、紫外光照射システムとしてのP-MP構成の実現には次のような課題がある。
 紫外線を用いた除菌システムに使用される深紫外線の光に関しては、人をはじめとする動物の目や皮膚に照射した場合、白内障や皮膚がんの原因となる。このため、居住空間等、常時人や動物などが滞在する空間においては、センサ部を用いて人や動物などの回避対象に対して紫外光を照射しない、あるいは回避対象に対して害のない程度の弱い照度の紫外光としておく、などの対策が求められる(図2参照。)。
On the other hand, there are the following problems in realizing a P-MP configuration as an ultraviolet light irradiation system.
The deep ultraviolet light used in disinfection systems using ultraviolet rays causes cataracts and skin cancer when the eyes and skin of animals including humans are irradiated. For this reason, in spaces where people or animals are always present, such as living spaces, the sensors should not be used to irradiate ultraviolet light on objects to be avoided, such as humans or animals, or should be placed at a level that does not harm the objects to be avoided. It is necessary to take measures such as using ultraviolet light with a weak illuminance (see Fig. 2).
 図2の紫外光照射システム301は、照射対象域AR付近に設置したセンサ部31で回避対象Hの存否を検知し、その結果をもって紫外光源部11aの出力のオン/オフ、あるいは光分配部12-6(光スイッチ又は分岐比可変カプラ)の分岐比を制御する。回避対象が不在の照射対象域ARへは所望の紫外光量を供給して短時間の殺菌等を実現する。一方、回避対象Hが存在する、あるいは回避対象Hが進入しようとしている照射対象域ARへは紫外光量の供給を停止又は低減することで回避対象Hが紫外光を被ばくすることを回避する。
 しかし、このようなP-MP構成の紫外光照射システムには、光分配部やセンサ部に給電のための電気工事などが必要であり、システムコストを低減することが困難という課題がある。
The ultraviolet light irradiation system 301 of FIG. 2 detects the presence or absence of the avoidance target H by the sensor unit 31 installed near the irradiation target area AR, and turns on/off the output of the ultraviolet light source unit 11a or the light distribution unit 12 based on the result. Controls the branching ratio of -6 (optical switch or variable branching ratio coupler). A desired amount of ultraviolet light is supplied to the irradiation target area AR where there is no object to be avoided, and sterilization or the like is realized in a short time. On the other hand, by stopping or reducing the amount of ultraviolet light supplied to the irradiation target area AR where the avoidance target H exists or is about to enter, the avoidance target H is prevented from being exposed to ultraviolet light.
However, such a P-MP configuration ultraviolet light irradiation system requires electrical work for supplying power to the light distribution section and the sensor section, making it difficult to reduce the system cost.
 そこで、本発明は、上記課題を解決するために、光分配部やセンサ部に給電のための電気工事などが不要でシステムコストを低減できるP-MP構成の紫外光照射システムを提供することを目的とする。 Therefore, in order to solve the above problems, the present invention provides an ultraviolet light irradiation system with a P-MP configuration that does not require electrical work for power supply to the light distribution unit and the sensor unit and can reduce the system cost. aim.
 なお、本明細書では、各方路へ供給する時間を考慮した紫外光のエネルギー及び照射対象域ARに照射する時間を考慮した紫外光のエネルギーを積算光量(単位J)とし、それら紫外光の単位時間あたりのエネルギーをパワー(単位W)とし、照射対象域ARに照射する紫外光の単位面積当たりのパワーを照度(W/m)として説明する。また、照射対象域ARにおける単位面積当たりのエネルギーを紫外線量(単位J/m又はW・s/m)として説明する。 In this specification, the energy of ultraviolet light considering the time to be supplied to each direction and the energy of ultraviolet light considering the time to irradiate the irradiation target area AR is the integrated light amount (unit: J). The energy per unit time is defined as power (unit: W), and the power per unit area of the ultraviolet light applied to the irradiation target area AR is defined as illuminance (W/m 2 ). Also, the energy per unit area in the irradiation target area AR will be described as the amount of ultraviolet rays (unit: J/m 2 or W·s/m 2 ).
 上記目的を達成するために、本発明に係る紫外光照射システムは、光分配部とセンサ部に対し、光源部側から伝搬させた光により給電することとした。なお、本明細書において「分岐比」とは、カプラのようにパワー分岐するときのパワー比である場合と、光スイッチの方路切り替えによる時間比である場合がある。 In order to achieve the above object, the ultraviolet light irradiation system according to the present invention supplies power to the light distribution section and the sensor section using light propagated from the light source section side. In this specification, the "branching ratio" may be a power ratio when power is split like a coupler, or a time ratio due to route switching of an optical switch.
 具体的には、本発明に係る紫外光照射システムは、
 紫外光を発生させる紫外光源及び前記紫外光の波長以外の給電光を発生させる光給電用光源を有する光源部と、
 前記紫外光をN個(Nは2以上の自然数)の照射対象域に照射するN個の照射部と、
 前記照射対象域を含む領域に前記紫外光の被爆を回避すべき回避対象が存在するか否かを検知するセンサ部と、
 前記紫外光及び前記給電光をそれぞれの前記照射部への方路へ分配する光分配部と、
 それぞれの前記センサ部に配置され、前記給電光を受光して前記センサ部を駆動する電力を発生する末端光発電部と、
 前記光分配部に配置され、前記給電光を受光して前記光分配部を駆動する電力を発生する中間光発電部と、
を備える。
Specifically, the ultraviolet light irradiation system according to the present invention includes:
a light source unit having an ultraviolet light source for generating ultraviolet light and an optical feeding light source for generating feeding light having a wavelength other than the wavelength of the ultraviolet light;
N irradiating units that irradiate N (N is a natural number of 2 or more) irradiation target areas with the ultraviolet light;
a sensor unit that detects whether or not there is an avoidance target that should be avoided from being exposed to the ultraviolet light in a region that includes the irradiation target region;
a light distribution unit that distributes the ultraviolet light and the power supply light to respective routes to the irradiation unit;
a terminal photovoltaic unit arranged in each of the sensor units for receiving the power supply light and generating electric power for driving the sensor unit;
an intermediate photovoltaic power generation unit disposed in the light distribution unit that receives the power supply light and generates electric power for driving the light distribution unit;
Prepare.
 本紫外光照射システムは、照射対象域付近に設置したセンサ部で回避対象の存否を検知し、その結果をもって光分配部(光スイッチ又は分岐比可変カプラ)の分岐比を制御する。回避対象が不在の照射対象域へは所望の紫外光量を供給して短時間の殺菌等を実現する。一方、回避対象が存在する、あるいは回避対象が進入しようとしている照射対象域へは紫外光量の供給を停止又は低減することで回避対象が紫外光を被ばくすることを回避する。 In this ultraviolet light irradiation system, the presence or absence of objects to be avoided is detected by the sensor unit installed near the irradiation target area, and the branching ratio of the light distribution unit (optical switch or branching ratio variable coupler) is controlled based on the result. A desired amount of ultraviolet light is supplied to an irradiation target area where there is no object to be avoided, and sterilization or the like is realized in a short time. On the other hand, by stopping or reducing the amount of ultraviolet light supplied to the irradiation target area where the avoidance target exists or is about to enter, the avoidance target is prevented from being exposed to ultraviolet light.
 そして、本紫外光照射システムの光分配部及びセンサ部は光発電部を有している。この光発電部は、光源部からの給電光を受光して電力を発生させ、光分配部及びセンサ部を駆動することに使用する。このため、本紫外光照射システムは光分配部及びセンサ部を駆動するための電気工事などが不要である。 The light distribution section and the sensor section of this ultraviolet light irradiation system have a photovoltaic section. The photovoltaic section receives the power supply light from the light source section to generate electric power, which is used to drive the light distribution section and the sensor section. Therefore, this ultraviolet light irradiation system does not require electrical work for driving the light distribution section and the sensor section.
 従って、本発明は、光分配部やセンサ部に給電のための電気工事などが不要でシステムコストを低減できるP-MP構成の紫外光照射システムを提供することができる。 Therefore, the present invention can provide an ultraviolet light irradiation system with a P-MP configuration that does not require electrical work for power supply to the light distribution unit and the sensor unit, and can reduce system costs.
 光源部と光分配部との間、及び光分配部と照射部との間が光ファイバで接続されている場合、前記紫外光と前記給電光とは、それぞれ異なる経路で伝搬されてもよいし、多重されて同じ経路で伝搬されてもよい。 When the light source unit and the light distribution unit and the light distribution unit and the irradiation unit are connected by optical fibers, the ultraviolet light and the feeding light may be propagated through different paths. , may be multiplexed and propagated on the same route.
 また、本発明に係る紫外光照射システムの前記センサ部は、前記末端光発電部が発生した電力を蓄える蓄電部を有してもよい。
 光分配部が光スイッチの場合、センサ部に給電光が届かない時間もある。また、光分配部が分岐比可変カプラの場合、センサ部に届く給電光が不十分である時間もある。このため、給電光が届く時間に蓄電池に電力を蓄えておき、給電光が届かない時間もセンサ部を駆動させることで連続して人流を検知できる。
Further, the sensor section of the ultraviolet light irradiation system according to the present invention may have a power storage section that stores electric power generated by the terminal photo-electric power generation section.
When the light distribution section is an optical switch, there is a time when the power supply light does not reach the sensor section. Further, when the optical distribution section is a variable branching ratio coupler, there is a time when the power supply light reaching the sensor section is insufficient. Therefore, it is possible to continuously detect the flow of people by accumulating power in the storage battery while the power supply light arrives and driving the sensor unit even when the power supply light does not arrive.
 なお、上記各発明は、可能な限り組み合わせることができる。 The above inventions can be combined as much as possible.
 本発明は、光分配部やセンサ部に給電のための電気工事などが不要でシステムコストを低減できるP-MP構成の紫外光照射システムを提供することができる。 The present invention can provide an ultraviolet light irradiation system with a P-MP configuration that does not require electrical work for power supply to the light distribution unit and the sensor unit and can reduce system costs.
本発明の課題を説明する図である。It is a figure explaining the subject of this invention. 本発明の課題を説明する図である。It is a figure explaining the subject of this invention. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 光ファイバの断面構造を説明する図である。It is a figure explaining the cross-sectional structure of an optical fiber. 光ファイバの断面構造を説明する図である。It is a figure explaining the cross-sectional structure of an optical fiber.
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 An embodiment of the present invention will be described with reference to the attached drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In addition, in this specification and the drawings, constituent elements having the same reference numerals are the same as each other.
 図3は、本実施形態の紫外光照射システム302を説明する図である。紫外光照射システム302は、
 紫外光を発生させる紫外光源部11a及び前記紫外光の波長以外の給電光を発生させる光給電用光源部11bを有する光源部11と、
 前記紫外光をN個(Nは2以上の自然数)の照射対象域ARに照射するN個の照射部13と、
 照射対象域ARを含む領域に前記紫外光の被爆を回避すべき回避対象が存在するか否かを検知するセンサ部31と、
 前記紫外光及び前記給電光をそれぞれの照射部13への方路へ分配する光分配部12-8と、
 それぞれのセンサ部31に配置され、前記給電光を受光してセンサ部31を駆動する電力を発生する末端光発電部32と、
 光分配部12-8に配置され、前記給電光を受光して光分配部12-8を駆動する電力を発生する中間光発電部35と、
を備える。
FIG. 3 is a diagram illustrating the ultraviolet light irradiation system 302 of this embodiment. The ultraviolet light irradiation system 302 is
a light source unit 11 having an ultraviolet light source unit 11a for generating ultraviolet light and an optical feeding light source unit 11b for generating feeding light having a wavelength other than the wavelength of the ultraviolet light;
N irradiating units 13 that irradiate N (N is a natural number of 2 or more) irradiation target areas AR with the ultraviolet light;
a sensor unit 31 for detecting whether or not there is an avoidance target to be avoided from being exposed to the ultraviolet light in an area including the irradiation target area AR;
a light distribution unit 12-8 for distributing the ultraviolet light and the power supply light to respective routes to the irradiation unit 13;
a terminal photovoltaic unit 32 which is arranged in each sensor unit 31 and receives the power supply light to generate electric power for driving the sensor unit 31;
an intermediate photovoltaic power generation unit 35 which is arranged in the light distribution unit 12-8 and receives the power supply light to generate electric power for driving the light distribution unit 12-8;
Prepare.
 光源部11は、紫外光源部11aと給電用光源部11bを有する。
 紫外光源部11aは、殺菌等に有効である紫外領域の光(紫外光)を出力する。給電用光源部11bは、光給電用の光(例えば、赤外光)を出力する。光源部11と光分配部12-8とは光ファイバ又は空間である光伝送路16で接続される。
The light source unit 11 has an ultraviolet light source unit 11a and a power supply light source unit 11b.
The ultraviolet light source unit 11a outputs light in the ultraviolet region (ultraviolet light) that is effective for sterilization and the like. The power supply light source unit 11b outputs light for optical power supply (for example, infrared light). The light source unit 11 and the light distribution unit 12-8 are connected by an optical transmission line 16, which is an optical fiber or space.
 光分配部12-8は、光スイッチ又は分岐比可変カプラである。
 光スイッチである光分配部12-8は、光源部11からの紫外光及び給電光を制御部15-8からの指示(切り替えタイミング)に従って、複数の出力ポートのうち、いずれかの方路14に出力させる。出力ポート1~Nから出力された紫外光及び給電光は方路14を介して照射部13に入力される。
The optical splitter 12-8 is an optical switch or a variable splitting ratio coupler.
The optical distribution unit 12-8, which is an optical switch, distributes the ultraviolet light and the power supply light from the light source unit 11 to one of the plurality of output ports according to the instruction (switching timing) from the control unit 15-8. output to The ultraviolet light and the feeding light output from the output ports 1 to N are input to the irradiation section 13 via the route 14 .
 分岐比可変カプラである光分配部12-8は、分岐比が制御部15-8により設定される。分岐比可変カプラは、光源部11からの紫外光及び給電光を分岐比に従ってパワー分岐し、複数の出力ポートに接続された方路14に出力する。分岐比可変カプラは、例えば、参考文献1に開示されるような、ヒーターで分岐比を変化させるマッハツェンダ干渉計を備える構成である。出力ポート1~Nから出力された紫外光及び給電光は方路14を介して照射部13に入力される。
(参考文献1)NTT技術ジャーナル(https://www.ntt.co.jp/journal/0505/files/jn200505012.pdf)、2005年5月発行
The branch ratio of the optical splitter 12-8, which is a variable branch ratio coupler, is set by the controller 15-8. The branching ratio variable coupler branches the power of the ultraviolet light and the feeding light from the light source unit 11 according to the branching ratio, and outputs the branched light to the route 14 connected to the plurality of output ports. The variable branching ratio coupler has a configuration including a Mach-Zehnder interferometer that changes the branching ratio with a heater, as disclosed in Reference 1, for example. The ultraviolet light and the feeding light output from the output ports 1 to N are input to the irradiation section 13 via the route 14 .
(Reference 1) NTT Technical Journal (https://www.ntt.co.jp/journal/0505/files/jn200505012.pdf), published in May 2005
 光分配部12-8は、中間光発電部35を有している。中間光発電部35は、例えば、フォトダイオードである。中間光発電部35は光伝送路16で伝送されてきた給電光の一部を受光し、電力を発生する。当該電力は、光スイッチの切り替えや分岐比可変カプラの分岐比の変化に利用される。 The optical distribution unit 12-8 has an intermediate photovoltaic power generation unit 35. The intermediate photovoltaic section 35 is, for example, a photodiode. The intermediate optical power generation unit 35 receives part of the power supply light transmitted through the optical transmission line 16 and generates electric power. The power is used for switching the optical switch and changing the branching ratio of the variable branching ratio coupler.
 照射部13は、方路14で伝送された紫外光を、殺菌等を行う所定の対象箇所(照射対象域AR)に照射する。照射部13は、紫外光の波長に対して設計されたレンズなどの光学系で構成されている。 The irradiation unit 13 irradiates the ultraviolet light transmitted through the route 14 to a predetermined target location (irradiation target area AR) for sterilization or the like. The irradiation unit 13 is composed of an optical system such as a lens designed for the wavelength of ultraviolet light.
 センサ部31-n(nは1からNまでの整数)は、それぞれの照射対象域ARnとその周辺にある回避対象(人や動物など)Hの存否や動きを検知する。例えば、センサ部31は、温度計による温度取得、赤外線センサによる赤外線取得、カメラによる画像取得、LiDAR(Light Detection and Ranging)による光取得等を行い、情報処理(形、顔、指紋、静脈、虹彩など)を施し、回避対象の存否や動きを検知する。 The sensor unit 31-n (where n is an integer from 1 to N) detects the existence and movement of each irradiation target area ARn and avoidance targets (humans, animals, etc.) H in the vicinity thereof. For example, the sensor unit 31 performs temperature acquisition by a thermometer, infrared acquisition by an infrared sensor, image acquisition by a camera, light acquisition by LiDAR (Light Detection and Ranging), etc., and information processing (shape, face, fingerprint, vein, iris etc.) to detect the existence and movement of the avoidance target.
 センサ部31-nは、照射対象域ARn内に回避対象Hが存在するか否かだけでなく、照射対象域ARnの周辺についても監視している。このため、センサ部31-nは、回避対象Hの動きから、この後、回避対象Hが照射対象域ARn内に進入するのか、それとも進入しないのか、あるいは回避対象Hが照射対象域ARnから離れていくのか、を検知することができる。
 そして、センサ部31は、その検知結果を制御部15-8へ通知する。制御部15-8への通知は有線でも無線でもよい。
The sensor unit 31-n monitors not only whether or not the object to be avoided H exists within the irradiation target area ARn, but also the periphery of the irradiation target area ARn. Therefore, based on the movement of the avoidance target H, the sensor unit 31-n determines whether the avoidance target H will enter the irradiation target area ARn or not, or whether the avoidance target H will move away from the irradiation target area ARn. It is possible to detect whether the
Then, the sensor section 31 notifies the control section 15-8 of the detection result. The notification to the control unit 15-8 may be wired or wireless.
 センサ部31は末端光発電部32を有している。末端光発電部32は、例えば、フォトダイオードである。末端光発電部32は方路14で伝送されてきた給電光を受光し、電力を発生する。当該電力は、上述したようなセンサ部31の動作に利用される。 The sensor section 31 has a terminal photovoltaic section 32 . The terminal photovoltaic unit 32 is, for example, a photodiode. The terminal photovoltaic unit 32 receives the power supply light transmitted through the route 14 and generates power. The power is used for the operation of the sensor section 31 as described above.
 制御部15-8は、センサ部31-nが照射対象域ARnを含む領域に回避対象Hを検知したときに光分配部12-8に対して前記紫外光を方路14へ分配するスケジューリングを見直す。以下に具体例を説明する。 The control unit 15-8 schedules the light distribution unit 12-8 to distribute the ultraviolet light to the route 14 when the sensor unit 31-n detects the avoidance target H in the area including the irradiation target area ARn. review. Specific examples are described below.
(a)光分配部12-8が分岐比可変カプラである場合、制御部15-8は、紫外光が回避対象Hに当たりそうであること(回避対象Hが照射対象域ARに進入しようとしていること)、又は当たったこと(回避対象Hが照射対象域ARに存在していること)を判断し、アクティブに分岐比可変カプラの分岐特性を変える。
 例えば、図4のように照射対象域AR1に回避対象Hが進入したとする。センサ部31-1は、当該検知結果を制御部15-8へ通知する。制御部15-8は、分岐比可変カプラの分岐比を変更し、照射対象域AR1への出力ポート1の分岐比率を下げる。ここで、出力ポート1の分岐比率を下げると、出力ポート1への紫外光パワーが下がり、他の出力ポートへの紫外光パワーが上がる(例えば、N=2であるならば、分岐比を50:50から5:95(回避対象Hが存在する方を5とする)となる。)。
 一方、照射対象域AR1から回避対象Hが退出すると、センサ部31-1は、当該検知結果を制御部15-8へ通知する。制御部15-8は、分岐比可変カプラの分岐比を元に戻す。
(a) When the light distribution unit 12-8 is a variable branching ratio coupler, the control unit 15-8 confirms that the ultraviolet light is likely to hit the avoidance target H (the avoidance target H is about to enter the irradiation target area AR ) or hit (that the avoidance target H exists in the irradiation target area AR), and actively changes the branching characteristics of the variable branching ratio coupler.
For example, assume that an object to be avoided H has entered an irradiation target area AR1 as shown in FIG. The sensor section 31-1 notifies the control section 15-8 of the detection result. The control unit 15-8 changes the branching ratio of the variable branching ratio coupler to lower the branching ratio of the output port 1 to the irradiation target area AR1. Here, when the branching ratio of output port 1 is decreased, the ultraviolet light power to output port 1 is decreased, and the ultraviolet light power to other output ports is increased (for example, if N=2, the branching ratio is set to 50 :50 to 5:95 (where the avoidance target H exists is set to 5)).
On the other hand, when the avoidance target H leaves the irradiation target area AR1, the sensor unit 31-1 notifies the control unit 15-8 of the detection result. The control unit 15-8 restores the branching ratio of the variable branching ratio coupler.
(b)光分配部12-8が光スイッチである場合、制御部15-8は、紫外光が回避対象Hに当たりそうであること(回避対象Hが照射対象域ARに進入しようとしていること)、又は当たったこと(回避対象Hが照射対象域ARに存在していること)を判断し、アクティブに光スイッチのオン/オフを切り替える。
 例えば、図4のように照射対象域AR1に回避対象Hが進入したとする。センサ部31-1は、当該検知結果を制御部15-8へ通知する。制御部15-8は、光スイッチの動作スケジュールを変更し、照射対象域AR1への出力ポート1の、紫外光を供給する時間(タイムスロット)において光スイッチをオフのままとする。
 一方、照射対象域AR1から回避対象Hが退出すると、センサ部31-1は、当該検知結果を制御部15-8へ通知する。制御部15-8は、光スイッチの動作スケジュールを元に戻す。
(b) When the light distribution unit 12-8 is an optical switch, the control unit 15-8 determines that the ultraviolet light is likely to hit the avoidance target H (that the avoidance target H is about to enter the irradiation target area AR). , or hit (that the avoidance target H exists in the irradiation target area AR), and actively switches the optical switch on/off.
For example, assume that an object to be avoided H has entered an irradiation target area AR1 as shown in FIG. The sensor section 31-1 notifies the control section 15-8 of the detection result. The control unit 15-8 changes the operation schedule of the optical switch and keeps the optical switch off during the time (time slot) during which the ultraviolet light is supplied from the output port 1 to the irradiation target area AR1.
On the other hand, when the avoidance target H leaves the irradiation target area AR1, the sensor unit 31-1 notifies the control unit 15-8 of the detection result. The controller 15-8 restores the operation schedule of the optical switch.
(c)制御部15-8は、センサ部31-nからの検知結果を受け取り、紫外光源部11aの出力を制御してもよい。制御部15-8は、紫外光が回避対象Hに当たりそうであること(回避対象Hが照射対象域ARに進入しようとしていること)、又は当たったこと(回避対象Hが照射対象域ARに存在していること)を判断し、紫外光源部11aの紫外光出力を停止する。一方、制御部15-8は、照射対象域ARから回避対象Hが退出すると、紫外光源部11aの紫外光出力を開始する。なお、この場合、紫外光源部11aの紫外光出力が停止している期間、いずれの照射対象域ARにも紫外光は照射されない。 (c) The control section 15-8 may receive the detection result from the sensor section 31-n and control the output of the ultraviolet light source section 11a. The control unit 15-8 detects that the avoidance target H is likely to be hit by the ultraviolet light (that the avoidance target H is about to enter the irradiation target area AR) or that it is hit (that the avoidance target H exists in the irradiation target area AR). ), and stops outputting ultraviolet light from the ultraviolet light source section 11a. On the other hand, when the object to be avoided H leaves the irradiation target area AR, the control unit 15-8 starts outputting ultraviolet light from the ultraviolet light source unit 11a. In this case, no ultraviolet light is applied to any irradiation target area AR during the period when the output of ultraviolet light from the ultraviolet light source section 11a is stopped.
 光伝送路16は、光源部11から光分配部12-8まで紫外光と給電光を伝搬する。方路14は、光分配部12-8で分配された紫外光と給電光をそれぞれの照射部13又はセンサ部31まで伝搬する。光伝送路16と方路14は光ファイバである。光ファイバなので従来技術のロボットや装置が入り込めない細かい場所などにも敷設することができる。 The optical transmission line 16 propagates ultraviolet light and feeding light from the light source unit 11 to the light distribution unit 12-8. The route 14 propagates the ultraviolet light and the feeding light distributed by the light distribution section 12-8 to the irradiation section 13 or the sensor section 31, respectively. Optical transmission line 16 and path 14 are optical fibers. Since it is an optical fiber, it can be installed in narrow places where conventional robots and devices cannot enter.
 紫外光と給電光とは波長が異なるため、光伝送路16でも方路14でも両者を合波して光ファイバの1つのコアで伝搬することができる。具体的には、光源部11は、紫外光源部11aで発生した紫外光と給電用光源部11bで発生した給電光とを合波して波長多重光とし、光伝送路16である光ファイバの1つのコアに入射する。光伝送路16を伝搬した波長多重光は光分配部12-8で前述のように各方路14に分配される。このとき、光分配部12-8は分波器などを用いて給電光の一部を取り出して中間光発電部35に入力させる。 Since the wavelengths of the ultraviolet light and the feeding light are different, both the optical transmission line 16 and the route 14 can combine the two and propagate through one core of the optical fiber. Specifically, the light source unit 11 multiplexes the ultraviolet light generated by the ultraviolet light source unit 11a and the feeding light generated by the feeding light source unit 11b into wavelength-multiplexed light, and converts the wavelength-multiplexed light into an optical fiber as the optical transmission line 16. Incident into one core. The wavelength multiplexed light propagated through the optical transmission line 16 is distributed to the respective paths 14 by the optical distributor 12-8 as described above. At this time, the optical distribution section 12 - 8 extracts part of the power supply light using a demultiplexer or the like and inputs it to the intermediate optical power generation section 35 .
 光分配部12-8は、分配した波長多重光を方路14である光ファイバの1つのコアに入射する。方路14を伝搬した波長多重光は照射部13の手前で分波器などで紫外光と給電光に分離される。分離された給電光はセンサ部31の末端光発電部32に入力され、分離された紫外光は照射部13に入力され、照射対象域ARに照射される。 The optical distribution unit 12-8 injects the distributed wavelength-multiplexed light into one core of the optical fiber, which is the route 14. The wavelength-multiplexed light propagated through the route 14 is separated into ultraviolet light and feeding light by a demultiplexer or the like in front of the irradiation unit 13 . The separated power supply light is input to the terminal photovoltaic power generation unit 32 of the sensor unit 31, and the separated ultraviolet light is input to the irradiation unit 13 and irradiated to the irradiation target area AR.
 図5は、光伝送路16及び方路14に使用可能なシングルコア光ファイバの断面を説明する図である。
(1)充実コア光ファイバ
 この光ファイバは、クラッド60の中にクラッド60より高屈折率である1つの充実コア52を有する。「充実」とは「空洞ではない」という意味である。尚、充実コアは、クラッド内に円環状の低屈折率領域を形成することでも実現できる。
(2)空孔アシスト光ファイバ
 この光ファイバは、クラッド60の中に充実コア52とその外周に配置された複数の空孔53を有する。空孔53の媒質は空気であり、空気の屈折率は石英系ガラスに比べ十分小さい。このため、空孔アシスト光ファイバは、曲げなどでコア52から漏れた光を再びコア52に戻す機能があり、曲げ損失が小さいという特徴がある。
(3)空孔構造光ファイバ
この光ファイバは、クラッド60の中に複数の空孔53の空孔群53aを有し、ホスト材料(ガラス等)よりも実効的に屈折率が低い。本構造は、フォトニック結晶ファイバと呼ばれる。本構造には、屈折率を変化させた高屈折率コアが存在しない構造をとることができ、空孔53に取り囲まれた領域52aを実効的なコア領域として、光を閉じ込めることができる。充実コアを有する光ファイバに比べ、フォトニック結晶ファイバは、コアの添加剤による吸収や散乱損失の影響を低減することができるとともに、曲げ損失の低減や非線形効果の制御等、充実型光ファイバでは実現し得ない光学特性を実現できる。
(4)中空コア光ファイバ
この光ファイバは、コア領域が空気で形成される。クラッド領域に複数の空孔によるフォトニックバンドギャップ構造もしくはガラス細線によるアンチレゾナント構造をとることによって光をコア領域に閉じ込めることができる。この光ファイバは、非線形効果が小さく、高出力または高エネルギーレーザ供給が可能である。
(5)結合コア型光ファイバ
 この光ファイバは、クラッド60の中に複数の高屈折率である充実コア52が近接して配置される。この光ファイバは、充実コア52間で光波結合で光を導波する。結合コア型光ファイバは、コア数分だけ光を分散して送れるので、その分ハイパワー化して効率的な殺菌ができる、また、結合コア型光ファイバは、紫外線によるファイバ劣化を緩和し長寿命化できるというメリットがある。
FIG. 5 is a diagram illustrating a cross section of a single-core optical fiber that can be used for the optical transmission lines 16 and 14. As shown in FIG.
(1) Solid Core Optical Fiber This optical fiber has one solid core 52 in the clad 60 having a higher refractive index than the clad 60 . "Full" means "not hollow". The solid core can also be realized by forming an annular low refractive index region in the clad.
(2) Hole-assisted optical fiber This optical fiber has a solid core 52 in the clad 60 and a plurality of holes 53 arranged around the core. The medium of the holes 53 is air, and the refractive index of air is sufficiently smaller than that of quartz-based glass. Therefore, the hole-assisted optical fiber has a function of returning light leaking from the core 52 due to bending or the like back to the core 52, and is characterized by a small bending loss.
(3) Hole structure optical fiber This optical fiber has a hole group 53a of a plurality of holes 53 in the clad 60, and has an effective refractive index lower than that of the host material (glass or the like). This structure is called a photonic crystal fiber. This structure can take a structure in which a high-refractive-index core with a changed refractive index does not exist, and light can be confined using the region 52a surrounded by the holes 53 as an effective core region. Compared to optical fibers with solid cores, photonic crystal fibers can reduce the effects of absorption and scattering losses due to additives in the core. Optical characteristics that cannot be realized can be realized.
(4) Hollow core optical fiber This optical fiber has a core region made of air. Light can be confined in the core region by forming a photonic bandgap structure with a plurality of holes in the cladding region or an anti-resonant structure with glass wires. This optical fiber has low nonlinear effects and is capable of delivering high power or high energy lasers.
(5) Coupling Core Optical Fiber In this optical fiber, a plurality of solid cores 52 having a high refractive index are closely arranged in a clad 60 . This optical fiber guides light by optical wave coupling between solid cores 52 . Coupling-core type optical fibers can disperse and transmit light as many times as the number of cores, so the power can be increased to that extent and efficient sterilization is possible. It has the advantage of being able to
 このようなシングルコア光ファイバで紫外光と給電光とを伝搬する場合、光分配部12-8の分配状態によって、常に給電光が末端光発電部32に届くわけではない。そこで、センサ部31は、末端光発電部32が発生した電力を蓄える蓄電部(不図示)を有することが好ましい。センサ部31は、給電光が末端光発電部32に届かない時間も蓄電部の電力を利用して照射対象域ARの状態を監視することができる。 When the ultraviolet light and the feeding light are propagated through such a single-core optical fiber, the feeding light does not always reach the terminal photovoltaic section 32 depending on the distribution state of the light distribution section 12-8. Therefore, it is preferable that the sensor section 31 has a power storage section (not shown) that stores the electric power generated by the terminal photovoltaic power generation section 32 . The sensor unit 31 can monitor the state of the irradiation target area AR using the electric power of the storage unit even when the power supply light does not reach the end photovoltaic unit 32 .
 一方、光伝送路16でも方路14でも、紫外光と給電光とそれぞれを異なるシングルコア光ファイバ又は1本のマルチコア光ファイバの異なるコアで伝搬してもよい。具体的には、光源部11は、紫外光源部11aで発生した紫外光と給電用光源部11bで発生した給電光とを合波せず、紫外光を1つのシングルコア光ファイバのコア又はマルチコアファイバの1つのコアに入射し、給電光を他のシングルコア光ファイバのコア又はマルチコアファイバの他のコアに入射する。 On the other hand, in both the optical transmission line 16 and the route 14, the ultraviolet light and the feeding light may be propagated through different single-core optical fibers or different cores of one multi-core optical fiber. Specifically, the light source unit 11 does not combine the ultraviolet light generated by the ultraviolet light source unit 11a and the feeding light generated by the feeding light source unit 11b, and transmits the ultraviolet light to one single core optical fiber core or multi-core. The light is injected into one core of the fiber, and the feeding light is injected into another core of a single-core optical fiber or another core of a multi-core fiber.
 光伝送路16を伝搬した紫外光は光分配部12-8で前述のように(光スイッチであれば切り替えタイミングに従い、分岐比可変カプラであれば設定された分岐比に従い)各方路14に分配される。一方、光伝送路16を伝搬した給電光は、光分配部12-8において光スイッチや分岐比可変カプラに関わらず、予め設定された分岐比で分配される。このとき、光分配部12-8は方路14だけでなく中間光発電部35にも給電光を分配する。 The ultraviolet light propagated through the optical transmission line 16 is sent to each path 14 by the optical splitter 12-8 as described above (according to the switching timing in the case of an optical switch, or in accordance with the set branching ratio in the case of a variable branching ratio coupler). distributed. On the other hand, the feed light propagated through the optical transmission line 16 is distributed at a preset branch ratio in the optical distributor 12-8 regardless of the optical switch or the variable branch ratio coupler. At this time, the optical distribution section 12-8 distributes the feeding light not only to the route 14 but also to the intermediate optical power generation section 35. FIG.
 光分配部12-8は、分配した紫外光と給電光を方路14に入射する。ここで、光分配部12-8は、分配した紫外光を1つのシングルコア光ファイバのコア又はマルチコアファイバの1つのコアに入射し、給電光を他のシングルコア光ファイバのコア又はマルチコアファイバの他のコアに入射する。方路14を伝搬した給電光はセンサ部31の末端光発電部32に入力され、方路14を伝搬した紫外光は照射部13に入力され、照射対象域ARに照射される。 The light distribution unit 12-8 causes the distributed ultraviolet light and the feeding light to enter the route 14. Here, the light distribution unit 12-8 injects the distributed ultraviolet light into one core of a single-core optical fiber or one core of a multi-core fiber, and feeds the feeding light into another core of a single-core optical fiber or a core of a multi-core fiber. Incident to other cores. The feeding light that has propagated along the route 14 is input to the terminal photo-electric power generating section 32 of the sensor section 31, and the ultraviolet light that has propagated along the route 14 is input to the irradiation section 13 and irradiated onto the irradiation target area AR.
 図6は、光伝送路16及び方路14に使用できる使用可能なマルチコア光ファイバの断面を説明する図である。
(6)充実コア型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に複数の高屈折率である充実コア52が離れて配置される。この光ファイバは、充実コア52間で光波結合を十分小さくして光波結合の影響が無視できる状態で光を導波する。このため、充実コア型マルチコア光ファイバは、各コアを独立な導波路として扱えるというメリットがある。
(7)空孔アシスト型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に図5の(2)の空孔構造およびコア領域が複数配置された構造である。
(8)空孔構造型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に図5の(3)の空孔構造が複数配置された構造である。
(9)中空コア型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に図5の(4)の空孔構造が複数配置された構造である。
(10)結合コア型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に図5の(5)の結合コア構造が複数配置された構造である。
FIG. 6 is a diagram illustrating a cross section of a usable multi-core optical fiber that can be used for the optical transmission lines 16 and 14. As shown in FIG.
(6) Solid-core type multi-core optical fiber In this optical fiber, a plurality of solid cores 52 with a high refractive index are spaced apart in a clad 60 . This optical fiber guides light in such a manner that the optical wave coupling between the solid cores 52 is sufficiently small so that the effect of the optical wave coupling can be ignored. Therefore, the solid-core multi-core optical fiber has the advantage that each core can be treated as an independent waveguide.
(7) Hole-Assisted Multi-Core Optical Fiber This optical fiber has a structure in which a plurality of hole structures and core regions shown in (2) of FIG.
(8) Hole structure type multi-core optical fiber This optical fiber has a structure in which a plurality of hole structures of (3) in FIG.
(9) Hollow Core Multi-Core Optical Fiber This optical fiber has a structure in which a plurality of hole structures shown in FIG.
(10) Coupling-core type multi-core optical fiber This optical fiber has a structure in which a plurality of coupling-core structures of (5) in FIG. 5 are arranged in the clad 60 .
 このように、紫外光と給電光を合波しない場合、紫外光の分配状況にかかわらず給電光を途切れずにセンサ部31の末端光発電部32に届けることができる。このため、センサ部31が蓄電部を有さなくとも照射対象域ARの状態を常時監視することができる。 In this way, when the ultraviolet light and the power supply light are not combined, the power supply light can be delivered to the terminal photovoltaic unit 32 of the sensor unit 31 without interruption regardless of the distribution of the ultraviolet light. Therefore, even if the sensor unit 31 does not have a power storage unit, it is possible to constantly monitor the state of the irradiation target area AR.
(発明の効果)
 紫外光照射システム302の光分配部12-8及びセンサ部31は光発電部(35、32)を有している。この光発電部は、光源部11からの給電光を受光して電力を発生させ、光分配部12-8及びセンサ部31を駆動することに使用する。このため、紫外光照射システム302は光分配部12-8及びセンサ部31を駆動するための電気工事などが不要である。また、紫外光と給電光とを異なる光ファイバで伝送する場合であっても、紫外光用の光ファイバを敷設するときに同時に給電用の光ファイバも敷設すれば給電光のための追加コストを抑えることができる。
(Effect of the invention)
The light distribution unit 12-8 and the sensor unit 31 of the ultraviolet light irradiation system 302 have photovoltaic units (35, 32). This photovoltaic unit receives the power supply light from the light source unit 11 to generate electric power, which is used to drive the light distribution unit 12-8 and the sensor unit 31. FIG. Therefore, the ultraviolet light irradiation system 302 does not require electrical work for driving the light distribution section 12-8 and the sensor section 31. FIG. Further, even when the ultraviolet light and the feeding light are transmitted by different optical fibers, if the optical fiber for the feeding light is laid at the same time as the optical fiber for the ultraviolet light is laid, the additional cost for the feeding light can be reduced. can be suppressed.
 従って、本発明は、光分配部やセンサ部に給電のための電気工事などが不要でシステムコストを低減できるP-MP構成の紫外光照射システムを提供することができる。 Therefore, the present invention can provide an ultraviolet light irradiation system with a P-MP configuration that does not require electrical work for power supply to the light distribution unit and the sensor unit, and can reduce system costs.
11:光源部
11a:紫外光源部
11b:給電用光源部
12:光分配部(等分岐)
12-6:光分配部
12-8:光分配部
13、13-1、・・・、13-N:照射部
14:方路
15-8:制御部
16:光伝送路
31、31-1、・・・、31-N:センサ部
32:末端光発電部
35:中間光発電部
52:充実コア
52a:領域
53:空孔
53a:空孔群
53c:空孔
60:クラッド
300、301、302:紫外光照射システム
AR1、AR2、・・・、ARN:照射対象域(紫外光を照射しようとする領域)
11: Light source section 11a: Ultraviolet light source section 11b: Power supply light source section 12: Light distribution section (equally branched)
12-6: Light distribution unit 12-8: Light distribution units 13, 13-1, . , . 302: Ultraviolet light irradiation system AR1, AR2, ..., ARN: irradiation target area (area to be irradiated with ultraviolet light)

Claims (4)

  1.  紫外光を発生させる紫外光源及び前記紫外光の波長以外の給電光を発生させる光給電用光源を有する光源部と、
     前記紫外光をN個(Nは2以上の自然数)の照射対象域に照射するN個の照射部と、
     前記照射対象域を含む領域に前記紫外光の被爆を回避すべき回避対象が存在するか否かを検知するセンサ部と、
     前記紫外光及び前記給電光をそれぞれの前記照射部への方路へ分配する光分配部と、
     それぞれの前記センサ部に配置され、前記給電光を受光して前記センサ部を駆動する電力を発生する末端光発電部と、
     前記光分配部に配置され、前記給電光を受光して前記光分配部を駆動する電力を発生する中間光発電部と、
    を備える紫外光照射システム。
    a light source unit having an ultraviolet light source for generating ultraviolet light and an optical feeding light source for generating feeding light having a wavelength other than the wavelength of the ultraviolet light;
    N irradiating units that irradiate N (N is a natural number of 2 or more) irradiation target areas with the ultraviolet light;
    a sensor unit that detects whether or not there is an avoidance target that should be avoided from being exposed to the ultraviolet light in a region that includes the irradiation target region;
    a light distribution unit that distributes the ultraviolet light and the power supply light to respective routes to the irradiation unit;
    a terminal photovoltaic unit arranged in each of the sensor units for receiving the power supply light and generating electric power for driving the sensor unit;
    an intermediate photovoltaic power generation unit disposed in the light distribution unit that receives the power supply light and generates electric power for driving the light distribution unit;
    An ultraviolet light irradiation system.
  2.  前記紫外光と前記給電光とは、それぞれ異なる経路で伝搬されることを特徴とする請求項1に記載の紫外光照射システム。 The ultraviolet light irradiation system according to claim 1, wherein the ultraviolet light and the feeding light are propagated through different paths.
  3.  前記紫外光と前記給電光とは、多重されて同じ経路で伝搬されることを特徴とする請求項1に記載の紫外光照射システム。 The ultraviolet light irradiation system according to claim 1, wherein the ultraviolet light and the feeding light are multiplexed and propagated through the same route.
  4.  前記センサ部は、前記末端光発電部が発生した電力を蓄える蓄電部を有することを特徴とする請求項1から3のいずれかに記載の紫外光照射システム。 The ultraviolet light irradiation system according to any one of claims 1 to 3, wherein the sensor section has a power storage section that stores electric power generated by the terminal photovoltaic power generation section.
PCT/JP2021/041489 2021-11-11 2021-11-11 Uv irradiation system WO2023084675A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041489 WO2023084675A1 (en) 2021-11-11 2021-11-11 Uv irradiation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041489 WO2023084675A1 (en) 2021-11-11 2021-11-11 Uv irradiation system

Publications (1)

Publication Number Publication Date
WO2023084675A1 true WO2023084675A1 (en) 2023-05-19

Family

ID=86335331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041489 WO2023084675A1 (en) 2021-11-11 2021-11-11 Uv irradiation system

Country Status (1)

Country Link
WO (1) WO2023084675A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140633A (en) * 1995-11-20 1997-06-03 Keiji Iimura Bactericidal device for toilet seat and the like
JP2005093449A (en) * 2003-09-11 2005-04-07 National Aerospace Laboratory Of Japan Photovoltaic energy utilization system
JP2007007232A (en) * 2005-07-01 2007-01-18 Mitsubishi Electric Corp Photo-sterilizer and photo-sterilizing system
JP2010209513A (en) * 2009-03-06 2010-09-24 Yamaguchi Univ Handle and door
JP2019536492A (en) * 2016-09-02 2019-12-19 ブレインリット・アーベー Light control system and method for exposing a small portion of space to light within a predetermined spectral range at a predetermined threshold intensity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140633A (en) * 1995-11-20 1997-06-03 Keiji Iimura Bactericidal device for toilet seat and the like
JP2005093449A (en) * 2003-09-11 2005-04-07 National Aerospace Laboratory Of Japan Photovoltaic energy utilization system
JP2007007232A (en) * 2005-07-01 2007-01-18 Mitsubishi Electric Corp Photo-sterilizer and photo-sterilizing system
JP2010209513A (en) * 2009-03-06 2010-09-24 Yamaguchi Univ Handle and door
JP2019536492A (en) * 2016-09-02 2019-12-19 ブレインリット・アーベー Light control system and method for exposing a small portion of space to light within a predetermined spectral range at a predetermined threshold intensity

Similar Documents

Publication Publication Date Title
HUP0301300A2 (en) Method and apparatus for photobiostimulation of biological tissue, biostimulation device and method for the treatment of tissue
WO2017171961A3 (en) Optical spatial mode control
WO2013160770A3 (en) Fiber laser system for medical applications
MX355860B (en) Combined surgical endoprobe for optical coherence tomography, illumination or photocoagulation.
US20160192988A1 (en) Multiple Laser Source System for Portable Laser Therapy Apparatus
WO2009025261A1 (en) Multibeam scanning device
WO2023084675A1 (en) Uv irradiation system
WO2023058144A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2023084668A1 (en) Ultraviolet light radiation system and control method
WO2023084669A1 (en) Ultraviolet light radiation system and radiation method
WO2023084666A1 (en) Ultraviolet light irradiation system
WO2022009443A1 (en) Ultraviolet light radiation system
WO2023084674A1 (en) Ultraviolet light irradiation system and control method
WO2023073774A1 (en) Uv irradiation system
WO2022024303A1 (en) Ultraviolet irradiation system and control method
WO2023073771A1 (en) Ultraviolet light irradiation system
WO2023084665A1 (en) Uv radiation system
US20230270898A1 (en) Ultraviolet light irradiation system and decontamination method
WO2023073885A1 (en) Ultraviolet light irradiation system
WO2023084677A1 (en) Ultraviolet light emission system
WO2023073884A1 (en) Ultraviolet light irradiation system
WO2023157281A1 (en) Optical transmission device, optical irradiation system, and optical transmission method
ES2109724T3 (en) CURRENT POWER SUPPLY CONTROLLER FOR A FIBER OPTIC TELECOMMUNICATION SYSTEM.
WO2022254713A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2022215110A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964030

Country of ref document: EP

Kind code of ref document: A1