WO2023073884A1 - Ultraviolet light irradiation system - Google Patents

Ultraviolet light irradiation system Download PDF

Info

Publication number
WO2023073884A1
WO2023073884A1 PCT/JP2021/039887 JP2021039887W WO2023073884A1 WO 2023073884 A1 WO2023073884 A1 WO 2023073884A1 JP 2021039887 W JP2021039887 W JP 2021039887W WO 2023073884 A1 WO2023073884 A1 WO 2023073884A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet light
irradiation
optical switch
target area
irradiation system
Prior art date
Application number
PCT/JP2021/039887
Other languages
French (fr)
Japanese (ja)
Inventor
誉人 桐原
友宏 谷口
聖 成川
亜弥子 岩城
和秀 中島
隆 松井
裕之 飯田
千里 深井
悠途 寒河江
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/039887 priority Critical patent/WO2023073884A1/en
Publication of WO2023073884A1 publication Critical patent/WO2023073884A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present disclosure relates to an ultraviolet light irradiation system that uses ultraviolet light to sterilize and inactivate viruses.
  • Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light. By irradiating the robot with ultraviolet light while moving in a room in a building such as a hospital room, the robot can automatically realize sterilization in a wide range without human intervention.
  • Stationary air purifier The product of Non-Patent Document 2 is a device that is installed on the ceiling or at a predetermined place in a room, and performs sterilization while circulating the air in the room.
  • Non-Patent Document 3 is a portable apparatus equipped with an ultraviolet light source. A user can bring the device to a desired area and irradiate it with ultraviolet light. Therefore, the device can be used in various places.
  • Kantum Ushikata Co., Ltd. website https://www.kantum.co.jp/product/sakkin_robot/sakkinn_robot/UVD_robot
  • June 22, 2020 Iwasaki Electric Co., Ltd. website https://www.iwasaki.co.jp/optics/ARrilization/air/air03.html
  • June 22, 2020 Funakoshi Co., Ltd. website https://www.funakoshi.co.jp/contents/68182
  • Non-Patent Document 1 has the following problems.
  • Economy Since the product of Non-Patent Document 1 is irradiated with high-output ultraviolet light, the apparatus becomes large and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
  • Non-Patent Document 3 cannot irradiate ultraviolet light to narrow pipes or areas where people cannot enter.
  • the product of Non-Patent Literature has a problem of versatility in that it can irradiate any place with ultraviolet light.
  • (3) Operability The product of Non-Patent Document 3 is portable and can be irradiated with ultraviolet light at various locations. However, in order to obtain sufficient effects such as sterilization at the target location, the user is required to have skill and knowledge, and there is a problem in operability.
  • an ultraviolet light irradiation system 300 using an optical fiber as shown in FIG. 1 is conceivable.
  • This ultraviolet light irradiation system transmits ultraviolet light from the light source 11 using a thin and flexible optical fiber, and irradiates the ultraviolet light output from the tip of the optical fiber 14 to an irradiation target area AR to be sterilized or the like with pinpoint accuracy.
  • the versatility of the above problem (2) can be solved because the ultraviolet light can be irradiated to any place simply by moving the irradiation unit 13 at the tip of the optical fiber 14 .
  • the operability of the above problem (3) can be resolved.
  • an optical distribution unit 12 such as an optical splitter in the optical transmission line 16 to form a P-MP (Point to MultiPoint) system configuration such as FTTH (Fiber To The Home)
  • FTTH Fiber To The Home
  • the length of the optical fiber 14, the area of the irradiation target area AR, and the illuminance required for the irradiation target area AR are different.
  • the energy of ultraviolet light considering the time to be supplied to each direction and the energy of ultraviolet light considering the time to irradiate the irradiation target area AR is the integrated light amount (unit: J).
  • the energy per unit time is defined as power (unit: W)
  • the power per unit area of the ultraviolet light applied to the irradiation target area AR is defined as illuminance (W/m 2 ).
  • A Fairness
  • Each path 14 has a different transmission loss depending on the length of the optical fiber and the distance from the irradiation unit to the irradiation target area, and the area of the irradiation target area AR is also different.
  • the light distribution unit 12 of the ultraviolet light irradiation system 300 power-splits the ultraviolet light at an equal splitting ratio, it is difficult to obtain uniform illuminance in each irradiation target area AR.
  • the ultraviolet light irradiation system 300 has a problem that it is difficult to obtain a fair sterilization effect in each irradiation target area AR.
  • Each route 14 has a different transmission loss depending on the length of the optical fiber and the distance from the irradiation unit to the irradiation target area, and the area of the irradiation target area AR is also different.
  • the light distribution unit 12 of the ultraviolet light irradiation system 300 power-splits the ultraviolet light at an equal splitting ratio, there is a case where the irradiation target area AR is irradiated with the ultraviolet light with excessive illuminance.
  • the ultraviolet light irradiation system 300 may be irradiated with ultraviolet light having an excessive illuminance, which poses a problem of difficulty in ensuring safety.
  • C Efficiency
  • the light distribution unit 12 of the ultraviolet light irradiation system 300 power-splits the ultraviolet light at an equal splitting ratio, it is difficult to supply the ultraviolet light with the illuminance desired for each irradiation target area AR.
  • the ultraviolet light irradiation system 300 cannot perform sterilization or the like by a method according to the irradiation target area AR, and has a problem that it is difficult to improve the working efficiency.
  • the present invention is a P-MP configuration that can obtain effects such as fair sterilization in each irradiation target area, can ensure safety, and can improve work efficiency. It is an object of the present invention to provide an ultraviolet light irradiation system of
  • the ultraviolet light irradiation system comprises an optical switch for distributing ultraviolet light to each route, and the switching timing of the optical switch (the cumulative amount of ultraviolet light distributed to each route) is ) was adjusted.
  • the ultraviolet light irradiation system includes: an ultraviolet light source that generates ultraviolet light; N irradiating units that irradiate N (N is a natural number of 2 or more) irradiation target areas with the ultraviolet light; an optical switch that switches the ultraviolet light to a direction to each of the irradiation units; Setting the switching timing of the optical switch based on at least one of the transmission loss of the ultraviolet light for each of the routes, the irradiation area where the irradiation unit irradiates the ultraviolet light, and the required time for deactivation of the irradiation target area.
  • a switching control unit Prepare.
  • This ultraviolet light irradiation system employs an optical switch as a light distribution unit that distributes the ultraviolet light transmitted from the ultraviolet light source unit to multiple single-core optical fibers.
  • the switching timing of the optical switch is changed according to the conditions of the irradiation target area. Specific switching timings are as follows.
  • the switching timing is based on the transmission loss of the ultraviolet light for each of the routes and the irradiation area where the irradiation unit irradiates the ultraviolet light, so that the integrated light amount per unit area to each irradiation target area is uniform. This is the timing at which the ultraviolet light is supplied.
  • the aforementioned problem (A) can be solved.
  • the switching control unit is characterized by setting the switching timing so that the integrated light quantity of the ultraviolet light irradiated to each of the irradiation target areas is equal to or less than a predetermined reference value.
  • the switching control unit is characterized in that the switching timing is set so as to satisfy the integrated light quantity of the ultraviolet light required by each of the irradiation target areas.
  • the aforementioned problem (C) can be solved.
  • the present invention provides an ultraviolet light irradiation system with a P-MP configuration that can obtain effects such as fair sterilization in each irradiation target area, can ensure safety, and can improve work efficiency. can do.
  • this ultraviolet light irradiation system can solve the above problems (D) and (E).
  • the ultraviolet light irradiation system employs an optical switch as a substitute for the light distribution unit 12 in FIG. Even if the conditions of (such as performing sterilization in a short time or performing sterilization in a long time) change after the fact, there is also the advantage that the switching timing can be adjusted according to the conditions after the change. .
  • the ultraviolet light source section 11 and the light distribution section 12 may be arranged at the same place or arranged in the same housing. In the case of such a configuration, the following problems also occur.
  • the ultraviolet light irradiation system preferably separates the ultraviolet light source section and the optical switch, and further includes an optical transmission line connecting the ultraviolet light source section and the optical switch.
  • the optical switch is installed near the irradiation target area, so the optical fiber in the section from the ultraviolet light source to the optical switch can be shared, and the total length of the optical fiber can be shortened. For this reason, the cost of members and construction can be reduced by the amount that the optical fiber can be shared, and the problem (F) can be solved.
  • the present invention provides an ultraviolet light irradiation system with a P-MP configuration that can obtain effects such as fair sterilization in each irradiation target area, can ensure safety, and can improve work efficiency. can be done.
  • FIG. 2 is a diagram illustrating the ultraviolet light irradiation system 301 of this embodiment.
  • the ultraviolet light irradiation system 301 is an ultraviolet light source unit 11 that generates ultraviolet light; N irradiating units 13 that irradiate N (N is a natural number of 2 or more) irradiation target areas AR with the ultraviolet light; an optical switch 12-2 that switches the ultraviolet light to a route 14 to each of the irradiation units 13;
  • the switching timing of the optical switch 12-2 is determined based on at least one of the transmission loss of the ultraviolet light for each route 14, the irradiation area irradiated with the ultraviolet light by the irradiation unit 13, and the required time for deactivation of the irradiation target area AR.
  • a switching control unit 15-2 for setting Prepare.
  • the ultraviolet light source unit 11 outputs light in the ultraviolet region (ultraviolet light) that is effective for sterilization and the like. Let P [W] be the power of the ultraviolet light output by the ultraviolet light source unit 11 .
  • the ultraviolet light source section 11 and the optical switch 12-2 are connected by an optical transmission line 16, which is an optical fiber or space.
  • the optical switch 12-2 outputs the ultraviolet light from the ultraviolet light source section 11 to any one of the plurality of output ports according to the instruction from the switching control section 15-2.
  • the time required for path switching in the optical switch 12-2 is T sw [s].
  • the ultraviolet light output from the output ports 1 to N is irradiated to the irradiation target areas AR (1 to N) via the route 14 and the irradiation unit 13, respectively.
  • Path 14 propagates the ultraviolet light intermittently distributed by the optical switch 12 - 2 to each irradiation section 13 .
  • Path 14 is an optical fiber. Since it is an optical fiber, it can be installed in narrow places where conventional robots and devices cannot enter.
  • FIG. 3 is a diagram illustrating a cross section of an optical fiber that can be used for the optical transmission line 16 and the path 14 of the optical fiber.
  • This optical fiber has one solid core 52 in the clad 60 having a higher refractive index than the clad 60 . "Full" means "not hollow".
  • the solid core can also be realized by forming an annular low refractive index region in the clad.
  • Hole-assisted optical fiber This optical fiber has a solid core 52 in the clad 60 and a plurality of holes 53 arranged around the core.
  • the medium of the holes 53 is air, and the refractive index of air is sufficiently smaller than that of quartz-based glass. Therefore, the hole-assisted optical fiber has a function of returning light leaking from the core 52 due to bending or the like back to the core 52, and is characterized by a small bending loss.
  • Hole structure optical fiber This optical fiber has a hole group 53a of a plurality of holes 53 in the clad 60, and has an effective refractive index lower than that of the host material (glass or the like). This structure is called a photonic crystal fiber.
  • This structure can take a structure in which a high-refractive-index core with a changed refractive index does not exist, and light can be confined using the region 52a surrounded by the holes 53 as an effective core region.
  • photonic crystal fibers can reduce the effects of absorption and scattering losses due to additives in the core.
  • Optical characteristics that cannot be realized can be realized.
  • This optical fiber has a core region made of air. Light can be confined in the core region by adopting a photonic bandgap structure with a plurality of holes or an anti-resonant structure with glass wires in the cladding region. This optical fiber has low nonlinear effects and is capable of delivering high power or high energy lasers.
  • Coupling Core Optical Fiber In this optical fiber, a plurality of solid cores 52 having a high refractive index are closely arranged in a clad 60 . This optical fiber guides light by optical wave coupling between solid cores 52 . Coupling-core type optical fibers can disperse and transmit light as many times as the number of cores, so high power can be used for efficient sterilization. There is an advantage that the service life can be extended.
  • the irradiation unit 13 irradiates the ultraviolet light transmitted through the route 14 to a predetermined target location (irradiation target area AR) for sterilization or the like.
  • the irradiation unit 13 is composed of an optical system such as a lens designed for the wavelength of ultraviolet light.
  • the switching control unit 15-2 controls the optical switch 12-2 to repeat the operation of giving each path 14 (output ports 1 to N of the optical switch) an opportunity to supply ultraviolet light for a period of time T, respectively.
  • FIG. 4 is a diagram illustrating an example of switching control of the optical switch 12-2 performed by the switching control unit 15-2. This control is an operation when the transmission loss of ultraviolet light to the irradiation target area AR is equal to the irradiation area.
  • the time T be the time obtained by the formula (1).
  • E [W ⁇ s/m 2 ] is the amount of ultraviolet light per unit area (integrated amount of light) required for sterilization or the like.
  • the loss from the ultraviolet light source unit 11 to the irradiation unit 13 is L fiber [a. u. ]
  • the loss from the irradiation unit 13 to the irradiation target area AR is L air [a. u. ].
  • S [m 2 ] be the area of the spot of the ultraviolet light irradiated to the irradiation target area AR.
  • the ultraviolet light irradiation system 301 can ensure the effect of sterilization and the like for each irradiation target area AR every time T inact [s] of Expression (2).
  • the switching control unit 15-2 controls the optical switch 12-2 so that the time of the opportunity to supply ultraviolet light to each output port is T/M [s] (M is a natural number of 2 or more). However, the same effect can be obtained.
  • 5 and 6 are diagrams for explaining a case where switching timings different from those in FIGS. 2 and 4 are set in the optical switch 12-2. 5 and 6 show cases where the transmission loss of ultraviolet light to the irradiation target area AR and the irradiation area are different.
  • the ultraviolet light irradiation system 301 shown in FIG. 5 has the same structure as the ultraviolet light irradiation system 301 shown in FIG. In this embodiment, only parts different from FIGS. 2 and 4 will be described.
  • the switching control unit 15-2 of the present embodiment directs the ultraviolet light from the ultraviolet light source unit 11 to the optical switch 12-2 so that the illuminance of the ultraviolet light irradiated to each irradiation target area AR becomes equal. divide the time. Specifically, the switching timing is set to give an opportunity to supply ultraviolet light as follows. (a1) The switching timing is such that the ultraviolet light is supplied for a long time to the irradiation target area AR having a large area and the ultraviolet light supply time to the irradiation target area AR having a small area is short. The illuminance of the ultraviolet light to each irradiation target area AR becomes uniform, and effects such as fair sterilization can be obtained.
  • the distance of the route 14 and the distance from the irradiation unit 13 to the irradiation target area AR are long, the ultraviolet light supply time to the irradiation target area AR is long, and the irradiation from the irradiation unit 13 is long.
  • the switching timing is set such that the ultraviolet light supply time to the irradiation target area AR having a short distance to the target area AR and a small transmission loss is short.
  • the illuminance of the ultraviolet light to each irradiation target area AR becomes uniform, and effects such as fair sterilization can be obtained.
  • (a2′) When the areas of the irradiation target areas AR are different as shown in FIG.
  • the switching timing should be such that the sterilization becomes uniform and effects such as fair sterilization can be obtained.
  • P [W] be the power of the ultraviolet light output by the ultraviolet light source unit 11 .
  • T sw [s] be the time required for path switching in the optical switch 12-2.
  • the areas of the ultraviolet light spots irradiated onto the irradiation target areas AR be S 1 [m 2 ], S 2 [m 2 ], . . . , SN [m 2 ].
  • FIG. 6 is a diagram for explaining switching control of the optical switch 12 performed by the switching control unit 15-2.
  • This control is an operation when the transmission loss of the ultraviolet light to the irradiation target area AR and the irradiation area are different.
  • T i be the time obtained by equation (3).
  • E [W ⁇ s/m 2 ] is the amount of ultraviolet light required for sterilization or the like.
  • the ultraviolet light amount E [W s/m 2 ] can be irradiated. That is, the ultraviolet light irradiation system 301 can ensure the effect of sterilization and the like for each irradiation target area AR every time T inact [s] of Expression (4).
  • the switching control unit 15-2 sets the time of the opportunity to supply the ultraviolet light to each output port of the optical switch 12-2 to T i /M [s] (M is a natural number of 2 or more). A similar effect can be obtained by controlling.
  • the switching control section 15-2 sets the switching timing in the optical switch 12-2 so that the integrated amount of the ultraviolet light applied to each irradiation target area AR is equal to or less than a predetermined reference value.
  • the branch ratio is set as follows. (b1) The illuminance of ultraviolet light should be 6.0 mJ/cm2 or less (0.2 ⁇ W per unit time) within 8 hours per day in order to safely sterilize by reducing the amount of exposure to humans. /cm 2 ) is a standard value (JISZ8812).
  • the ultraviolet light power output from the ultraviolet light source unit 11, the loss L fiber-n [a. u. ], loss L air-n [a. u. ], and the area S n [m 2 ], calculate T and Ti such that the illuminance of the ultraviolet light irradiated to each irradiation target area AR is less than the reference value, and use it as a switching timing .
  • sterilization can be performed by setting the switching timing of the optical switch 12-2 in this way, and the irradiation target area AR is irradiated with ultraviolet light of excessive illuminance. can be prevented, and the safety of the ultraviolet light irradiation system 301 can be ensured.
  • FIGS. 7 and 8 are also diagrams for explaining a case in which switching timings different from those in FIGS. 2 and 4 are set in the optical switch 12-2. 7 and 8 show the case where the switching timing is set so as to satisfy the integrated quantity of ultraviolet light required by each irradiation target area AR.
  • the switching timing is set as follows. (a3) Increase the integrated light intensity to the irradiation target area AR2 where strong sterilization is desired (long supply time T2 ), and decrease the integrated light intensity to the irradiation target area ARN that does not require strong sterilization (supply time shorten TN ).
  • the requirements of each irradiation target area AR can be fairly met, and effects such as fair sterilization can be obtained.
  • (c1) Increase the integrated amount of light to the irradiation target area AR2 that requires sterilization etc. in a short time (longer the supply time T2 ), and decrease the integrated amount of light to the irradiation target area ARN to perform sterilization etc. over time ( Shorten the supply time TN ).
  • a large amount of ultraviolet light can be distributed to the desired irradiation target area AR, and sterilization and the like can be performed in a short period of time.
  • the supply of ultraviolet light to other irradiation target areas AR is reduced, and sterilization or the like is performed over time.
  • irradiation target area AR for a short time or a long time
  • ultraviolet light irradiation system 301 improves the efficiency of the ultraviolet light irradiation system 301.
  • irradiation target areas AR for long-term sterilization include rooms where exposure to high-intensity ultraviolet light is to be avoided (places where people and animals come and go) and the intake/outlet of air-conditioning equipment. can.
  • the irradiation target area AR that performs sterilization or the like in a short time include a closed space such as a UV sterilization box that does not allow people or animals to enter.
  • the switching timing of the optical switch 12-2 may be set by combining the branching ratio setting methods (a1), (a2), (a2′), (a3), (b1) and (c1). .
  • the switching control unit 15-2 changes the switching timing of the optical switch 12-2 as shown in FIGS. effect is also obtained.
  • FIG. 9 is a diagram explaining this effect.
  • FIG. 9A is a diagram for explaining an example in which the optical switch 12-2 supplies ultraviolet light to each route 14 at equal switching timing regardless of the length of the route 14 and the request for the irradiation target area AR. be.
  • FIG. 9B shows this ultraviolet light irradiation system, and is a diagram for explaining an example in which the optical switch 12-2 supplies ultraviolet light to each route 14 at unequal switching timings.
  • the ultraviolet light irradiation system 301 adjusts the energy of the ultraviolet light according to the ultraviolet light supply time (integrated light amount) determined by the switching timing of the optical switch 12-2.
  • the optical switch 12-2 distributes the ultraviolet light at uniform switching timing, a route with a small transmission loss, a route with a small irradiation target area AR, a route with a long deactivation request time, etc. A route with sufficient energy will be supplied with excess energy ultraviolet light. Therefore, as described with reference to FIGS. 5 to 8, the ultraviolet light is distributed by changing the switching timing of the optical switch 12-2 according to the transmission loss, the area of the irradiation target area AR, or the required deactivation time. Specifically, the ultraviolet light supply time is shortened for a route requiring a small amount of energy, and the ultraviolet light supply time is lengthened for a route requiring a large amount of energy.
  • FIG. 10 is a diagram illustrating the ultraviolet light irradiation system 302 of this embodiment.
  • the ultraviolet light irradiation system 302 further includes a light source control unit 17 that changes the power of the ultraviolet light with respect to the ultraviolet light source unit 11 so as to interlock with the switching operation of the optical switch 12-2 for the ultraviolet light irradiation system 301. .
  • the light source control unit 17 is preset with an ultraviolet light power corresponding to the characteristics of each route 14 .
  • the ultraviolet light power corresponding to the characteristics of each route is the power corresponding to the transmission loss, the area of the irradiation target area AR, and the required deactivation time.
  • the light source control unit 17 obtains information from the switching control unit 15-2 as to which path 14 the ultraviolet light is being output to at the current time. Based on the information, the light source control unit 17 causes the ultraviolet light source unit 11 to output the power of the ultraviolet light set for the route 14 at the current time.
  • FIG. 11 is a diagram explaining the effect of the ultraviolet light irradiation system 302.
  • FIG. 11A similarly to FIG. 9A, regardless of the length of the path 14 and the request for the irradiation target area AR, ultraviolet light of the same power is distributed to each path 14 at equal switching timing. It is a figure explaining an example.
  • FIG. 11(B) is an ultraviolet light irradiation system 302, and is a diagram for explaining an example in which ultraviolet light of different power is distributed to each path 14 at equal switching timings.
  • the ultraviolet light irradiation system 302 adjusts the energy of the ultraviolet light with the power of the ultraviolet light output by the ultraviolet light source section 11 .
  • the ultraviolet light source unit 11 supplies ultraviolet light with a power that matches the route requiring the maximum energy. Then, excessive energy will be supplied to the route where small energy is sufficient. Therefore, depending on the route 14, the energy of the ultraviolet light must be wasted, and the power consumption of the ultraviolet light source unit 11 is also wasted. For this reason, when distributing ultraviolet light with equal switching timing and the same power, it is difficult to reduce the power consumption of the ultraviolet light source unit 11 .
  • the ultraviolet light source unit 11 outputs ultraviolet light while changing the power according to the transmission loss, the area of the irradiation target area AR, or the required deactivation time.
  • the ultraviolet light source unit 11 reduces the power of the ultraviolet light when the optical switch 12-2 is connected to a route that requires a small amount of energy, and connects the optical switch 12-2 to a route that requires a large amount of energy. increase the power of the ultraviolet light.
  • the wasteful supply of ultraviolet light as described above can be eliminated, and the power consumption of the ultraviolet light source section 11 can be reduced (FIG. 11(B)).
  • power saving of the ultraviolet light irradiation system can be achieved.
  • the switching timing of the optical switch 12-2 of the ultraviolet light irradiation system 302 may be set in combination with the switching timing of the optical switch 12-2 described in the ultraviolet light irradiation system 301 of the first embodiment.
  • FIG. 12 is a diagram illustrating the ultraviolet light irradiation system 303 of this embodiment.
  • the ultraviolet light source unit 11 and the optical switch 12-2 are separated, and an optical transmission line (optical fiber) 26 connecting the ultraviolet light source unit 11 and the optical switch 12-2 is further provided.
  • the optical fiber described with reference to FIG. 3 can be used for the optical transmission line 26 .
  • FIG. 12 is a diagram explaining the effect of this embodiment.
  • the term “separate” means that the ultraviolet light source section 11 and the optical switch 12-2 are not located at the same place or are not in the same housing 3.
  • FIG. 12 is a diagram explaining the effect of this embodiment.
  • the term “separate” means that the ultraviolet light source section 11 and the optical switch 12-2 are not located at the same place or are not in the same housing 3.
  • the optical switch 12-2 distributes the ultraviolet light to each route 14 and propagates it to each irradiation target area AR, as described above.
  • the ultraviolet light source section 11 and the optical switch 12-2 are arranged in the same place (for example, in one housing 3). Therefore, the optical fiber that is the route 14 must be laid to each irradiation target area AR, and the total extension of the optical fiber becomes longer according to the number of irradiation target areas AR, resulting in the cost of system members and construction. can be higher.
  • the ultraviolet light irradiation system 303 of FIG. does not place the optical switch 12-2 in the same housing as the ultraviolet light source unit 11, but protrudes to the vicinity of the irradiation target area AR, and from there on the route 14 each irradiation target area AR UV light can be supplied to the
  • the optical fiber 26 has a length that covers a section from the ultraviolet light source unit 11 to the irradiation target area AR, such as a room or equipment, and has a length of 10 m or more, for example.
  • the ultraviolet light irradiation system 303 connects the ultraviolet light source unit 11 and the optical switch 12-2 that are not in the same place or in the same housing by the optical fiber 26, and connects the optical switch 12-2 to the ultraviolet light source unit 11.
  • the feature is that it can be placed in different places.
  • the configuration of the ultraviolet light irradiation system 303 produces the following effects.
  • this configuration only one long optical fiber 26 and a short optical fiber between the optical switch 12-2 and the irradiation unit 13 are laid. Therefore, even if the number of irradiation target areas AR increases, the total extension of the optical fibers is not as long as that of the ultraviolet light irradiation system 301, and the cost of system members and construction increases according to the number of irradiation target areas AR. can be avoided.
  • the switching control section 15-2 described in the first and second embodiments can be arranged near the ultraviolet light source section 11.
  • the switching timing of the optical switch 12-2 can be remotely controlled from the ultraviolet light source unit 11 side.
  • the switching controller 15-2 may be located near the optical switch 12-2. An operator can set the switching timing near the optical switch 12-2.
  • the ultraviolet light irradiation system 303 can avoid an increase in the total extension of the optical fibers due to an increase in the number of irradiation target areas AR, and can reduce costs.
  • the ultraviolet light irradiation system 303 and the ultraviolet light irradiation system 301 have been described in the present embodiment, similar effects can be obtained with the configuration of the ultraviolet light irradiation system 302 including the light source control unit 17 .
  • FIG. 13 is a flowchart for explaining an ultraviolet light irradiation method for setting the switching timing of the optical switch 12-2 of the ultraviolet light irradiation system (301 to 303).
  • This method is an ultraviolet light irradiation system in which ultraviolet light generated by one ultraviolet light source unit 11 is time-divided by an optical switch 12-2, and the time-divided ultraviolet light is irradiated to a plurality of irradiation target areas AR,
  • the switching timing of the optical switch 12-2 that time-divides the ultraviolet light is determined by the transmission loss of the ultraviolet light for each route 14, the irradiation area of the irradiation target area AR irradiated with the ultraviolet light, and the irradiation target area AR. is set based on at least one of the required inactivation times.
  • Step S01 Ultraviolet light output power P [W] of ultraviolet light source unit 11, loss L fiber-n of each path 14 [a. u. ] and loss L air-n [a. u. ], area S n [m 2 ] of each irradiation target area AR, and information on illuminance [W/m 2 ], unit energy [J], or required deactivation time required by each irradiation target area AR. Further, in the case of the ultraviolet light irradiation system 302, the necessary power of ultraviolet light is calculated for each route.
  • Step S02 Judge whether the effect to be ensured by the ultraviolet light irradiation system (301 to 303) is fairness.
  • Step S03 If the effect to be ensured by the ultraviolet light irradiation system (301 to 303) is fairness ("Yes" in step S02), the optical switch 12- 2 is set in the switching control unit 15-2.
  • Step S04 Judge whether the effect to be ensured by the ultraviolet light irradiation system (301 to 303) is safety.
  • Step S05 If the effect to be ensured by the ultraviolet light irradiation system (301 to 303) is safety ("Yes" in step S04), the switching control unit changes the switching timing of the optical switch 12-2 according to (b1) described above. Set to 15-2.
  • Step S06 Judge whether the effect to be ensured by the ultraviolet light irradiation system (301 to 303) is efficiency.
  • Step S07 If the effect to be ensured by the ultraviolet light irradiation system (301 to 303) is efficiency ("Yes" in step S06), the switching control unit changes the switching timing of the optical switch 12-2 according to (c1) described above. Set to 15-2.
  • Step S08 If the effects to be ensured by the ultraviolet light irradiation system (301-303) are none of fairness, safety and efficiency, the design is aborted.
  • the ultraviolet light irradiation system 302 the following operations are added in steps S03, S05, and S07.
  • the ultraviolet light irradiation system 302 can change the ultraviolet light power output from the ultraviolet light source unit 11 in synchronization with the switching timing of the optical switch 12-2. Therefore, the ultraviolet light power output from the ultraviolet light source unit 11 is set in the light source control unit 17 in synchronization with the switching timing set in the switching control unit 15-2.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

The present invention aims to provide a P–MP ultraviolet light irradiation system that can obtain effects such as the impartial sterilization of each target irradiation area, ensure safety, and improve work efficiency. The ultraviolet light irradiation system 301 according to the present invention is provided with: an ultraviolet light source unit 11 for generating ultraviolet light; N (where N is a natural number of at least 2) irradiation units 13 for irradiating N target irradiation areas AR with the ultraviolet light; an optical switch 12–2 for switching the path of the ultraviolet light to the paths 14 leading to the respective irradiation units 13; and a switching control unit 15–2 for setting the switching timing for the optical switch 12–2 on the basis of at least one out of the ultraviolet light transmission loss of each of the paths 14, the size of the irradiation area irradiated with ultraviolet light by the irradiation units 13, and the time required to deactivate the target irradiation areas AR.

Description

紫外光照射システムUltraviolet light irradiation system
 本開示は、紫外光を用いて殺菌やウィルスの不活化を行う紫外光照射システムに関する。 The present disclosure relates to an ultraviolet light irradiation system that uses ultraviolet light to sterilize and inactivate viruses.
 感染症予防などの目的から、紫外光を用いた殺菌やウィルスの不活化を行うシステムの需要が高まっている。当該システムには、大きく3つのカテゴリの製品がある。なお、本明細書では、「殺菌等」と記載する場合、殺菌とウィルスの不活化を意味するものとする。
(I)移動型殺菌ロボット
 非特許文献1の製品は、紫外光を照射する自律移動型のロボットである。当該ロボットは、病室などの建物内の部屋の中を移動しながら紫外光を照射することで、人手を介さず、自動で広い範囲の殺菌等を実現できる。
(II)据え置き型空気清浄機
 非特許文献2の製品は、天井や室内の所定の場所に設置され、室内の空気を循環しながら殺菌等する装置である。当該装置は、直接紫外光を照射せず、人体への影響がないため、安全性の高い殺菌等が可能である。
(III)ポータブル型殺菌装置
 非特許文献3の製品は、紫外光源を搭載したポータブル型の装置である。ユーザが当該装置を所望のエリアに持って行って紫外光を照射できる。このため、当該装置は様々な場所で使用可能である。
Demand is increasing for systems that perform sterilization and virus inactivation using ultraviolet light for the purpose of preventing infectious diseases. There are three main categories of products in this system. In this specification, the term “sterilization, etc.” shall mean sterilization and virus inactivation.
(I) Mobile sterilization robot The product of Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light. By irradiating the robot with ultraviolet light while moving in a room in a building such as a hospital room, the robot can automatically realize sterilization in a wide range without human intervention.
(II) Stationary air purifier The product of Non-Patent Document 2 is a device that is installed on the ceiling or at a predetermined place in a room, and performs sterilization while circulating the air in the room. Since the apparatus does not directly irradiate ultraviolet light and has no effect on the human body, highly safe sterilization is possible.
(III) Portable Sterilization Apparatus The product of Non-Patent Document 3 is a portable apparatus equipped with an ultraviolet light source. A user can bring the device to a desired area and irradiate it with ultraviolet light. Therefore, the device can be used in various places.
 しかし、非特許文献に記載される装置には次のような課題がある。
(1)経済性
 非特許文献1の製品は、高出力の紫外光を照射するため、装置が大掛かりとなり高価となる。このため、非特許文献1の製品には経済的なシステムの実現が困難という課題がある。
(2)汎用性
 非特許文献1の製品は、紫外光照射箇所がロボットが移動/進入できる場所に限定されるため、細かい場所や奥まった場所などへの紫外光の照射が困難である。
 非特許文献2の製品は、循環させた室内の空気を殺菌等するため、殺菌等をしたい場所に直接紫外光を照射することができない。
 非特許文献3の製品は、例えば、細い管路や人が入られないエリアについては紫外光を照射することができない。
 このように、非特許文献の製品には、任意の場所に紫外光を照射できるという汎用性に課題がある。
(3)操作性
 非特許文献3の製品は、可搬性であり様々な場所で紫外光の照射が可能である。しかし、対象箇所で十分な殺菌等の効果が得られるためには、ユーザにスキルや知識を要求しており、操作性に課題がある。
However, the device described in Non-Patent Document has the following problems.
(1) Economy Since the product of Non-Patent Document 1 is irradiated with high-output ultraviolet light, the apparatus becomes large and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
(2) Versatility In the product of Non-Patent Document 1, since the ultraviolet light irradiation position is limited to a place where the robot can move/enter, it is difficult to irradiate the ultraviolet light to a small place or a deep place.
Since the product of Non-Patent Document 2 sterilizes the circulated indoor air, it is not possible to directly irradiate ultraviolet light to a place to be sterilized.
The product of Non-Patent Document 3, for example, cannot irradiate ultraviolet light to narrow pipes or areas where people cannot enter.
Thus, the product of Non-Patent Literature has a problem of versatility in that it can irradiate any place with ultraviolet light.
(3) Operability The product of Non-Patent Document 3 is portable and can be irradiated with ultraviolet light at various locations. However, in order to obtain sufficient effects such as sterilization at the target location, the user is required to have skill and knowledge, and there is a problem in operability.
 これらの課題に対して、図1のような光ファイバを用いた紫外光照射システム300が考えられる。この紫外光照射システムは、細くて曲げやすい光ファイバを用いて光源11から紫外光を伝送し、光ファイバ14の先端から出力される紫外光をピンポイントで殺菌等したい照射対象域ARへ照射する。光ファイバ14の先端の照射部13を移動させるだけで任意の場所に紫外光を照射できるため上記課題(2)の汎用性を解消できる。また、紫外光光源の移動や設定が不要でユーザにスキルや知識を求めないため、上記課題(3)の操作性も解消できる。さらに、光スプリッタのような光分配部12を光伝送路16に設け、FTTH(Fiber To The Home)のようなP-MP(Point to MultiPoint)のシステム構成とすることで、単一の光源をシェアすることで複数の箇所を殺菌等できる。このため、上記課題(1)の経済性も解消できる。 For these problems, an ultraviolet light irradiation system 300 using an optical fiber as shown in FIG. 1 is conceivable. This ultraviolet light irradiation system transmits ultraviolet light from the light source 11 using a thin and flexible optical fiber, and irradiates the ultraviolet light output from the tip of the optical fiber 14 to an irradiation target area AR to be sterilized or the like with pinpoint accuracy. . The versatility of the above problem (2) can be solved because the ultraviolet light can be irradiated to any place simply by moving the irradiation unit 13 at the tip of the optical fiber 14 . In addition, since there is no need to move or set the ultraviolet light source, and the user is not required to have skills or knowledge, the operability of the above problem (3) can be resolved. Furthermore, by providing an optical distribution unit 12 such as an optical splitter in the optical transmission line 16 to form a P-MP (Point to MultiPoint) system configuration such as FTTH (Fiber To The Home), a single light source can be used. By sharing, you can sterilize multiple places. Therefore, it is possible to solve the problem (1) economically.
 しかし、紫外光照射システムとしてのP-MP構成の実現には次のような課題がある。
 光ファイバ14の長さ、照射対象域ARの面積、及び照射対象域ARで求められる照度(殺菌等に必要な照度)はそれぞれ異なる。しかし、図1のような紫外光照射システム300が備える光分配部12は光の分岐比が等しく、紫外光源部11から出力された紫外光は、複数の方路14(例えば単一コアの光ファイバ)に等しくパワー分岐される。なお、本明細書では、各方路へ供給する時間を考慮した紫外光のエネルギー及び照射対象域ARに照射する時間を考慮した紫外光のエネルギーを積算光量(単位J)とし、それら紫外光の単位時間あたりのエネルギーをパワー(単位W)とし、照射対象域ARに照射する紫外光の単位面積当たりのパワーを照度(W/m)として説明する。
(A)公平性
 それぞれの方路14は光ファイバの長さや照射部から照射対象域までの距離により伝送損失が異なり、照射対象域ARの面積も異なる。しかし、紫外光照射システム300の光分配部12が等しい分岐比で紫外光をパワー分岐するため、照射対象域ARそれぞれは均等な照度を得ることが難しい。つまり、紫外光照射システム300には各照射対象域ARで公平な殺菌等の効果が得られ難いという課題がある。
(B)安全性
 それぞれの方路14は光ファイバの長さや照射部から照射対象域までの距離により伝送損失が異なり、照射対象域ARの面積も異なる。しかし、紫外光照射システム300の光分配部12が等しい分岐比で紫外光をパワー分岐するため、過剰な照度の紫外光が照射対象域ARに照射されるケースがある。つまり、紫外光照射システム300には構成によって過剰な照度の紫外光が照射されることもあり、安全性を担保することが困難という課題がある。
(C)効率性
 さらに、照射対象域ARには、照度を上げて短時間で殺菌等を終わらせたい場所や照度を下げた紫外光で長時間殺菌等を行う場所も存在する。しかし、紫外光照射システム300の光分配部12が等しい分岐比で紫外光をパワー分岐するため、それぞれの照射対象域ARが所望する照度の紫外光を供給することが難しい。つまり、紫外光照射システム300には照射対象域ARに応じた方法で殺菌等を行えず、作業効率を向上させることが困難という課題がある。
However, there are the following problems in realizing the P-MP configuration as an ultraviolet light irradiation system.
The length of the optical fiber 14, the area of the irradiation target area AR, and the illuminance required for the irradiation target area AR (illuminance required for sterilization or the like) are different. However, the light distribution unit 12 provided in the ultraviolet light irradiation system 300 as shown in FIG. fiber) with equal power split. In this specification, the energy of ultraviolet light considering the time to be supplied to each direction and the energy of ultraviolet light considering the time to irradiate the irradiation target area AR is the integrated light amount (unit: J). The energy per unit time is defined as power (unit: W), and the power per unit area of the ultraviolet light applied to the irradiation target area AR is defined as illuminance (W/m 2 ).
(A) Fairness Each path 14 has a different transmission loss depending on the length of the optical fiber and the distance from the irradiation unit to the irradiation target area, and the area of the irradiation target area AR is also different. However, since the light distribution unit 12 of the ultraviolet light irradiation system 300 power-splits the ultraviolet light at an equal splitting ratio, it is difficult to obtain uniform illuminance in each irradiation target area AR. In other words, the ultraviolet light irradiation system 300 has a problem that it is difficult to obtain a fair sterilization effect in each irradiation target area AR.
(B) Safety Each route 14 has a different transmission loss depending on the length of the optical fiber and the distance from the irradiation unit to the irradiation target area, and the area of the irradiation target area AR is also different. However, since the light distribution unit 12 of the ultraviolet light irradiation system 300 power-splits the ultraviolet light at an equal splitting ratio, there is a case where the irradiation target area AR is irradiated with the ultraviolet light with excessive illuminance. In other words, depending on the configuration, the ultraviolet light irradiation system 300 may be irradiated with ultraviolet light having an excessive illuminance, which poses a problem of difficulty in ensuring safety.
(C) Efficiency Further, in the irradiation target area AR, there are places where sterilization, etc., should be completed in a short period of time with increased illuminance, and places where sterilization, etc., should be performed for a long time with ultraviolet light with reduced illuminance. However, since the light distribution unit 12 of the ultraviolet light irradiation system 300 power-splits the ultraviolet light at an equal splitting ratio, it is difficult to supply the ultraviolet light with the illuminance desired for each irradiation target area AR. In other words, the ultraviolet light irradiation system 300 cannot perform sterilization or the like by a method according to the irradiation target area AR, and has a problem that it is difficult to improve the working efficiency.
 本発明は、これらの課題を解決するために、各照射対象域で公平な殺菌等の効果が得られ、安全性を担保することができ、且つ作業効率を向上させることができるP-MP構成の紫外光照射システムを提供することを目的とする。 In order to solve these problems, the present invention is a P-MP configuration that can obtain effects such as fair sterilization in each irradiation target area, can ensure safety, and can improve work efficiency. It is an object of the present invention to provide an ultraviolet light irradiation system of
 上記目的を達成するために、本発明に係る紫外光照射システムは、紫外光を各方路へ分配する光スイッチを備え、当該光スイッチの切り替えタイミング(各方路へ分配する紫外光の積算光量)で調整することとした。 In order to achieve the above object, the ultraviolet light irradiation system according to the present invention comprises an optical switch for distributing ultraviolet light to each route, and the switching timing of the optical switch (the cumulative amount of ultraviolet light distributed to each route) is ) was adjusted.
 具体的には、本発明に係る紫外光照射システムは、
 紫外光を発生させる紫外光源部と、
 前記紫外光をN個(Nは2以上の自然数)の照射対象域に照射するN個の照射部と、
 前記紫外光をそれぞれの前記照射部への方路へ切り替える光スイッチと、
 前記方路毎の前記紫外光の伝送損失、前記照射部が前記紫外光を照射する照射面積、及び前記照射対象域の不活化要求時間の少なくとも1つに基づく前記光スイッチの切り替えタイミングを設定する切替制御部と、
を備える。
Specifically, the ultraviolet light irradiation system according to the present invention includes:
an ultraviolet light source that generates ultraviolet light;
N irradiating units that irradiate N (N is a natural number of 2 or more) irradiation target areas with the ultraviolet light;
an optical switch that switches the ultraviolet light to a direction to each of the irradiation units;
Setting the switching timing of the optical switch based on at least one of the transmission loss of the ultraviolet light for each of the routes, the irradiation area where the irradiation unit irradiates the ultraviolet light, and the required time for deactivation of the irradiation target area. a switching control unit;
Prepare.
 本紫外光照射システムは、紫外光源部から伝送された紫外光を複数の単一コアの光ファイバに分配する光分配部として光スイッチを採用する。照射対象域の条件に合わせて光スイッチの切り替えタイミングを違える。具体的な切り替えタイミングとしては以下のようなものが考えられる。 This ultraviolet light irradiation system employs an optical switch as a light distribution unit that distributes the ultraviolet light transmitted from the ultraviolet light source unit to multiple single-core optical fibers. The switching timing of the optical switch is changed according to the conditions of the irradiation target area. Specific switching timings are as follows.
 前記切り替えタイミングは、前記方路毎の前記紫外光の伝送損失と前記照射部が前記紫外光を照射する照射面積に基づき、各照射対象域への単位面積当たりの積算光量が均等になるような紫外光が供給されるタイミングである。前述の課題(A)を解決することができる。 The switching timing is based on the transmission loss of the ultraviolet light for each of the routes and the irradiation area where the irradiation unit irradiates the ultraviolet light, so that the integrated light amount per unit area to each irradiation target area is uniform. This is the timing at which the ultraviolet light is supplied. The aforementioned problem (A) can be solved.
 前記切替制御部は、それぞれの前記照射対象域へ照射される前記紫外光の積算光量が所定の基準値以下となるように前記切り替えタイミングを設定することを特徴とする。前述の課題(B)を解決することができる。 The switching control unit is characterized by setting the switching timing so that the integrated light quantity of the ultraviolet light irradiated to each of the irradiation target areas is equal to or less than a predetermined reference value. The aforementioned problem (B) can be solved.
 前記切替制御部は、それぞれの前記照射対象域が要求する前記紫外光の積算光量を満たすように前記切り替えタイミングを設定することを特徴とする。前述の課題(C)を解決することができる。 The switching control unit is characterized in that the switching timing is set so as to satisfy the integrated light quantity of the ultraviolet light required by each of the irradiation target areas. The aforementioned problem (C) can be solved.
 従って、本発明は、各照射対象域で公平な殺菌等の効果が得られ、安全性を担保することができ、且つ作業効率を向上させることができるP-MP構成の紫外光照射システムを提供することができる。 Therefore, the present invention provides an ultraviolet light irradiation system with a P-MP configuration that can obtain effects such as fair sterilization in each irradiation target area, can ensure safety, and can improve work efficiency. can do.
 また、光スイッチで光を分配する場合でも、一定のタイミングで方路を切り替えて紫外光を分配すると、次のような課題も生じる。
課題(D):強力に殺菌等を行う(紫外光の積算光量が最も大きい)照射対象域に合わせて光スイッチの切り替えタイミングを設定することになる。このように設定すると、全ての出力ポートに同じパワーの紫外光が分配され、紫外光源部が出力する紫外光のパワーによっては分岐数(照射対象域の数)が制限される。このため、紫外光源部や光スイッチのコストの割り勘効果を大きくすること(1つの照射対象域が負担する紫外光源部や光スイッチのコストを低減すること)が困難という課題がある。
課題(E):強力に殺菌等を行う(紫外光の積算光量が最も大きい)照射対象域に合わせて紫外光源部が出力する紫外光のパワー(最大パワー)を設定することになる。このように設定すると、全ての出力ポートに最大パワーの紫外光が分配されるので、紫外光源部の消費電力を低減することが困難という課題がある。
Moreover, even when light is distributed by an optical switch, the following problem arises if the route is switched at a constant timing to distribute the ultraviolet light.
Problem (D): The switching timing of the optical switch is set in accordance with the irradiation target area where sterilization or the like is performed intensively (the integrated light quantity of ultraviolet light is the largest). With this setting, ultraviolet light with the same power is distributed to all the output ports, and the number of branches (the number of irradiation target areas) is limited depending on the power of the ultraviolet light output from the ultraviolet light source section. For this reason, there is a problem that it is difficult to increase the effect of splitting the cost of the ultraviolet light source unit and the optical switch (to reduce the cost of the ultraviolet light source unit and the optical switch which are borne by one irradiation target area).
Problem (E): The power (maximum power) of the ultraviolet light output by the ultraviolet light source unit is set in accordance with the irradiation target area where sterilization is to be performed strongly (the cumulative amount of ultraviolet light is the largest). With this setting, ultraviolet light with the maximum power is distributed to all the output ports, so there is a problem that it is difficult to reduce the power consumption of the ultraviolet light source section.
 課題(D)と(E)を解決する手段は次の2つである。
(手段1)一定のタイミングで方路を切り替えると照射対象域によっては紫外光のエネルギーが過剰となることもある。そこで、前述のように各照射対象域までの伝送損失や照射対象域の面積に応じて光スイッチの切り替えタイミング(積算光量)を最適化する。
(手段2)一定のタイミングで方路を切り替えると照射対象域によっては紫外光のエネルギーが過剰となることもある。そこで、照射対象域毎に紫外光のパワーを変化させるために、前記光スイッチの切り替え動作に連動するように前記紫外光源部に対して前記紫外光のパワーを変動させる光源制御部をさらに備える。
There are two ways to solve the problems (D) and (E).
(Means 1) If the direction is switched at a constant timing, the energy of the ultraviolet light may become excessive depending on the irradiation target area. Therefore, as described above, the switching timing of the optical switch (integrated amount of light) is optimized according to the transmission loss up to each irradiation target area and the area of the irradiation target area.
(Means 2) If the direction is switched at a constant timing, the energy of the ultraviolet light may become excessive depending on the irradiation target area. Therefore, in order to change the power of the ultraviolet light for each irradiation target area, a light source control section is further provided which changes the power of the ultraviolet light with respect to the ultraviolet light source section in conjunction with the switching operation of the optical switch.
 これらの手段により、照射対象域に過剰なパワーの紫外光を供給することを回避でき、分岐数の制限が緩和されてコストの割り勘効果の向上、及び紫外光源の消費電力の低減が可能となる。従って、本紫外光照射システムは、上記の課題(D)と(E)を解決することができる。 By these means, it is possible to avoid supplying ultraviolet light of excessive power to the irradiation target area, relax the limit on the number of branches, improve the effect of splitting the bill, and reduce the power consumption of the ultraviolet light source. . Therefore, this ultraviolet light irradiation system can solve the above problems (D) and (E).
 さらに、本発明に係る紫外光照射システムは、図1の光分配部12の代替として光スイッチを採用することから、方路14の長さ、照射対象域の面積、あるいは照射対象域の殺菌等の条件(短時間で殺菌等を行う、あるいは長時間かけて殺菌等を行う等)が事後的に変化した場合でも、変化後の条件に応じて切り替えタイミングを調整することができるというメリットもある。 Furthermore, since the ultraviolet light irradiation system according to the present invention employs an optical switch as a substitute for the light distribution unit 12 in FIG. Even if the conditions of (such as performing sterilization in a short time or performing sterilization in a long time) change after the fact, there is also the advantage that the switching timing can be adjusted according to the conditions after the change. .
 また、図1の紫外光照射システム300は、紫外光源部11と光分配部12とが同じ場所に配置されていたり、同一筐体内に配置されることもある。このような構成の場合、次のような課題も生じる。 Further, in the ultraviolet light irradiation system 300 of FIG. 1, the ultraviolet light source section 11 and the light distribution section 12 may be arranged at the same place or arranged in the same housing. In the case of such a configuration, the following problems also occur.
 課題(F):紫外光源部近傍から各照射対象域まで光ファイバの方路を敷設するため、照射対象域ARの数に応じて光ファイバの総延長が長くなり、システムの部材や施工のコストが高くなるという課題がある。 Problem (F): Since the route of the optical fiber is laid from the vicinity of the ultraviolet light source to each irradiation target area, the total length of the optical fiber becomes long according to the number of irradiation target areas AR, and the cost of system members and construction. There is a problem that the
 そこで、本発明に係る紫外光照射システムは、前記紫外光源部と前記光スイッチとが離隔されており、前記紫外光源部と前記光スイッチとを接続する光伝送路をさらに備えることが好ましい。 Therefore, the ultraviolet light irradiation system according to the present invention preferably separates the ultraviolet light source section and the optical switch, and further includes an optical transmission line connecting the ultraviolet light source section and the optical switch.
 本紫外照射システムは、光スイッチを照射対象域の近くまで張り出して設置するため、紫外光源部から光スイッチまでの区間の光ファイバを共有でき、光ファイバ総延長を短くできる。このため、光ファイバを共有できた分だけ、部材や施工のコストを低減でき、課題(F)を解決することができる。 In this ultraviolet irradiation system, the optical switch is installed near the irradiation target area, so the optical fiber in the section from the ultraviolet light source to the optical switch can be shared, and the total length of the optical fiber can be shortened. For this reason, the cost of members and construction can be reduced by the amount that the optical fiber can be shared, and the problem (F) can be solved.
 なお、上記各発明は、可能な限り組み合わせることができる。 The above inventions can be combined as much as possible.
 本発明は、各照射対象域で公平な殺菌等の効果が得られ、安全性を担保することができ、且つ作業効率を向上させることができるP-MP構成の紫外光照射システムを提供することができる。 The present invention provides an ultraviolet light irradiation system with a P-MP configuration that can obtain effects such as fair sterilization in each irradiation target area, can ensure safety, and can improve work efficiency. can be done.
本発明の課題を説明する図である。It is a figure explaining the subject of this invention. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 光ファイバの断面構造を説明する図である。It is a figure explaining the cross-sectional structure of an optical fiber. 本発明に係る紫外光照射システムの光スイッチにおける切り替えタイミングを説明する図である。It is a figure explaining the switching timing in the optical switch of the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムの光スイッチにおける切り替えタイミングを説明する図である。It is a figure explaining the switching timing in the optical switch of the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムの光スイッチにおける切り替えタイミングを説明する図である。It is a figure explaining the switching timing in the optical switch of the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムの効果を説明する図である。It is a figure explaining the effect of the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムの効果を説明する図である。It is a figure explaining the effect of the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムの効果を説明する図である。It is a figure explaining the effect of the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムの紫外光照射方法を説明するフローチャートである。It is a flowchart explaining the ultraviolet-light irradiation method of the ultraviolet-light irradiation system which concerns on this invention.
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 An embodiment of the present invention will be described with reference to the attached drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In addition, in this specification and the drawings, constituent elements having the same reference numerals are the same as each other.
(実施形態1)
 図2は、本実施形態の紫外光照射システム301を説明する図である。紫外光照射システム301は、
 紫外光を発生させる紫外光源部11と、
 前記紫外光をN個(Nは2以上の自然数)の照射対象域ARに照射するN個の照射部13と、
 前記紫外光をそれぞれの前記照射部13への方路14へ切り替える光スイッチ12-2と、
 方路14毎の前記紫外光の伝送損失、照射部13が前記紫外光を照射する照射面積、及び照射対象域ARの不活化要求時間の少なくとも1つに基づく光スイッチ12-2の切り替えタイミングを設定する切替制御部15-2と、
を備える。
(Embodiment 1)
FIG. 2 is a diagram illustrating the ultraviolet light irradiation system 301 of this embodiment. The ultraviolet light irradiation system 301 is
an ultraviolet light source unit 11 that generates ultraviolet light;
N irradiating units 13 that irradiate N (N is a natural number of 2 or more) irradiation target areas AR with the ultraviolet light;
an optical switch 12-2 that switches the ultraviolet light to a route 14 to each of the irradiation units 13;
The switching timing of the optical switch 12-2 is determined based on at least one of the transmission loss of the ultraviolet light for each route 14, the irradiation area irradiated with the ultraviolet light by the irradiation unit 13, and the required time for deactivation of the irradiation target area AR. a switching control unit 15-2 for setting;
Prepare.
 紫外光源部11は、殺菌等に有効である紫外領域の光(紫外光)を出力する。紫外光源部11が出力する紫外光のパワーをP[W]とする。紫外光源部11と光スイッチ12-2とは光ファイバ又は空間である光伝送路16で接続される。 The ultraviolet light source unit 11 outputs light in the ultraviolet region (ultraviolet light) that is effective for sterilization and the like. Let P [W] be the power of the ultraviolet light output by the ultraviolet light source unit 11 . The ultraviolet light source section 11 and the optical switch 12-2 are connected by an optical transmission line 16, which is an optical fiber or space.
 光スイッチ12-2は、紫外光源部11からの紫外光を切替制御部15-2からの指示に従って、複数の出力ポートのうち、いずれかの方路14に出力させる。ここで、光スイッチ12-2で経路切り替えに要する時間をTsw[s]とする。出力ポート1~Nから出力された紫外光は方路14及び照射部13を介して、それぞれ照射対象域AR(1~N)に照射される。 The optical switch 12-2 outputs the ultraviolet light from the ultraviolet light source section 11 to any one of the plurality of output ports according to the instruction from the switching control section 15-2. Here, the time required for path switching in the optical switch 12-2 is T sw [s]. The ultraviolet light output from the output ports 1 to N is irradiated to the irradiation target areas AR (1 to N) via the route 14 and the irradiation unit 13, respectively.
 方路14は、光スイッチ12-2で間欠的に分配された紫外光をそれぞれの照射部13まで伝搬する。方路14は光ファイバである。光ファイバなので従来技術のロボットや装置が入り込めない細かい場所などにも敷設することができる。図3は、光ファイバの光伝送路16および方路14に使用可能な光ファイバの断面を説明する図である。
(1)充実コア光ファイバ
 この光ファイバは、クラッド60の中にクラッド60より高屈折率である1つの充実コア52を有する。「充実」とは「空洞ではない」という意味である。尚、充実コアは、クラッド内に円環状の低屈折率領域を形成することでも実現できる。
(2)空孔アシスト光ファイバ
 この光ファイバは、クラッド60の中に充実コア52とその外周に配置された複数の空孔53を有する。空孔53の媒質は空気であり、空気の屈折率は石英系ガラスに比べ十分小さい。このため、空孔アシスト光ファイバは、曲げなどでコア52から漏れた光を再びコア52に戻す機能があり、曲げ損失が小さいという特徴がある。
(3)空孔構造光ファイバ
この光ファイバは、クラッド60の中に複数の空孔53の空孔群53aを有し、ホスト材料(ガラス等)よりも実効的に屈折率が低い。本構造は、フォトニック結晶ファイバと呼ばれる。本構造には、屈折率を変化させた高屈折率コアが存在しない構造をとることができ、空孔53に取り囲まれた領域52aを実効的なコア領域として、光を閉じ込めることができる。充実コアを有する光ファイバに比べ、フォトニック結晶ファイバは、コアの添加剤による吸収や散乱損失の影響を低減することができるとともに、曲げ損失の低減や非線形効果の制御等、充実型光ファイバでは実現し得ない光学特性を実現できる。
(4)中空コア光ファイバ
この光ファイバは、コア領域が空気で形成される。クラッド領域に複数の空孔によるフォトニックバンドギャップ構造もしくはガラス細線によるアンチレゾナント構造をとることによって光をコア領域に閉じ込めることができる。この光ファイバは、非線形効果が小さく、高出力または高エネルギーレーザ供給が可能である。
(5)結合コア型光ファイバ
 この光ファイバは、クラッド60の中に複数の高屈折率である充実コア52が近接して配置される。この光ファイバは、充実コア52間で光波結合で光を導波する。結合コア型光ファイバは、コア数分だけ光を分散して送れるので、その分ハイパワー化して効率的な殺菌等ができる、また、結合コア型光ファイバは、紫外光によるファイバ劣化を緩和し長寿命化できるというメリットがある。
The route 14 propagates the ultraviolet light intermittently distributed by the optical switch 12 - 2 to each irradiation section 13 . Path 14 is an optical fiber. Since it is an optical fiber, it can be installed in narrow places where conventional robots and devices cannot enter. FIG. 3 is a diagram illustrating a cross section of an optical fiber that can be used for the optical transmission line 16 and the path 14 of the optical fiber.
(1) Solid Core Optical Fiber This optical fiber has one solid core 52 in the clad 60 having a higher refractive index than the clad 60 . "Full" means "not hollow". The solid core can also be realized by forming an annular low refractive index region in the clad.
(2) Hole-assisted optical fiber This optical fiber has a solid core 52 in the clad 60 and a plurality of holes 53 arranged around the core. The medium of the holes 53 is air, and the refractive index of air is sufficiently smaller than that of quartz-based glass. Therefore, the hole-assisted optical fiber has a function of returning light leaking from the core 52 due to bending or the like back to the core 52, and is characterized by a small bending loss.
(3) Hole structure optical fiber This optical fiber has a hole group 53a of a plurality of holes 53 in the clad 60, and has an effective refractive index lower than that of the host material (glass or the like). This structure is called a photonic crystal fiber. This structure can take a structure in which a high-refractive-index core with a changed refractive index does not exist, and light can be confined using the region 52a surrounded by the holes 53 as an effective core region. Compared to optical fibers with solid cores, photonic crystal fibers can reduce the effects of absorption and scattering losses due to additives in the core. Optical characteristics that cannot be realized can be realized.
(4) Hollow core optical fiber This optical fiber has a core region made of air. Light can be confined in the core region by adopting a photonic bandgap structure with a plurality of holes or an anti-resonant structure with glass wires in the cladding region. This optical fiber has low nonlinear effects and is capable of delivering high power or high energy lasers.
(5) Coupling Core Optical Fiber In this optical fiber, a plurality of solid cores 52 having a high refractive index are closely arranged in a clad 60 . This optical fiber guides light by optical wave coupling between solid cores 52 . Coupling-core type optical fibers can disperse and transmit light as many times as the number of cores, so high power can be used for efficient sterilization. There is an advantage that the service life can be extended.
 照射部13は、方路14で伝送された紫外光を、殺菌等を行う所定の対象箇所(照射対象域AR)に照射する。照射部13は、紫外光の波長に対して設計されたレンズなどの光学系で構成されている。 The irradiation unit 13 irradiates the ultraviolet light transmitted through the route 14 to a predetermined target location (irradiation target area AR) for sterilization or the like. The irradiation unit 13 is composed of an optical system such as a lens designed for the wavelength of ultraviolet light.
 切替制御部15-2は、光スイッチ12-2に対し、各方路14(光スイッチの出力ポート1~N)にそれぞれ時間Tだけ紫外光を供給できる機会を与える動作を繰り返すよう制御する。図4は、切替制御部15-2が行う光スイッチ12-2の切り替え制御の一例を説明する図である。本制御は、照射対象域ARへの紫外光の伝送損失と照射面積が等しい場合の動作である。時間Tは式(1)で求められる時間とする。
Figure JPOXMLDOC01-appb-M000001
 ここで、E[W・s/m]は殺菌等に必要な単位面積当たりの紫外光量(積算光量)である。また、紫外光源部11から照射部13までの損失(光スイッチ12-2の通過損失含む)をLfiber[a.u.]とし、照射部13から照射対象域ARまでの損失をLair[a.u.]とする。また、照射対象域ARに照射される紫外光のスポットの面積をS[m]とする。
The switching control unit 15-2 controls the optical switch 12-2 to repeat the operation of giving each path 14 (output ports 1 to N of the optical switch) an opportunity to supply ultraviolet light for a period of time T, respectively. FIG. 4 is a diagram illustrating an example of switching control of the optical switch 12-2 performed by the switching control unit 15-2. This control is an operation when the transmission loss of ultraviolet light to the irradiation target area AR is equal to the irradiation area. Let the time T be the time obtained by the formula (1).
Figure JPOXMLDOC01-appb-M000001
Here, E [W·s/m 2 ] is the amount of ultraviolet light per unit area (integrated amount of light) required for sterilization or the like. Also, the loss from the ultraviolet light source unit 11 to the irradiation unit 13 (including the transmission loss of the optical switch 12-2) is L fiber [a. u. ], and the loss from the irradiation unit 13 to the irradiation target area AR is L air [a. u. ]. Also, let S [m 2 ] be the area of the spot of the ultraviolet light irradiated to the irradiation target area AR.
 光スイッチ12-2をこのように動作させ、前記機会に紫外光を供給することで、すべての照射対象域ARに対して最短周期で殺菌等に必要な紫外光量E[W・s/m]を照射できる。つまり、紫外光照射システム301は、各照射対象域ARに対し、式(2)の時間Tinact[s]おきに殺菌等の効果を担保することができる。
Figure JPOXMLDOC01-appb-M000002
By operating the optical switch 12-2 in this way and supplying the ultraviolet light at the opportunity, the ultraviolet light amount E [W s/m 2 ] can be irradiated. In other words, the ultraviolet light irradiation system 301 can ensure the effect of sterilization and the like for each irradiation target area AR every time T inact [s] of Expression (2).
Figure JPOXMLDOC01-appb-M000002
 また、切替制御部15-2が、光スイッチ12-2に対し、各出力ポートに紫外光を供給する機会の時間をT/M[s](Mは2以上の自然数)になるように制御しても、同様の効果が得られる。 Further, the switching control unit 15-2 controls the optical switch 12-2 so that the time of the opportunity to supply ultraviolet light to each output port is T/M [s] (M is a natural number of 2 or more). However, the same effect can be obtained.
 図5及び図6は、図2及び図4と異なる切り替えタイミングを光スイッチ12-2に設定する場合を説明する図である。図5及び図6は、照射対象域ARへの紫外光の伝送損失と照射面積が異なる場合である。図5の紫外光照射システム301は、図1の紫外光照射システム301の構造と同じであるが、方路14毎に方路長や照射対象域AR毎の照射面積Sが異なる。本実施形態では、図2及び図4と異なる部分のみ説明する。 5 and 6 are diagrams for explaining a case where switching timings different from those in FIGS. 2 and 4 are set in the optical switch 12-2. 5 and 6 show cases where the transmission loss of ultraviolet light to the irradiation target area AR and the irradiation area are different. The ultraviolet light irradiation system 301 shown in FIG. 5 has the same structure as the ultraviolet light irradiation system 301 shown in FIG. In this embodiment, only parts different from FIGS. 2 and 4 will be described.
 例えば、本実施形態の切替制御部15-2は、光スイッチ12-2に対し、それぞれの照射対象域ARへ照射される紫外光の照度が等しくなるように紫外光源部11からの紫外光を時分割させる。具体的には、次のように紫外光を供給できる機会を与える切り替えタイミングとする。
(a1)面積が大きい照射対象域ARへの紫外光供給時間が長く、面積が小さい照射対象域ARへの紫外光供給時間が短い切り替えタイミングとする。各照射対象域ARへの紫外光の照度が均一となり公平な殺菌等の効果が得られる。
(a2)方路14の距離や照射部13から照射対象域ARまでの距離が長く伝送損失が大きい照射対象域ARへの紫外光供給時間が長く、方路14の距離や照射部13から照射対象域ARまでの距離が短く伝送損失が小さい照射対象域ARへの紫外光供給時間が短い切り替えタイミングとする。各照射対象域ARへの紫外光の照度が均一となり公平な殺菌等の効果が得られる。
(a2’)図5のようにそれぞれの照射対象域ARの面積が異なり、それぞれの伝送損失も異なる場合、上記の(a1)(a2)を組み合わせ、各照射対象域ARへの紫外光の照度が均一となり公平な殺菌等の効果が得られる切り替えタイミングとする。
For example, the switching control unit 15-2 of the present embodiment directs the ultraviolet light from the ultraviolet light source unit 11 to the optical switch 12-2 so that the illuminance of the ultraviolet light irradiated to each irradiation target area AR becomes equal. divide the time. Specifically, the switching timing is set to give an opportunity to supply ultraviolet light as follows.
(a1) The switching timing is such that the ultraviolet light is supplied for a long time to the irradiation target area AR having a large area and the ultraviolet light supply time to the irradiation target area AR having a small area is short. The illuminance of the ultraviolet light to each irradiation target area AR becomes uniform, and effects such as fair sterilization can be obtained.
(a2) The distance of the route 14 and the distance from the irradiation unit 13 to the irradiation target area AR are long, the ultraviolet light supply time to the irradiation target area AR is long, and the irradiation from the irradiation unit 13 is long. The switching timing is set such that the ultraviolet light supply time to the irradiation target area AR having a short distance to the target area AR and a small transmission loss is short. The illuminance of the ultraviolet light to each irradiation target area AR becomes uniform, and effects such as fair sterilization can be obtained.
(a2′) When the areas of the irradiation target areas AR are different as shown in FIG. The switching timing should be such that the sterilization becomes uniform and effects such as fair sterilization can be obtained.
 紫外光源部11が出力する紫外光のパワーをP[W]とする。光スイッチ12-2で経路切り替えに要する時間をTsw[s]とする。紫外光源部11から照射部13までの損失(光スイッチ12-2の通過損失含む)を方路14毎にLfiber-1[a.u.]、とし、Lfiber-2[a.u.]、・・・、Lfiber-N[a.u.]とする。照射部13から各照射対象域ARまでの損失をLair-1[a.u.]、Lair-2[a.u.]、・・・、Lair-N[a.u.]とする。また、各照射対象域ARに照射される紫外光のスポットの面積をS[m]、S[m]、・・・、S[m]とする。 Let P [W] be the power of the ultraviolet light output by the ultraviolet light source unit 11 . Let T sw [s] be the time required for path switching in the optical switch 12-2. L fiber-1 [a. u. ], and L fiber-2 [a. u. ], . . . , L fiber-N [a. u. ]. Let L air−1 [a. u. ], L air-2 [a. u. ], . . . , L air-N [a. u. ]. Also, let the areas of the ultraviolet light spots irradiated onto the irradiation target areas AR be S 1 [m 2 ], S 2 [m 2 ], . . . , SN [m 2 ].
 図6は、切替制御部15-2が行う光スイッチ12の切り替え制御を説明する図である。本制御は、照射対象域ARへの紫外光の伝送損失と照射面積が異なる場合の動作である。
 切替制御部15-2は、光スイッチ12-2に対し、出力ポートi(i=1,2,・・・,N)にそれぞれ時間Tだけ紫外光を供給できる機会を与える動作を繰り返すよう制御する。Tは式(3)で求められる時間とする。
Figure JPOXMLDOC01-appb-M000003
 ここで、E[W・s/m]は殺菌等に必要な紫外光量である。
FIG. 6 is a diagram for explaining switching control of the optical switch 12 performed by the switching control unit 15-2. This control is an operation when the transmission loss of the ultraviolet light to the irradiation target area AR and the irradiation area are different.
The switching control unit 15-2 repeats the operation of giving the optical switch 12-2 an opportunity to supply ultraviolet light to each output port i (i=1, 2, . . . , N) for the time T i . Control. Let T i be the time obtained by equation (3).
Figure JPOXMLDOC01-appb-M000003
Here, E [W·s/m 2 ] is the amount of ultraviolet light required for sterilization or the like.
 光スイッチ12-2をこのように動作させ、前記機会に紫外光を供給することで、すべての照射対象域ARに対して最短周期で殺菌等に必要な紫外光量E[W・s/m]が照射できる。つまり、紫外光照射システム301は、各照射対象域ARに対し、式(4)の時間Tinact[s]おきに殺菌等の効果を担保することができる。
Figure JPOXMLDOC01-appb-M000004
By operating the optical switch 12-2 in this way and supplying the ultraviolet light at the opportunity, the ultraviolet light amount E [W s/m 2 ] can be irradiated. That is, the ultraviolet light irradiation system 301 can ensure the effect of sterilization and the like for each irradiation target area AR every time T inact [s] of Expression (4).
Figure JPOXMLDOC01-appb-M000004
 また、切替制御部15-2が、光スイッチ12-2に対し、各出力ポートに紫外光を供給する機会の時間をT/M[s](Mは2以上の自然数)になるように制御しても、同様の効果が得られる。 Further, the switching control unit 15-2 sets the time of the opportunity to supply the ultraviolet light to each output port of the optical switch 12-2 to T i /M [s] (M is a natural number of 2 or more). A similar effect can be obtained by controlling.
 なお、照射対象域ARに人間の出入りがある場合、過剰な紫外光が人間へ照射することを避ける必要がある。その場合、切替制御部15-2は、それぞれの照射対象域ARへ照射される前記紫外光の積算光量が所定の基準値以下となるように前記切り替えタイミングを光スイッチ12-2に設定する。具体的には、次のように分岐比を設定する。
(b1)紫外光の照度には、人間への暴露量を小さくして安全に殺菌等を行うため、例えば、1日あたり8時間以内で6.0mJ/cm以下(単位時間あたり0.2μW/cm)という基準値(JISZ8812)がある。このため、紫外光源部11が出力する紫外光パワー、損失Lfiber-n[a.u.]、損失Lair-n[a.u.]、及び面積S[m]に基づき、それぞれの照射対象域ARへ照射される紫外光の照度が基準値以下となるようなTやTiを計算し、それを用いた切り替えタイミングとする。
In addition, when a person enters and exits the irradiation target area AR, it is necessary to avoid irradiating the person with excessive ultraviolet light. In this case, the switching control section 15-2 sets the switching timing in the optical switch 12-2 so that the integrated amount of the ultraviolet light applied to each irradiation target area AR is equal to or less than a predetermined reference value. Specifically, the branch ratio is set as follows.
(b1) The illuminance of ultraviolet light should be 6.0 mJ/cm2 or less (0.2 μW per unit time) within 8 hours per day in order to safely sterilize by reducing the amount of exposure to humans. /cm 2 ) is a standard value (JISZ8812). For this reason, the ultraviolet light power output from the ultraviolet light source unit 11, the loss L fiber-n [a. u. ], loss L air-n [a. u. ], and the area S n [m 2 ], calculate T and Ti such that the illuminance of the ultraviolet light irradiated to each irradiation target area AR is less than the reference value, and use it as a switching timing .
 照射対象域ARに人間の出入りがある場合、このように光スイッチ12-2の切り替えタイミングを設定することで殺菌等ができ、且つ過剰な照度の紫外光が照射対象域ARへ照射されることを防止し、紫外光照射システム301の安全性を担保することができる。 When a person enters and exits the irradiation target area AR, sterilization can be performed by setting the switching timing of the optical switch 12-2 in this way, and the irradiation target area AR is irradiated with ultraviolet light of excessive illuminance. can be prevented, and the safety of the ultraviolet light irradiation system 301 can be ensured.
 図7及び図8も、図2及び図4と異なる切り替えタイミングを光スイッチ12-2に設定する場合を説明する図である。図7及び図8は、それぞれの照射対象域ARが要求する紫外光の積算光量を満たすように切り替えタイミングを設定する場合である。具体的には、次のように切り替えタイミングを設定する。
(a3)強力に殺菌等を行いたい照射対象域AR2への積算光量を大きく(供給時間Tを長く)、強力な殺菌等が必要ではない照射対象域ARNへの積算光量を小さく(供給時間Tを短く)する。各照射対象域ARの要求を公平に満たすことができ、公平な殺菌等の効果が得られる。
(c1)短時間での殺菌等が必要な照射対象域AR2への積算光量を大きく(供給時間Tを長く)、時間をかけて殺菌等を行う照射対象域ARNへの積算光量を小さく(供給時間Tを短く)する。所望の照射対象域ARに多くの紫外光を分配でき、短期間での殺菌等が可能となる。一方、他の照射対象域ARには紫外光の供給を少なくし、時間をかけて殺菌等を行う。
FIGS. 7 and 8 are also diagrams for explaining a case in which switching timings different from those in FIGS. 2 and 4 are set in the optical switch 12-2. 7 and 8 show the case where the switching timing is set so as to satisfy the integrated quantity of ultraviolet light required by each irradiation target area AR. Specifically, the switching timing is set as follows.
(a3) Increase the integrated light intensity to the irradiation target area AR2 where strong sterilization is desired (long supply time T2 ), and decrease the integrated light intensity to the irradiation target area ARN that does not require strong sterilization (supply time shorten TN ). The requirements of each irradiation target area AR can be fairly met, and effects such as fair sterilization can be obtained.
(c1) Increase the integrated amount of light to the irradiation target area AR2 that requires sterilization etc. in a short time (longer the supply time T2 ), and decrease the integrated amount of light to the irradiation target area ARN to perform sterilization etc. over time ( Shorten the supply time TN ). A large amount of ultraviolet light can be distributed to the desired irradiation target area AR, and sterilization and the like can be performed in a short period of time. On the other hand, the supply of ultraviolet light to other irradiation target areas AR is reduced, and sterilization or the like is performed over time.
 このような切り替えタイミングを光スイッチ12-2に設定することで、照射対象域ARの殺菌等の要望(短時間や長時間)に応じることができ、紫外光照射システム301の効率性を向上させることができる。
 なお、長時間かけて殺菌等を行う照射対象域ARとしては、高い照度の紫外光の暴露を回避したい部屋(人や動物の出入りがある場所)や空調設備の吸気口/吹出口などが例示できる。短時間で殺菌等を行う照射対象域ARとしては、UV除菌ボックスなど、人や動物が中に入らないような閉空間を構成するものが例示できる。
By setting such a switching timing in the optical switch 12-2, it is possible to respond to requests such as sterilization of the irradiation target area AR (for a short time or a long time), and improve the efficiency of the ultraviolet light irradiation system 301. be able to.
Examples of irradiation target areas AR for long-term sterilization include rooms where exposure to high-intensity ultraviolet light is to be avoided (places where people and animals come and go) and the intake/outlet of air-conditioning equipment. can. Examples of the irradiation target area AR that performs sterilization or the like in a short time include a closed space such as a UV sterilization box that does not allow people or animals to enter.
 また、上述した分岐比の設定手法(a1)、(a2)、(a2’)、(a3)、(b1)及び(c1)を組み合わせて光スイッチ12-2の切り替えタイミングを設定してもよい。 Alternatively, the switching timing of the optical switch 12-2 may be set by combining the branching ratio setting methods (a1), (a2), (a2′), (a3), (b1) and (c1). .
 切替制御部15-2が、方路14の長さや照射対象域ARの要求に応じて図4、図6又は図8のように光スイッチ12-2の切り替えタイミングを変えることで次のような効果も得られる。 The switching control unit 15-2 changes the switching timing of the optical switch 12-2 as shown in FIGS. effect is also obtained.
 図9は、本効果を説明する図である。図9(A)は、方路14の長さや照射対象域ARの要求に関わらず、光スイッチ12-2が均等な切り替えタイミングで各方路14に紫外光を供給する例を説明する図である。図9(B)は、本紫外光照射システムであり、光スイッチ12-2が不等な切り替えタイミングで各方路14に紫外光を供給する例を説明する図である。 FIG. 9 is a diagram explaining this effect. FIG. 9A is a diagram for explaining an example in which the optical switch 12-2 supplies ultraviolet light to each route 14 at equal switching timing regardless of the length of the route 14 and the request for the irradiation target area AR. be. FIG. 9B shows this ultraviolet light irradiation system, and is a diagram for explaining an example in which the optical switch 12-2 supplies ultraviolet light to each route 14 at unequal switching timings.
 前述のように、方路14の伝送距離が長く伝送損失が大きい照射対象域ARや面積が広い照射対象域ARには、殺菌等を可能にするために大きなエネルギーを振り分ける必要がある。また、照射対象域ARの不活化要求時間によっても求められるエネルギーも変わる。なお、不活化要求時間とは、所望の不活化率(照射前の状態と照射後の状態の菌の比率、あるいは照射前の状態と照射後の状態のウィルスの比率)を満たすために要する時間を意味する。
 前述のように、紫外光照射システム301は、紫外光のエネルギーを光スイッチ12-2の切り替えタイミングで定まる紫外光の供給時間(積算光量)で調整する。
As described above, it is necessary to allocate a large amount of energy to the irradiation target area AR having a large transmission loss due to the long transmission distance of the route 14 and to the irradiation target area AR having a large area in order to enable sterilization or the like. In addition, the required energy also changes depending on the required time for deactivation of the irradiation target area AR. The required inactivation time is the time required to satisfy the desired inactivation rate (the ratio of bacteria before irradiation to the state after irradiation, or the ratio of viruses between the state before irradiation and after irradiation). means
As described above, the ultraviolet light irradiation system 301 adjusts the energy of the ultraviolet light according to the ultraviolet light supply time (integrated light amount) determined by the switching timing of the optical switch 12-2.
 図9(A)のように均等な切り替えタイミングで紫外光を分配する場合、最大の伝送損失、最大の照射対象域ARの面積、あるいは最小の不活化要求時間の方路など、最大のエネルギーが必要な方路に合わせたエネルギーを全ての方路に供給することになる。そうすると、方路数を増やした場合、切り替えタイミングの周期Tinactが同じであれば、各方路への紫外光の供給時間(T、T)が少なくなり、最大のエネルギーが必要な方路に供給される紫外光のエネルギーが不足する可能性もある。周期Tinactを変えることができず、紫外光源部11が出力できる紫外光のパワーを上げることができない場合、均等な切り替えタイミングで紫外光を分配すると方路数を制限する必要があり、方路数による紫外光源部11や光スイッチ12-2の割り勘効果が限定的になるという課題もある。 When distributing the ultraviolet light with uniform switching timing as shown in FIG. Energy that matches the required route is supplied to all routes. Then, when the number of routes is increased, if the switching timing period T inact is the same, the ultraviolet light supply time (T, T i ) to each route is reduced, and the route requiring the maximum energy There is also the possibility that the energy of the ultraviolet light supplied to the system is insufficient. If the period T inact cannot be changed and the power of the ultraviolet light that can be output by the ultraviolet light source unit 11 cannot be increased, the number of routes must be limited if the ultraviolet light is distributed at uniform switching timing. There is also a problem that the splitting effect of the ultraviolet light source units 11 and the optical switches 12-2 due to the number is limited.
 一方で、光スイッチ12-2が均等な切り替えタイミングで紫外光を分配すると、伝送損失が小さい方路、照射対象域ARの面積が小さい方路、あるいは不活化要求時間の長い方路等、小エネルギーで十分な方路には過剰なエネルギーの紫外光を供給することになる。そこで、図5から図8で説明したように、伝送損失、照射対象域ARの面積、あるいは不活化要求時間に応じて光スイッチ12-2の切り替えタイミングを変えて紫外光を分配する。具体的には、小エネルギーで十分な方路には紫外光の供給時間を短くし、大エネルギーが必要な方路には紫外光の供給時間を長くする。このように各方路の特性に合わせて光スイッチの切り替えタイミングを設定することで、上述したようなエネルギー不足を解消でき、方路数の制限が緩和される(図9(B))。この結果、方路数による紫外光源部11や光スイッチ12-2の割り勘効果の向上が図れる。 On the other hand, if the optical switch 12-2 distributes the ultraviolet light at uniform switching timing, a route with a small transmission loss, a route with a small irradiation target area AR, a route with a long deactivation request time, etc. A route with sufficient energy will be supplied with excess energy ultraviolet light. Therefore, as described with reference to FIGS. 5 to 8, the ultraviolet light is distributed by changing the switching timing of the optical switch 12-2 according to the transmission loss, the area of the irradiation target area AR, or the required deactivation time. Specifically, the ultraviolet light supply time is shortened for a route requiring a small amount of energy, and the ultraviolet light supply time is lengthened for a route requiring a large amount of energy. By setting the switching timing of the optical switch according to the characteristics of each route in this way, the above-described energy shortage can be resolved, and the restriction on the number of routes can be relaxed (FIG. 9B). As a result, it is possible to improve the splitting effect of the ultraviolet light source unit 11 and the optical switch 12-2 depending on the number of routes.
(実施形態2)
 図10は、本実施形態の紫外光照射システム302を説明する図である。ここでは、実施形態1で説明した紫外光照射システム301との相違点のみ説明する。紫外光照射システム302は、紫外光照射システム301に対し、光スイッチ12-2の切り替え動作に連動するように紫外光源部11に対して前記紫外光のパワーを変動させる光源制御部17をさらに備える。
(Embodiment 2)
FIG. 10 is a diagram illustrating the ultraviolet light irradiation system 302 of this embodiment. Here, only differences from the ultraviolet light irradiation system 301 described in the first embodiment will be described. The ultraviolet light irradiation system 302 further includes a light source control unit 17 that changes the power of the ultraviolet light with respect to the ultraviolet light source unit 11 so as to interlock with the switching operation of the optical switch 12-2 for the ultraviolet light irradiation system 301. .
 光源制御部17は、予め、方路14毎の特性に応じた紫外光パワーが設定されている。当該方路毎の特性に応じた紫外光パワーとは、伝送損失、照射対象域ARの面積、及び不活化要求時間に応じたパワーである。
 光源制御部17は、切替制御部15-2から現時刻においていずれの方路14に紫外光を出力しているのかという情報を得る。そして、光源制御部17は、当該情報に基づき、現時刻の方路14に設定された紫外光のパワーを紫外光源部11に出力させる。
The light source control unit 17 is preset with an ultraviolet light power corresponding to the characteristics of each route 14 . The ultraviolet light power corresponding to the characteristics of each route is the power corresponding to the transmission loss, the area of the irradiation target area AR, and the required deactivation time.
The light source control unit 17 obtains information from the switching control unit 15-2 as to which path 14 the ultraviolet light is being output to at the current time. Based on the information, the light source control unit 17 causes the ultraviolet light source unit 11 to output the power of the ultraviolet light set for the route 14 at the current time.
 図11は、紫外光照射システム302の効果を説明する図である。図11(A)は、図9(A)と同様に方路14の長さや照射対象域ARの要求に関わらず、各方路14に均等な切り替えタイミングで且つ同じパワーの紫外光を分配する例を説明する図である。図11(B)は、紫外光照射システム302であり、各方路14に均等な切り替えタイミングで且つ異なるパワーの紫外光を分配する例を説明する図である。 FIG. 11 is a diagram explaining the effect of the ultraviolet light irradiation system 302. FIG. In FIG. 11A, similarly to FIG. 9A, regardless of the length of the path 14 and the request for the irradiation target area AR, ultraviolet light of the same power is distributed to each path 14 at equal switching timing. It is a figure explaining an example. FIG. 11(B) is an ultraviolet light irradiation system 302, and is a diagram for explaining an example in which ultraviolet light of different power is distributed to each path 14 at equal switching timings.
 前述のように、方路14の伝送距離が長く伝送損失が大きい場合や照射対象域ARの面積が広く照度が小さい場合、大きなエネルギーを振り分ける必要がある。また、照射対象域ARの不活化要求時間によっても求められるエネルギーも変わる。なお、紫外光照射システム302は、紫外光のエネルギーを紫外光源部11が出力する紫外光のパワーで調整する。 As described above, when the transmission distance of the route 14 is long and the transmission loss is large, or when the irradiation target area AR is wide and the illuminance is low, it is necessary to distribute a large amount of energy. In addition, the required energy also changes depending on the required time for deactivation of the irradiation target area AR. The ultraviolet light irradiation system 302 adjusts the energy of the ultraviolet light with the power of the ultraviolet light output by the ultraviolet light source section 11 .
 図11(A)のように均等な切り替えタイミングで紫外光を分配する場合、紫外光源部11は最大のエネルギーが必要な方路に合わせたパワーの紫外光を供給する。そうすると、小エネルギーで十分な方路には過剰なエネルギーを供給することになる。このため、方路14によっては無駄な紫外光のエネルギーを供給しなければならず、紫外光源部11の消費電力も無駄になる。このため、均等な切り替えタイミング且つ同じパワーの紫外光を分配する場合、紫外光源部11の消費電力を低減することが困難という課題もある。 When the ultraviolet light is distributed at equal switching timings as shown in FIG. 11(A), the ultraviolet light source unit 11 supplies ultraviolet light with a power that matches the route requiring the maximum energy. Then, excessive energy will be supplied to the route where small energy is sufficient. Therefore, depending on the route 14, the energy of the ultraviolet light must be wasted, and the power consumption of the ultraviolet light source unit 11 is also wasted. For this reason, when distributing ultraviolet light with equal switching timing and the same power, it is difficult to reduce the power consumption of the ultraviolet light source unit 11 .
 そこで、図5から図8で説明したように、伝送損失、照射対象域ARの面積、あるいは不活化要求時間に応じ、紫外光源部11がパワーを変えて紫外光を出力する。紫外光源部11は、光スイッチ12-2が小エネルギーで十分な方路へ接続しているとき、紫外光のパワーを小さくし、光スイッチ12-2が大エネルギーを必要としている方路へ接続しているとき、紫外光のパワーを大きくする。これにより、上述したような紫外光の無駄な供給を解消でき、紫外光源部11の消費電力を低減できる(図11(B))。この結果、紫外光照射システムの省電力化が図れる。 Therefore, as described with reference to FIGS. 5 to 8, the ultraviolet light source unit 11 outputs ultraviolet light while changing the power according to the transmission loss, the area of the irradiation target area AR, or the required deactivation time. The ultraviolet light source unit 11 reduces the power of the ultraviolet light when the optical switch 12-2 is connected to a route that requires a small amount of energy, and connects the optical switch 12-2 to a route that requires a large amount of energy. increase the power of the ultraviolet light. As a result, the wasteful supply of ultraviolet light as described above can be eliminated, and the power consumption of the ultraviolet light source section 11 can be reduced (FIG. 11(B)). As a result, power saving of the ultraviolet light irradiation system can be achieved.
 なお、紫外光照射システム302の光スイッチ12-2の切り替えタイミングは、上記の実施形態1の紫外光照射システム301で説明した光スイッチ12-2の切り替えタイミングと組み合わせて設定してもよい。 The switching timing of the optical switch 12-2 of the ultraviolet light irradiation system 302 may be set in combination with the switching timing of the optical switch 12-2 described in the ultraviolet light irradiation system 301 of the first embodiment.
(実施形態3)
 図12は、本実施形態の紫外光照射システム303を説明する図である。ここでは、実施形態1で説明した紫外光照射システム301との相違点のみ説明する。本実施形態の紫外光照射システム303は、紫外光源部11と光スイッチ12-2とが離隔されており、紫外光源部11と光スイッチ12-2とを接続する光伝送路(光ファイバ)26をさらに備えることを特徴とする。光伝送路26には、図3で説明した光ファイバを使用できる。
(Embodiment 3)
FIG. 12 is a diagram illustrating the ultraviolet light irradiation system 303 of this embodiment. Here, only differences from the ultraviolet light irradiation system 301 described in the first embodiment will be described. In the ultraviolet light irradiation system 303 of this embodiment, the ultraviolet light source unit 11 and the optical switch 12-2 are separated, and an optical transmission line (optical fiber) 26 connecting the ultraviolet light source unit 11 and the optical switch 12-2 is further provided. The optical fiber described with reference to FIG. 3 can be used for the optical transmission line 26 .
 図12は、本実施形態の効果を説明する図である。なお、「離隔」とは、紫外光源部11と光スイッチ12-2とが同じ場所にないこと、あるいは同一の筐体3の中にないことを意味する。 FIG. 12 is a diagram explaining the effect of this embodiment. The term “separate” means that the ultraviolet light source section 11 and the optical switch 12-2 are not located at the same place or are not in the same housing 3. FIG.
 図12(A)の紫外光照射システム301は、前述のように光スイッチ12-2で紫外光を各方路14へ分配し、各照射対象域ARまで伝搬している。そして、紫外光源部11と光スイッチ12-2とは同一場所(例えば1つの筐体3内)に配置されている。このため、それぞれの照射対象域ARまで方路14である光ファイバを敷設しなければならず、照射対象域ARの数に応じて光ファイバの総延長が長くなり、システムの部材や施工のコストが高くなることがある。 In the ultraviolet light irradiation system 301 of FIG. 12(A), the optical switch 12-2 distributes the ultraviolet light to each route 14 and propagates it to each irradiation target area AR, as described above. The ultraviolet light source section 11 and the optical switch 12-2 are arranged in the same place (for example, in one housing 3). Therefore, the optical fiber that is the route 14 must be laid to each irradiation target area AR, and the total extension of the optical fiber becomes longer according to the number of irradiation target areas AR, resulting in the cost of system members and construction. can be higher.
 一方、図12(B)の紫外光照射システム303は、紫外光源部11と光スイッチ12-2とを光ファイバ26で接続した構成である。このため、紫外光照射システム303は、光スイッチ12-2を紫外光源部11と同一の筐体内に置かずに、照射対象域ARの近傍まで張り出し、そこから方路14で各照射対象域ARへ紫外光を供給することができる。光ファイバ26は、紫外光源部11から離れた照射対象域ARである部屋や設備までの区間をカバーする長さであり、例えば10m以上の長さである。要するに、紫外光照射システム303は、同じ場所にない、あるいは同一筐体内にない紫外光源部11と光スイッチ12-2とを光ファイバ26が接続し、光スイッチ12-2を紫外光源部11と異なる場所に配置できることが特徴である。  On the other hand, the ultraviolet light irradiation system 303 of FIG. For this reason, the ultraviolet light irradiation system 303 does not place the optical switch 12-2 in the same housing as the ultraviolet light source unit 11, but protrudes to the vicinity of the irradiation target area AR, and from there on the route 14 each irradiation target area AR UV light can be supplied to the The optical fiber 26 has a length that covers a section from the ultraviolet light source unit 11 to the irradiation target area AR, such as a room or equipment, and has a length of 10 m or more, for example. In short, the ultraviolet light irradiation system 303 connects the ultraviolet light source unit 11 and the optical switch 12-2 that are not in the same place or in the same housing by the optical fiber 26, and connects the optical switch 12-2 to the ultraviolet light source unit 11. The feature is that it can be placed in different places.
 紫外光照射システム303の構成とすることで次のような効果が発生する。この構成では、敷設する光ファイバは1本の長い光ファイバ26及び光スイッチ12-2から照射部13との間の短い光ファイバだけである。このため、照射対象域ARの数が増加しても光ファイバの総延長は紫外光照射システム301ほど伸びず、システムの部材や施工のコストが照射対象域ARの数に応じて高くなることを回避できる。 The configuration of the ultraviolet light irradiation system 303 produces the following effects. In this configuration, only one long optical fiber 26 and a short optical fiber between the optical switch 12-2 and the irradiation unit 13 are laid. Therefore, even if the number of irradiation target areas AR increases, the total extension of the optical fibers is not as long as that of the ultraviolet light irradiation system 301, and the cost of system members and construction increases according to the number of irradiation target areas AR. can be avoided.
 このように、紫外光照射システム303は、紫外光照射システム301に対し、照射対象域ARの数の増加による光ファイバの総延長が伸びることを回避し、コスト低減を図ることができる。以下に具体例を説明する。
 光伝送路(光ファイバ)16の長さをX(m)、光伝送路(光ファイバ)26の長さをY(m)、光スイッチ12-2での分岐数をNとする。紫外光照射システム303は、紫外光照射システム301と比較して、
(Y-X)×(N-1)(m)
だけ光ファイバの総延長を短くできる。
 一例として、X=1(m)、Y=10(m)、N=10とすると、
(10-1)×(10-1)=81(m)
となり、光ファイバの総延長を81(m)削減することができる。
In this way, the ultraviolet light irradiation system 303 can avoid an increase in the total length of the optical fibers due to an increase in the number of irradiation target areas AR, and can reduce the cost. Specific examples are described below.
Let X (m) be the length of the optical transmission line (optical fiber) 16, Y (m) be the length of the optical transmission line (optical fiber) 26, and N be the number of branches in the optical switch 12-2. Compared with the ultraviolet light irradiation system 301, the ultraviolet light irradiation system 303 has
(Y - X) x (N - 1) (m)
can shorten the total length of the optical fiber.
As an example, if X=1 (m), Y=10 (m), and N=10,
(10-1) x (10-1) = 81 (m)
As a result, the total length of the optical fiber can be reduced by 81 (m).
 なお、紫外光照射システム303は、実施形態1及び2で説明した切替制御部15-2を紫外光源部11の近傍に配置することができる。この構成であれば、光スイッチ12-2の切り替えタイミングを紫外光源部11側から遠隔操作をすることができる。また、切替制御部15-2は光スイッチ12-2の近傍にあってもよい。作業者が光スイッチ12-2の傍らで切り替えタイミングを設定することができる。 In the ultraviolet light irradiation system 303, the switching control section 15-2 described in the first and second embodiments can be arranged near the ultraviolet light source section 11. With this configuration, the switching timing of the optical switch 12-2 can be remotely controlled from the ultraviolet light source unit 11 side. Also, the switching controller 15-2 may be located near the optical switch 12-2. An operator can set the switching timing near the optical switch 12-2.
 このように、紫外光照射システム303は、紫外光照射システム301に対し、照射対象域ARの数の増加による光ファイバの総延長が伸びることを回避し、コスト低減を図ることができる。本実施形態では、紫外光照射システム303と紫外光照射システム301とで説明をしたが、光源制御部17を備える紫外光照射システム302の構成であっても同様の効果を得られる。 In this way, compared to the ultraviolet light irradiation system 301, the ultraviolet light irradiation system 303 can avoid an increase in the total extension of the optical fibers due to an increase in the number of irradiation target areas AR, and can reduce costs. Although the ultraviolet light irradiation system 303 and the ultraviolet light irradiation system 301 have been described in the present embodiment, similar effects can be obtained with the configuration of the ultraviolet light irradiation system 302 including the light source control unit 17 .
(実施形態4)
 図13は、紫外光照射システム(301~303)の光スイッチ12-2の切り替えタイミングを設定する紫外光照射方法を説明するフローチャートである。本方法は、1つの紫外光源部11で発生させた紫外光を光スイッチ12-2で時分割し、時分割された前記紫外光を複数の照射対象域ARに照射する紫外光照射システムにおいて、前記紫外光を時分割する光スイッチ12-2の切り替えタイミングを方路14毎の前記紫外光の伝送損失、前記紫外光が照射される前記照射対象域ARの照射面積、及び前記照射対象域ARの不活化要求時間の少なくとも1つに基づいて設定することを特徴とする。
(Embodiment 4)
FIG. 13 is a flowchart for explaining an ultraviolet light irradiation method for setting the switching timing of the optical switch 12-2 of the ultraviolet light irradiation system (301 to 303). This method is an ultraviolet light irradiation system in which ultraviolet light generated by one ultraviolet light source unit 11 is time-divided by an optical switch 12-2, and the time-divided ultraviolet light is irradiated to a plurality of irradiation target areas AR, The switching timing of the optical switch 12-2 that time-divides the ultraviolet light is determined by the transmission loss of the ultraviolet light for each route 14, the irradiation area of the irradiation target area AR irradiated with the ultraviolet light, and the irradiation target area AR. is set based on at least one of the required inactivation times.
 具体的には、次のように設計する。
 ステップS01:紫外光源部11の紫外光出力パワーP[W]、各方路14の損失Lfiber-n[a.u.]と損失Lair-n[a.u.]、各照射対象域ARの面積S[m]、及び各照射対象域ARが要求する照度[W/m]、単位エネルギー[J]、又は不活化要求時間の情報を入手する。また、紫外光照射システム302である場合、方路毎に必要な紫外光のパワーを算出する。
 ステップS02:紫外光照射システム(301~303)で担保させたい効果は公平性であるかを判断する。
 ステップS03:紫外光照射システム(301~303)で担保させたい効果は公平性である場合(ステップS02で“Yes”)、前述の(a1)、(a2)又は(a3)によって光スイッチ12-2の切り替えタイミングを切替制御部15-2に設定する。
 ステップS04:紫外光照射システム(301~303)で担保させたい効果は安全性であるかを判断する。
 ステップS05:紫外光照射システム(301~303)で担保させたい効果は安全性である場合(ステップS04で“Yes”)、前述の(b1)によって光スイッチ12-2の切り替えタイミングを切替制御部15-2に設定する。
 ステップS06:紫外光照射システム(301~303)で担保させたい効果は効率性であるかを判断する。
 ステップS07:紫外光照射システム(301~303)で担保させたい効果は効率性である場合(ステップS06で“Yes”)、前述の(c1)によって光スイッチ12-2の切り替えタイミングを切替制御部15-2に設定する。
 ステップS08:紫外光照射システム(301~303)で担保させたい効果が公平性、安全性及び効率性のいずれでもない場合、設計を中止する。
 なお、紫外光照射システム302である場合、ステップS03、S05、及びS07において次の動作が加わる。紫外光照射システム302は、紫外光源部11が出力する紫外光パワーを光スイッチ12-2の切り替えタイミングに同期して変更できる。このため、切替制御部15-2に設定される切り替えタイミングに同期して光源制御部17に紫外光源部11が出力する紫外光パワーを設定する。
Specifically, it is designed as follows.
Step S01: Ultraviolet light output power P [W] of ultraviolet light source unit 11, loss L fiber-n of each path 14 [a. u. ] and loss L air-n [a. u. ], area S n [m 2 ] of each irradiation target area AR, and information on illuminance [W/m 2 ], unit energy [J], or required deactivation time required by each irradiation target area AR. Further, in the case of the ultraviolet light irradiation system 302, the necessary power of ultraviolet light is calculated for each route.
Step S02: Judge whether the effect to be ensured by the ultraviolet light irradiation system (301 to 303) is fairness.
Step S03: If the effect to be ensured by the ultraviolet light irradiation system (301 to 303) is fairness ("Yes" in step S02), the optical switch 12- 2 is set in the switching control unit 15-2.
Step S04: Judge whether the effect to be ensured by the ultraviolet light irradiation system (301 to 303) is safety.
Step S05: If the effect to be ensured by the ultraviolet light irradiation system (301 to 303) is safety ("Yes" in step S04), the switching control unit changes the switching timing of the optical switch 12-2 according to (b1) described above. Set to 15-2.
Step S06: Judge whether the effect to be ensured by the ultraviolet light irradiation system (301 to 303) is efficiency.
Step S07: If the effect to be ensured by the ultraviolet light irradiation system (301 to 303) is efficiency ("Yes" in step S06), the switching control unit changes the switching timing of the optical switch 12-2 according to (c1) described above. Set to 15-2.
Step S08: If the effects to be ensured by the ultraviolet light irradiation system (301-303) are none of fairness, safety and efficiency, the design is aborted.
In addition, in the case of the ultraviolet light irradiation system 302, the following operations are added in steps S03, S05, and S07. The ultraviolet light irradiation system 302 can change the ultraviolet light power output from the ultraviolet light source unit 11 in synchronization with the switching timing of the optical switch 12-2. Therefore, the ultraviolet light power output from the ultraviolet light source unit 11 is set in the light source control unit 17 in synchronization with the switching timing set in the switching control unit 15-2.
3:筐体
11:紫外光源部
12:光分配部(等分岐)
12-2:光スイッチ
13、13-1、・・・、13-N:照射部
14:方路(光ファイバ)
15-2:切替制御部
16:光伝送路
17:光源制御部
26:光伝送路
52:充実コア
52a:領域
53:空孔
53a:空孔群
53c:空孔
60:クラッド
300、301、302、303:紫外光照射システム
AR1、AR2、・・・、ARN:照射対象域(紫外光を照射しようとする領域)
3: Housing 11: Ultraviolet light source section 12: Light distribution section (equally branched)
12-2: optical switches 13, 13-1, . . . , 13-N: irradiation section 14: direction (optical fiber)
15-2: Switching control unit 16: Optical transmission line 17: Light source control unit 26: Optical transmission line 52: Solid core 52a: Region 53: Hole 53a: Hole group 53c: Hole 60: Cladding 300, 301, 302 , 303: ultraviolet light irradiation system AR1, AR2, . . . , ARN: irradiation target area (area to be irradiated with ultraviolet light)

Claims (5)

  1.  紫外光を発生させる紫外光源部と、
     前記紫外光をN個(Nは2以上の自然数)の照射対象域に照射するN個の照射部と、
     前記紫外光をそれぞれの前記照射部への方路へ切り替える光スイッチと、
     前記方路毎の前記紫外光の伝送損失、前記照射部が前記紫外光を照射する照射面積、及び前記照射対象域の不活化要求時間の少なくとも1つに基づく前記光スイッチの切り替えタイミングを設定する切替制御部と、
    を備える紫外光照射システム。
    an ultraviolet light source that generates ultraviolet light;
    N irradiating units that irradiate N (N is a natural number of 2 or more) irradiation target areas with the ultraviolet light;
    an optical switch that switches the ultraviolet light to a direction to each of the irradiation units;
    Setting the switching timing of the optical switch based on at least one of the transmission loss of the ultraviolet light for each of the routes, the irradiation area where the irradiation unit irradiates the ultraviolet light, and the required time for deactivation of the irradiation target area. a switching control unit;
    An ultraviolet light irradiation system.
  2.  前記切替制御部は、それぞれの前記照射対象域へ照射される前記紫外光の積算光量が所定の基準値以下となるように前記切り替えタイミングを設定することを特徴とする請求項1に記載の紫外光照射システム。 2. The ultraviolet light according to claim 1, wherein the switching control unit sets the switching timing so that an integrated light amount of the ultraviolet light irradiated to each of the irradiation target areas is equal to or less than a predetermined reference value. Light irradiation system.
  3.  前記切替制御部は、それぞれの前記照射対象域が要求する前記紫外光の積算光量を満たすように前記切り替えタイミングを設定することを特徴とする請求項1に記載の紫外光照射システム。 3. The ultraviolet light irradiation system according to claim 1, wherein the switching control unit sets the switching timing so as to satisfy the integrated light quantity of the ultraviolet light required by each of the irradiation target areas.
  4.  前記光スイッチの切り替え動作に連動するように前記紫外光源部に対して前記紫外光のパワーを変動させる光源制御部をさらに備えることを特徴とする請求項1から3のいずれかに記載の紫外光照射システム。 4. The ultraviolet light according to any one of claims 1 to 3, further comprising a light source control section for varying the power of the ultraviolet light with respect to the ultraviolet light source section so as to interlock with the switching operation of the optical switch. irradiation system.
  5.  前記紫外光源部と前記光スイッチとが離隔されており、
     前記紫外光源部と前記光スイッチとを接続する光伝送路をさらに備えることを特徴とする請求項1から4のいずれかに記載の紫外光照射システム。
    The ultraviolet light source unit and the optical switch are separated,
    5. The ultraviolet light irradiation system according to any one of claims 1 to 4, further comprising an optical transmission line connecting said ultraviolet light source unit and said optical switch.
PCT/JP2021/039887 2021-10-28 2021-10-28 Ultraviolet light irradiation system WO2023073884A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/039887 WO2023073884A1 (en) 2021-10-28 2021-10-28 Ultraviolet light irradiation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/039887 WO2023073884A1 (en) 2021-10-28 2021-10-28 Ultraviolet light irradiation system

Publications (1)

Publication Number Publication Date
WO2023073884A1 true WO2023073884A1 (en) 2023-05-04

Family

ID=86157527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039887 WO2023073884A1 (en) 2021-10-28 2021-10-28 Ultraviolet light irradiation system

Country Status (1)

Country Link
WO (1) WO2023073884A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140633A (en) * 1995-11-20 1997-06-03 Keiji Iimura Bactericidal device for toilet seat and the like
JP2005013723A (en) * 2003-06-05 2005-01-20 Atsuyoshi Murakami Optical fibre sterilizing disinfecting device
JP2007007232A (en) * 2005-07-01 2007-01-18 Mitsubishi Electric Corp Photo-sterilizer and photo-sterilizing system
JP3148080U (en) * 2008-11-17 2009-01-29 Hoya Candeo Optronics株式会社 UV irradiation equipment
JP2013196965A (en) * 2012-03-21 2013-09-30 Stanley Electric Co Ltd Light-emitting device, vehicle lamp fitting, and vehicle
WO2017213069A1 (en) * 2016-06-07 2017-12-14 アダマンド株式会社 Light propagation device, display device and lighting device
JP2020078479A (en) * 2018-11-14 2020-05-28 サンエナジー株式会社 Ultraviolet ray irradiation device
JP6908172B1 (en) * 2020-11-20 2021-07-21 ウシオ電機株式会社 Inactivation method and inactivation system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140633A (en) * 1995-11-20 1997-06-03 Keiji Iimura Bactericidal device for toilet seat and the like
JP2005013723A (en) * 2003-06-05 2005-01-20 Atsuyoshi Murakami Optical fibre sterilizing disinfecting device
JP2007007232A (en) * 2005-07-01 2007-01-18 Mitsubishi Electric Corp Photo-sterilizer and photo-sterilizing system
JP3148080U (en) * 2008-11-17 2009-01-29 Hoya Candeo Optronics株式会社 UV irradiation equipment
JP2013196965A (en) * 2012-03-21 2013-09-30 Stanley Electric Co Ltd Light-emitting device, vehicle lamp fitting, and vehicle
WO2017213069A1 (en) * 2016-06-07 2017-12-14 アダマンド株式会社 Light propagation device, display device and lighting device
JP2020078479A (en) * 2018-11-14 2020-05-28 サンエナジー株式会社 Ultraviolet ray irradiation device
JP6908172B1 (en) * 2020-11-20 2021-07-21 ウシオ電機株式会社 Inactivation method and inactivation system

Similar Documents

Publication Publication Date Title
HUP0301300A2 (en) Method and apparatus for photobiostimulation of biological tissue, biostimulation device and method for the treatment of tissue
US20190344095A1 (en) Light Delivery Apparatus with Optical Comb
CN201719371U (en) Ultra-pulse carbon dioxide fractional laser output device
KR20150105196A (en) A multi-wavelength laser device for skin treatment
JP2024059974A (en) Ultraviolet Light Irradiation System
WO2023073884A1 (en) Ultraviolet light irradiation system
WO2023084665A1 (en) Uv radiation system
WO2023073885A1 (en) Ultraviolet light irradiation system
WO2023073774A1 (en) Uv irradiation system
WO2023073771A1 (en) Ultraviolet light irradiation system
WO2023058144A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2022024303A1 (en) Ultraviolet irradiation system and control method
WO2022085123A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2022085142A1 (en) Ultraviolet light irradiation system and method
WO2023084668A1 (en) Ultraviolet light radiation system and control method
WO2023084675A1 (en) Uv irradiation system
WO2023084674A1 (en) Ultraviolet light irradiation system and control method
WO2022254713A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2023084666A1 (en) Ultraviolet light irradiation system
WO2024105875A1 (en) Optical transfer system and optical transfer method
US20220283476A1 (en) Light generation and distribution methods and systems for disinfection, medical therapeutics, and lighting
WO2024084561A1 (en) Optical transmission system design method and design device
WO2024100862A1 (en) Optical transmission system
WO2023085389A1 (en) Optical transmission system
WO2024100864A1 (en) Optical transmission system and optical transmission method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962430

Country of ref document: EP

Kind code of ref document: A1