WO2023084669A1 - Ultraviolet light radiation system and radiation method - Google Patents

Ultraviolet light radiation system and radiation method Download PDF

Info

Publication number
WO2023084669A1
WO2023084669A1 PCT/JP2021/041475 JP2021041475W WO2023084669A1 WO 2023084669 A1 WO2023084669 A1 WO 2023084669A1 JP 2021041475 W JP2021041475 W JP 2021041475W WO 2023084669 A1 WO2023084669 A1 WO 2023084669A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet light
irradiation
unit
target area
area
Prior art date
Application number
PCT/JP2021/041475
Other languages
French (fr)
Japanese (ja)
Inventor
聖 成川
友宏 谷口
誉人 桐原
亜弥子 岩城
和秀 中島
隆 松井
裕之 飯田
千里 深井
悠途 寒河江
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/041475 priority Critical patent/WO2023084669A1/en
Publication of WO2023084669A1 publication Critical patent/WO2023084669A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultra-violet radiation

Definitions

  • the present disclosure relates to an ultraviolet light irradiation system and an irradiation method thereof that perform sterilization and virus inactivation using ultraviolet light.
  • Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light. By irradiating the robot with ultraviolet light while moving in a room in a building such as a hospital room, the robot can automatically realize sterilization in a wide range without human intervention.
  • Stationary air purifier The product of Non-Patent Document 2 is a device that is installed on the ceiling or at a predetermined place in a room, and performs sterilization while circulating the air in the room.
  • Non-Patent Document 3 is a portable apparatus equipped with an ultraviolet light source. A user can bring the device to a desired area and irradiate it with ultraviolet light. Therefore, the device can be used in various places.
  • Kantum Ushikata Co., Ltd. website https://www.kantum.co.jp/product/sakkin_robot/sakkinn_robot/UVD_robot
  • June 22, 2020 Iwasaki Electric Co., Ltd. website https://www.iwasaki.co.jp/optics/ARrilization/air/air03.html
  • June 22, 2020 Funakoshi Co., Ltd. website https://www.funakoshi.co.jp/contents/68182
  • Non-Patent Document 1 has the following problems.
  • Economy Since the product of Non-Patent Document 1 is irradiated with high-output ultraviolet light, the apparatus becomes large and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
  • Non-Patent Document 3 cannot irradiate ultraviolet light to narrow pipes or areas where people cannot enter.
  • the product of Non-Patent Literature has a problem of versatility in that it can irradiate any place with ultraviolet light.
  • (3) Operability The product of Non-Patent Document 3 is portable and can be irradiated with ultraviolet light at various locations. However, in order to obtain sufficient effects such as sterilization at the target location, the user is required to have skill and knowledge, and there is a problem in operability.
  • an ultraviolet light irradiation system 300 using an optical fiber as shown in FIG. 1 is conceivable.
  • This ultraviolet light irradiation system transmits ultraviolet light from the light source 11 using a thin and flexible optical fiber, and irradiates the ultraviolet light output from the tip of the optical fiber 14 to an irradiation target area AR to be sterilized or the like with pinpoint accuracy.
  • the versatility of the above problem (2) can be solved because the ultraviolet light can be irradiated to any place simply by moving the irradiation unit 13 at the tip of the optical fiber 14 .
  • the operability of the above problem (3) can be resolved.
  • an optical distribution unit 12 such as an optical splitter in the optical transmission line 16 to form a P-MP (Point to MultiPoint) system configuration such as FTTH (Fiber To The Home)
  • FTTH Fiber To The Home
  • the ultraviolet light irradiation system using optical fibers has the following problems.
  • the problem will be explained using the ultraviolet light irradiation system 301 in FIG.
  • Even in a single irradiation target area AR there are cases where it is divided into an area AR-o where there are few bacteria and viruses and does not require sterilization, etc., and an area AR-s where there are many bacteria and viruses and need sterilization etc. in a short time. be.
  • the irradiation unit 13 is a lens system with a fixed magnification, and irradiates the entire irradiation target area AR with ultraviolet light.
  • the area AR-o and the area AR-s are divided as shown in FIG.
  • the irradiation range of the ultraviolet light cannot be changed, and it is difficult to concentrate the area AR-s for sterilization or the like. be.
  • the ultraviolet light irradiation systems 300 and 301 using optical fibers as shown in FIGS. 1 and 2 have a problem that it is difficult to perform sterilization or the like in a short time while flexibly responding to a desired region.
  • the object of the present invention is to provide an ultraviolet light irradiation system and its irradiation method that can flexibly respond to a desired area and perform sterilization, etc. in a short time.
  • the ultraviolet light irradiation system includes an irradiation unit in which the beam diameter and irradiation direction of ultraviolet light are variable, and concentrates on areas that require sterilization etc. in a short time. It was decided to irradiate with ultraviolet light.
  • the ultraviolet light irradiation system includes: an ultraviolet light source that generates ultraviolet light; an irradiation unit that irradiates the irradiation target area with the ultraviolet light; an irradiation range control unit that changes the irradiation range of the ultraviolet light; Prepare.
  • the irradiation range control unit of the ultraviolet light irradiation system causes the irradiation unit to detect the need to irradiate the ultraviolet light when there is a region in the irradiation target region that needs to be irradiated with the ultraviolet light. It is characterized in that the ultraviolet light is focused on the high region and irradiated with the ultraviolet light, and in other cases, the ultraviolet light is spread over the entire irradiation target region.
  • an irradiation method is an irradiation method for an ultraviolet light irradiation system that irradiates an irradiation target area with ultraviolet light, When there is a region in the irradiation target area that needs to be irradiated with the ultraviolet light, the ultraviolet light is focused on the region with the high necessity, and in other cases, the entire irradiation target region It is characterized in that the ultraviolet light is spread and irradiated.
  • the irradiation unit can change the irradiation range of ultraviolet light. Therefore, when a region requiring sterilization or the like occurs in the irradiation target region, the irradiation unit can reduce the beam diameter of the ultraviolet light and irradiate the region intensively. Further, when there is no area requiring sterilization or the like in the irradiation target area (normal time), the irradiation unit widens the beam diameter of the ultraviolet light and irradiates the entire irradiation target area with the ultraviolet light. Therefore, the present invention can provide an ultraviolet light irradiation system and an irradiation method thereof that can flexibly respond to a desired region and perform sterilization or the like in a short time.
  • the irradiation unit of the ultraviolet light irradiation system according to the present invention is N (N is a natural number of 2 or more), and each of the irradiation units irradiates the ultraviolet light to N irradiation target areas, A light distribution section may be further provided for distributing the ultraviolet light to each of the irradiation sections.
  • a P-MP configuration ultraviolet light irradiation system can be provided.
  • the light distribution unit of the ultraviolet light irradiation system has a variable distribution ratio for distributing the ultraviolet light to each of the directions, and the direction to the irradiation unit that narrows and irradiates the ultraviolet light. You may increase the distribution ratio to By adjusting the distribution ratio to each direction as well as the irradiation direction of the ultraviolet light, it is possible to more flexibly meet the requirements of each irradiation target area.
  • the ultraviolet light irradiation system is further comprising a sensor unit that identifies the area within the irradiation target area and detects whether or not there is an avoidance target to be avoided from being exposed to the ultraviolet light in the irradiation target area;
  • the irradiation range control unit may cause the irradiation unit to selectively irradiate the region with the ultraviolet light during a time when the avoidance target is not present in the irradiation target region.
  • the ultraviolet light irradiation system is further comprising a monitor unit that observes the amount of the ultraviolet light emitted from the irradiation unit;
  • the irradiation range control unit narrows down the ultraviolet light to the irradiation unit when the amount of the ultraviolet light applied to the irradiation target area, which is being irradiated with the narrowed ultraviolet light, exceeds a predetermined value. to terminate the irradiation of the irradiation target area. After completing the sterilization of the desired area, it is possible to quickly return to the normal state (i.e., irradiate the entire irradiation target area with ultraviolet light).
  • the present invention can provide an ultraviolet light irradiation system and its irradiation method that can flexibly respond to a desired region and perform sterilization, etc. in a short time.
  • FIG. 3 is a diagram illustrating the ultraviolet light irradiation system 302 of this embodiment.
  • the ultraviolet light irradiation system 302 is an ultraviolet light source unit 11 that generates ultraviolet light; an irradiation unit 13 that irradiates the irradiation target area AR with the ultraviolet light; an irradiation range control unit 19 that changes the irradiation range of the ultraviolet light; Prepare.
  • the ultraviolet light source unit 11 outputs light in the ultraviolet region (ultraviolet light) that is effective for sterilization and the like.
  • the ultraviolet light source unit 11 and the irradiation unit 13 are connected by an optical transmission line 16, which is an optical fiber.
  • FIG. 4 is a diagram illustrating a cross section of an optical fiber that can be used for the transmission line 16.
  • Solid Core Optical Fiber This optical fiber has one solid core 52 in the clad 60 having a higher refractive index than the clad 60 .
  • Full means "not hollow”.
  • the solid core can also be realized by forming an annular low refractive index region in the clad.
  • Hole-assisted optical fiber This optical fiber has a solid core 52 in the clad 60 and a plurality of holes 53 arranged around the core.
  • the medium of the holes 53 is air, and the refractive index of air is sufficiently smaller than that of quartz-based glass. Therefore, the hole-assisted optical fiber has a function of returning light leaking from the core 52 due to bending or the like back to the core 52, and is characterized by a small bending loss.
  • This optical fiber has a hole group 53a of a plurality of holes 53 in the clad 60, and has an effective refractive index lower than that of the host material (glass or the like). This structure is called a photonic crystal fiber.
  • This structure can take a structure in which a high-refractive-index core with a changed refractive index does not exist, and light can be confined using the region 52a surrounded by the holes 53 as an effective core region.
  • photonic crystal fibers can reduce the effects of absorption and scattering losses due to additives in the core.
  • Optical characteristics that cannot be realized can be realized.
  • This optical fiber has a core region made of air. Light can be confined in the core region by forming a photonic bandgap structure with a plurality of holes in the cladding region or an anti-resonant structure with glass wires. This optical fiber has low nonlinear effects and is capable of delivering high power or high energy lasers.
  • Coupling Core Optical Fiber In this optical fiber, a plurality of solid cores 52 having a high refractive index are closely arranged in a clad 60 . This optical fiber guides light by optical wave coupling between solid cores 52 . Coupling-core optical fibers can disperse and transmit light as many times as the number of cores, so high power can be used for efficient sterilization. There is an advantage that the service life can be extended.
  • the irradiation unit 13 irradiates ultraviolet light from the ultraviolet light source unit 11 to a predetermined target location (irradiation target area AR) for sterilization or the like.
  • the irradiation unit 13 is composed of an optical system such as a lens designed for the wavelength of ultraviolet light. Further, the irradiation unit 13 can move the optical system to change the beam diameter and irradiation direction of the ultraviolet light to be irradiated.
  • the irradiation range control unit 19 instructs the optical system of the irradiation unit 13 about the beam diameter and irradiation direction of the ultraviolet light to be irradiated. For example, when an area AR-s that needs to be irradiated with the ultraviolet light occurs in the irradiation target area AR, the irradiation range control unit 19 restricts the ultraviolet light to the area AR-s. In other cases, the ultraviolet light is spread over the entire irradiation target area AR and irradiated. It is assumed that the area AR-s is within the irradiation target area AR.
  • An area AR-s with a large amount of bacteria and viruses may occur within the irradiation target area AR. In such a case, it is necessary to sterilize the area AR-s in a short time. On the other hand, in other areas of the irradiation target area AR, there is also an area AR-o in which the amounts of bacteria and viruses are small and sterilization or the like is unnecessary. As shown in FIG. 2, in the conventional irradiation unit 13, the beam diameter of the irradiated ultraviolet light was constant, so even if the area AR-s were generated, the ultraviolet light could not be concentrated there, and sterilization and the like could be performed in a short time. I didn't.
  • the irradiation unit 13 of this embodiment can arbitrarily set the beam diameter and irradiation direction of the ultraviolet light to be irradiated based on the instruction of the irradiation range control unit 19 . Therefore, when the area AR-s is generated, the irradiation range control unit 19 instructs the irradiation unit 13 on the beam diameter and irradiation direction of the ultraviolet light so that the ultraviolet light is irradiated thereon.
  • the illuminance of the ultraviolet light irradiated to the area AR-s is higher than usual (the state in which the entire irradiation target area AR is irradiated with ultraviolet light), and the area AR-s is irradiated in a shorter time than usual. Sterilization, etc. can be performed.
  • the irradiation range control unit 19 may narrow the beam diameter of the ultraviolet light, instruct the irradiation direction, and then return to normal after a certain period of time.
  • a monitor unit 41 for observing the amount of the ultraviolet light emitted from the irradiation unit 13 is further provided, and the irradiation range control unit 19 controls the irradiation target area irradiated with the narrowed ultraviolet light.
  • the irradiation unit 13 may stop irradiating the irradiation target area AR with the ultraviolet light narrowed down, and return to normal.
  • the monitor unit 41 may measure the amount of ultraviolet light input to the irradiation unit 13 through the optical transmission line 16, may measure the amount of ultraviolet light irradiated by the irradiation unit 13, or may measure the amount of ultraviolet light irradiated by the irradiation unit 13.
  • the amount of ultraviolet light received by the entire AR may be measured. Note that the amount of light is the integrated amount of light (unit: J), power (unit: W), illuminance in the irradiation target area AR (unit: W/m 2 ), energy per unit area in the irradiation target area AR (unit: J/m 2 or W ⁇ s/m 2 ).
  • the monitor unit 41 notifies the irradiation range control unit 19 of the measured amount of light as data D1.
  • the irradiation range control unit 19 compares the notified amount of light with a predetermined value (for example, the amount of light that can complete sterilization, etc.), and instructs the irradiation unit 13 to return to normal when the amount of light exceeds the predetermined value. .
  • the other area AR-o While the area AR-s is being sterilized, the other area AR-o is not irradiated with ultraviolet light and is not sterilized. If the time for sterilization, etc., to be performed is short, there is no effect on the increase in the amount of bacteria and viruses even if the ultraviolet light is not irradiated.
  • FIG. 6 is a diagram illustrating the ultraviolet light irradiation system 304 of this embodiment.
  • the ultraviolet light irradiation system 304 differs from the ultraviolet light irradiation system 302 in FIG. 3 in that it includes a sensor section 31 . In this embodiment, only the difference will be described.
  • the ultraviolet light irradiation system 304 specifies an area AR-s in the irradiation target area AR, and an avoidance target to be avoided in the irradiation target area AR from the ultraviolet light irradiation system 302 in FIG.
  • the irradiation range control unit 19 further includes a sensor unit 31 that detects whether H exists or not. The ultraviolet light is focused and irradiated.
  • the sensor unit 31 detects the existence and movement of each irradiation target area AR and avoidance targets (humans, animals, etc.) H in the vicinity thereof. For example, the sensor unit 31 performs temperature acquisition by a thermometer, infrared acquisition by an infrared sensor, image acquisition by a camera, light acquisition by LiDAR (Light Detection and Ranging), etc., and information processing (shape, face, fingerprint, vein, iris etc.) to detect the existence and movement of the avoidance target.
  • temperature acquisition by a thermometer infrared acquisition by an infrared sensor
  • image acquisition by a camera image acquisition by a camera
  • LiDAR Light Detection and Ranging
  • information processing shape, face, fingerprint, vein, iris etc.
  • the sensor unit 31 monitors not only whether or not the avoidance target H exists within the irradiation target area AR, but also the periphery of the irradiation target area AR. Therefore, based on the movement of the avoidance target H, the sensor unit 31 determines whether the avoidance target H will enter the irradiation target area AR or not, or whether the avoidance target H will move away from the irradiation target area AR. can be detected. Then, the sensor unit 31 notifies the irradiation range control unit 19 of the detection result.
  • the notification to the irradiation range control unit 19 may be wired or wireless.
  • FIG. 6A illustrates the normal state.
  • the ultraviolet light irradiation system 304 irradiates the entire irradiation target area AR with ultraviolet light.
  • the sensor unit 31 monitors whether or not the avoidance target H exists in the irradiation target area AR.
  • FIG. 6B illustrates a state in which the avoidance target H has entered the irradiation target area AR.
  • the sensor unit 31 notifies the irradiation range control unit 19 of the information.
  • the irradiation range control unit 19 causes the irradiation unit 13 to suspend irradiation of ultraviolet light.
  • the irradiation target area AR may be continuously irradiated with the power of the ultraviolet light lowered to a level that does not harm the object H to be avoided.
  • the sensor unit 31 detects which part of the irradiation target area AR the avoidance target H has stayed in, and also notifies the irradiation range control unit 19 of the information.
  • FIG. 6C illustrates the state after the avoidance target H has left the irradiation target area AR.
  • the sensor unit 31 notifies the irradiation range control unit 19 of the information.
  • the irradiation range control unit 19 causes the irradiation unit 13 to irradiate ultraviolet light with a narrowed beam diameter. At this time, the irradiation range control unit 19 designates the portion where the avoidance target H stayed as an area AR-s, and directs the irradiation unit 13 to direct ultraviolet light with a narrowed beam diameter toward the area AR-s.
  • the area AR-s can be sterilized in a short time without irradiating the avoidance target H with ultraviolet light. Further, as described with reference to FIG. 5, the monitoring unit 41 may be used to terminate the sterilization of the area AR-s.
  • FIG. 7 is a diagram illustrating the ultraviolet light irradiation system 305 of this embodiment.
  • the ultraviolet light irradiation system 305 is a P-MP configuration of the ultraviolet light irradiation system 302 in FIG. That is, the ultraviolet light irradiation system 305 has N irradiation units 13 (N is a natural number of 2 or more), and each of the irradiation units 13 (13-n; n is an integer from 1 to N) emits N ultraviolet light. It is characterized by further comprising a light distribution unit 12-11 that irradiates the irradiation target areas ARn and distributes the ultraviolet light to a route 14 to each irradiation unit 13-n.
  • the irradiation unit 13 has an irradiation target area AR in charge.
  • the irradiation unit 13-1 is in charge of the irradiation target area AR1
  • the irradiation unit 13-2 is in charge of the irradiation target area AR2
  • the irradiation unit 13-N is in charge of the irradiation target area ARN. .
  • the optical splitter 12-11 is an equal splitting coupler, an unequal splitting coupler, a variable splitting ratio coupler, or an optical switch.
  • the equal splitting coupler equally splits the power of the ultraviolet light input through the optical transmission line 16 to each output port.
  • the unequal splitting coupler splits the power of the ultraviolet light input through the optical transmission line 16 to each output port at a preset splitting ratio.
  • the unequal branch coupler is, for example, the unequal branch coupler disclosed in JP-A-2020-036068.
  • the variable branching ratio coupler can change the branching ratio according to an instruction from the irradiation range control unit 19 .
  • the branching ratio variable coupler branches the power of the ultraviolet light input through the optical transmission line 16 according to the branching ratio, and outputs the branched light to a plurality of output ports.
  • the variable branching ratio coupler has a configuration including a Mach-Zehnder interferometer that changes the branching ratio with a heater, as disclosed in Reference 1, for example. (Reference 1) NTT Technical Journal (https://www.ntt.co.jp/journal/0505/files/jn200505012.pdf), published in May 2005
  • the optical switch outputs the ultraviolet light input through the optical transmission line 16 to one of the output ports according to the switching timing indicated by the irradiation range control unit 19 .
  • the time during which ultraviolet light is output to each output port is called a time slot.
  • the "distribution ratio” means the time ratio in the case of an optical switch, and the branch ratio in the case of a coupler.
  • the ultraviolet light output from the output ports 1 to N is irradiated onto the irradiation target area ARn via the route 14 and the irradiation unit 13-n.
  • the route 14 is an optical fiber, and the optical fiber described with reference to FIG. 4 can be used.
  • the irradiation target area AR1 is in a normal state
  • the irradiation target area AR2 is in a state in which the ultraviolet light beam diameter is narrowed and the area AR-s is irradiated
  • the irradiation target area ARN is in a state where the ultraviolet light irradiation is stopped. describes the state.
  • the irradiation range control unit 19 controls the irradiation unit 13 (in the case of FIG. 7, the irradiation unit 13- 2), the distribution ratio to the route 14 may be increased.
  • the illuminance of the area AR-s can be increased, further shortening the time required for sterilization, etc. can do.
  • FIG. 8 is a flow chart for explaining the ultraviolet light irradiation method in the ultraviolet light irradiation system (302-305) described above.
  • This method is an irradiation method for an ultraviolet light irradiation system (302 to 305) that irradiates an irradiation target area AR with ultraviolet light, and operates as follows.
  • Step S01 The irradiation unit 13 irradiates the entire irradiation target area AR with ultraviolet light.
  • Step S02 It is determined whether or not an area AR-s that needs to be irradiated with the ultraviolet light has occurred in the irradiation target area AR.
  • Step S03 When the area AR-s is generated (“Yes” in step S02), the irradiation unit 13 irradiates the area AR-s with the ultraviolet light focused.
  • Step S04 Determine whether or not a certain period of time has elapsed for irradiating the area AR-s with ultraviolet light, or whether the amount of ultraviolet light focused on the area AR-s has exceeded a predetermined amount. do.
  • the process returns to step S01 to irradiate the entire irradiation target area AR with the ultraviolet light spread.
  • the process returns to step S03, and the irradiation unit 13 continues to focus and irradiate the area AR-s with the ultraviolet light. do.
  • Ultraviolet light source unit 12 Light distribution unit (equally branched) 12-11: Light distribution units 13, 13-1, . . . , 13-N: Irradiation unit 14: Direction (optical fiber) 16: Optical transmission line (optical fiber) 19: Irradiation range control unit 31: Sensor unit 41: Monitor unit 52: Solid core 52a: Region 53: Hole 53a: Hole group 53c: Hole 60: Cladding 300-305: Ultraviolet light irradiation system AR, AR1, AR2 , ..., ARN: irradiation target area (area to be irradiated with ultraviolet light) AR-s: Areas requiring sterilization, etc. AR- Europe: Areas not requiring sterilization, etc.

Abstract

The purpose of the present invention is to provide an ultraviolet light radiation system, and a radiation method therefor, making it possible to flexibly perform sterilization, etc. in a desired area in a short period of time. This ultraviolet light radiation system comprises: an ultraviolet light source unit 11 that generates ultraviolet light; a radiation unit 13 that radiates an area to be irradiated AR with the ultraviolet light; and a radiation range control unit 19 that changes the radiation range of the ultraviolet light. Additionally, in a case where an area AR-s that needs to be irradiated with the ultraviolet light is generated in the area AR to be irradiated, the radiation range control unit 19 causes the radiation unit 13 to narrow the ultraviolet light to irradiate the area AR-s, and in other cases, to spread the ultraviolet light to irradiate the entire area to be irradiated AR.

Description

紫外光照射システム及び照射方法Ultraviolet light irradiation system and irradiation method
 本開示は、紫外光を用いて殺菌やウィルスの不活化を行う紫外光照射システム及びその照射方法に関する。 The present disclosure relates to an ultraviolet light irradiation system and an irradiation method thereof that perform sterilization and virus inactivation using ultraviolet light.
 感染症予防などの目的から、紫外光を用いた殺菌やウィルスの不活化を行うシステムの需要が高まっている。当該システムには、大きく3つのカテゴリの製品がある。なお、本明細書では、「殺菌等」と記載する場合、殺菌とウィルスの不活化を意味するものとする。
(I)移動型殺菌ロボット
 非特許文献1の製品は、紫外光を照射する自律移動型のロボットである。当該ロボットは、病室などの建物内の部屋の中を移動しながら紫外光を照射することで、人手を介さず、自動で広い範囲の殺菌等を実現できる。
(II)据え置き型空気清浄機
 非特許文献2の製品は、天井や室内の所定の場所に設置され、室内の空気を循環しながら殺菌等する装置である。当該装置は、直接紫外光を照射せず、人体への影響がないため、安全性の高い殺菌が可能である。
(III)ポータブル型殺菌装置
 非特許文献3の製品は、紫外光源を搭載したポータブル型の装置である。ユーザが当該装置を所望のエリアに持って行って紫外光を照射できる。このため、当該装置は様々な場所で使用可能である。
Demand is increasing for systems that perform sterilization and virus inactivation using ultraviolet light for the purpose of preventing infectious diseases. There are three main categories of products in this system. In this specification, the term “sterilization, etc.” shall mean sterilization and virus inactivation.
(I) Mobile sterilization robot The product of Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light. By irradiating the robot with ultraviolet light while moving in a room in a building such as a hospital room, the robot can automatically realize sterilization in a wide range without human intervention.
(II) Stationary air purifier The product of Non-Patent Document 2 is a device that is installed on the ceiling or at a predetermined place in a room, and performs sterilization while circulating the air in the room. Since this device does not directly irradiate ultraviolet light and has no effect on the human body, highly safe sterilization is possible.
(III) Portable Sterilization Apparatus The product of Non-Patent Document 3 is a portable apparatus equipped with an ultraviolet light source. A user can bring the device to a desired area and irradiate it with ultraviolet light. Therefore, the device can be used in various places.
 しかし、非特許文献に記載される装置には次のような課題がある。
(1)経済性
 非特許文献1の製品は、高出力の紫外光を照射するため、装置が大掛かりとなり高価となる。このため、非特許文献1の製品には経済的なシステムの実現が困難という課題がある。
(2)汎用性
 非特許文献1の製品は、紫外光照射箇所がロボットが移動/進入できる場所に限定されるため、細かい場所や奥まった場所などへの紫外光の照射が困難である。
 非特許文献2の製品は、循環させた室内の空気を殺菌するため、殺菌等をしたい場所に直接紫外光を照射することができない。
 非特許文献3の製品は、例えば、細い管路や人が入られないエリアについては紫外光を照射することができない。
 このように、非特許文献の製品には、任意の場所に紫外光を照射できるという汎用性に課題がある。
(3)操作性
 非特許文献3の製品は、可搬性であり様々な場所で紫外光の照射が可能である。しかし、対象箇所で十分な殺菌等の効果が得られるためには、ユーザにスキルや知識を要求しており、操作性に課題がある。
However, the device described in Non-Patent Document has the following problems.
(1) Economy Since the product of Non-Patent Document 1 is irradiated with high-output ultraviolet light, the apparatus becomes large and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
(2) Versatility In the product of Non-Patent Document 1, since the ultraviolet light irradiation position is limited to a place where the robot can move/enter, it is difficult to irradiate the ultraviolet light to a small place or a deep place.
Since the product of Non-Patent Document 2 sterilizes the circulated indoor air, it is not possible to directly irradiate a place to be sterilized with ultraviolet light.
The product of Non-Patent Document 3, for example, cannot irradiate ultraviolet light to narrow pipes or areas where people cannot enter.
Thus, the product of Non-Patent Literature has a problem of versatility in that it can irradiate any place with ultraviolet light.
(3) Operability The product of Non-Patent Document 3 is portable and can be irradiated with ultraviolet light at various locations. However, in order to obtain sufficient effects such as sterilization at the target location, the user is required to have skill and knowledge, and there is a problem in operability.
 これらの課題に対して、図1のような光ファイバを用いた紫外光照射システム300が考えられる。この紫外光照射システムは、細くて曲げやすい光ファイバを用いて光源11から紫外光を伝送し、光ファイバ14の先端から出力される紫外光をピンポイントで殺菌等したい照射対象域ARへ照射する。光ファイバ14の先端の照射部13を移動させるだけで任意の場所に紫外光を照射できるため上記課題(2)の汎用性を解消できる。また、紫外光光源の移動や設定が不要でユーザにスキルや知識を求めないため、上記課題(3)の操作性も解消できる。さらに、光スプリッタのような光分配部12を光伝送路16に設け、FTTH(Fiber To The Home)のようなP-MP(Point to MultiPoint)のシステム構成とすることで、単一の光源をシェアすることで複数の箇所を殺菌等できる。このため、上記課題(1)の経済性も解消できる。 For these problems, an ultraviolet light irradiation system 300 using an optical fiber as shown in FIG. 1 is conceivable. This ultraviolet light irradiation system transmits ultraviolet light from the light source 11 using a thin and flexible optical fiber, and irradiates the ultraviolet light output from the tip of the optical fiber 14 to an irradiation target area AR to be sterilized or the like with pinpoint accuracy. . The versatility of the above problem (2) can be solved because the ultraviolet light can be irradiated to any place simply by moving the irradiation unit 13 at the tip of the optical fiber 14 . In addition, since there is no need to move or set the ultraviolet light source, and the user is not required to have skills or knowledge, the operability of the above problem (3) can be resolved. Furthermore, by providing an optical distribution unit 12 such as an optical splitter in the optical transmission line 16 to form a P-MP (Point to MultiPoint) system configuration such as FTTH (Fiber To The Home), a single light source can be used. By sharing, you can sterilize multiple places. Therefore, it is possible to solve the problem (1) economically.
 しかし、光ファイバを用いた紫外光照射システムには次のような課題がある。図2の紫外光照射システム301を用いてその課題を説明する。
 1つの照射対象域ARであってもその中には細菌やウィルスが少なく殺菌等が不要な領域AR-oと細菌やウィルスが多く短時間で殺菌等が必要な領域AR-sに分かれる場合がある。そのような場合であっても、照射部13は、固定倍率のレンズ系であり、照射対象域AR全体に紫外光を照射することになる。この結果、図2のように領域AR-oと領域AR-sに分かれる場合でも、紫外光の照射範囲を変えることができず、領域AR-sを集中して殺菌等を行うことが困難である。つまり、図1や図2のように光ファイバを用いた紫外光照射システム300及び301には、所望領域に柔軟に対応して短時間で殺菌等を行うことが困難という課題があった。
However, the ultraviolet light irradiation system using optical fibers has the following problems. The problem will be explained using the ultraviolet light irradiation system 301 in FIG.
Even in a single irradiation target area AR, there are cases where it is divided into an area AR-o where there are few bacteria and viruses and does not require sterilization, etc., and an area AR-s where there are many bacteria and viruses and need sterilization etc. in a short time. be. Even in such a case, the irradiation unit 13 is a lens system with a fixed magnification, and irradiates the entire irradiation target area AR with ultraviolet light. As a result, even if the area AR-o and the area AR-s are divided as shown in FIG. 2, the irradiation range of the ultraviolet light cannot be changed, and it is difficult to concentrate the area AR-s for sterilization or the like. be. In other words, the ultraviolet light irradiation systems 300 and 301 using optical fibers as shown in FIGS. 1 and 2 have a problem that it is difficult to perform sterilization or the like in a short time while flexibly responding to a desired region.
 本発明は、上記課題を解決するために、所望領域に柔軟に対応して短時間で殺菌等を行うことができる紫外光照射システム及びその照射方法を提供することを目的とする。 In order to solve the above problems, the object of the present invention is to provide an ultraviolet light irradiation system and its irradiation method that can flexibly respond to a desired area and perform sterilization, etc. in a short time.
 上記目的を達成するために、本発明に係る紫外光照射システムは、紫外光のビーム径及び照射方向が可変である照射部を備え、短時間で殺菌等が必要な領域に対し、集中して紫外光を照射することとした。 In order to achieve the above object, the ultraviolet light irradiation system according to the present invention includes an irradiation unit in which the beam diameter and irradiation direction of ultraviolet light are variable, and concentrates on areas that require sterilization etc. in a short time. It was decided to irradiate with ultraviolet light.
 具体的には、本発明に係る紫外光照射システムは、
 紫外光を発生させる紫外光源部と、
 前記紫外光を照射対象域に照射する照射部と、
 前記紫外光の照射範囲を変化させる照射範囲制御部と、
を備える。
Specifically, the ultraviolet light irradiation system according to the present invention includes:
an ultraviolet light source that generates ultraviolet light;
an irradiation unit that irradiates the irradiation target area with the ultraviolet light;
an irradiation range control unit that changes the irradiation range of the ultraviolet light;
Prepare.
 そして、本発明に係る紫外光照射システムの前記照射範囲制御部は、前記照射部に対し、前記照射対象域のうち前記紫外光を照射する必要性のある領域が発生した場合、前記必要性の高い前記領域に前記紫外光を絞って照射させ、他の場合、前記照射対象域の全体に前記紫外光を広げて照射させることを特徴とする。 Then, the irradiation range control unit of the ultraviolet light irradiation system according to the present invention causes the irradiation unit to detect the need to irradiate the ultraviolet light when there is a region in the irradiation target region that needs to be irradiated with the ultraviolet light. It is characterized in that the ultraviolet light is focused on the high region and irradiated with the ultraviolet light, and in other cases, the ultraviolet light is spread over the entire irradiation target region.
 また、本発明に係る照射方法は、紫外光を照射対象域に照射する紫外光照射システムの照射方法であって、
 前記照射対象域のうち前記紫外光を照射する必要性のある領域が発生した場合、前記必要性の高い前記領域に前記紫外光を絞って照射し、他の場合、前記照射対象域の全体に前記紫外光を広げて照射することを特徴とする。
Further, an irradiation method according to the present invention is an irradiation method for an ultraviolet light irradiation system that irradiates an irradiation target area with ultraviolet light,
When there is a region in the irradiation target area that needs to be irradiated with the ultraviolet light, the ultraviolet light is focused on the region with the high necessity, and in other cases, the entire irradiation target region It is characterized in that the ultraviolet light is spread and irradiated.
 本紫外光照射システムは、照射部が紫外光の照射範囲を変えることができる。このため、照射対象域の中に殺菌等が必要な領域が発生した場合、照射部は、紫外光のビーム径を絞り、当該領域へ集中して照射することができる。また、照射対象域の中に殺菌等が必要な領域が発生していない場合(平時)、照射部は、紫外光のビーム径を広げて照射対象域全体に紫外光を照射する。従って、本発明は、所望領域に柔軟に対応して短時間で殺菌等を行うことができる紫外光照射システム及びその照射方法を提供することができる。 In this ultraviolet light irradiation system, the irradiation unit can change the irradiation range of ultraviolet light. Therefore, when a region requiring sterilization or the like occurs in the irradiation target region, the irradiation unit can reduce the beam diameter of the ultraviolet light and irradiate the region intensively. Further, when there is no area requiring sterilization or the like in the irradiation target area (normal time), the irradiation unit widens the beam diameter of the ultraviolet light and irradiates the entire irradiation target area with the ultraviolet light. Therefore, the present invention can provide an ultraviolet light irradiation system and an irradiation method thereof that can flexibly respond to a desired region and perform sterilization or the like in a short time.
 本発明に係る紫外光照射システムの前記照射部は、N個(Nは2以上の自然数)であり、前記照射部のそれぞれが前記紫外光をN個の照射対象域に照射しており、前記紫外光をそれぞれの前記照射部への方路へ分配する光分配部をさらに備えてもよい。P-MP構成の紫外光照射システムを提供することができる。 The irradiation unit of the ultraviolet light irradiation system according to the present invention is N (N is a natural number of 2 or more), and each of the irradiation units irradiates the ultraviolet light to N irradiation target areas, A light distribution section may be further provided for distributing the ultraviolet light to each of the irradiation sections. A P-MP configuration ultraviolet light irradiation system can be provided.
 本発明に係る紫外光照射システムの前記光分配部は、前記紫外光をそれぞれの前記方路へ分配する分配比が可変であり、前記紫外光を絞って照射する前記照射部への前記方路への分配比率を高くしてもよい。紫外光の照射方向とともに各方路への分配比も調整することで、照射対象域それぞれの要求にさらに柔軟に対応することができる。 The light distribution unit of the ultraviolet light irradiation system according to the present invention has a variable distribution ratio for distributing the ultraviolet light to each of the directions, and the direction to the irradiation unit that narrows and irradiates the ultraviolet light. You may increase the distribution ratio to By adjusting the distribution ratio to each direction as well as the irradiation direction of the ultraviolet light, it is possible to more flexibly meet the requirements of each irradiation target area.
 本発明に係る紫外光照射システムは、
 前記照射対象域の内の前記領域を特定し、且つ前記照射対象域に前記紫外光の被爆を回避すべき回避対象が存在するか否かを検知するセンサ部をさらに備え、
 前記照射範囲制御部は、前記照射部に対し、前記照射対象域に前記回避対象が不在である時間に、前記領域へ前記紫外光を絞って照射させてもよい。
 センサ部を備えることで、照射対象域の中の殺菌等が必要な領域を特定でき、且つ照射対象域に存在する回避対象への紫外光照射を回避して安全性を高めることができる。
The ultraviolet light irradiation system according to the present invention is
further comprising a sensor unit that identifies the area within the irradiation target area and detects whether or not there is an avoidance target to be avoided from being exposed to the ultraviolet light in the irradiation target area;
The irradiation range control unit may cause the irradiation unit to selectively irradiate the region with the ultraviolet light during a time when the avoidance target is not present in the irradiation target region.
By providing the sensor unit, it is possible to specify an area that requires sterilization or the like in the irradiation target area, and to avoid ultraviolet light irradiation to avoidance targets existing in the irradiation target area, thereby enhancing safety.
 本発明に係る紫外光照射システムは、
 前記照射部から照射される前記紫外光の光量を観測するモニタ部をさらに備え、
 前記照射範囲制御部は、前記紫外光を絞って照射している前記照射対象域に照射される前記紫外光の光量が所定値を超えた時点で、前記照射部に対して前記紫外光を絞って前記照射対象域へ照射することを終了させてもよい。所望の領域の殺菌等を終了した後、速やかに平時(照射対象域全体に紫外光を照射する)に戻ることができる。
The ultraviolet light irradiation system according to the present invention is
further comprising a monitor unit that observes the amount of the ultraviolet light emitted from the irradiation unit;
The irradiation range control unit narrows down the ultraviolet light to the irradiation unit when the amount of the ultraviolet light applied to the irradiation target area, which is being irradiated with the narrowed ultraviolet light, exceeds a predetermined value. to terminate the irradiation of the irradiation target area. After completing the sterilization of the desired area, it is possible to quickly return to the normal state (i.e., irradiate the entire irradiation target area with ultraviolet light).
 なお、上記各発明は、可能な限り組み合わせることができる。 The above inventions can be combined as much as possible.
 本発明は、所望領域に柔軟に対応して短時間で殺菌等を行うことができる紫外光照射システム及びその照射方法を提供することができる。 The present invention can provide an ultraviolet light irradiation system and its irradiation method that can flexibly respond to a desired region and perform sterilization, etc. in a short time.
本発明の課題を説明する図である。It is a figure explaining the subject of this invention. 本発明の課題を説明する図である。It is a figure explaining the subject of this invention. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 光ファイバの断面構造を説明する図である。It is a figure explaining the cross-sectional structure of an optical fiber. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射システムを説明する図である。It is a figure explaining the ultraviolet light irradiation system which concerns on this invention. 本発明に係る紫外光照射方法を説明する図である。It is a figure explaining the ultraviolet-light irradiation method which concerns on this invention.
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 An embodiment of the present invention will be described with reference to the attached drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In addition, in this specification and the drawings, constituent elements having the same reference numerals are the same as each other.
(実施形態1)
 図3は、本実施形態の紫外光照射システム302を説明する図である。紫外光照射システム302は、
 紫外光を発生させる紫外光源部11と、
 前記紫外光を照射対象域ARに照射する照射部13と、
 前記紫外光の照射範囲を変化させる照射範囲制御部19と、
を備える。
(Embodiment 1)
FIG. 3 is a diagram illustrating the ultraviolet light irradiation system 302 of this embodiment. The ultraviolet light irradiation system 302 is
an ultraviolet light source unit 11 that generates ultraviolet light;
an irradiation unit 13 that irradiates the irradiation target area AR with the ultraviolet light;
an irradiation range control unit 19 that changes the irradiation range of the ultraviolet light;
Prepare.
 紫外光源部11は、殺菌等に有効である紫外領域の光(紫外光)を出力する。紫外光源部11と照射部13とは光ファイバである光伝送路16で接続される。 The ultraviolet light source unit 11 outputs light in the ultraviolet region (ultraviolet light) that is effective for sterilization and the like. The ultraviolet light source unit 11 and the irradiation unit 13 are connected by an optical transmission line 16, which is an optical fiber.
 光伝送路16が光ファイバなので従来技術のロボットや装置が入り込めない細かい場所などにも敷設することができる。図4は、伝送路16に使用可能な光ファイバの断面を説明する図である。
(1)充実コア光ファイバ
 この光ファイバは、クラッド60の中にクラッド60より高屈折率である1つの充実コア52を有する。「充実」とは「空洞ではない」という意味である。尚、充実コアは、クラッド内に円環状の低屈折率領域を形成することでも実現できる。
(2)空孔アシスト光ファイバ
 この光ファイバは、クラッド60の中に充実コア52とその外周に配置された複数の空孔53を有する。空孔53の媒質は空気であり、空気の屈折率は石英系ガラスに比べ十分小さい。このため、空孔アシスト光ファイバは、曲げなどでコア52から漏れた光を再びコア52に戻す機能があり、曲げ損失が小さいという特徴がある。
(3)空孔構造光ファイバ
この光ファイバは、クラッド60の中に複数の空孔53の空孔群53aを有し、ホスト材料(ガラス等)よりも実効的に屈折率が低い。本構造は、フォトニック結晶ファイバと呼ばれる。本構造には、屈折率を変化させた高屈折率コアが存在しない構造をとることができ、空孔53に取り囲まれた領域52aを実効的なコア領域として、光を閉じ込めることができる。充実コアを有する光ファイバに比べ、フォトニック結晶ファイバは、コアの添加剤による吸収や散乱損失の影響を低減することができるとともに、曲げ損失の低減や非線形効果の制御等、充実型光ファイバでは実現し得ない光学特性を実現できる。
(4)中空コア光ファイバ
この光ファイバは、コア領域が空気で形成される。クラッド領域に複数の空孔によるフォトニックバンドギャップ構造もしくはガラス細線によるアンチレゾナント構造をとることによって光をコア領域に閉じ込めることができる。この光ファイバは、非線形効果が小さく、高出力または高エネルギーレーザ供給が可能である。
(5)結合コア型光ファイバ
 この光ファイバは、クラッド60の中に複数の高屈折率である充実コア52が近接して配置される。この光ファイバは、充実コア52間で光波結合で光を導波する。結合コア型光ファイバは、コア数分だけ光を分散して送れるので、その分ハイパワー化して効率的な殺菌等ができる、また、結合コア型光ファイバは、紫外光によるファイバ劣化を緩和し長寿命化できるというメリットがある。
Since the optical transmission line 16 is an optical fiber, it can be laid in narrow places where conventional robots and devices cannot enter. FIG. 4 is a diagram illustrating a cross section of an optical fiber that can be used for the transmission line 16. As shown in FIG.
(1) Solid Core Optical Fiber This optical fiber has one solid core 52 in the clad 60 having a higher refractive index than the clad 60 . "Full" means "not hollow". The solid core can also be realized by forming an annular low refractive index region in the clad.
(2) Hole-assisted optical fiber This optical fiber has a solid core 52 in the clad 60 and a plurality of holes 53 arranged around the core. The medium of the holes 53 is air, and the refractive index of air is sufficiently smaller than that of quartz-based glass. Therefore, the hole-assisted optical fiber has a function of returning light leaking from the core 52 due to bending or the like back to the core 52, and is characterized by a small bending loss.
(3) Hole structure optical fiber This optical fiber has a hole group 53a of a plurality of holes 53 in the clad 60, and has an effective refractive index lower than that of the host material (glass or the like). This structure is called a photonic crystal fiber. This structure can take a structure in which a high-refractive-index core with a changed refractive index does not exist, and light can be confined using the region 52a surrounded by the holes 53 as an effective core region. Compared to optical fibers with solid cores, photonic crystal fibers can reduce the effects of absorption and scattering losses due to additives in the core. Optical characteristics that cannot be realized can be realized.
(4) Hollow core optical fiber This optical fiber has a core region made of air. Light can be confined in the core region by forming a photonic bandgap structure with a plurality of holes in the cladding region or an anti-resonant structure with glass wires. This optical fiber has low nonlinear effects and is capable of delivering high power or high energy lasers.
(5) Coupling Core Optical Fiber In this optical fiber, a plurality of solid cores 52 having a high refractive index are closely arranged in a clad 60 . This optical fiber guides light by optical wave coupling between solid cores 52 . Coupling-core optical fibers can disperse and transmit light as many times as the number of cores, so high power can be used for efficient sterilization. There is an advantage that the service life can be extended.
 照射部13は、紫外光源部11からの紫外光を、殺菌等を行う所定の対象箇所(照射対象域AR)に照射する。照射部13は、紫外光の波長に対して設計されたレンズなどの光学系で構成されている。また、照射部13は、前記光学系を動かし、照射する紫外光のビーム径及び照射方向を変更することができる。 The irradiation unit 13 irradiates ultraviolet light from the ultraviolet light source unit 11 to a predetermined target location (irradiation target area AR) for sterilization or the like. The irradiation unit 13 is composed of an optical system such as a lens designed for the wavelength of ultraviolet light. Further, the irradiation unit 13 can move the optical system to change the beam diameter and irradiation direction of the ultraviolet light to be irradiated.
 照射範囲制御部19は、照射部13の光学系に対して、照射する紫外光のビーム径及び照射方向を指示する。例えば、照射範囲制御部19は、照射部13に対し、照射対象域ARのうち前記紫外光を照射する必要性のある領域AR-sが発生した場合、領域AR-sに前記紫外光を絞って照射させ、他の場合、照射対象域ARの全体に前記紫外光を広げて照射させる。なお、領域AR-sは照射対象域AR内にあるとする。 The irradiation range control unit 19 instructs the optical system of the irradiation unit 13 about the beam diameter and irradiation direction of the ultraviolet light to be irradiated. For example, when an area AR-s that needs to be irradiated with the ultraviolet light occurs in the irradiation target area AR, the irradiation range control unit 19 restricts the ultraviolet light to the area AR-s. In other cases, the ultraviolet light is spread over the entire irradiation target area AR and irradiated. It is assumed that the area AR-s is within the irradiation target area AR.
 照射対象域ARの中に細菌量やウィルス量が多くなる領域AR-sが発生することもある。このような場合、短時間で領域AR-sに対する殺菌等を行う必要がある。一方、照射対象域ARの他の領域では細菌量やウィルス量が少なく、殺菌等が不要な領域AR-oもある。図2のように従前の照射部13では、照射する紫外光のビーム径が一定だったため、領域AR-sが発生したとしても、そこに紫外光を集中できず、短時間の殺菌等ができなかった。本実施形態の照射部13は、照射範囲制御部19の指示に基づいて、照射する紫外光のビーム径と照射方向を任意に設定できる。このため、領域AR-sが発生した場合、照射範囲制御部19は、紫外光がそこに向けて照射されるように紫外光のビーム径と照射方向を照射部13に指示する。ビーム径を絞っているため、領域AR-sに照射される紫外光の照度が通常(照射対象域AR全面に紫外光を照射する状態)より高くなり、通常より短時間で領域AR-sに対する殺菌等を行える。 An area AR-s with a large amount of bacteria and viruses may occur within the irradiation target area AR. In such a case, it is necessary to sterilize the area AR-s in a short time. On the other hand, in other areas of the irradiation target area AR, there is also an area AR-o in which the amounts of bacteria and viruses are small and sterilization or the like is unnecessary. As shown in FIG. 2, in the conventional irradiation unit 13, the beam diameter of the irradiated ultraviolet light was constant, so even if the area AR-s were generated, the ultraviolet light could not be concentrated there, and sterilization and the like could be performed in a short time. I didn't. The irradiation unit 13 of this embodiment can arbitrarily set the beam diameter and irradiation direction of the ultraviolet light to be irradiated based on the instruction of the irradiation range control unit 19 . Therefore, when the area AR-s is generated, the irradiation range control unit 19 instructs the irradiation unit 13 on the beam diameter and irradiation direction of the ultraviolet light so that the ultraviolet light is irradiated thereon. Since the beam diameter is narrowed, the illuminance of the ultraviolet light irradiated to the area AR-s is higher than usual (the state in which the entire irradiation target area AR is irradiated with ultraviolet light), and the area AR-s is irradiated in a shorter time than usual. Sterilization, etc. can be performed.
 ここで、領域AR-sを集中して殺菌等を行うことを終了するタイミングも必要である。例えば、照射範囲制御部19が紫外光のビーム径を絞り、照射方向を指示したのち、一定時間後に通常に戻してもよい。あるいは、図5のように、照射部13から照射される前記紫外光の光量を観測するモニタ部41をさらに備え、照射範囲制御部19は、前記紫外光を絞って照射している照射対象域ARに照射される前記紫外光の光量が所定値を超えた時点で、照射部13に対して前記紫外光を絞って照射対象域ARへ照射することを終了させ、通常に戻してもよい。 At this point, it is also necessary to have the timing to finish sterilizing the area AR-s intensively. For example, the irradiation range control unit 19 may narrow the beam diameter of the ultraviolet light, instruct the irradiation direction, and then return to normal after a certain period of time. Alternatively, as shown in FIG. 5, a monitor unit 41 for observing the amount of the ultraviolet light emitted from the irradiation unit 13 is further provided, and the irradiation range control unit 19 controls the irradiation target area irradiated with the narrowed ultraviolet light. When the amount of the ultraviolet light irradiated to the AR exceeds a predetermined value, the irradiation unit 13 may stop irradiating the irradiation target area AR with the ultraviolet light narrowed down, and return to normal.
 モニタ部41は、光伝送路16で照射部13に入力される紫外光の光量を測定してもよいし、照射部13が照射する紫外光の光量を測定してもよいし、照射対象域AR全体が受ける紫外光の光量を測定してもよい。なお、光量とは、積算光量(単位J)、パワー(単位W)とし、照射対象域ARにおける照度(単位W/m)、照射対象域ARにおける単位面積当たりのエネルギー(単位J/m又はW・s/m)のいずれでもよい。 The monitor unit 41 may measure the amount of ultraviolet light input to the irradiation unit 13 through the optical transmission line 16, may measure the amount of ultraviolet light irradiated by the irradiation unit 13, or may measure the amount of ultraviolet light irradiated by the irradiation unit 13. The amount of ultraviolet light received by the entire AR may be measured. Note that the amount of light is the integrated amount of light (unit: J), power (unit: W), illuminance in the irradiation target area AR (unit: W/m 2 ), energy per unit area in the irradiation target area AR (unit: J/m 2 or W·s/m 2 ).
 モニタ部41は、測定した光量をデータD1として照射範囲制御部19に通知する。照射範囲制御部19は、通知された光量と所定値(例えば、殺菌等が完了できる光量)と比較して、当該光量が所定値を超えたときに照射部13に通常に戻すように指示する。 The monitor unit 41 notifies the irradiation range control unit 19 of the measured amount of light as data D1. The irradiation range control unit 19 compares the notified amount of light with a predetermined value (for example, the amount of light that can complete sterilization, etc.), and instructs the irradiation unit 13 to return to normal when the amount of light exceeds the predetermined value. .
 なお、領域AR-sの殺菌等を行っている間、他の領域AR-oには紫外光が照射されず殺菌等が行われないが、細菌量やウィルス量が少ないので、領域AR-sに対して行う殺菌等の時間が短時間であれば紫外光が照射されなくても細菌量やウィルス量の増加には影響はない。 While the area AR-s is being sterilized, the other area AR-o is not irradiated with ultraviolet light and is not sterilized. If the time for sterilization, etc., to be performed is short, there is no effect on the increase in the amount of bacteria and viruses even if the ultraviolet light is not irradiated.
(実施形態2)
 図6は、本実施形態の紫外光照射システム304を説明する図である。紫外光照射システム304は、センサ部31を備えることが図3の紫外光照射システム302との相違点である。本実施形態では、当該相違点のみ説明する。紫外光照射システム304は、図3の紫外光照射システム302に対し、照射対象域ARの内の領域AR-sを特定し、且つ照射対象域ARに前記紫外光の被爆を回避すべき回避対象Hが存在するか否かを検知するセンサ部31をさらに備え、照射範囲制御部19は、照射部13に対し、照射対象域ARに回避対象Hが不在である時間に、領域AR-sへ前記紫外光を絞って照射させる。
(Embodiment 2)
FIG. 6 is a diagram illustrating the ultraviolet light irradiation system 304 of this embodiment. The ultraviolet light irradiation system 304 differs from the ultraviolet light irradiation system 302 in FIG. 3 in that it includes a sensor section 31 . In this embodiment, only the difference will be described. The ultraviolet light irradiation system 304 specifies an area AR-s in the irradiation target area AR, and an avoidance target to be avoided in the irradiation target area AR from the ultraviolet light irradiation system 302 in FIG. The irradiation range control unit 19 further includes a sensor unit 31 that detects whether H exists or not. The ultraviolet light is focused and irradiated.
 センサ部31は、それぞれの照射対象域ARとその周辺にある回避対象(人や動物など)Hの存否や動きを検知する。例えば、センサ部31は、温度計による温度取得、赤外線センサによる赤外線取得、カメラによる画像取得、LiDAR(Light Detection and Ranging)による光取得等を行い、情報処理(形、顔、指紋、静脈、虹彩など)を施し、回避対象の存否や動きを検知する。 The sensor unit 31 detects the existence and movement of each irradiation target area AR and avoidance targets (humans, animals, etc.) H in the vicinity thereof. For example, the sensor unit 31 performs temperature acquisition by a thermometer, infrared acquisition by an infrared sensor, image acquisition by a camera, light acquisition by LiDAR (Light Detection and Ranging), etc., and information processing (shape, face, fingerprint, vein, iris etc.) to detect the existence and movement of the avoidance target.
 センサ部31は、照射対象域AR内に回避対象Hが存在するか否かだけでなく、照射対象域ARの周辺についても監視している。このため、センサ部31は、回避対象Hの動きから、この後、回避対象Hが照射対象域AR内に進入するのか、それとも進入しないのか、あるいは回避対象Hが照射対象域ARから離れていくのか、を検知することができる。そして、センサ部31は、その検知結果を照射範囲制御部19へ通知する。照射範囲制御部19への通知は有線でも無線でもよい。 The sensor unit 31 monitors not only whether or not the avoidance target H exists within the irradiation target area AR, but also the periphery of the irradiation target area AR. Therefore, based on the movement of the avoidance target H, the sensor unit 31 determines whether the avoidance target H will enter the irradiation target area AR or not, or whether the avoidance target H will move away from the irradiation target area AR. can be detected. Then, the sensor unit 31 notifies the irradiation range control unit 19 of the detection result. The notification to the irradiation range control unit 19 may be wired or wireless.
 図6(A)は通常時の状態を説明している。紫外光照射システム304は、照射対象域AR全面に紫外光を照射する。そして、センサ部31は、照射対象域ARに回避対象Hが存在するか否かを監視している。
 図6(B)は照射対象域ARに回避対象Hが進入した状態を説明している。センサ部31は、回避対象Hを検知すると、その情報を照射範囲制御部19へ通知する。照射範囲制御部19は、照射部13に対して紫外光の照射を中断させる。あるいは、回避対象Hに対して害のないレベルまで紫外光のパワーを下げた状態で照射対象域ARに照射し続けてもよい。このとき、センサ部31は、回避対象Hが照射対象域ARのどの部分に滞在したかを検知し、その情報も照射範囲制御部19へ通知する。
 図6(C)は照射対象域ARから回避対象Hが退出した後の状態を説明している。センサ部31は、回避対象Hが照射対象域ARから退出したことを検知すると、その情報を照射範囲制御部19へ通知する。照射範囲制御部19は、照射部13に対して紫外光のビーム径を絞って照射させる。このとき、照射範囲制御部19は、回避対象Hが滞在していた部分を領域AR-sとし、照射部13に対してビーム径を絞った紫外光を領域AR-sの方向へ向けさせる。
FIG. 6A illustrates the normal state. The ultraviolet light irradiation system 304 irradiates the entire irradiation target area AR with ultraviolet light. Then, the sensor unit 31 monitors whether or not the avoidance target H exists in the irradiation target area AR.
FIG. 6B illustrates a state in which the avoidance target H has entered the irradiation target area AR. When detecting the avoidance target H, the sensor unit 31 notifies the irradiation range control unit 19 of the information. The irradiation range control unit 19 causes the irradiation unit 13 to suspend irradiation of ultraviolet light. Alternatively, the irradiation target area AR may be continuously irradiated with the power of the ultraviolet light lowered to a level that does not harm the object H to be avoided. At this time, the sensor unit 31 detects which part of the irradiation target area AR the avoidance target H has stayed in, and also notifies the irradiation range control unit 19 of the information.
FIG. 6C illustrates the state after the avoidance target H has left the irradiation target area AR. When the sensor unit 31 detects that the avoidance target H has left the irradiation target area AR, the sensor unit 31 notifies the irradiation range control unit 19 of the information. The irradiation range control unit 19 causes the irradiation unit 13 to irradiate ultraviolet light with a narrowed beam diameter. At this time, the irradiation range control unit 19 designates the portion where the avoidance target H stayed as an area AR-s, and directs the irradiation unit 13 to direct ultraviolet light with a narrowed beam diameter toward the area AR-s.
 紫外光照射システム304が図6のように動作することで、回避対象Hに紫外光を照射することなく領域AR-sを短時間で殺菌等することができる。また、図5で説明したように、モニタ部41を利用して領域AR-sの殺菌等を終了してもよい。 By operating the ultraviolet light irradiation system 304 as shown in FIG. 6, the area AR-s can be sterilized in a short time without irradiating the avoidance target H with ultraviolet light. Further, as described with reference to FIG. 5, the monitoring unit 41 may be used to terminate the sterilization of the area AR-s.
(実施形態3)
 図7は、本実施形態の紫外光照射システム305を説明する図である。紫外光照射システム305は、図3の紫外光照射システム302をP-MP構成としたシステムである。つまり、紫外光照射システム305は、照射部13がN個(Nは2以上の自然数)であり、照射部13(13-n;nは1からNの整数)のそれぞれが前記紫外光をN個の照射対象域ARnに照射しており、前記紫外光をそれぞれの照射部13-nへの方路14へ分配する光分配部12-11をさらに備えることを特徴とする。
(Embodiment 3)
FIG. 7 is a diagram illustrating the ultraviolet light irradiation system 305 of this embodiment. The ultraviolet light irradiation system 305 is a P-MP configuration of the ultraviolet light irradiation system 302 in FIG. That is, the ultraviolet light irradiation system 305 has N irradiation units 13 (N is a natural number of 2 or more), and each of the irradiation units 13 (13-n; n is an integer from 1 to N) emits N ultraviolet light. It is characterized by further comprising a light distribution unit 12-11 that irradiates the irradiation target areas ARn and distributes the ultraviolet light to a route 14 to each irradiation unit 13-n.
 照射部13は、担当する照射対象域ARを有している。例えば、照射部13-1は照射対象域AR1を担当し、照射部13-2は照射対象域AR2を担当し、・・・照射部13-Nは照射対象域ARNを担当する。。 The irradiation unit 13 has an irradiation target area AR in charge. For example, the irradiation unit 13-1 is in charge of the irradiation target area AR1, the irradiation unit 13-2 is in charge of the irradiation target area AR2, . . . the irradiation unit 13-N is in charge of the irradiation target area ARN. .
 光分配部12-11は、等分岐カプラ、不等分岐カプラ、又は分岐比可変カプラ、又は光スイッチである。
 等分岐カプラは、光伝送路16で入力された紫外光を各出力ポートに均等にパワー分岐する。
 不等分岐カプラは、光伝送路16で入力された紫外光を予め設定された分岐比で各出力ポートにパワー分岐する。不等分岐カプラは、例えば、特開2020-036068で開示される不等分岐カプラである。
The optical splitter 12-11 is an equal splitting coupler, an unequal splitting coupler, a variable splitting ratio coupler, or an optical switch.
The equal splitting coupler equally splits the power of the ultraviolet light input through the optical transmission line 16 to each output port.
The unequal splitting coupler splits the power of the ultraviolet light input through the optical transmission line 16 to each output port at a preset splitting ratio. The unequal branch coupler is, for example, the unequal branch coupler disclosed in JP-A-2020-036068.
 分岐比可変カプラは、照射範囲制御部19からの指示によって分岐比を変化させることができる。分岐比可変カプラは、光伝送路16で入力された紫外光を当該分岐比に従ってパワー分岐し、複数の出力ポートに出力する。分岐比可変カプラは、例えば、参考文献1に開示されるような、ヒーターで分岐比を変化させるマッハツェンダ干渉計を備える構成である。
(参考文献1)NTT技術ジャーナル(https://www.ntt.co.jp/journal/0505/files/jn200505012.pdf)、2005年5月発行
The variable branching ratio coupler can change the branching ratio according to an instruction from the irradiation range control unit 19 . The branching ratio variable coupler branches the power of the ultraviolet light input through the optical transmission line 16 according to the branching ratio, and outputs the branched light to a plurality of output ports. The variable branching ratio coupler has a configuration including a Mach-Zehnder interferometer that changes the branching ratio with a heater, as disclosed in Reference 1, for example.
(Reference 1) NTT Technical Journal (https://www.ntt.co.jp/journal/0505/files/jn200505012.pdf), published in May 2005
 光スイッチは、照射範囲制御部19からの指示による切り替えタイミングにしたがい、光伝送路16で入力された紫外光をいずれかの出力ポートに出力する。なお、各出力ポートに紫外光を出力する時間をタイムスロットという。 The optical switch outputs the ultraviolet light input through the optical transmission line 16 to one of the output ports according to the switching timing indicated by the irradiation range control unit 19 . The time during which ultraviolet light is output to each output port is called a time slot.
 本明細書では、「分配比」とは光スイッチであれば時間比、カプラであれば分岐比を意味する。 In this specification, the "distribution ratio" means the time ratio in the case of an optical switch, and the branch ratio in the case of a coupler.
 出力ポート1~Nから出力された紫外光は方路14及び照射部13-nを介して、それぞれ照射対象域ARnに照射される。なお、方路14は光ファイバであり、図4で説明した光ファイバを使用できる。 The ultraviolet light output from the output ports 1 to N is irradiated onto the irradiation target area ARn via the route 14 and the irradiation unit 13-n. The route 14 is an optical fiber, and the optical fiber described with reference to FIG. 4 can be used.
 図7は、照射対象域AR1が通常状態、照射対象域AR2が紫外光のビーム径を絞って領域AR-sに照射している状態、照射対象域ARNが紫外光の照射を中止している状態を説明している。 In FIG. 7, the irradiation target area AR1 is in a normal state, the irradiation target area AR2 is in a state in which the ultraviolet light beam diameter is narrowed and the area AR-s is irradiated, and the irradiation target area ARN is in a state where the ultraviolet light irradiation is stopped. describes the state.
 ここで、光分配部12-11が、分岐比可変カプラ又は光スイッチである場合、照射範囲制御部19は、前記紫外光を絞って照射する照射部13(図7であれば照射部13-2)への方路14への分配比率を高くしてもよい。所望の照射対象域ARへのビーム径を絞るとともに、当該照射部13へ分配する紫外光の光量を多くすることで、領域AR-sの照度をより高くできるので、殺菌等の時間をさらに短縮することができる。 Here, when the light distribution unit 12-11 is a variable branching ratio coupler or an optical switch, the irradiation range control unit 19 controls the irradiation unit 13 (in the case of FIG. 7, the irradiation unit 13- 2), the distribution ratio to the route 14 may be increased. By narrowing the beam diameter to the desired irradiation target area AR and increasing the amount of ultraviolet light distributed to the irradiation unit 13, the illuminance of the area AR-s can be increased, further shortening the time required for sterilization, etc. can do.
(実施形態4)
 図8は、上述した紫外光照射システム(302~305)における紫外光照射方法を説明するフローチャートである。
 本方法は、紫外光を照射対象域ARに照射する紫外光照射システム(302~305)の照射方法であって、次のように動作する。
 ステップS01:照射部13が担当する照射対象域ARの全面に紫外光を照射する。
 ステップS02:照射対象域ARに前記紫外光を照射する必要性のある領域AR-sが発生したか否かを判断する。領域AR-sが発生していない場合、ステップS01に戻り、照射部13が照射対象域ARの全体に前記紫外光を広げて照射する。
 ステップS03:領域AR-sが発生した場合(ステップS02にて“Yes”)、照射部13が領域AR-sに前記紫外光を絞って照射する。
 ステップS04:紫外光を領域AR-sに絞って照射する時間が一定時間を経過したか否か、又は領域AR-sに絞って照射する紫外光の光量が所定量を超えたか否かを判断する。当該時間が一定時間を経過した、又は当該光量が所定量を超えた場合、ステップS01に戻り、照射対象域ARの全体に前記紫外光を広げて照射する。一方、当該時間が一定時間を経過していない、又は当該光量が所定量を超えていない場合、ステップS03に戻り、照射部13が領域AR-sに前記紫外光を絞って照射することを継続する。
(Embodiment 4)
FIG. 8 is a flow chart for explaining the ultraviolet light irradiation method in the ultraviolet light irradiation system (302-305) described above.
This method is an irradiation method for an ultraviolet light irradiation system (302 to 305) that irradiates an irradiation target area AR with ultraviolet light, and operates as follows.
Step S01: The irradiation unit 13 irradiates the entire irradiation target area AR with ultraviolet light.
Step S02: It is determined whether or not an area AR-s that needs to be irradiated with the ultraviolet light has occurred in the irradiation target area AR. If the area AR-s has not occurred, the process returns to step S01, and the irradiation unit 13 spreads and irradiates the ultraviolet light onto the entire irradiation target area AR.
Step S03: When the area AR-s is generated (“Yes” in step S02), the irradiation unit 13 irradiates the area AR-s with the ultraviolet light focused.
Step S04: Determine whether or not a certain period of time has elapsed for irradiating the area AR-s with ultraviolet light, or whether the amount of ultraviolet light focused on the area AR-s has exceeded a predetermined amount. do. When the time has elapsed or the amount of light has exceeded the predetermined amount, the process returns to step S01 to irradiate the entire irradiation target area AR with the ultraviolet light spread. On the other hand, if the time has not passed the predetermined time or the amount of light has not exceeded the predetermined amount, the process returns to step S03, and the irradiation unit 13 continues to focus and irradiate the area AR-s with the ultraviolet light. do.
11:紫外光源部
12:光分配部(等分岐)
12-11:光分配部
13、13-1、・・・、13-N:照射部
14:方路(光ファイバ)
16:光伝送路(光ファイバ)
19:照射範囲制御部
31:センサ部
41:モニタ部
52:充実コア
52a:領域
53:空孔
53a:空孔群
53c:空孔
60:クラッド
300~305:紫外光照射システム
AR、AR1、AR2、・・・、ARN:照射対象域(紫外光を照射しようとする領域)
AR-s:殺菌等が必要な領域
AR-о:殺菌等が不要な領域
11: Ultraviolet light source unit 12: Light distribution unit (equally branched)
12-11: Light distribution units 13, 13-1, . . . , 13-N: Irradiation unit 14: Direction (optical fiber)
16: Optical transmission line (optical fiber)
19: Irradiation range control unit 31: Sensor unit 41: Monitor unit 52: Solid core 52a: Region 53: Hole 53a: Hole group 53c: Hole 60: Cladding 300-305: Ultraviolet light irradiation system AR, AR1, AR2 , ..., ARN: irradiation target area (area to be irradiated with ultraviolet light)
AR-s: Areas requiring sterilization, etc. AR-о: Areas not requiring sterilization, etc.

Claims (7)

  1.  紫外光を発生させる紫外光源部と、
     前記紫外光を照射対象域に照射する照射部と、
     前記紫外光の照射範囲を変化させる照射範囲制御部と、
    を備える紫外光照射システム。
    an ultraviolet light source that generates ultraviolet light;
    an irradiation unit that irradiates the irradiation target area with the ultraviolet light;
    an irradiation range control unit that changes the irradiation range of the ultraviolet light;
    An ultraviolet light irradiation system.
  2.  前記照射範囲制御部は、前記照射部に対し、
     前記照射対象域のうち前記紫外光を照射する必要性のある領域が発生した場合、前記必要性の高い前記領域に前記紫外光を絞って照射させ、
     他の場合、前記照射対象域の全体に前記紫外光を広げて照射させる
    ことを特徴とする請求項1に記載の紫外光照射システム。
    The irradiation range control unit, for the irradiation unit,
    When there is a region in the irradiation target region that needs to be irradiated with the ultraviolet light, the ultraviolet light is focused and irradiated on the region with the high necessity,
    2. The ultraviolet light irradiation system according to claim 1, wherein in other cases, the ultraviolet light is spread over the entire irradiation target area.
  3.  前記照射部は、N個(Nは2以上の自然数)であり、前記照射部のそれぞれが前記紫外光をN個の照射対象域に照射しており、
     前記紫外光をそれぞれの前記照射部への方路へ分配する光分配部をさらに備えることを特徴とする請求項1又は2に記載の紫外光照射システム。
    The irradiation unit is N (N is a natural number of 2 or more), and each of the irradiation units irradiates the ultraviolet light to N irradiation target areas,
    3. The ultraviolet light irradiation system according to claim 1, further comprising a light distribution unit that distributes the ultraviolet light to each of the irradiation units.
  4.  前記光分配部は、前記紫外光をそれぞれの前記方路へ分配する分配比が可変であり、
     前記紫外光を絞って照射する前記照射部への前記方路への分配比率を高くすること
    を特徴とする請求項3に記載の紫外光照射システム。
    The light distribution unit has a variable distribution ratio for distributing the ultraviolet light to each of the directions,
    4. The ultraviolet light irradiation system according to claim 3, wherein a distribution ratio of the ultraviolet light to the irradiation unit for narrowing and irradiating the ultraviolet light is increased.
  5.  前記照射対象域の内の前記領域を特定し、且つ前記照射対象域に前記紫外光の被爆を回避すべき回避対象が存在するか否かを検知するセンサ部をさらに備え、
     前記照射範囲制御部は、前記照射部に対し、前記照射対象域に前記回避対象が不在である時間に、前記領域へ前記紫外光を絞って照射させること
    を特徴とする請求項1から4のいずれかに記載の紫外光照射システム。
    further comprising a sensor unit that identifies the area within the irradiation target area and detects whether or not there is an avoidance target to be avoided from being exposed to the ultraviolet light in the irradiation target area;
    5. The method according to any one of claims 1 to 4, wherein the irradiation range control unit causes the irradiation unit to focus and irradiate the area with the ultraviolet light during a time when the object to be avoided is not present in the irradiation target area. The ultraviolet light irradiation system according to any one of the above.
  6.  前記照射部から照射される前記紫外光の光量を観測するモニタ部をさらに備え、
     前記照射範囲制御部は、前記紫外光を絞って照射している前記照射対象域に照射される前記紫外光の光量が所定値を超えた時点で、前記照射部に対して前記紫外光を絞って前記照射対象域へ照射することを終了させること
    を特徴とする請求項1から5のいずれかに記載の紫外光照射システム。
    further comprising a monitor unit that observes the amount of the ultraviolet light emitted from the irradiation unit;
    The irradiation range control unit narrows down the ultraviolet light to the irradiation unit when the amount of the ultraviolet light applied to the irradiation target area, which is being irradiated with the narrowed ultraviolet light, exceeds a predetermined value. 6. The ultraviolet light irradiation system according to any one of claims 1 to 5, wherein the irradiation of the irradiation target area is terminated by pressing the ultraviolet light.
  7.  紫外光を照射対象域に照射する紫外光照射システムの照射方法であって、
     前記照射対象域のうち前記紫外光を照射する必要性のある領域が発生した場合、前記必要性の高い前記領域に前記紫外光を絞って照射し、
     他の場合、前記照射対象域の全体に前記紫外光を広げて照射する
    ことを特徴とする照射方法。
    An irradiation method for an ultraviolet light irradiation system that irradiates an irradiation target area with ultraviolet light,
    When there is a region in the irradiation target region that needs to be irradiated with the ultraviolet light, the ultraviolet light is focused on the region with the high necessity and irradiated,
    In another case, an irradiation method characterized in that the ultraviolet light is spread over the entire irradiation target area.
PCT/JP2021/041475 2021-11-11 2021-11-11 Ultraviolet light radiation system and radiation method WO2023084669A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041475 WO2023084669A1 (en) 2021-11-11 2021-11-11 Ultraviolet light radiation system and radiation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041475 WO2023084669A1 (en) 2021-11-11 2021-11-11 Ultraviolet light radiation system and radiation method

Publications (1)

Publication Number Publication Date
WO2023084669A1 true WO2023084669A1 (en) 2023-05-19

Family

ID=86335313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041475 WO2023084669A1 (en) 2021-11-11 2021-11-11 Ultraviolet light radiation system and radiation method

Country Status (1)

Country Link
WO (1) WO2023084669A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003175361A (en) * 2001-12-12 2003-06-24 Gen Gijutsu Kenkyusho:Kk Method for forming cured coating film
JP2008226140A (en) * 2007-03-15 2008-09-25 Mazda Motor Corp Vehicle operation support system
US20160228928A1 (en) * 2014-05-21 2016-08-11 Shenzhen China Star Optoelectronics Technology Co. Ltd. Method of cleaning substrate by ultraviolet rays with adjustable radiation energy
JP2018130131A (en) * 2017-02-13 2018-08-23 エネフォレスト株式会社 Inner sterilizing apparatus
JP2020078479A (en) * 2018-11-14 2020-05-28 サンエナジー株式会社 Ultraviolet ray irradiation device
CN111450280A (en) * 2020-05-27 2020-07-28 梁旭东 Table type ultraviolet sterilizer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003175361A (en) * 2001-12-12 2003-06-24 Gen Gijutsu Kenkyusho:Kk Method for forming cured coating film
JP2008226140A (en) * 2007-03-15 2008-09-25 Mazda Motor Corp Vehicle operation support system
US20160228928A1 (en) * 2014-05-21 2016-08-11 Shenzhen China Star Optoelectronics Technology Co. Ltd. Method of cleaning substrate by ultraviolet rays with adjustable radiation energy
JP2018130131A (en) * 2017-02-13 2018-08-23 エネフォレスト株式会社 Inner sterilizing apparatus
JP2020078479A (en) * 2018-11-14 2020-05-28 サンエナジー株式会社 Ultraviolet ray irradiation device
CN111450280A (en) * 2020-05-27 2020-07-28 梁旭东 Table type ultraviolet sterilizer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Infection prevention technology "Fivery" for COVID-19 and other infections", NTT NEWS RELEASE, 13 November 2020 (2020-11-13), XP009543181, Retrieved from the Internet <URL:https://www.ntt.co.jp/news2020/2011/201113b.html> *

Similar Documents

Publication Publication Date Title
HUP0301300A2 (en) Method and apparatus for photobiostimulation of biological tissue, biostimulation device and method for the treatment of tissue
WO2017171961A3 (en) Optical spatial mode control
BR0012719A (en) Optical waveguide having negative dispersion and large a and f
JP2017514131A (en) Systems and methods for improving the delivery of light to and from a subject
WO2023084669A1 (en) Ultraviolet light radiation system and radiation method
WO2023058144A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
JPH01316705A (en) Transmitter for high energy laser beam
WO2022009443A1 (en) Ultraviolet light radiation system
WO2023084666A1 (en) Ultraviolet light irradiation system
WO2023084675A1 (en) Uv irradiation system
WO2023084674A1 (en) Ultraviolet light irradiation system and control method
WO2022024406A1 (en) Ultraviolet light irradiation system
WO2023084668A1 (en) Ultraviolet light radiation system and control method
WO2023276148A1 (en) Ultraviolet light irradiation system and control method
WO2023073774A1 (en) Uv irradiation system
WO2023073771A1 (en) Ultraviolet light irradiation system
WO2022024405A1 (en) Ultraviolet light irradiation system and disinfection method
WO2023157281A1 (en) Optical transmission device, optical irradiation system, and optical transmission method
WO2023084677A1 (en) Ultraviolet light emission system
WO2023073885A1 (en) Ultraviolet light irradiation system
WO2022215110A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2023084665A1 (en) Uv radiation system
US20180337507A1 (en) A laser safety adaptor for use in laser based imaging systems and related devices
WO2023073884A1 (en) Ultraviolet light irradiation system
WO2022254713A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964024

Country of ref document: EP

Kind code of ref document: A1