WO2022009443A1 - Ultraviolet light radiation system - Google Patents

Ultraviolet light radiation system Download PDF

Info

Publication number
WO2022009443A1
WO2022009443A1 PCT/JP2020/041091 JP2020041091W WO2022009443A1 WO 2022009443 A1 WO2022009443 A1 WO 2022009443A1 JP 2020041091 W JP2020041091 W JP 2020041091W WO 2022009443 A1 WO2022009443 A1 WO 2022009443A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet light
optical fiber
irradiation
unit
ultraviolet
Prior art date
Application number
PCT/JP2020/041091
Other languages
French (fr)
Japanese (ja)
Inventor
友宏 谷口
亜弥子 岩城
和秀 中島
信智 半澤
隆 松井
悠途 寒河江
千里 深井
一貴 原
敦子 河北
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022534891A priority Critical patent/JPWO2022009443A1/ja
Publication of WO2022009443A1 publication Critical patent/WO2022009443A1/en
Priority to JP2024033477A priority patent/JP2024059973A/en
Priority to JP2024033481A priority patent/JP2024059974A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals

Definitions

  • the present disclosure relates to an ultraviolet light irradiation system that sterilizes and inactivates viruses using ultraviolet light.
  • Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light. By irradiating ultraviolet light while moving in a room in a building such as a hospital room, the robot can automatically realize a wide range of sterilization without human intervention.
  • Stationary Air Purifier The product of Non-Patent Document 2 is a device that is installed on the ceiling or in a predetermined place in a room and sterilizes while circulating the air in the room.
  • Non-Patent Document 3 is a portable device equipped with an ultraviolet light source. The user can bring the device to a desired area and irradiate it with ultraviolet light. Therefore, the device can be used in various places.
  • the device described in the non-patent document has the following problems.
  • Non-Patent Document 3 cannot irradiate ultraviolet light, for example, in a narrow pipeline or an area where people cannot enter. As described above, the product of the non-patent document has a problem in versatility that the ultraviolet light can be irradiated to an arbitrary place.
  • C Operability
  • the product of Non-Patent Document 3 is portable and can be irradiated with ultraviolet light in various places. However, in order to obtain sufficient effects such as sterilization at the target location, the user is required to have skills and knowledge, and there is a problem in operability.
  • An object of the present invention is to provide an ultraviolet light irradiation system that can improve versatility and further improve economic efficiency and operability in order to solve these problems.
  • the ultraviolet light source unit and the irradiation unit are connected by an optical fiber.
  • the first ultraviolet light irradiation system is One ultraviolet light source that generates ultraviolet light, and One irradiation unit that irradiates the desired location with ultraviolet light, and An optical fiber that propagates the ultraviolet light from the ultraviolet light source unit to the irradiation unit, To prepare for.
  • This ultraviolet light irradiation system uses an optical fiber that is extremely thin and does not require power supply for transmission of ultraviolet light. With this configuration, this ultraviolet light irradiation system can irradiate ultraviolet light even in small places where humans and robots cannot enter by simply laying an optical fiber. Therefore, this ultraviolet light irradiation system has great versatility.
  • the second ultraviolet light irradiation system is N ultraviolet light sources (N is an integer of 2 or more) that generate ultraviolet light, and N irradiation units that irradiate N desired locations with ultraviolet light, and N irradiation units.
  • N optical fibers propagating the ultraviolet light from the ultraviolet light source unit to the irradiation unit, respectively.
  • the present invention is characterized in that the N ultraviolet light source units are integrated in one place.
  • the third ultraviolet light irradiation system is One ultraviolet light source that generates ultraviolet light, and A distribution function unit that N-branches the ultraviolet light (N is an integer of 2 or more), N irradiation units that irradiate N desired locations with ultraviolet light, and N irradiation units. It includes N optical fibers that propagate the ultraviolet light from the distribution function unit to the irradiation unit.
  • This ultraviolet light irradiation system has a system configuration in which a single ultraviolet light source unit and a plurality of irradiation units installed near a plurality of target locations for sterilization, etc. are connected by an optical fiber via a distribution function unit. There is. With this configuration, this ultraviolet light irradiation system can share a single ultraviolet light source unit in work such as sterilization of a plurality of target areas. Therefore, this ultraviolet light irradiation system is economical.
  • the ultraviolet light irradiation system is characterized by further including a centralized control unit that controls parameters of the ultraviolet light source unit so that a predetermined ultraviolet irradiation amount is irradiated to the desired location.
  • the third ultraviolet light irradiation system further includes a centralized control unit that controls the parameters of the ultraviolet light source unit and the parameters of the distribution function unit so that a predetermined ultraviolet irradiation amount is irradiated to the desired portion.
  • this ultraviolet light irradiation system the ultraviolet light source unit and the distribution function unit are controlled by the centralized control unit so that a predetermined ultraviolet light irradiation amount can be obtained in each irradiation unit.
  • this ultraviolet light irradiation system can irradiate each irradiation part with ultraviolet light at a level that can obtain sufficient effects such as sterilization while avoiding the influence on the human body without requiring skill or knowledge from the user. , Reliability and safety can also be ensured.
  • the present invention can provide an ultraviolet light irradiation system that can improve versatility and further improve economic efficiency and operability.
  • the centralized control unit of the ultraviolet light irradiation system is characterized in that the parameters are controlled based on the loss in the distribution function unit and the optical fiber. Since the centralized control unit controls after considering various losses such as optical fiber transmission loss and coupling loss to each irradiation unit, a predetermined ultraviolet irradiation amount can be obtained in each irradiation unit.
  • the centralized control unit of the ultraviolet light irradiation system is characterized in that the parameters are controlled so that the amount of ultraviolet irradiation to the desired portion is biased.
  • the centralized control unit of the ultraviolet light irradiation system controls the parameters so that the ultraviolet irradiation amount to the desired location fluctuates with time and the total ultraviolet irradiation amount satisfies a predetermined amount. It is characterized by.
  • the centralized control unit reduces the ultraviolet light during the time when there are people and increases the ultraviolet light during the time when there are no people, and controls so that a predetermined ultraviolet irradiation amount can be obtained as a whole. As a result, it is possible to obtain effects such as sterilization while avoiding the risk of ultraviolet irradiation on the human body.
  • the centralized control unit of the ultraviolet light irradiation system is characterized in that the parameters of the ultraviolet light source unit are controlled so as to change the wavelength of the ultraviolet light every hour.
  • the centralized control unit controls the wavelength so that the wavelength has a small effect on the human body during the time when there is a person, and the wavelength has a high effect such as sterilization during the time when there is no person. As a result, it is possible to obtain effects such as sterilization while avoiding the risk of ultraviolet irradiation on the human body.
  • the ultraviolet light irradiation system further includes a detection unit for detecting the ultraviolet light irradiation amount, and the centralized control unit controls the parameters based on the ultraviolet light irradiation amount detected by the detection unit. It is characterized by. Feedback control of ultraviolet light can be performed by using the detection unit.
  • the ultraviolet light irradiation system further includes a sensor that collects information on the desired location, and the centralized control unit controls the parameters based on the information collected by the sensor. Sensors can be used to detect the presence or absence of people and the population density of the target area, and the intensity of ultraviolet light can be adjusted based on these.
  • the optical fiber of the ultraviolet light irradiation system includes a full-core optical fiber, a hole-assisted optical fiber, a hole-structured optical fiber, a hollow core optical fiber, a coupled core type optical fiber, a full-core multi-core optical fiber, and an empty fiber. It is characterized by being one of a hole assist type multi-core optical fiber, a hole structure type multi-core optical fiber, a hollow core type multi-core optical fiber, and a coupled core type multi-core optical fiber.
  • the optical fiber can increase the transmitted light intensity of ultraviolet light and reduce leakage loss at bent portions and the like.
  • the present invention can provide an ultraviolet light irradiation system that can improve versatility, and can also improve economy and operability.
  • FIG. 1 is a diagram illustrating an ultraviolet light irradiation system 301 of the present embodiment.
  • the ultraviolet light irradiation system 301 is One ultraviolet light source unit 11 that generates ultraviolet light,
  • the distribution function unit 12 that N-branches the ultraviolet light (N is an integer of 2 or more),
  • the N irradiation units 13 that irradiate the desired location st with the ultraviolet light, and
  • the optical fiber 14 that propagates the ultraviolet light from the distribution function unit 12 to the irradiation unit 13,
  • a centralized control unit 15 that controls the parameters of the ultraviolet light source unit 11 and the parameters of the distribution function unit 12 so that a predetermined ultraviolet irradiation amount is applied to the desired location st. To prepare for.
  • the ultraviolet light source unit 11 outputs light in an ultraviolet region that is effective for sterilization.
  • the ultraviolet light source unit 11 has parameters for output, wavelength, and waveform (pulse, etc.), and outputs ultraviolet light having an output, wavelength, and waveform according to the parameters.
  • FIG. 2 is a diagram illustrating the structure of the ultraviolet light source unit 11.
  • FIG. 2A is a configuration example in which the ultraviolet light source unit 11 is a single CW (Continuous Wave) light source.
  • the ultraviolet light source unit 11 is a semiconductor laser, a fiber laser, or an excimer laser.
  • FIG. 2A shows a configuration in which the wavelength of ultraviolet light is fixed. This configuration is simpler and cheaper than the configurations shown in FIGS. 2C and 2D.
  • FIG. 2B is a configuration example in which the ultraviolet light source unit 11 is a single pulse light source.
  • the ultraviolet light source unit 11 is a semiconductor laser, a fiber laser, or an excimer laser.
  • FIG. 2B also has a configuration in which the wavelength of ultraviolet light is fixed. This configuration is also simpler and lower cost than the configurations shown in FIGS. 2C and 2D.
  • this configuration is an optical pulse, it emits high-energy light in a short time and can be sterilized instantaneously.
  • FIG. 2C is a configuration example in which the ultraviolet light source unit 11 uses a single tunable light source.
  • the ultraviolet light source unit 11 is configured to adjust the current applied to the light source, the oscillation wavelength of the external oscillation type light source, and the like.
  • the configuration of FIG. 2C can be operated to switch wavelengths according to the situation, for example, by switching wavelengths that have a small effect on the human body or wavelengths that are highly effective for sterilization, etc., depending on the presence or absence of a person. ..
  • FIG. 2D is a configuration example in which the ultraviolet light source unit 11 combines the output lights of a plurality of light sources.
  • the ultraviolet light source unit 11 has a plurality of CW light sources 11a and an optical combine unit 11b.
  • the CW light source 11a is, for example, a semiconductor laser, a fiber laser, or an excimer laser, and each has a different output wavelength.
  • the photosynthetic unit 11b is a fiber-type or waveguide-type optical coupler, or a WDM coupler.
  • the configuration of FIG. 2D can also be operated by switching the wavelength depending on the situation. Further, the configuration of FIG. 2D is not limited to the performance of a single tunable light source as shown in FIG. 2C by combining a plurality of light sources, and outputs a wider range of wavelengths with a high degree of freedom. can do.
  • the distribution function unit 12 distributes the ultraviolet light from the ultraviolet light source unit 11 to a plurality of irradiation units 13.
  • the distribution function unit 12 has parameters regarding the distribution rate and transmission availability, and distributes ultraviolet light to each irradiation unit 13 and turns on / off transmission according to the parameters.
  • the distribution function unit 12 is, for example, a fiber type or spatial type optical switch.
  • the irradiation unit 13 irradiates the ultraviolet light transmitted by the optical fiber 14 to a predetermined target location (desired location ste) to be sterilized or the like.
  • the irradiation unit 13 is composed of an optical system such as a lens designed for the wavelength of ultraviolet light.
  • the optical fiber 14 propagates the ultraviolet light distributed by the distribution function unit 12 to each irradiation unit 13. Since it is an optical fiber, it can be laid in small places where conventional robots and devices cannot enter.
  • the centralized control unit 15 controls the parameters of the ultraviolet light source unit 11 and the parameters of the distribution function unit 12 according to the target location.
  • the centralized control unit 15 can perform the following controls.
  • the centralized control unit 15 sets parameters for obtaining a predetermined ultraviolet irradiation amount in each irradiation unit 13 based on various losses such as transmission loss and coupling loss to each irradiation unit 13.
  • Example 2 The centralized control unit 15 sets a parameter for intensively supplying ultraviolet light to the irradiation unit 13 at a desired location ste where the risk of infection is high.
  • the centralized control unit 15 avoids ultraviolet light irradiation during a time when a person is present / working and there is a risk of being affected by ultraviolet irradiation, and irradiates a large amount of ultraviolet light during a time when there is no person. However, the parameters are changed in time so that a predetermined ultraviolet irradiation amount can be obtained as a whole. (Example 4) The centralized control unit 15 sets parameters so that the wavelength of ultraviolet light has a small effect on the human body during a time zone in which a person is present / working and there is a risk of being affected by ultraviolet irradiation.
  • an operator manually measures the amount of ultraviolet irradiation in each irradiation unit 13, determines the irradiation intensity of the ultraviolet light source unit 11 and the distribution rate of the distribution function unit 12 based on the measured values, and centralizes control unit.
  • the parameter may be set to 15.
  • the centralized control unit 15 controls the ultraviolet light source unit 11 and the distribution function unit 12 with the parameters.
  • the centralized control unit 15 may control either the ultraviolet light source unit 11 or the distribution function unit 12.
  • FIG. 3 is a diagram illustrating an ultraviolet light irradiation system 302 of the present embodiment.
  • the ultraviolet light irradiation system 302 further includes a detection unit 16 that detects the ultraviolet light irradiation amount with respect to the ultraviolet light irradiation system 301 of FIG. 1, and the centralized control unit 15 has the ultraviolet light irradiation amount detected by the detection unit 16. It is characterized in that the parameter is controlled based on the above.
  • the ultraviolet light irradiation system 302 has a detection unit 16a for measuring the irradiation amount of ultraviolet light.
  • the detection unit 16a is a light receiving element installed near the ultraviolet light emission end of the irradiation unit 13 and measuring the intensity of the emitted ultraviolet light.
  • the detection unit 16a is a photodiode.
  • the detection unit 16a notifies the centralized control unit 15 of the measured intensity of the ultraviolet light.
  • the centralized control unit 15 adjusts parameters based on the measured values of the detection unit 16a, and adjusts the irradiation intensity of the ultraviolet light source unit 11 and the distribution rate of the distribution function unit 12.
  • the ultraviolet light irradiation system 302 has a detection unit 16b for measuring the irradiation amount of ultraviolet light.
  • the detection unit 16b includes a reflection unit 16b1, an optical circulator 16b2, and a reflected ultraviolet light detection unit 16b3.
  • the reflection unit 16b1 is mounted on the irradiation unit 13, and is a half mirror that transmits a part of the ultraviolet light propagated by the optical fiber 14 to irradiate the desired location st and reflects the other.
  • the reflected ultraviolet light reflected by the reflecting unit 16b1 returns the optical fiber 14 to the distribution function unit 12 side and is input to the reflected ultraviolet light detecting unit 16b3 by the optical circulator 16b2.
  • the reflected ultraviolet light detection unit 16b3 is a light receiving element that measures the intensity of the reflected ultraviolet light.
  • the reflected ultraviolet light detection unit 16b3 is a photodiode.
  • the reflected ultraviolet light detection unit 16b3 notifies the centralized control unit 15 of the measured intensity of the reflected ultraviolet light.
  • the centralized control unit 15 estimates various losses such as transmission loss and coupling loss from the intensity value of the reflected ultraviolet light. Then, the centralized control unit 15 adjusts the parameters based on this estimated value, and adjusts the irradiation intensity of the ultraviolet light source unit 11 and the distribution rate of the distribution function unit 12.
  • FIG. 4 is a diagram illustrating an ultraviolet light irradiation system 303 of the present embodiment.
  • the ultraviolet light irradiation system 303 further includes a sensor 16c that collects information on the desired location with respect to the ultraviolet light irradiation system 301 of FIG. 1, and the centralized control unit 15 sets the parameters based on the information collected by the sensor 16c. It is characterized by controlling.
  • the ultraviolet light irradiation system 303 has a sensor 16c that acquires various information of the desired location ste.
  • the sensor 16c is a camera that acquires images as information, an infrared sensor that detects temperature, or a microphone that collects sound.
  • the information acquired by each sensor 16c is collected in the centralized control unit 15.
  • the sensor 16c and the centralized control unit 15 are connected by various wired communication methods (Ethernet (registered trademark) and the like) and wireless communication methods (wireless LAN and the like).
  • the centralized control unit 15 controls Examples 3 and 4 described in the first embodiment based on the information from each sensor. That is, the centralized control unit 15 grasps the place / time zone where the person is in the desired place ste based on the image information of the camera, and turns off the irradiation of ultraviolet light for the place / time zone. Further, the centralized control unit 15 determines the density of people based on the temperature information / voice information from the microphone / infrared sensor, considers this portion to have a high risk of infection, and concentrates on the desired location st. Irradiate with ultraviolet rays.
  • FIG. 5 is a diagram illustrating an ultraviolet light irradiation system 304 of the present embodiment.
  • the ultraviolet light irradiation system 304 is characterized in that the optical fiber 14a has a pore structure.
  • the optical fiber 14a is, for example, a photonic crystal fiber (PCF: Photonic Crystal Fiber) or a hole assist fiber (HAF: Hole Assisted Fiber).
  • PCF Photonic Crystal Fiber
  • HAF Hole Assisted Fiber
  • a plurality of pores are formed in the propagation direction inside the OH group-containing quartz glass having a uniform refractive index, and ultraviolet light is waveguideed in a region surrounded by the pores.
  • the HAF has a core region of OH group-containing quartz glass and a clad region of glass having a refractive index lower than that of the core region, and has a plurality of pores surrounding the core region in the clad region. ..
  • the optical fiber 14a includes a full-core optical fiber, a hole-assisted optical fiber, a hole-structured optical fiber, a hollow core optical fiber, a coupled core type optical fiber, a full-core type multi-core optical fiber, and a hole-assisted multi-core optical fiber. It may be any of a hole structure type multi-core optical fiber, a hollow core type multi-core optical fiber, and a coupled core type multi-core optical fiber.
  • FIG. 6 is a diagram illustrating a cross-sectional structure of the optical fiber 14a.
  • Solid core optical fiber This optical fiber has one solid core 52 in the clad 60, which has a higher refractive index than the clad 60. "Fulfillment” means “not hollow”. The solid core can also be realized by forming an annular low refractive index region in the clad.
  • Pore Assisted Optical Fiber This optical fiber has a solid core 52 in the clad 60 and a plurality of holes 53 arranged on the outer periphery thereof. The medium of the pores 53 is air, and the refractive index of the air is sufficiently smaller than that of quartz glass.
  • the pore-assisted optical fiber has a function of returning the light leaked from the core 52 to the core 52 due to bending or the like, and has a feature that the bending loss is small.
  • This optical fiber has a plurality of holes 53 in the clad 60 and has a group of holes 53a, and has a lower refractive index than the host material (glass or the like). This structure is called a photonic crystal fiber. In this structure, a structure in which a high refractive index core having a changed refractive index does not exist can be adopted, and light can be confined by using the region 52a surrounded by the pores 53 as an effective core region.
  • photonic crystal fibers can reduce the effects of absorption and scattering loss due to core additives, as well as reduce bending loss and control non-linear effects. It is possible to realize optical characteristics that cannot be realized.
  • the core region is formed of air. Light can be confined in the core region by adopting a photonic band gap structure with a plurality of pores in the clad region or an anti-resonant structure with fine glass wires. This optical fiber has a small non-linear effect and is capable of high power or high energy laser supply.
  • Coupling Core Type Optical Fiber In this optical fiber, a plurality of solid cores 52 having a high refractive index are arranged in close proximity to each other in the clad 60. This optical fiber is guided by light wave coupling between the solid cores 52. Since the coupled core type optical fiber can disperse and send light by the number of cores, the power can be increased accordingly and efficient sterilization can be performed. In addition, the coupled core type optical fiber alleviates fiber deterioration due to ultraviolet rays and has a long life. There is a merit that it can be converted. (6) Solid core type multi-core optical fiber In this optical fiber, a plurality of solid cores 52 having a high refractive index are arranged apart from each other in the clad 60.
  • This optical fiber guides light between the solid cores 52 in a state where the light wave coupling is sufficiently small and the influence of the light wave coupling can be ignored. Therefore, the full-core multi-core optical fiber has an advantage that each core can be treated as an independent waveguide. (7) Pore-assisted multi-core optical fiber This optical fiber has a structure in which a plurality of the hole structure and the core region of the above (2) are arranged in the clad 60. (8) Pore structure type multi-core optical fiber This optical fiber has a structure in which a plurality of the hole structures of the above (3) are arranged in a clad 60.
  • Hollow core type multi-core optical fiber This optical fiber has a structure in which a plurality of the pore structures of the above (4) are arranged in a clad 60.
  • Coupling Core Type Multi-Core Optical Fiber This optical fiber has a structure in which a plurality of the coupling core structures of the above (5) are arranged in a clad 60.
  • FIG. 7 is a diagram illustrating the ultraviolet light irradiation system 305 of the present embodiment.
  • the ultraviolet light irradiation system 305 emits the ultraviolet light from the ultraviolet light source unit 11 to the irradiation unit 13, one ultraviolet light source unit 11 that generates ultraviolet light, one irradiation unit 13 that irradiates the desired location st with ultraviolet light UV.
  • a propagating optical fiber 14 is provided.
  • the ultraviolet light irradiation system 305 employs an optical fiber 14 that is extremely thin and does not require power supply for transmission of ultraviolet light. With this configuration, the ultraviolet light irradiation system 305 can lay the optical fiber 14 and arrange the irradiation unit 13 even in a small place where a person or a robot cannot enter, and can irradiate the ultraviolet light UV. Therefore, the ultraviolet light irradiation system 305 is highly versatile.
  • the ultraviolet light irradiation system 305 may further include a centralized control unit 15 that controls the parameters of the ultraviolet light source unit 11 so that a predetermined ultraviolet irradiation amount is irradiated to the desired location st.
  • the centralized control unit 15 controls the ultraviolet light source unit 11 so that a predetermined ultraviolet light irradiation amount can be obtained in the irradiation unit 13.
  • the ultraviolet light irradiation system 305 can irradiate the irradiation unit 13 with ultraviolet light at a level at which sufficient effects such as sterilization can be obtained while avoiding the influence on the human body without requiring the user for skill or knowledge. , Reliability and safety can also be ensured.
  • FIG. 8 is a diagram illustrating the ultraviolet light irradiation system 306 of the present embodiment.
  • the ultraviolet light irradiation system 306 includes N ultraviolet light source units 11 (N is an integer of 2 or more) that generate ultraviolet light, and N irradiation units 13 that irradiate the desired ultraviolet light to N desired locations st, respectively.
  • N optical fibers 14 for propagating the ultraviolet light from the ultraviolet light source unit 11 to the irradiation unit 13, and N ultraviolet light source units 11 are integrated in one centralized light source unit 10. It is characterized by that.
  • the ultraviolet light irradiation system 306 is a system in which N ultraviolet light irradiation systems 305 described with reference to FIG. 7 are arranged side by side, and N ultraviolet light source units 11 are integrated into one housing (intensive light source unit 10). Therefore, in addition to the versatility described in the ultraviolet light irradiation system 305, since the ultraviolet light source units 11 are gathered in one place, there is an advantage that management is easy.
  • the ultraviolet light irradiation system 306 may further include a centralized control unit 15 that controls the parameters of each ultraviolet light source unit 11 so that a predetermined ultraviolet irradiation amount is applied to each desired location st.
  • the centralized control unit 15 controls each ultraviolet light source unit 11 so that a predetermined ultraviolet light irradiation amount can be obtained in the irradiation unit 13. Therefore, the ultraviolet light irradiation system 306 can also secure the reliability and safety described in the ultraviolet light irradiation system 305.
  • FIG. 9 is a diagram illustrating an ultraviolet light irradiation system 307 of the present embodiment.
  • the distribution function unit 12 power-branches the input light from the ultraviolet light source unit 11 and outputs the input light to the plurality of optical fibers 14 with respect to the ultraviolet light irradiation system 301 of FIG.
  • the difference is that it is a Planar Lightwave Circuit) type optical splitter and that there is no centralized control unit 15.
  • the ultraviolet light irradiation system 307 cannot control the parameters of the ultraviolet light source unit 11 and the distribution function unit 12 so that a predetermined ultraviolet irradiation amount is irradiated to each desired location st.
  • the irradiation unit 13 can be arranged even in a small place where a person or a robot cannot enter, and ultraviolet light UV can be irradiated. Therefore, the ultraviolet light irradiation system 307 has an advantage of high versatility.
  • the present invention solves the problems in the prior art by utilizing the optical fiber and the centralized control for irradiation in the light irradiation system using ultraviolet light, and secures economical, reliable and safe. At the same time, it is possible to realize a system for sterilizing desired parts.
  • Intensive light source unit 11 Ultraviolet light source unit 11a: CW light source 11b: Optical combine unit 12: Distribution function unit 13: Irradiation unit 14, 14a: Optical fiber 15: Centralized control unit 16: Detection unit 16a: Ultraviolet light irradiation amount Detection unit 16b: Ultraviolet light reflection unit 16b2: Optical circulator 16b3: Reflected ultraviolet light detection unit 16c: Sensor 52: Full core 52a: Region 53: Pore 53a: Pore group 60: Clad 301 to 307: Ultraviolet light irradiation system ste : Desired location (area to be irradiated with ultraviolet light)

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

The purpose of the present invention is to provide an ultraviolet light radiation system having high economy, versatility, and operability in order to solve these problems. The ultraviolet light radiation system according to the present invention comprises one ultraviolet light source unit that generates ultraviolet light, a distribution function unit that causes the ultraviolet light to branch N times (where N is an integer equal to or greater than 2), N irradiation units that irradiate a desired location with the ultraviolet light, optical fibers that propagate the ultraviolet light from the distribution function unit to the irradiation units, and a centralized control unit that controls parameters of the ultraviolet light source unit and parameters of the distribution function unit so that the desired locations are irradiated with prescribed amounts of ultraviolet radiation.

Description

紫外光照射システムUltraviolet light irradiation system
 本開示は、紫外光を用いて殺菌やウィルスの不活性化を行う紫外光照射システムに関する。 The present disclosure relates to an ultraviolet light irradiation system that sterilizes and inactivates viruses using ultraviolet light.
 感染症予防などの目的から、紫外光を用いた殺菌やウィルスの不活性化を行うシステムの需要が高まっている。当該システムには、大きく3つのカテゴリの製品がある。なお、本明細書では、「殺菌等」と記載する場合、殺菌とウィルスの不活性化を意味するものとする。
(1)移動型殺菌ロボット
 非特許文献1の製品は、紫外光を照射する自律移動型のロボットである。当該ロボットは、病室などの建物内の部屋の中を移動しながら紫外光を照射することで、人手を介さず、自動で広い範囲の殺菌等を実現できる。
(2)据え置き型空気清浄機
 非特許文献2の製品は、天井や室内の所定の場所に設置され、室内の空気を循環しながら殺菌等する装置である。当該装置は、直接紫外光を照射せず、人体への影響がないため、安全性の高い殺菌が可能である。
(3)ポータブル型殺菌装置
 非特許文献3の製品は、紫外光源を搭載したポータブル型の装置である。ユーザが当該装置を所望のエリアに持って行って紫外光を照射できる。このため、当該装置は様々な場所で使用可能である。
For the purpose of preventing infectious diseases, there is an increasing demand for systems that use ultraviolet light to sterilize and inactivate viruses. The system has three major categories of products. In this specification, the term "sterilization, etc." means sterilization and virus inactivation.
(1) Mobile sterilization robot The product of Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light. By irradiating ultraviolet light while moving in a room in a building such as a hospital room, the robot can automatically realize a wide range of sterilization without human intervention.
(2) Stationary Air Purifier The product of Non-Patent Document 2 is a device that is installed on the ceiling or in a predetermined place in a room and sterilizes while circulating the air in the room. Since the device does not directly irradiate ultraviolet light and has no effect on the human body, highly safe sterilization is possible.
(3) Portable sterilizer The product of Non-Patent Document 3 is a portable device equipped with an ultraviolet light source. The user can bring the device to a desired area and irradiate it with ultraviolet light. Therefore, the device can be used in various places.
 しかし、非特許文献に記載される装置には次のような課題がある。
(A)経済性
 非特許文献1の製品は、高出力の紫外光を照射するため、装置が大掛かりとなり高価となる。このため、非特許文献1の製品には経済的なシステムの実現が困難という課題がある。
(B)汎用性
 非特許文献1の製品は、紫外光照射箇所がロボットが移動/進入できる場所に限定されるため、細かい場所や奥まった場所などへの紫外光の照射が困難である。
 非特許文献2の製品は、循環させた室内の空気を殺菌するため、殺菌等をしたい場所に直接紫外光を照射することができない。
 非特許文献3の製品は、例えば、細い管路や人が入られないエリアについては紫外光を照射することができない。
 このように、非特許文献の製品には、任意の場所に紫外光を照射できるという汎用性に課題がある。
(C)操作性
 非特許文献3の製品は、可搬性であり様々な場所で紫外光の照射が可能である。しかし、対象箇所で十分な殺菌等の効果が得られるためには、ユーザにスキルや知識を要求しており、操作性に課題がある。
However, the device described in the non-patent document has the following problems.
(A) Economic efficiency Since the product of Non-Patent Document 1 irradiates high-power ultraviolet light, the apparatus becomes large and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
(B) Versatility In the product of Non-Patent Document 1, it is difficult to irradiate a small place or a deep place with ultraviolet light because the ultraviolet light irradiation place is limited to the place where the robot can move / enter.
Since the product of Non-Patent Document 2 sterilizes the circulated indoor air, it is not possible to directly irradiate the place to be sterilized with ultraviolet light.
The product of Non-Patent Document 3 cannot irradiate ultraviolet light, for example, in a narrow pipeline or an area where people cannot enter.
As described above, the product of the non-patent document has a problem in versatility that the ultraviolet light can be irradiated to an arbitrary place.
(C) Operability The product of Non-Patent Document 3 is portable and can be irradiated with ultraviolet light in various places. However, in order to obtain sufficient effects such as sterilization at the target location, the user is required to have skills and knowledge, and there is a problem in operability.
 本発明は、これらの課題を解決するために、汎用性を改善でき、さらには経済性と操作性も改善できる紫外光照射システムを提供することを目的とする。 An object of the present invention is to provide an ultraviolet light irradiation system that can improve versatility and further improve economic efficiency and operability in order to solve these problems.
 上記目的を達成するために、本発明に係る紫外光照射システムは、紫外光源部と照射部とを光ファイバで接続することとした。 In order to achieve the above object, in the ultraviolet light irradiation system according to the present invention, the ultraviolet light source unit and the irradiation unit are connected by an optical fiber.
 具体的には、本発明に係る第1の紫外光照射システムは、
 紫外光を発生させる一つの紫外光源部と、
 前記紫外光を所望箇所に照射する一つの照射部と、
 前記紫外光源部から前記照射部へ前記紫外光を伝搬する光ファイバと、
を備える。
Specifically, the first ultraviolet light irradiation system according to the present invention is
One ultraviolet light source that generates ultraviolet light, and
One irradiation unit that irradiates the desired location with ultraviolet light, and
An optical fiber that propagates the ultraviolet light from the ultraviolet light source unit to the irradiation unit,
To prepare for.
 本紫外光照射システムは、非常に細く、かつ、紫外光の伝送に給電を要しない光ファイバを採用する。本紫外光照射システムは、この構成により、人やロボットが入られないような細かい場所についても、光ファイバを敷設するだけで紫外光を照射することができる。このため、本紫外光照射システムは、汎用性が大きい。 This ultraviolet light irradiation system uses an optical fiber that is extremely thin and does not require power supply for transmission of ultraviolet light. With this configuration, this ultraviolet light irradiation system can irradiate ultraviolet light even in small places where humans and robots cannot enter by simply laying an optical fiber. Therefore, this ultraviolet light irradiation system has great versatility.
 また、本発明に係る第2の紫外光照射システムは、
 紫外光を発生させるN個(Nは2以上の整数)の紫外光源部と、
 前記紫外光をN個の所望箇所にそれぞれ照射するN個の照射部と、
 前記紫外光源部から前記照射部へ前記紫外光をそれぞれ伝搬するN本の光ファイバと、
を備え、N個の前記紫外光源部が一か所に集約されていることを特徴とする。
Further, the second ultraviolet light irradiation system according to the present invention is
N ultraviolet light sources (N is an integer of 2 or more) that generate ultraviolet light, and
N irradiation units that irradiate N desired locations with ultraviolet light, and N irradiation units.
N optical fibers propagating the ultraviolet light from the ultraviolet light source unit to the irradiation unit, respectively.
The present invention is characterized in that the N ultraviolet light source units are integrated in one place.
 また、本発明に係る第3の紫外光照射システムは、
 紫外光を発生させる一つの紫外光源部と、
 前記紫外光をN分岐(Nは2以上の整数)する分配機能部と、
 前記紫外光をN個の所望箇所にそれぞれ照射するN個の照射部と、
 前記分配機能部から前記照射部へ前記紫外光をそれぞれ伝搬するN本の光ファイバと、を備える。
Further, the third ultraviolet light irradiation system according to the present invention is
One ultraviolet light source that generates ultraviolet light, and
A distribution function unit that N-branches the ultraviolet light (N is an integer of 2 or more),
N irradiation units that irradiate N desired locations with ultraviolet light, and N irradiation units.
It includes N optical fibers that propagate the ultraviolet light from the distribution function unit to the irradiation unit.
 本紫外光照射システムは、単一の紫外光源部と、殺菌等を行う複数の対象箇所の付近にそれぞれ設置する複数の照射部とを、分配機能部を介して光ファイバで接続するシステム構成としている。本紫外光照射システムは、この構成により、複数の対象箇所に対する殺菌等の作業において単一の紫外光源部を共用できる。このため、本紫外光照射システムは、経済的である。 This ultraviolet light irradiation system has a system configuration in which a single ultraviolet light source unit and a plurality of irradiation units installed near a plurality of target locations for sterilization, etc. are connected by an optical fiber via a distribution function unit. There is. With this configuration, this ultraviolet light irradiation system can share a single ultraviolet light source unit in work such as sterilization of a plurality of target areas. Therefore, this ultraviolet light irradiation system is economical.
 上記の紫外光照射システムは、前記所望箇所に所定の紫外照射量が照射されるように前記紫外光源部のパラメータを制御する集中制御部をさらに備えることを特徴とする。特に、第3の紫外光照射システムは、前記所望箇所に所定の紫外照射量が照射されるように前記紫外光源部のパラメータと前記分配機能部のパラメータを制御する集中制御部をさらに備える。 The ultraviolet light irradiation system is characterized by further including a centralized control unit that controls parameters of the ultraviolet light source unit so that a predetermined ultraviolet irradiation amount is irradiated to the desired location. In particular, the third ultraviolet light irradiation system further includes a centralized control unit that controls the parameters of the ultraviolet light source unit and the parameters of the distribution function unit so that a predetermined ultraviolet irradiation amount is irradiated to the desired portion.
 本紫外光照射システムは、それぞれの照射部において所定の紫外光照射量が得られるように紫外光源部や分配機能部を集中制御部で制御する。本紫外光照射システムは、この構成により、ユーザにスキルや知識を求めることなく、各照射部において、人体への影響を避けつつ、殺菌等の十分な効果が得られるレベルの紫外光を照射でき、信頼性と安全性も確保できる。 In this ultraviolet light irradiation system, the ultraviolet light source unit and the distribution function unit are controlled by the centralized control unit so that a predetermined ultraviolet light irradiation amount can be obtained in each irradiation unit. With this configuration, this ultraviolet light irradiation system can irradiate each irradiation part with ultraviolet light at a level that can obtain sufficient effects such as sterilization while avoiding the influence on the human body without requiring skill or knowledge from the user. , Reliability and safety can also be ensured.
 従って、本発明は、汎用性を改善でき、さらには経済性と操作性も改善できる紫外光照射システムを提供することができる。 Therefore, the present invention can provide an ultraviolet light irradiation system that can improve versatility and further improve economic efficiency and operability.
 本発明に係る紫外光照射システムの前記集中制御部は、前記分配機能部と前記光ファイバでの損失に基づいて前記パラメータを制御することを特徴とする。集中制御部が、各照射部までの光ファイバ伝送損失や結合損失などの各種損失を考慮した上で制御するので、各照射部で所定の紫外照射量が得られる。 The centralized control unit of the ultraviolet light irradiation system according to the present invention is characterized in that the parameters are controlled based on the loss in the distribution function unit and the optical fiber. Since the centralized control unit controls after considering various losses such as optical fiber transmission loss and coupling loss to each irradiation unit, a predetermined ultraviolet irradiation amount can be obtained in each irradiation unit.
 本発明に係る紫外光照射システムの前記集中制御部は、前記所望箇所への紫外照射量が偏るように前記パラメータを制御することを特徴とする。集中制御部が、紫外照射量に偏りを持たせることで、感染リスクが高いエリアの照射部に集中的に紫外光を照射できる。 The centralized control unit of the ultraviolet light irradiation system according to the present invention is characterized in that the parameters are controlled so that the amount of ultraviolet irradiation to the desired portion is biased. By making the ultraviolet irradiation amount biased by the centralized control unit, it is possible to intensively irradiate the irradiation area in the area where there is a high risk of infection with ultraviolet light.
 本発明に係る紫外光照射システムの前記集中制御部は、前記所望箇所への紫外照射量が時間変動するように、且つトータルの紫外照射量が所定量をみたすように、前記パラメータを制御することを特徴とする。集中制御部が、人がいる時間帯は紫外光を低減させ、人がいない時間帯は紫外光を増加させて、全体的には所定の紫外照射量が得られるように制御する。これにより、人体への紫外照射というリスクを回避しつつ、殺菌等の効果を得ることができる。 The centralized control unit of the ultraviolet light irradiation system according to the present invention controls the parameters so that the ultraviolet irradiation amount to the desired location fluctuates with time and the total ultraviolet irradiation amount satisfies a predetermined amount. It is characterized by. The centralized control unit reduces the ultraviolet light during the time when there are people and increases the ultraviolet light during the time when there are no people, and controls so that a predetermined ultraviolet irradiation amount can be obtained as a whole. As a result, it is possible to obtain effects such as sterilization while avoiding the risk of ultraviolet irradiation on the human body.
 本発明に係る紫外光照射システムの前記集中制御部は、時間毎に前記紫外光の波長を変化させるように前記紫外光源部のパラメータを制御することを特徴とする。集中制御部が、人がいる時間帯は人体に影響が小さい波長とし、人がいない時間帯は殺菌等の効果の高い波長とするように制御する。これにより、人体への紫外照射というリスクを回避しつつ、殺菌等の効果を得ることができる。 The centralized control unit of the ultraviolet light irradiation system according to the present invention is characterized in that the parameters of the ultraviolet light source unit are controlled so as to change the wavelength of the ultraviolet light every hour. The centralized control unit controls the wavelength so that the wavelength has a small effect on the human body during the time when there is a person, and the wavelength has a high effect such as sterilization during the time when there is no person. As a result, it is possible to obtain effects such as sterilization while avoiding the risk of ultraviolet irradiation on the human body.
 本発明に係る紫外光照射システムは、前記紫外光照射量を検出する検出部をさらに備え、前記集中制御部は、前記検出部が検出した前記紫外光照射量に基づいて前記パラメータを制御することを特徴とする。検出部を利用して紫外光のフィードバック制御ができる。 The ultraviolet light irradiation system according to the present invention further includes a detection unit for detecting the ultraviolet light irradiation amount, and the centralized control unit controls the parameters based on the ultraviolet light irradiation amount detected by the detection unit. It is characterized by. Feedback control of ultraviolet light can be performed by using the detection unit.
 本発明に係る紫外光照射システムは、前記所望箇所の情報を収集するセンサをさらに備え、前記集中制御部は、前記センサが収集した情報に基づいて前記パラメータを制御することを特徴とする。センサを利用して対象箇所の人存否や人口密度を検知でき、それらに基づいて紫外光の強度調整ができる。 The ultraviolet light irradiation system according to the present invention further includes a sensor that collects information on the desired location, and the centralized control unit controls the parameters based on the information collected by the sensor. Sensors can be used to detect the presence or absence of people and the population density of the target area, and the intensity of ultraviolet light can be adjusted based on these.
 本発明に係る紫外光照射システムの前記光ファイバは、充実コア光ファイバ、空孔アシスト光ファイバ、空孔構造光ファイバ、中空コア光ファイバ、結合コア型光ファイバ、充実コア型マルチコア光ファイバ、空孔アシスト型マルチコア光ファイバ、空孔構造型マルチコア光ファイバ、中空コア型マルチコア光ファイバ、及び結合コア型マルチコア光ファイバのいずれかであることを特徴とする。当該光ファイバにより紫外光の伝送光強度の増大や屈曲部等における漏洩損失の低減が可能である。 The optical fiber of the ultraviolet light irradiation system according to the present invention includes a full-core optical fiber, a hole-assisted optical fiber, a hole-structured optical fiber, a hollow core optical fiber, a coupled core type optical fiber, a full-core multi-core optical fiber, and an empty fiber. It is characterized by being one of a hole assist type multi-core optical fiber, a hole structure type multi-core optical fiber, a hollow core type multi-core optical fiber, and a coupled core type multi-core optical fiber. The optical fiber can increase the transmitted light intensity of ultraviolet light and reduce leakage loss at bent portions and the like.
 なお、上記各発明は、可能な限り組み合わせることができる。 The above inventions can be combined as much as possible.
 本発明は、汎用性を改善でき、さらには経済性と操作性も改善できる紫外光照射システムを提供することができる。 The present invention can provide an ultraviolet light irradiation system that can improve versatility, and can also improve economy and operability.
本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムの紫外光源部を説明する図である。It is a figure explaining the ultraviolet light source part of the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 光ファイバの断面構造を説明する図である。It is a figure explaining the cross-sectional structure of an optical fiber. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention.
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 An embodiment of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In addition, the components having the same reference numerals in the present specification and the drawings shall indicate the same components.
(実施形態1)
 図1は、本実施形態の紫外光照射システム301を説明する図である。紫外光照射システム301は、
 紫外光を発生させる一つの紫外光源部11と、
 前記紫外光をN分岐(Nは2以上の整数)する分配機能部12と、
 前記紫外光を所望箇所steに照射するN個の照射部13と、
 分配機能部12から照射部13へ前記紫外光を伝搬する光ファイバ14と、
 所望箇所steに所定の紫外照射量が照射されるように紫外光源部11のパラメータと分配機能部12のパラメータを制御する集中制御部15と、
を備える。
(Embodiment 1)
FIG. 1 is a diagram illustrating an ultraviolet light irradiation system 301 of the present embodiment. The ultraviolet light irradiation system 301 is
One ultraviolet light source unit 11 that generates ultraviolet light,
The distribution function unit 12 that N-branches the ultraviolet light (N is an integer of 2 or more),
The N irradiation units 13 that irradiate the desired location st with the ultraviolet light, and
The optical fiber 14 that propagates the ultraviolet light from the distribution function unit 12 to the irradiation unit 13,
A centralized control unit 15 that controls the parameters of the ultraviolet light source unit 11 and the parameters of the distribution function unit 12 so that a predetermined ultraviolet irradiation amount is applied to the desired location st.
To prepare for.
 紫外光源部11は、殺菌に有効である紫外領域の光を出力する。紫外光源部11は、出力、波長、波形(パルスなど)についてのパラメータを持ち、パラメータに応じた出力、波長、波形の紫外光を出力する。 The ultraviolet light source unit 11 outputs light in an ultraviolet region that is effective for sterilization. The ultraviolet light source unit 11 has parameters for output, wavelength, and waveform (pulse, etc.), and outputs ultraviolet light having an output, wavelength, and waveform according to the parameters.
 図2は、紫外光源部11の構造を説明する図である。
 図2(A)は、紫外光源部11が単一のCW(Continuous Wave:連続波)光源である構成例である。例えば、紫外光源部11は、半導体レーザ、ファイバレーザ、又はエキシマレーザである。図2(A)は、紫外光の波長が固定である場合の構成である。この構成は、図2(C)や(D)の構成に比べて簡素且つ低コストである。
FIG. 2 is a diagram illustrating the structure of the ultraviolet light source unit 11.
FIG. 2A is a configuration example in which the ultraviolet light source unit 11 is a single CW (Continuous Wave) light source. For example, the ultraviolet light source unit 11 is a semiconductor laser, a fiber laser, or an excimer laser. FIG. 2A shows a configuration in which the wavelength of ultraviolet light is fixed. This configuration is simpler and cheaper than the configurations shown in FIGS. 2C and 2D.
 図2(B)は、紫外光源部11が単一のパルス光源である構成例である。例えば、紫外光源部11は、半導体レーザ、ファイバレーザ、又はエキシマレーザである。図2(B)も、紫外光の波長が固定である場合の構成である。この構成も、図2(C)や(D)の構成に比べて簡素且つ低コストである。また、この構成は、光パルスなので、短時間に高エネルギの光を放射し、瞬間的な殺菌等ができる。 FIG. 2B is a configuration example in which the ultraviolet light source unit 11 is a single pulse light source. For example, the ultraviolet light source unit 11 is a semiconductor laser, a fiber laser, or an excimer laser. FIG. 2B also has a configuration in which the wavelength of ultraviolet light is fixed. This configuration is also simpler and lower cost than the configurations shown in FIGS. 2C and 2D. In addition, since this configuration is an optical pulse, it emits high-energy light in a short time and can be sterilized instantaneously.
 図2(C)は、紫外光源部11が単一の波長可変光源を用いる構成例である。例えば、紫外光源部11は、光源に印可する電流や、外部発振型光源における発振波長などを調整する構成である。図2(C)の構成は、例えば、人の存否に応じて、人体に影響が小さい波長や、殺菌等に効果が高い波長を切り替えて放射するなど、状況に応じて波長を切り替える運用ができる。 FIG. 2C is a configuration example in which the ultraviolet light source unit 11 uses a single tunable light source. For example, the ultraviolet light source unit 11 is configured to adjust the current applied to the light source, the oscillation wavelength of the external oscillation type light source, and the like. The configuration of FIG. 2C can be operated to switch wavelengths according to the situation, for example, by switching wavelengths that have a small effect on the human body or wavelengths that are highly effective for sterilization, etc., depending on the presence or absence of a person. ..
 図2(D)は、紫外光源部11が複数の光源の出力光を合波させる構成例である。例えば、紫外光源部11は、複数のCW光源11a及び光合波部11bを有する。CW光源11aは、例えば、半導体レーザ、ファイバレーザ、又はエキシマレーザであり、それぞれ出力する波長が異なる。光合波部11bは、ファイバ型又は導波路型の光カプラ、あるいはWDMカプラである。図2(D)の構成も、状況に応じて波長を切り替える運用ができる。さらに、図2(D)の構成は、複数の光源を組み合わせることで、図2(C)のように単一の波長可変光源の性能に制限されず、より幅広く、自由度の高い波長を出力することができる。 FIG. 2D is a configuration example in which the ultraviolet light source unit 11 combines the output lights of a plurality of light sources. For example, the ultraviolet light source unit 11 has a plurality of CW light sources 11a and an optical combine unit 11b. The CW light source 11a is, for example, a semiconductor laser, a fiber laser, or an excimer laser, and each has a different output wavelength. The photosynthetic unit 11b is a fiber-type or waveguide-type optical coupler, or a WDM coupler. The configuration of FIG. 2D can also be operated by switching the wavelength depending on the situation. Further, the configuration of FIG. 2D is not limited to the performance of a single tunable light source as shown in FIG. 2C by combining a plurality of light sources, and outputs a wider range of wavelengths with a high degree of freedom. can do.
 分配機能部12は、紫外光源部11からの紫外光を、複数の照射部13に分配する。分配機能部12は、分配率や伝送可否についてのパラメータを持ち、パラメータに応じて各照射部13への紫外光の分配や伝送のオン/オフを行う。分配機能部12は、例えば、ファイバ型や空間型の光スイッチである。 The distribution function unit 12 distributes the ultraviolet light from the ultraviolet light source unit 11 to a plurality of irradiation units 13. The distribution function unit 12 has parameters regarding the distribution rate and transmission availability, and distributes ultraviolet light to each irradiation unit 13 and turns on / off transmission according to the parameters. The distribution function unit 12 is, for example, a fiber type or spatial type optical switch.
 照射部13は、光ファイバ14で伝送された紫外光を、殺菌等を行う所定の対象箇所(所望箇所ste)に照射する。照射部13は、紫外光の波長に対して設計されたレンズなどの光学系で構成されている。 The irradiation unit 13 irradiates the ultraviolet light transmitted by the optical fiber 14 to a predetermined target location (desired location ste) to be sterilized or the like. The irradiation unit 13 is composed of an optical system such as a lens designed for the wavelength of ultraviolet light.
 光ファイバ14は、分配機能部12で分配された紫外光をそれぞれの照射部13まで伝搬する。光ファイバなので従来技術のロボットや装置が入り込めない細かい場所などにも敷設することができる。 The optical fiber 14 propagates the ultraviolet light distributed by the distribution function unit 12 to each irradiation unit 13. Since it is an optical fiber, it can be laid in small places where conventional robots and devices cannot enter.
 集中制御部15は、対象箇所に応じて紫外光源部11のパラメータと分配機能部12のパラメータを制御する。集中制御部15は、次のような制御が可能である。
(例1)集中制御部15は、各照射部13までの伝送損失や結合損失などの各種損失に基づいて、各照射部13で所定の紫外照射量が得られるパラメータを設定する。
(例2)集中制御部15は、感染リスクが高い所望箇所steの照射部13に集中的に紫外光を供給するパラメータを設定する。
(例3)集中制御部15は、人が存在/作業しており、紫外照射による影響のリスクがある時間帯では紫外光の照射を避け、人がいない時間帯には多めの紫外光を照射し、全体的には所定の紫外照射量が得られるように時間的にパラメータを変更する。
(例4)集中制御部15は、人が存在/作業しており、紫外照射による影響のリスクがある時間帯では、人体に影響が小さい波長の紫外光となるようにパラメータを設定する。
The centralized control unit 15 controls the parameters of the ultraviolet light source unit 11 and the parameters of the distribution function unit 12 according to the target location. The centralized control unit 15 can perform the following controls.
(Example 1) The centralized control unit 15 sets parameters for obtaining a predetermined ultraviolet irradiation amount in each irradiation unit 13 based on various losses such as transmission loss and coupling loss to each irradiation unit 13.
(Example 2) The centralized control unit 15 sets a parameter for intensively supplying ultraviolet light to the irradiation unit 13 at a desired location ste where the risk of infection is high.
(Example 3) The centralized control unit 15 avoids ultraviolet light irradiation during a time when a person is present / working and there is a risk of being affected by ultraviolet irradiation, and irradiates a large amount of ultraviolet light during a time when there is no person. However, the parameters are changed in time so that a predetermined ultraviolet irradiation amount can be obtained as a whole.
(Example 4) The centralized control unit 15 sets parameters so that the wavelength of ultraviolet light has a small effect on the human body during a time zone in which a person is present / working and there is a risk of being affected by ultraviolet irradiation.
 例えば、作業者が、各照射部13における紫外照射量を手動で測定し、その測定値を基に紫外光源部11の照射強度、および分配機能部12の分配率などを決定し、集中制御部15にパラメータを設定してもよい。集中制御部15は当該パラメータで紫外光源部11と分配機能部12を制御する。なお、集中制御部15は紫外光源部11と分配機能部12のいずれか一方を制御してもよい。 For example, an operator manually measures the amount of ultraviolet irradiation in each irradiation unit 13, determines the irradiation intensity of the ultraviolet light source unit 11 and the distribution rate of the distribution function unit 12 based on the measured values, and centralizes control unit. The parameter may be set to 15. The centralized control unit 15 controls the ultraviolet light source unit 11 and the distribution function unit 12 with the parameters. The centralized control unit 15 may control either the ultraviolet light source unit 11 or the distribution function unit 12.
(実施形態2)
 図3は、本実施形態の紫外光照射システム302を説明する図である。紫外光照射システム302は、図1の紫外光照射システム301に対して前記紫外光照射量を検出する検出部16をさらに備え、集中制御部15は、検出部16が検出した前記紫外光照射量に基づいて前記パラメータを制御することを特徴とする。
(Embodiment 2)
FIG. 3 is a diagram illustrating an ultraviolet light irradiation system 302 of the present embodiment. The ultraviolet light irradiation system 302 further includes a detection unit 16 that detects the ultraviolet light irradiation amount with respect to the ultraviolet light irradiation system 301 of FIG. 1, and the centralized control unit 15 has the ultraviolet light irradiation amount detected by the detection unit 16. It is characterized in that the parameter is controlled based on the above.
 紫外光照射システム302は、紫外光の照射量を測定する検出部16aを持つ。検出部16aは、照射部13の紫外光出射端付近に設置され、出射される紫外光の強度を測定する受光素子である。例えば、検出部16aは、フォトダイオードである。検出部16aは、測定した紫外光の強度を集中制御部15へ通知する。
 集中制御部15は、検出部16aの測定値を基にパラメータを調整し、紫外光源部11の照射強度、および、分配機能部12の分配率などを調節する。
The ultraviolet light irradiation system 302 has a detection unit 16a for measuring the irradiation amount of ultraviolet light. The detection unit 16a is a light receiving element installed near the ultraviolet light emission end of the irradiation unit 13 and measuring the intensity of the emitted ultraviolet light. For example, the detection unit 16a is a photodiode. The detection unit 16a notifies the centralized control unit 15 of the measured intensity of the ultraviolet light.
The centralized control unit 15 adjusts parameters based on the measured values of the detection unit 16a, and adjusts the irradiation intensity of the ultraviolet light source unit 11 and the distribution rate of the distribution function unit 12.
 紫外光照射システム302は、紫外光の照射量を測定する検出部16bを持つ。検出部16bは、反射部16b1、光サーキュレータ16b2及び反射紫外光検出部16b3を有する。反射部16b1は、照射部13に搭載されており、光ファイバ14が伝搬してきた紫外光の一部を透過して所望箇所steへ照射させ、他を反射するハーフミラーである。反射部16b1で反射された反射紫外光は光ファイバ14を分配機能部12側へ戻り光サーキュレータ16b2で反射紫外光検出部16b3に入力される。反射紫外光検出部16b3は反射紫外光の強度を測定する受光素子である。例えば、反射紫外光検出部16b3は、フォトダイオードである。反射紫外光検出部16b3は、測定した反射紫外光の強度を集中制御部15へ通知する。
 集中制御部15は、反射紫外光の強度値から伝送損失や結合損失などの各種損失を推定する。そして、集中制御部15は、この推定値を基にパラメータを調整し、紫外光源部11の照射強度、および、分配機能部12の分配率などを調節する。
The ultraviolet light irradiation system 302 has a detection unit 16b for measuring the irradiation amount of ultraviolet light. The detection unit 16b includes a reflection unit 16b1, an optical circulator 16b2, and a reflected ultraviolet light detection unit 16b3. The reflection unit 16b1 is mounted on the irradiation unit 13, and is a half mirror that transmits a part of the ultraviolet light propagated by the optical fiber 14 to irradiate the desired location st and reflects the other. The reflected ultraviolet light reflected by the reflecting unit 16b1 returns the optical fiber 14 to the distribution function unit 12 side and is input to the reflected ultraviolet light detecting unit 16b3 by the optical circulator 16b2. The reflected ultraviolet light detection unit 16b3 is a light receiving element that measures the intensity of the reflected ultraviolet light. For example, the reflected ultraviolet light detection unit 16b3 is a photodiode. The reflected ultraviolet light detection unit 16b3 notifies the centralized control unit 15 of the measured intensity of the reflected ultraviolet light.
The centralized control unit 15 estimates various losses such as transmission loss and coupling loss from the intensity value of the reflected ultraviolet light. Then, the centralized control unit 15 adjusts the parameters based on this estimated value, and adjusts the irradiation intensity of the ultraviolet light source unit 11 and the distribution rate of the distribution function unit 12.
(実施形態3)
 図4は、本実施形態の紫外光照射システム303を説明する図である。紫外光照射システム303は、図1の紫外光照射システム301に対して前記所望箇所の情報を収集するセンサ16cをさらに備え、集中制御部15は、センサ16cが収集した情報に基づいて前記パラメータを制御することを特徴とする。
(Embodiment 3)
FIG. 4 is a diagram illustrating an ultraviolet light irradiation system 303 of the present embodiment. The ultraviolet light irradiation system 303 further includes a sensor 16c that collects information on the desired location with respect to the ultraviolet light irradiation system 301 of FIG. 1, and the centralized control unit 15 sets the parameters based on the information collected by the sensor 16c. It is characterized by controlling.
 紫外光照射システム303は、所望箇所steの各種情報を取得するセンサ16cを持つ。センサ16cは、情報として映像を取得するカメラ、温度を検出する赤外線センサ、あるいは音声を収音するマイクである。各センサ16cで取得した情報は集中制御部15に集約される。センサ16cと集中制御部15とは、各種の有線通信方式(Ethernet(登録商標)など)、無線通信方式(無線LANなど)で接続されている。 The ultraviolet light irradiation system 303 has a sensor 16c that acquires various information of the desired location ste. The sensor 16c is a camera that acquires images as information, an infrared sensor that detects temperature, or a microphone that collects sound. The information acquired by each sensor 16c is collected in the centralized control unit 15. The sensor 16c and the centralized control unit 15 are connected by various wired communication methods (Ethernet (registered trademark) and the like) and wireless communication methods (wireless LAN and the like).
 集中制御部15は、各センサからの情報を基に、実施形態1で説明した例3及び例4の制御を行う。つまり、集中制御部15は、カメラの映像情報を基に、所望箇所steに人がいる箇所/時間帯を把握し、その箇所/時間帯について紫外光の照射をOffとする。また、集中制御部15は、マイク/赤外センサからの温度情報/音声情報を基に、人の密集度を割り出し、この箇所を感染リスクが高いとみなして、当該所望箇所steに集中的に紫外照射する。 The centralized control unit 15 controls Examples 3 and 4 described in the first embodiment based on the information from each sensor. That is, the centralized control unit 15 grasps the place / time zone where the person is in the desired place ste based on the image information of the camera, and turns off the irradiation of ultraviolet light for the place / time zone. Further, the centralized control unit 15 determines the density of people based on the temperature information / voice information from the microphone / infrared sensor, considers this portion to have a high risk of infection, and concentrates on the desired location st. Irradiate with ultraviolet rays.
(実施形態4)
 図5は、本実施形態の紫外光照射システム304を説明する図である。紫外光照射システム304は、光ファイバ14aが空孔構造を有することを特徴とする。光ファイバ14aは、例えば、フォトニック結晶ファイバ(PCF:Photonic Crystal Fiber)、もしくはホールアシストファイバ(HAF:Hole Assisted Fiber)である。PCFは、屈折率が均一なOH基含有石英ガラスの内部に複数の空孔が伝搬方向に形成されており、空孔で囲まれた領域で紫外光を導波する。また、HAFは、OH基含有石英ガラスのコア領域と、コア領域よりも屈折率が低いガラスのクラッド領域を有し、前記クラッド領域内に前記コア領域を取り囲む複数の空孔を有する構成である。
(Embodiment 4)
FIG. 5 is a diagram illustrating an ultraviolet light irradiation system 304 of the present embodiment. The ultraviolet light irradiation system 304 is characterized in that the optical fiber 14a has a pore structure. The optical fiber 14a is, for example, a photonic crystal fiber (PCF: Photonic Crystal Fiber) or a hole assist fiber (HAF: Hole Assisted Fiber). In the PCF, a plurality of pores are formed in the propagation direction inside the OH group-containing quartz glass having a uniform refractive index, and ultraviolet light is waveguideed in a region surrounded by the pores. Further, the HAF has a core region of OH group-containing quartz glass and a clad region of glass having a refractive index lower than that of the core region, and has a plurality of pores surrounding the core region in the clad region. ..
 分配機能部12と照射部13とを光ファイバ14aで接続することで、強度の大きい紫外光を伝搬でき、短時間での殺菌等が可能となる。 By connecting the distribution function unit 12 and the irradiation unit 13 with an optical fiber 14a, high-intensity ultraviolet light can be propagated, and sterilization and the like can be performed in a short time.
 また、光ファイバ14aは、充実コア光ファイバ、空孔アシスト光ファイバ、空孔構造光ファイバ、中空コア光ファイバ、結合コア型光ファイバ、充実コア型マルチコア光ファイバ、空孔アシスト型マルチコア光ファイバ、空孔構造型マルチコア光ファイバ、中空コア型マルチコア光ファイバ、及び結合コア型マルチコア光ファイバのいずれかであってもよい。 Further, the optical fiber 14a includes a full-core optical fiber, a hole-assisted optical fiber, a hole-structured optical fiber, a hollow core optical fiber, a coupled core type optical fiber, a full-core type multi-core optical fiber, and a hole-assisted multi-core optical fiber. It may be any of a hole structure type multi-core optical fiber, a hollow core type multi-core optical fiber, and a coupled core type multi-core optical fiber.
 図6は、光ファイバ14aの断面構造を説明する図である。
(1)充実コア光ファイバ
 この光ファイバは、クラッド60の中にクラッド60より高屈折率である1つの充実コア52を有する。「充実」とは「空洞ではない」という意味である。尚、充実コアは、クラッド内に円環状の低屈折率領域を形成することでも実現できる。
(2)空孔アシスト光ファイバ
 この光ファイバは、クラッド60の中に充実コア52とその外周に配置された複数の空孔53を有する。空孔53の媒質は空気であり、空気の屈折率は石英系ガラスに比べ十分小さい。このため、空孔アシスト光ファイバは、曲げなどでコア52から漏れた光を再びコア52に戻す機能があり、曲げ損失が小さいという特徴がある。
(3)空孔構造光ファイバ
この光ファイバは、クラッド60の中に複数の空孔53の空孔群53aを有し、ホスト材料(ガラス等)よりも実効的に屈折率が低い。本構造は、フォトニック結晶ファイバと呼ばれる。本構造には、屈折率を変化させた高屈折率コアが存在しない構造をとることができ、空孔53に取り囲まれた領域52aを実効的なコア領域として、光を閉じ込めることができる。充実コアを有する光ファイバに比べ、フォトニック結晶ファイバは、コアの添加剤による吸収や散乱損失の影響を低減することができるとともに、曲げ損失の低減や非線形効果の制御等、充実型光ファイバでは実現し得ない光学特性を実現できる。
(4)中空コア光ファイバ
この光ファイバは、コア領域が空気で形成される。クラッド領域に複数の空孔によるフォトニックバンドギャップ構造もしくはガラス細線によるアンチレゾナント構造をとることによって光をコア領域に閉じ込めることができる。この光ファイバは、非線形効果が小さく、高出力または高エネルギーレーザ供給が可能である。
(5)結合コア型光ファイバ
 この光ファイバは、クラッド60の中に複数の高屈折率である充実コア52が近接して配置される。この光ファイバは、充実コア52間で光波結合で光を導波する。結合コア型光ファイバは、コア数分だけ光を分散して送れるので、その分ハイパワー化して効率的な殺菌ができる、また、結合コア型光ファイバは、紫外線によるファイバ劣化を緩和し長寿命化できるというメリットがある。
(6)充実コア型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に複数の高屈折率である充実コア52が離れて配置される。この光ファイバは、充実コア52間で光波結合を十分小さくして光波結合の影響が無視できる状態で光を導波する。このため、充実コア型マルチコア光ファイバは、各コアを独立な導波路として扱えるというメリットがある。
(7)空孔アシスト型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に上記(2)の空孔構造およびコア領域が複数配置された構造である。
(8)空孔構造型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に上記(3)の空孔構造が複数配置された構造である。
(9)中空コア型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に上記(4)の空孔構造が複数配置された構造である。
(10)結合コア型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に上記(5)の結合コア構造が複数配置された構造である。
FIG. 6 is a diagram illustrating a cross-sectional structure of the optical fiber 14a.
(1) Solid core optical fiber This optical fiber has one solid core 52 in the clad 60, which has a higher refractive index than the clad 60. "Fulfillment" means "not hollow". The solid core can also be realized by forming an annular low refractive index region in the clad.
(2) Pore Assisted Optical Fiber This optical fiber has a solid core 52 in the clad 60 and a plurality of holes 53 arranged on the outer periphery thereof. The medium of the pores 53 is air, and the refractive index of the air is sufficiently smaller than that of quartz glass. Therefore, the pore-assisted optical fiber has a function of returning the light leaked from the core 52 to the core 52 due to bending or the like, and has a feature that the bending loss is small.
(3) Pore Structure Optical Fiber This optical fiber has a plurality of holes 53 in the clad 60 and has a group of holes 53a, and has a lower refractive index than the host material (glass or the like). This structure is called a photonic crystal fiber. In this structure, a structure in which a high refractive index core having a changed refractive index does not exist can be adopted, and light can be confined by using the region 52a surrounded by the pores 53 as an effective core region. Compared to optical fibers with solid cores, photonic crystal fibers can reduce the effects of absorption and scattering loss due to core additives, as well as reduce bending loss and control non-linear effects. It is possible to realize optical characteristics that cannot be realized.
(4) Hollow core optical fiber In this optical fiber, the core region is formed of air. Light can be confined in the core region by adopting a photonic band gap structure with a plurality of pores in the clad region or an anti-resonant structure with fine glass wires. This optical fiber has a small non-linear effect and is capable of high power or high energy laser supply.
(5) Coupling Core Type Optical Fiber In this optical fiber, a plurality of solid cores 52 having a high refractive index are arranged in close proximity to each other in the clad 60. This optical fiber is guided by light wave coupling between the solid cores 52. Since the coupled core type optical fiber can disperse and send light by the number of cores, the power can be increased accordingly and efficient sterilization can be performed. In addition, the coupled core type optical fiber alleviates fiber deterioration due to ultraviolet rays and has a long life. There is a merit that it can be converted.
(6) Solid core type multi-core optical fiber In this optical fiber, a plurality of solid cores 52 having a high refractive index are arranged apart from each other in the clad 60. This optical fiber guides light between the solid cores 52 in a state where the light wave coupling is sufficiently small and the influence of the light wave coupling can be ignored. Therefore, the full-core multi-core optical fiber has an advantage that each core can be treated as an independent waveguide.
(7) Pore-assisted multi-core optical fiber This optical fiber has a structure in which a plurality of the hole structure and the core region of the above (2) are arranged in the clad 60.
(8) Pore structure type multi-core optical fiber This optical fiber has a structure in which a plurality of the hole structures of the above (3) are arranged in a clad 60.
(9) Hollow core type multi-core optical fiber This optical fiber has a structure in which a plurality of the pore structures of the above (4) are arranged in a clad 60.
(10) Coupling Core Type Multi-Core Optical Fiber This optical fiber has a structure in which a plurality of the coupling core structures of the above (5) are arranged in a clad 60.
(実施形態5)
 図7は、本実施形態の紫外光照射システム305を説明する図である。紫外光照射システム305は、紫外光を発生させる一つの紫外光源部11と、紫外光UVを所望箇所steに照射する一つの照射部13と、紫外光源部11から照射部13へ前記紫外光を伝搬する光ファイバ14と、を備える。
(Embodiment 5)
FIG. 7 is a diagram illustrating the ultraviolet light irradiation system 305 of the present embodiment. The ultraviolet light irradiation system 305 emits the ultraviolet light from the ultraviolet light source unit 11 to the irradiation unit 13, one ultraviolet light source unit 11 that generates ultraviolet light, one irradiation unit 13 that irradiates the desired location st with ultraviolet light UV. A propagating optical fiber 14 is provided.
 紫外光照射システム305は、非常に細く、かつ、紫外光の伝送に給電を要しない光ファイバ14を採用する。紫外光照射システム305は、この構成により、人やロボットが入られないような細かい場所についても、光ファイバ14を敷設して照射部13を配置でき、紫外光UVを照射することができる。このため、紫外光照射システム305は、汎用性が大きい。 The ultraviolet light irradiation system 305 employs an optical fiber 14 that is extremely thin and does not require power supply for transmission of ultraviolet light. With this configuration, the ultraviolet light irradiation system 305 can lay the optical fiber 14 and arrange the irradiation unit 13 even in a small place where a person or a robot cannot enter, and can irradiate the ultraviolet light UV. Therefore, the ultraviolet light irradiation system 305 is highly versatile.
 また、紫外光照射システム305は、所望箇所steに所定の紫外照射量が照射されるように紫外光源部11のパラメータを制御する集中制御部15をさらに備えてもよい。集中制御部15は、照射部13において所定の紫外光照射量が得られるように紫外光源部11を制御する。紫外光照射システム305は、この構成により、ユーザにスキルや知識を求めることなく、照射部13において、人体への影響を避けつつ、殺菌等の十分な効果が得られるレベルの紫外光を照射でき、信頼性と安全性も確保できる。 Further, the ultraviolet light irradiation system 305 may further include a centralized control unit 15 that controls the parameters of the ultraviolet light source unit 11 so that a predetermined ultraviolet irradiation amount is irradiated to the desired location st. The centralized control unit 15 controls the ultraviolet light source unit 11 so that a predetermined ultraviolet light irradiation amount can be obtained in the irradiation unit 13. With this configuration, the ultraviolet light irradiation system 305 can irradiate the irradiation unit 13 with ultraviolet light at a level at which sufficient effects such as sterilization can be obtained while avoiding the influence on the human body without requiring the user for skill or knowledge. , Reliability and safety can also be ensured.
(実施形態6)
 図8は、本実施形態の紫外光照射システム306を説明する図である。紫外光照射システム306は、紫外光を発生させるN個(Nは2以上の整数)の紫外光源部11と、前記紫外光をN個の所望箇所steにそれぞれ照射するN個の照射部13と、紫外光源部11から照射部13へ前記紫外光をそれぞれ伝搬するN本の光ファイバ14と、を備え、N個の紫外光源部11が一か所の集約型光源部10に集約されていることを特徴とする。
(Embodiment 6)
FIG. 8 is a diagram illustrating the ultraviolet light irradiation system 306 of the present embodiment. The ultraviolet light irradiation system 306 includes N ultraviolet light source units 11 (N is an integer of 2 or more) that generate ultraviolet light, and N irradiation units 13 that irradiate the desired ultraviolet light to N desired locations st, respectively. , N optical fibers 14 for propagating the ultraviolet light from the ultraviolet light source unit 11 to the irradiation unit 13, and N ultraviolet light source units 11 are integrated in one centralized light source unit 10. It is characterized by that.
 紫外光照射システム306は、図7で説明した紫外光照射システム305をN個を並べ、N個の紫外光源部11を1つの筐体(集約型光源部10)に集約させたものである。このため、紫外光照射システム305で説明した汎用性の他に、紫外光源部11が1か所に集まっているので、管理が容易というメリットもある。 The ultraviolet light irradiation system 306 is a system in which N ultraviolet light irradiation systems 305 described with reference to FIG. 7 are arranged side by side, and N ultraviolet light source units 11 are integrated into one housing (intensive light source unit 10). Therefore, in addition to the versatility described in the ultraviolet light irradiation system 305, since the ultraviolet light source units 11 are gathered in one place, there is an advantage that management is easy.
 また、紫外光照射システム306も、それぞれの所望箇所steに所定の紫外照射量が照射されるように各紫外光源部11のパラメータを制御する集中制御部15をさらに備えてもよい。集中制御部15は、照射部13において所定の紫外光照射量が得られるように各紫外光源部11を制御する。このため、紫外光照射システム306は、紫外光照射システム305で説明した信頼性と安全性も確保できる。 Further, the ultraviolet light irradiation system 306 may further include a centralized control unit 15 that controls the parameters of each ultraviolet light source unit 11 so that a predetermined ultraviolet irradiation amount is applied to each desired location st. The centralized control unit 15 controls each ultraviolet light source unit 11 so that a predetermined ultraviolet light irradiation amount can be obtained in the irradiation unit 13. Therefore, the ultraviolet light irradiation system 306 can also secure the reliability and safety described in the ultraviolet light irradiation system 305.
(実施形態7)
 図9は、本実施形態の紫外光照射システム307を説明する図である。紫外光照射システム307は、図1の紫外光照射システム301に対して、分配機能部12が紫外光源部11からの入力光をパワー分岐して複数の光ファイバ14に出力するファイバ型やPLC(Planar Lightwave Circuit)型の光スプリッタであること、及び集中制御部15が無いことが相違する。紫外光照射システム307は、紫外光照射システム301のようにそれぞれの所望箇所steに所定の紫外照射量が照射されるように紫外光源部11や分配機能部12のパラメータを制御することはできないが、光ファイバ14を備えることで、人やロボットが入られないような細かい場所についても照射部13を配置でき、紫外光UVを照射することができる。このため、紫外光照射システム307は、汎用性が大きいというメリットがある。
(Embodiment 7)
FIG. 9 is a diagram illustrating an ultraviolet light irradiation system 307 of the present embodiment. In the ultraviolet light irradiation system 307, the distribution function unit 12 power-branches the input light from the ultraviolet light source unit 11 and outputs the input light to the plurality of optical fibers 14 with respect to the ultraviolet light irradiation system 301 of FIG. The difference is that it is a Planar Lightwave Circuit) type optical splitter and that there is no centralized control unit 15. Unlike the ultraviolet light irradiation system 301, the ultraviolet light irradiation system 307 cannot control the parameters of the ultraviolet light source unit 11 and the distribution function unit 12 so that a predetermined ultraviolet irradiation amount is irradiated to each desired location st. By providing the optical fiber 14, the irradiation unit 13 can be arranged even in a small place where a person or a robot cannot enter, and ultraviolet light UV can be irradiated. Therefore, the ultraviolet light irradiation system 307 has an advantage of high versatility.
(発明の効果)
 本発明は、紫外光を用いた光照射システムにおいて、光ファイバ、および、照射用の集中制御を活用することで、従来技術における課題を解決して、経済的で信頼性且つ安全性を確保しつつ所望箇所の殺菌等を行うシステムを実現できる。
(The invention's effect)
The present invention solves the problems in the prior art by utilizing the optical fiber and the centralized control for irradiation in the light irradiation system using ultraviolet light, and secures economical, reliable and safe. At the same time, it is possible to realize a system for sterilizing desired parts.
10:集約型光源部
11:紫外光源部
11a:CW光源
11b:光合波部
12:分配機能部
13:照射部
14、14a:光ファイバ
15:集中制御部
16:検出部
16a:紫外光照射量検出部
16b:紫外光反射部
16b2:光サーキュレータ
16b3:反射紫外光検出部
16c:センサ
52:充実コア
52a:領域
53:空孔
53a:空孔群
60:クラッド
301~307:紫外光照射システム
ste:所望箇所(紫外光を照射しようとする領域)
10: Intensive light source unit 11: Ultraviolet light source unit 11a: CW light source 11b: Optical combine unit 12: Distribution function unit 13: Irradiation unit 14, 14a: Optical fiber 15: Centralized control unit 16: Detection unit 16a: Ultraviolet light irradiation amount Detection unit 16b: Ultraviolet light reflection unit 16b2: Optical circulator 16b3: Reflected ultraviolet light detection unit 16c: Sensor 52: Full core 52a: Region 53: Pore 53a: Pore group 60: Clad 301 to 307: Ultraviolet light irradiation system ste : Desired location (area to be irradiated with ultraviolet light)

Claims (12)

  1.  紫外光を発生させる一つの紫外光源部と、
     前記紫外光を所望箇所に照射する一つの照射部と、
     前記紫外光源部から前記照射部へ前記紫外光を伝搬する光ファイバと、
    を備える紫外光照射システム。
    One ultraviolet light source that generates ultraviolet light, and
    One irradiation unit that irradiates the desired location with ultraviolet light, and
    An optical fiber that propagates the ultraviolet light from the ultraviolet light source unit to the irradiation unit,
    Ultraviolet light irradiation system equipped with.
  2.  紫外光を発生させるN個(Nは2以上の整数)の紫外光源部と、
     前記紫外光をN個の所望箇所にそれぞれ照射するN個の照射部と、
     前記紫外光源部から前記照射部へ前記紫外光をそれぞれ伝搬するN本の光ファイバと、
    を備え、N個の前記紫外光源部が一か所に集約されていることを特徴とする紫外光照射システム。
    N ultraviolet light sources (N is an integer of 2 or more) that generate ultraviolet light, and
    N irradiation units that irradiate N desired locations with ultraviolet light, and N irradiation units.
    N optical fibers propagating the ultraviolet light from the ultraviolet light source unit to the irradiation unit, respectively.
    The ultraviolet light irradiation system is characterized in that the N ultraviolet light source units are integrated in one place.
  3.  紫外光を発生させる一つの紫外光源部と、
     前記紫外光をN分岐(Nは2以上の整数)する分配機能部と、
     前記紫外光をN個の所望箇所にそれぞれ照射するN個の照射部と、
     前記分配機能部から前記照射部へ前記紫外光をそれぞれ伝搬するN本の光ファイバと、を備える紫外光照射システム。
    One ultraviolet light source that generates ultraviolet light, and
    A distribution function unit that N-branches the ultraviolet light (N is an integer of 2 or more),
    N irradiation units that irradiate N desired locations with ultraviolet light, and N irradiation units.
    An ultraviolet light irradiation system including N optical fibers each propagating the ultraviolet light from the distribution function unit to the irradiation unit.
  4.  前記所望箇所に所定の紫外照射量が照射されるように前記紫外光源部のパラメータを制御する集中制御部をさらに備えることを特徴とする請求項1から3のいずれかに記載の紫外光照射システム。 The ultraviolet light irradiation system according to any one of claims 1 to 3, further comprising a centralized control unit that controls parameters of the ultraviolet light source unit so that a predetermined ultraviolet irradiation amount is irradiated to the desired location. ..
  5.  前記所望箇所に所定の紫外照射量が照射されるように前記紫外光源部のパラメータと前記分配機能部のパラメータを制御する集中制御部をさらに備えることを特徴とする請求項3に記載の紫外光照射システム。 The ultraviolet light according to claim 3, further comprising a centralized control unit that controls the parameters of the ultraviolet light source unit and the parameters of the distribution function unit so that the desired portion is irradiated with a predetermined ultraviolet irradiation amount. Irradiation system.
  6.  前記集中制御部は、前記分配機能部と前記光ファイバでの損失に基づいて前記パラメータを制御することを特徴とする請求項4又は5に記載の紫外光照射システム。 The ultraviolet light irradiation system according to claim 4 or 5, wherein the centralized control unit controls the parameters based on the loss in the distribution function unit and the optical fiber.
  7.  前記集中制御部は、前記所望箇所への紫外照射量が偏るように前記パラメータを制御することを特徴とする請求項2又は3を引用する請求項4、又は請求項3を引用する請求項5に記載の紫外光照射システム。 A fourth claim quoting claim 2 or 3, or a fifth claim quoting claim 3, wherein the centralized control unit controls the parameters so that the amount of ultraviolet irradiation to the desired portion is biased. The ultraviolet light irradiation system described in.
  8.  前記集中制御部は、
     前記所望箇所への紫外照射量が時間変動するように、且つトータルの紫外照射量が所定量をみたすように、前記パラメータを制御することを特徴とする請求項4又は5に記載の紫外光照射システム。
    The centralized control unit
    The ultraviolet light irradiation according to claim 4 or 5, wherein the parameters are controlled so that the ultraviolet irradiation amount to the desired place fluctuates with time and the total ultraviolet irradiation amount satisfies a predetermined amount. system.
  9.  前記集中制御部は、時間毎に前記紫外光の波長を変化させるように前記紫外光源部のパラメータを制御することを特徴とする請求項4又は5に記載の紫外光照射システム。 The ultraviolet light irradiation system according to claim 4 or 5, wherein the centralized control unit controls the parameters of the ultraviolet light source unit so as to change the wavelength of the ultraviolet light every hour.
  10.  前記紫外光照射量を検出する検出部をさらに備え、
     前記集中制御部は、前記検出部が検出した前記紫外光照射量に基づいて前記パラメータを制御することを特徴とする請求項4又は5に記載の紫外光照射システム。
    Further provided with a detection unit for detecting the ultraviolet light irradiation amount,
    The ultraviolet light irradiation system according to claim 4 or 5, wherein the centralized control unit controls the parameters based on the ultraviolet light irradiation amount detected by the detection unit.
  11.  前記所望箇所の情報を収集するセンサをさらに備え、
     前記集中制御部は、前記センサが収集した情報に基づいて前記パラメータを制御することを特徴とする請求項4又は5に記載の紫外光照射システム。
    Further equipped with a sensor for collecting information on the desired location,
    The ultraviolet light irradiation system according to claim 4, wherein the centralized control unit controls the parameters based on the information collected by the sensor.
  12.  前記光ファイバは、充実コア光ファイバ、空孔アシスト光ファイバ、空孔構造光ファイバ、中空コア光ファイバ、結合コア型光ファイバ、充実コア型マルチコア光ファイバ、空孔アシスト型マルチコア光ファイバ、空孔構造型マルチコア光ファイバ、中空コア型マルチコア光ファイバ、及び結合コア型マルチコア光ファイバのいずれかであることを特徴とする請求項1から11のいずれかに記載の紫外光照射システム。 The optical fiber includes a full-core optical fiber, a hole-assisted optical fiber, a hole-structured optical fiber, a hollow core optical fiber, a coupled core type optical fiber, a full-core type multi-core optical fiber, a hole-assisted multi-core optical fiber, and a hole. The ultraviolet light irradiation system according to any one of claims 1 to 11, wherein the optical fiber is one of a structural type multi-core optical fiber, a hollow core type multi-core optical fiber, and a coupled core type multi-core optical fiber.
PCT/JP2020/041091 2020-07-10 2020-11-02 Ultraviolet light radiation system WO2022009443A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022534891A JPWO2022009443A1 (en) 2020-07-10 2020-11-02
JP2024033477A JP2024059973A (en) 2020-07-10 2024-03-06 Ultraviolet Light Irradiation System
JP2024033481A JP2024059974A (en) 2020-07-10 2024-03-06 Ultraviolet Light Irradiation System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2020/026952 2020-07-10
PCT/JP2020/026952 WO2022009406A1 (en) 2020-07-10 2020-07-10 Uv light irradiation system

Publications (1)

Publication Number Publication Date
WO2022009443A1 true WO2022009443A1 (en) 2022-01-13

Family

ID=79552367

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/026952 WO2022009406A1 (en) 2020-07-10 2020-07-10 Uv light irradiation system
PCT/JP2020/041091 WO2022009443A1 (en) 2020-07-10 2020-11-02 Ultraviolet light radiation system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026952 WO2022009406A1 (en) 2020-07-10 2020-07-10 Uv light irradiation system

Country Status (2)

Country Link
JP (3) JPWO2022009443A1 (en)
WO (2) WO2022009406A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7507033B2 (en) 2020-08-07 2024-06-27 ホーチキ株式会社 Facility Management System
JP7294486B1 (en) 2022-03-22 2023-06-20 フジテック株式会社 man conveyor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524354A (en) * 1997-12-01 2001-12-04 トリベルスキー、ツァミール Method for sterilizing liquid and gas and device using the same
JP2005043673A (en) * 2003-07-22 2005-02-17 Sumitomo Electric Ind Ltd Optical fiber and optical transmission medium
JP2007000618A (en) * 2005-05-23 2007-01-11 National Institute Of Advanced Industrial & Technology Sterilization method
JP2007007232A (en) * 2005-07-01 2007-01-18 Mitsubishi Electric Corp Photo-sterilizer and photo-sterilizing system
WO2007013356A1 (en) * 2005-07-26 2007-02-01 Advantest Corporation Signal transmission device, signal reception device, test device, test module, and semiconductor chip
JP2013152103A (en) * 2012-01-24 2013-08-08 Toray Eng Co Ltd Optical liquid leakage detection apparatus and method
US20130270445A1 (en) * 2012-04-16 2013-10-17 Sensor Electronic Technology, Inc. Ultraviolet-Based Sterilization
JP2015045705A (en) * 2013-08-27 2015-03-12 日本電信電話株式会社 Multicore optical fiber
JP2017023613A (en) * 2015-07-28 2017-02-02 日立造船株式会社 Ultraviolet irradiation device
JP2017221473A (en) * 2016-06-16 2017-12-21 日機装株式会社 Ultraviolet irradiation device
JP2020513268A (en) * 2016-11-30 2020-05-14 コポネン、 リストKOPONEN, Risto Method and apparatus for transmitting microbial-destroying ultraviolet light from a light source to a target

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301606A (en) * 1991-03-29 1992-10-26 Toshiba Lighting & Technol Corp Ultraviolet irradiation device
JP3903669B2 (en) * 1999-11-12 2007-04-11 松下電工株式会社 Ultraviolet irradiator and irradiation amount control method thereof
JP3964863B2 (en) * 2003-12-22 2007-08-22 株式会社キーエンス UV irradiation equipment
JP2014048578A (en) * 2012-09-03 2014-03-17 Nippon Telegr & Teleph Corp <Ntt> Optical fiber splicing method and refractive index matching agent used for the same
JP6303747B2 (en) * 2014-04-11 2018-04-04 住友電気工業株式会社 Connection structure and optical fiber manufacturing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524354A (en) * 1997-12-01 2001-12-04 トリベルスキー、ツァミール Method for sterilizing liquid and gas and device using the same
JP2005043673A (en) * 2003-07-22 2005-02-17 Sumitomo Electric Ind Ltd Optical fiber and optical transmission medium
JP2007000618A (en) * 2005-05-23 2007-01-11 National Institute Of Advanced Industrial & Technology Sterilization method
JP2007007232A (en) * 2005-07-01 2007-01-18 Mitsubishi Electric Corp Photo-sterilizer and photo-sterilizing system
WO2007013356A1 (en) * 2005-07-26 2007-02-01 Advantest Corporation Signal transmission device, signal reception device, test device, test module, and semiconductor chip
JP2013152103A (en) * 2012-01-24 2013-08-08 Toray Eng Co Ltd Optical liquid leakage detection apparatus and method
US20130270445A1 (en) * 2012-04-16 2013-10-17 Sensor Electronic Technology, Inc. Ultraviolet-Based Sterilization
JP2015045705A (en) * 2013-08-27 2015-03-12 日本電信電話株式会社 Multicore optical fiber
JP2017023613A (en) * 2015-07-28 2017-02-02 日立造船株式会社 Ultraviolet irradiation device
JP2017221473A (en) * 2016-06-16 2017-12-21 日機装株式会社 Ultraviolet irradiation device
JP2020513268A (en) * 2016-11-30 2020-05-14 コポネン、 リストKOPONEN, Risto Method and apparatus for transmitting microbial-destroying ultraviolet light from a light source to a target

Also Published As

Publication number Publication date
WO2022009406A1 (en) 2022-01-13
JP2024059974A (en) 2024-05-01
JPWO2022009443A1 (en) 2022-01-13
JP2024059973A (en) 2024-05-01

Similar Documents

Publication Publication Date Title
JP2024059973A (en) Ultraviolet Light Irradiation System
HUP0301300A2 (en) Method and apparatus for photobiostimulation of biological tissue, biostimulation device and method for the treatment of tissue
JP5951017B2 (en) Optical fiber laser equipment
JP2004321507A (en) Medical laser apparatus
WO2022024406A1 (en) Ultraviolet light irradiation system
WO2023058144A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2022085123A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2022024405A1 (en) Ultraviolet light irradiation system and disinfection method
WO2023276148A1 (en) Ultraviolet light irradiation system and control method
WO2022085142A1 (en) Ultraviolet light irradiation system and method
US20240216559A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
US20230310674A1 (en) Light irradiation system
WO2023084677A1 (en) Ultraviolet light emission system
WO2024105873A1 (en) Light spot shaper and optical transmission system
WO2023157281A1 (en) Optical transmission device, optical irradiation system, and optical transmission method
WO2023084668A1 (en) Ultraviolet light radiation system and control method
WO2022215110A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2023084669A1 (en) Ultraviolet light radiation system and radiation method
WO2022024404A1 (en) Ultraviolet light irradiation system and decontamination method
WO2022254713A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2023073771A1 (en) Ultraviolet light irradiation system
US20230302173A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2024084561A1 (en) Optical transmission system design method and design device
WO2023073774A1 (en) Uv irradiation system
WO2023084675A1 (en) Uv irradiation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944427

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534891

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944427

Country of ref document: EP

Kind code of ref document: A1