WO2024100791A1 - 1-アルキル-5-ヒドロキシピラゾールの製造方法 - Google Patents

1-アルキル-5-ヒドロキシピラゾールの製造方法 Download PDF

Info

Publication number
WO2024100791A1
WO2024100791A1 PCT/JP2022/041682 JP2022041682W WO2024100791A1 WO 2024100791 A1 WO2024100791 A1 WO 2024100791A1 JP 2022041682 W JP2022041682 W JP 2022041682W WO 2024100791 A1 WO2024100791 A1 WO 2024100791A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
group
formula
hydroxypyrazole
reaction
Prior art date
Application number
PCT/JP2022/041682
Other languages
English (en)
French (fr)
Inventor
諒太 小西
定夫 上村
裕 山田
Original Assignee
株式会社日本ファインケム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本ファインケム filed Critical 株式会社日本ファインケム
Priority to PCT/JP2022/041682 priority Critical patent/WO2024100791A1/ja
Publication of WO2024100791A1 publication Critical patent/WO2024100791A1/ja

Links

Definitions

  • the present invention relates to a method for producing hydroxypyrazoles, and more specifically, to a novel method for producing 1-alkyl-5-hydroxypyrazoles.
  • 1-Alkyl-5-hydroxypyrazoles are used as intermediates for producing pharmaceuticals and crop protection agents, mainly herbicides.
  • pharmaceuticals they are disclosed as anti-inflammatory agents by VR1 receptor antagonism, asthma drugs by 5-LO inhibitory effect, and drugs for treating mental disorders, and in agricultural chemicals, they are disclosed as intermediates for several field crop herbicides, and 5-hydroxypyrazoles are useful compounds, and their production methods have attracted interest.
  • the following methods have been known as the main methods for producing hydroxypyrazoles.
  • Patent Document 1 A method for producing 1-alkyl-5-hydroxypyrazole-4-alkyl carboxylates by cyclization with a dialkyl alkoxymethylenemalonate and an alkylhydrazine, and then simultaneously subjecting the reaction product to hydrolysis and decarboxylation to obtain 1-alkyl-5-hydroxypyrazoles (Patent Document 1). 2) A method for producing 1-alkyl-5-hydroxypyrazoles by subjecting a 3-hydrazinopropionic acid ester formed by addition of hydrazine to an acrylic acid ester and an aldehyde to a dehydration condensation reaction to produce the corresponding hydrazone, which is then cyclized (Patent Document 2). 3) A method for producing 1-alkyl-5-hydroxypyrazoles directly by reacting a 3-alkoxyacrylic acid ester with an alkylhydrazine (Patent Documents 3 and 4)
  • the manufacturing method 1) above requires many steps. After obtaining the raw material, dialkyl alkoxymethylenemalonate, it is cyclized with alkylhydrazine to synthesize 1-alkyl-5-hydroxypyrazole-4-alkyl carboxylate, which then undergoes hydrolysis and decarboxylation to finally obtain the desired 1-alkyl-5-hydroxypyrazole. Furthermore, the resulting reaction product contains, in addition to 1-alkyl-5-hydroxypyrazole, the positional isomer 1-alkyl-3-hydroxypyrazole that is produced at the same time, and a complicated procedure is required to separate them from the desired compound. As a result, this synthesis method has a low yield.
  • the manufacturing method 2) above is also complicated, requiring many steps.
  • the 3-hydrazinopropionate ester formed by the addition reaction of hydrazine to an acrylic ester is subjected to a dehydration condensation reaction with an aldehyde to produce the corresponding hydrazone, which is then cyclized to finally obtain the 1-alkyl-5-hydroxypyrazole.
  • This complicated method produces many by-products and only produces a low yield.
  • the manufacturing method 3) above makes it possible to obtain 1-alkyl-5-hydroxypyrazole in one step using 3-alkoxyacrylic esters, but 3-alkoxyacrylic esters are difficult and expensive to manufacture.
  • the following method is known for producing 3-alkoxyacrylic acid esters used as raw materials in the above production method 3).
  • the present invention seeks to solve the problems associated with the conventional techniques described above.
  • the problem that the present invention seeks to solve is to provide an industrial method for producing 1-alkyl-5-hydroxypyrazoles that is simple, high yield, and high purity using raw materials that are more readily available than in conventional methods.
  • the present inventors have focused on dialkylaminoacrylic esters as a raw material that is easy to react and is readily available, and have found that 1-alkyl-5-hydroxypyrazoles can be easily obtained by reacting dialkylaminoacrylic esters with alkylhydrazines as shown in the following reaction formula A, thereby completing the present invention. According to this reaction, high-purity 1-alkyl-5-hydroxypyrazoles can be obtained in high yields with a small amount of by-product positional isomers.
  • R 1 , R 2 , and R 3 are each independently a C1 to C6 alkyl group, and R 4 is a hydrogen atom, a C1 to C6 alkyl group, a C2 to C6 alkenyl group, a C3 to C6 cycloalkyl group, or an aryl group, which may be substituted with a halogen, a hydroxyl group, an alkoxy group, or a C1 to C6 alkyl group.
  • the method for producing 1-alkyl-5-hydroxypyrazole according to the present invention makes it possible to obtain 1-alkyl-5-hydroxypyrazole, which is useful for producing agricultural herbicides and the like, from readily available dialkylaminoacrylic esters in a short and simple process, more easily, in a higher yield, and with a higher purity than conventional methods, and provides a production method that can be used as an industrial production method.
  • the method for producing a 1-alkyl-5-hydroxypyrazole according to the present invention is to produce a 1-alkyl-5-hydroxypyrazole represented by general formula (3) by reacting a dialkylaminoacrylic acid ester represented by general formula (1) with an alkylhydrazine represented by general formula (2) as represented by the above reaction formula A.
  • the method for producing a 1-alkyl-5-hydroxypyrazole according to the present invention will be specifically described below with respect to starting compounds, target compounds, and the production method including reaction methods.
  • R 1 , R 2 , and R 3 are each independently an alkyl group having 1 to 6 carbon atoms, i.e., C1 to C6.
  • the alkyl group includes both linear and branched alkyl groups.
  • methyl and ethyl groups are preferred for R 1 and R 2 from the viewpoints of ease of removal and economy, with methyl being particularly preferred.
  • methyl and ethyl groups are preferred for R 3 from the viewpoints of ease of removal and economy, with ethyl being particularly preferred.
  • dialkylaminoacrylic esters represented by formula (1) The demand for dialkylaminoacrylic esters represented by formula (1) is increasing rapidly in recent years as a raw material for synthetic fluoroquinolone antibacterial drugs such as Ciproxan, Talivit, Cravit, and Norfloxacin.
  • the dialkylaminoacrylic acid ester represented by formula (1) can be easily synthesized by reacting an acetate ester and a sodium alkoxide with carbon monoxide or a formic acid ester, and then reacting the resulting mixture with a dialkylamine or its mineral acid salt.
  • a dialkylamine or its mineral acid salt for example, it is available as a commercial product from Tokyo Chemical Industry Co., Ltd. and Fujifilm Wako Pure Chemical Industries, Ltd.
  • alkylhydrazine The alkylhydrazine to be reacted with the dialkylaminoacrylic ester is a compound represented by the general formula (2).
  • R 4 is a hydrogen atom, a group having 1 to 6 carbon atoms, i.e., a C1 to C6 alkyl group, a C2 to C6 alkenyl group, a C3 to C6 cycloalkyl group, or an aryl group, and these groups may be substituted with a halogen, a hydroxyl group, an alkoxy group, or a C1 to C6 alkyl group.
  • the present invention has as its main object to obtain 1-alkyl-5-hydroxypyrazole, and the case of 1-alkyl-5-hydroxypyrazole will be described.
  • R 4 is a hydrogen atom, an alkenyl group, or an aryl group
  • the products are 5-hydroxypyrazole, 1-alkenyl-5-hydroxypyrazole, and 1-aryl-5-hydroxypyrazole, respectively, and the substituents are different from the alkyl group.
  • the synthesis can be performed in the same manner as the synthesis of 1-alkyl-5-hydroxypyrazole using the alkylhydrazine described in the present invention.
  • the derivatives of hydrazine used in the reaction include those that are not alkyl groups, they cannot strictly be called “alkyl”, but in this specification, the compounds represented by general formula (2) are collectively referred to as “alkylhydrazines", including those that are not alkyl groups.
  • the compounds represented by general formula (3), which are reaction products obtained using alkylhydrazines are collectively referred to as "1-alkyl-5-hydroxypyrazoles", including those that are not alkyl groups.
  • the alkyl groups having 1 to 6 carbon atoms, i.e., C1 to C6, used in the reaction include both linear and branched alkyl groups. Of these alkyl groups, methyl and ethyl groups are preferred from an economical standpoint, with methyl being particularly preferred.
  • Alkenyl groups having 2 to 6 carbon atoms may be linear or branched.
  • the double bond may be located at any position, either at the end or in the middle.
  • an allyl group is preferred from the viewpoint of physiological activity and applicability in further modification reactions.
  • Cycloalkyl groups with 3 to 6 carbon atoms also include cycloalkyl groups substituted with an alkyl group and cycloalkyl groups bonded via an alkylene group.
  • the number of carbon atoms means the number of carbon atoms constituting the ring, and the number of carbon atoms of the alkyl group or alkylene group bonded to the ring is not included in the above number of 3 to 6 carbon atoms.
  • cyclopropyl groups are preferred from the standpoint of physiological activity.
  • These groups may be substituted with halogen, hydroxyl, alkoxy, or C1-C6 alkyl groups, but since the reactivity of R 4 in the formula decreases as the number of carbon atoms increases, the upper limit of the carbon number is preferably C18.
  • the number of carbon atoms in the alkyl groups and alkynyl groups must both be 6 or less, and it is not necessary to consider the case where they are substituted with C1-C6 alkyl groups.
  • substituents R4 are used as intermediate raw materials for medicines, agricultural chemicals, etc.
  • those suitable for use as intermediate raw materials for medicines and agricultural chemicals are selected, and generally, they are often alkyl groups or aryl groups.
  • alkylhydrazines can be synthesized by alkylating hydrazine. They are available as commercial products, for example, from Tokyo Chemical Industry Co., Ltd. and Fujifilm Wako Pure Chemical Industries, Ltd. Such alkylhydrazines are also commercially available as aqueous solutions, the concentration of which varies depending on the type of alkylhydrazine, but is generally about 30 to 50%. In the manufacturing method of the present invention, either the alkylhydrazine itself or an aqueous solution such as a commercially available one can be used.
  • 1-alkyl-5-hydroxypyrazole by the reaction of 3-substituted (e.g., 3-alkoxy group)-acrylic ester with alkylhydrazine, the product 1-alkyl-5-hydroxypyrazole exhibits acidity and forms a salt with the alkylhydrazine, and therefore, in order to terminate the reaction, it has been necessary to use an excess of alkylhydrazine or to add a base component that forms a salt with the 1-alkyl-5-hydroxypyrazole.
  • 3-substituted e.g., 3-alkoxy group
  • a dialkylaminoacrylic acid ester of formula (1) is reacted with an alkylhydrazine of formula (2) to obtain a 1-alkyl-5-hydroxypyrazole.
  • a dialkylamine is produced as a by-product, and the product, 1-alkyl-5-hydroxypyrazole, and the dialkylamine form a salt. Therefore, the reaction is completed without adding an excess of a base component, and the target product can be obtained simply, in high yield, and with high purity.
  • the dialkylaminoacrylic acid ester of formula (1) is reacted with the alkylhydrazine of formula (2) in the absence or presence of a solvent, and the by-product dialkylamine is removed, followed by crystallization, to easily obtain the target compound, 1-alkyl-5-hydroxypyrazole of formula (3).
  • the amounts of the dialkylaminoacrylic ester represented by formula (1) and the alkylhydrazine represented by formula (2) charged in the reaction are preferably in the range of 0.5 to 2.0 equivalents of alkylhydrazine per 1.0 equivalent of dialkylaminoacrylic ester, more preferably in the range of 0.8 to 1.2 equivalents, and even more preferably 1.0 equivalent. If the dialkylaminoacrylic ester is charged in excess, the yield decreases due to a side reaction between the target compound 1-alkyl-5-hydroxypyrazole and the dialkylaminoacrylic ester. If the alkylhydrazine is charged in excess, the alkylhydrazine tends to remain in the crystallization step, increasing the loss of the target compound 1-alkyl-5-hydroxypyrazole to the mother liquor and decreasing the yield.
  • the alkyl hydrazine represented by formula (2) can react not only with the alkyl hydrazine itself, i.e., with high-purity alkyl hydrazine, as described above, but also with alkyl hydrazine containing water or other solvents.
  • alkyl (e.g., methyl) hydrazine containing water can be used as is in the form of an aqueous solution containing water without removing the water, and results can be obtained that are almost the same as when alkyl (methyl) hydrazine is used as is.
  • Alkyl hydrazines generally have a low flash point and are easily flammable when oxidized, but the presence of water can be preferable in that it lowers the flash point of alkyl hydrazine and makes it easier to handle.
  • the reaction can be carried out without a solvent, but a solvent may be used to remove the heat of reaction.
  • a solvent may be used to remove the heat of reaction.
  • the solvent include water; alcohols such as methanol, ethanol, and isopropanol; aliphatic hydrocarbons such as pentane, hexane, cyclohexane, and petroleum ether; aromatic hydrocarbons such as toluene and xylene; ethers such as diethyl ether and diisopropyl ether; halogenated hydrocarbons such as methylene chloride and chloroform; and nitriles such as acetonitrile and propionitrile.
  • alcohol and nitrile are preferred, and alcohol is particularly preferred.
  • the amount of the solvent used is preferably in the range of 0.01 to 5.0 parts by weight, more preferably in the range of 0.1 to 1.0 parts by weight, per 1.0 part by weight of the dialkylaminoacrylic acid ester represented by formula (1).
  • the reaction can be carried out by reacting the dialkylaminoacrylic ester of formula (1) with the alkylhydrazine of formula (2).
  • the dialkylaminoacrylic ester of formula (1) and the alkylhydrazine of formula (2) may be simultaneously added and mixed in a reaction vessel to react, or the dialkylaminoacrylic ester of formula (1) and the alkylhydrazine of formula (2) may be reacted while adding the other compound. Since this reaction is exothermic, it is preferable to drop either the dialkylaminoacrylic ester of formula (1) or the alkylhydrazine of formula (2) to react, or to drop the dialkylaminoacrylic ester of formula (1) and the alkylhydrazine of formula (2) simultaneously to react. Since unreacted dialkylaminoacrylic ester decomposes at high temperatures, it is more preferable to drop the dialkylaminoacrylic ester of formula (1).
  • the dropping temperature of the raw material is preferably low when the reaction is carried out by dropping the alkyl hydrazine represented by formula (2) or when the reaction is carried out by dropping the dialkylamino acrylic acid ester represented by formula (1) and the alkyl hydrazine represented by formula (2) simultaneously.
  • the temperature range of the dropping of the raw material is preferably -20°C to 60°C, more preferably 0°C to 40°C.
  • the reaction temperature range after the dropping of the raw material is preferably 0°C to 80°C, more preferably 0°C to 60°C.
  • the dropping temperature of the raw material and the reaction temperature after the dropping of the raw material are preferably 0°C to 80°C, more preferably 0°C to 60°C. Since the reaction rate decreases as the reaction proceeds, it is preferable to increase the reaction temperature in the latter half of the reaction.
  • the dropping time of the raw material is preferably in the range of 1 to 20 hours, more preferably in the range of 2 to 10 hours.
  • the reaction time after the dropping of the raw material is preferably in the range of 1 to 30 hours, more preferably in the range of 2 to 20 hours.
  • reaction temperature and reaction time ranges the production of positional isomers is small, and the final reaction product can be obtained with high purity and high yield. If the reaction temperature is higher than the above ranges or the reaction time is longer than the above ranges, side reactions occur, resulting in a decrease in yield and a decrease in purity, so it is preferable to carry out the reaction within the above temperature and reaction time ranges.
  • the dropping temperature during dropping of the raw materials is preferably low in order to avoid excessive reaction during the dropping. If the dropping temperature and dropping time are within the above ranges, the reaction after dropping is not affected, which is preferable.
  • crystals of 1-alkyl-5-hydroxypyrazole represented by formula (3) can be easily obtained by crystallization, and it is preferable to remove dialkylamine, which is a by-product of the reaction, before crystallization.
  • Dialkylamine can be removed by concentration, distillation, neutralization, filtration, or liquid separation. There are no particular limitations on the removal method, and it may be combined.
  • the concentration or distillation temperature is generally in the range of 30 to 150°C, preferably in the range of 50 to 120°C.
  • the degree of reduction in pressure can range from normal pressure to vacuum.
  • the by-product dialkylamine is neutralized by adding an acid to form a dialkylamine salt, which can then be removed by filtering, washing, and liquid separation.
  • acids include mineral acids such as hydrogen chloride, hydrogen bromide, nitric acid, and sulfuric acid; carboxylic acids such as formic acid, acetic acid, citric acid, oxalic acid, and benzoic acid; organic sulfonic acids such as methanesulfonic acid and paratoluenesulfonic acid; acidic ion exchange resins; and solid acids such as zeolites.
  • 1-alkyl-5-hydroxypyrazole represented by formula (3) is obtained as crystals by recrystallization. It is important to remove the by-product dialkylamine before crystallization, and it is preferable to remove more than 90% of it.
  • Preferred crystallization solvents include alcohols such as methanol, ethanol, and isopropanol; aliphatic hydrocarbons such as pentane, hexane, cyclohexane, and petroleum ether; aromatic hydrocarbons such as toluene and xylene; ethers such as diethyl ether and diisopropyl ether; halogenated hydrocarbons such as methylene chloride and chloroform; nitriles such as acetonitrile and propionitrile; and esters such as ethyl acetate and butyl acetate, with acetonitrile and ethyl acetate being particularly preferred.
  • Example 1 In a 2 L four-neck flask equipped with a refrigerant-cooled reflux tube, 572.8 g (4.0 mol) of ethyl dimethylaminoacrylate and 256.3 g of methanol were added, and 184.3 g (4.0 mol) of methylhydrazine was added dropwise over 2 hours while maintaining the temperature at 5° C. or lower. After completion of the dropwise addition, the mixture was stirred at 5° C. for 20 hours. When the reaction solution was analyzed by liquid chromatography, the yield of 1-methyl-5-hydroxypyrazole was 95.3%, and the yield of the positional isomer, 1-methyl-3-hydroxypyrazole, was 0.5%.
  • Example 2 In a 300 mL four-neck flask equipped with a refrigerant-cooled reflux tube, 143.2 g (1.0 mol) of ethyl dimethylaminoacrylate and 51.3 g of methanol were added, and 131.6 g (1.0 mol) of 35% methylhydrazine was added dropwise over 2 hours while maintaining the temperature at 5° C. or lower. After completion of the dropwise addition, the mixture was stirred at 5° C. for 30 hours. When the reaction solution was analyzed by liquid chromatography, the yield of 1-methyl-5-hydroxypyrazole was 91.0%, and the yield of the positional isomer, 1-methyl-3-hydroxypyrazole, was 1.5%.
  • the reaction solution was concentrated under reduced pressure to remove the by-product dimethylamine together with the solvent.
  • the temperature of the concentrated solution was 100°C, and the degree of vacuum was 5 mmHg.
  • Analysis of the concentrated solution revealed that the amount of dimethylamine was 2.7 g, which means that 94% of the by-product amount had been removed.
  • 110.0 g of acetonitrile was added, dissolved at 60°C, and cooled to 0°C to precipitate crystals. The precipitated crystals were filtered and collected and dried to obtain 60.6 g (0.62 mol) of 1-methyl-5-hydroxypyrazole.
  • the yield was 61.8%, and the purity was 99.9%.
  • the isomer 1-methyl-3-hydroxypyrazole was not detected.
  • Example 3 253.3 g of the reaction liquid obtained under the same conditions as in Example 1 was concentrated by reducing the pressure to 15 mmHg, and the by-product dimethylamine was removed together with the solvent. The temperature of the concentrated liquid was 100°C, and the concentration was completed. The amount of dimethylamine in the concentrated liquid was analyzed to be 6.1 g, and 13.5% of the by-product amount remained. 110.0 g of acetonitrile was added to the concentrated liquid and dissolved at 70°C. 35 g of a strongly acidic ion exchange resin (trade name, Amberlyst 15DRY, manufactured by Organo Corporation) was added, and after stirring for 10 minutes, the ion exchange resin was filtered off by hot filtration. Dimethylamine was not detected in the filtered solution.
  • a strongly acidic ion exchange resin trade name, Amberlyst 15DRY, manufactured by Organo Corporation
  • the solution was cooled to 0°C to precipitate crystals.
  • the precipitated crystals were filtered and the collected crystals were dried, and 75.8 g (0.77 mol) of 1-methyl-5-hydroxypyrazole was obtained.
  • the yield was 77.3% and the purity was 99.9%.
  • the isomeric 1-methyl-3-hydroxypyrazole was not detected.
  • Example 4 253.3 g of the reaction solution obtained under the same conditions as in Example 1 was concentrated under reduced pressure to remove the by-product dimethylamine together with the solvent.
  • the temperature of the concentrated solution at the end of the concentration was 100°C, and the degree of vacuum was 20 mmHg.
  • Analysis of the dimethylamine in the concentrated solution revealed that it was 4.7 g, which was 10.5% of the by-product amount (89.5% of the by-product amount was removed).
  • 110.0 g of acetonitrile was added to the concentrated solution, dissolved at 60°C, and cooled to 0°C to precipitate crystals. The precipitated crystals were filtered and collected, and dried to obtain 45.9 g (0.47 mol) of 1-methyl-5-hydroxypyrazole. The yield was 46.8% and the purity was 99.9%. The isomer 1-methyl-3-hydroxypyrazole was not detected.
  • Example 5 In a 100 mL four-neck flask equipped with a refrigerant-cooled reflux tube were added 11.6 g (0.25 mol) of methylhydrazine and 16.1 g of methanol, and 35.8 g (0.25 mol) of ethyl dimethylaminoacrylate was added dropwise over 2 hours while maintaining the temperature at 30° C. After completion of the dropwise addition, the mixture was stirred at 60° C. for 2 hours. When the reaction solution was analyzed by liquid chromatography, the yield of 1-methyl-5-hydroxypyrazole was 92.0%, and the yield of the positional isomer, 1-methyl-3-hydroxypyrazole, was 0.3%.
  • Example 6 In a 100 mL four-neck flask equipped with a refrigerant-cooled reflux tube, 16.1 g of methanol was added, and while maintaining the temperature at 30° C., 35.8 g (0.25 mol) of ethyl dimethylaminoacrylate and 11.6 g (0.25 mol) of methylhydrazine were added dropwise over 2 hours. After completion of the dropwise addition, the mixture was stirred at 60° C. for 2 hours. When the reaction solution was analyzed by liquid chromatography, the yield of 1-methyl-5-hydroxypyrazole was 85.0%, and the yield of the positional isomer, 1-methyl-3-hydroxypyrazole, was 0.1%.
  • Example 7 In a 100 mL four-neck flask equipped with a refrigerant-cooled reflux tube, 35.8 g (0.25 mol) of ethyl dimethylaminoacrylate and 16.1 g of methanol were added, and 12.5 g (0.25 mol) of hydrazine hydrate was added dropwise over 2 hours while maintaining the temperature at 5° C. or less. After completion of the dropwise addition, the mixture was stirred at 30° C. for 2 hours. When the reaction solution was analyzed by liquid chromatography, the yield of 5-hydroxypyrazole was 98.5%.
  • Comparative Example 1 In a 300 mL four-neck flask equipped with a refrigerant-cooled reflux tube, 116.4 g (1.0 mol) of methyl 3-methoxyacrylate and 64.1 g of methanol were added, and 46.1 g (1.0 mol) of methylhydrazine was added dropwise over 2 hours while maintaining the temperature at 25° C. or less. After completion of the dropwise addition, the mixture was stirred at 25° C. for 20 hours.
  • the manufacturing method of the present invention can easily obtain 1-alkyl-5-hydroxypyrazoles, which are useful as agricultural herbicides, from readily available dialkylaminoacrylic esters in high yield and high purity, making it a useful industrial manufacturing method.

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明は、下記反応式Aに示されるように、ジアルキルアミノアクリル酸エステルとアルキルヒドラジンとを反応することにより、1-アルキル-5-ヒドロキシピラゾールを簡便に得ることができる製造方法である。(反応式A) (式中、R1、R2、およびR3はそれぞれ独立にC1~C6のアルキル基であり、R4は水素原子、C1~C6のアルキル基、C2~C6のアルケニル基、C3~C6のシクロアルキル基、またはアリール基であり、これらの基はハロゲン、水酸基、アルコキシ基、またはC1~C6のアルキル基で置換されていてもよい。)

Description

1-アルキル-5-ヒドロキシピラゾールの製造方法
 本発明は、ヒドロキシピラゾール類の製造方法に関するもので、詳細には、1-アルキル-5-ヒドロキシピラゾールの新規な製造方法に関するものである。
 1-アルキル-5-ヒドロキシピラゾールは、医薬品および除草剤を中心とした作物保護剤を製造するための中間体として使用されている。例えば医薬品ではVR1受容体拮抗作用による抗炎症剤、5-LO阻害効果による喘息薬、精神障害治療薬に、農薬では複数の畑作用除草剤の中間体として開示されており、5-ヒドロキシピラゾール類は有用な化合物としてその製造方法に関心がもたれている。これまで、ヒドロキシピラゾール類の主な製造方法として以下の方法が知られてきた。
 1)アルコキシメチレンマロン酸ジアルキルとアルキルヒドラジンとにより環化して1-アルキル-5-ヒドロキシピラゾール-4-カルボン酸アルキルを合成し、次にこの反応生成物を加水分解と脱炭酸を同時に行なうことにより1-アルキル-5-ヒドロキシピラゾール類を得る製造方法(特許文献1)
 2)ヒドラジンのアクリル酸エステルへの付加により形成される3-ヒドラジノプロピオン酸エステルをアルデヒドと脱水縮合反応させて対応するヒドラゾンを製造し、続いて環化することで1-アルキル-5-ヒドロキシピラゾール類を得る製造方法(特許文献2)
 3)3-アルコキシアクリル酸エステルをアルキルヒドラジンと反応させて、直接1-アルキル-5-ヒドロキシピラゾール類を得る製造方法(特許文献3および4)
特開昭61-257974号公報 特公平7-30031号公報 米国特許第6,392,058号明細書 国際公開第2017/004674号
 上記1)の製造方法は多くの工程を必要とする。原料であるアルコキシメチレンマロン酸ジアルキルを得た後、アルキルヒドラジンにより環化して1-アルキル-5-ヒドロキシピラゾール-4-カルボン酸アルキルを合成し、更に加水分解反応、脱炭酸反応を経て、ようやく目的の1-アルキル-5-ヒドロキシピラゾールが得られる。さらに、得られた反応物には、1-アルキル-5-ヒドロキシピラゾールに加えて、同時に生成される位置異性体の1-アルキル-3-ヒドロキシピラゾールが含まれ、それらを目的化合物から分離するには複雑な手順が必要である。そのため、この合成法は収率が低い。
 上記2)の製造方法も、多くの工程を必要とし複雑である。ヒドラジンのアクリル酸エステルへの付加反応により形成される3-ヒドラジノプロピオン酸エステルをアルデヒドと脱水縮合反応させて対応するヒドラゾンを製造し、続いて環化することで、ようやく1-アルキル-5-ヒドロキシピラゾールが得られる。この複雑な方法からは多くの副生物が生成し、低い収率しか得られない。
 上記3)の製造方法は、3-アルコキシアクリル酸エステルを用いて1段階で1-アルキル-5-ヒドロキシピラゾールを得ることが可能であるが、3-アルコキシアクリル酸エステルは製造するのが難しく、高価である。
 ここで、上記3)の製造方法において原料として用いられる3-アルコキシアクリル酸エステルの製造は下記の方法が知られている。
(1)メタノールと高価なプロピオル酸エステルとの反応;(2)高価でしかも合成が困難なα,α-ジクロロジエチルエーテルとこれも高価なブロモ酢酸エステルとの反応;(3)高価なブロモ酢酸エステルとトリアルキルホルメートとの反応;(4)高価なプロピオル酸メチルとメタノールとの反応により得られる3,3-ジアルコキシプロピオン酸エステルからのメタノールの脱離;(5)3-(N-アセチル-N-アルキル)アミノ-3-メトキシプロピオン酸エステルとメタノールとの反応;(6)アクリル酸エステルとアルキルアミンおよび無水酢酸との反応;(7)取り扱いの難しいケテンとトリアルキルオルトホルメートとの反応;(8)アクリル酸エステルとメタノールとのパラジウムおよび銅による触媒反応;(9)塩化トリクロロアセチルとビニルアルキルエーテルとの反応;(10)α,α,α-トリクロロ-β-メトキシブテン-2-オンとメタノールとの反応;および(11)3-ヒドロキシアクリル酸エステルのナトリウム塩とアルコールとの反応により行なう。
 このように、3-アルコキシアクリル酸エステルは容易に製造できないことから高価となり、然るに上記3)の製法方法は非経済的な方法となっている。
 その結果、これらの合成経路は、1-アルキル-5-ヒドロキシピラゾール類の経済的かつ効率的な製造方法として満足のゆくものではない。
 本発明は、上記のような従来技術に伴う問題を解決しようとするものである。本発明が解決しようとする課題は、従来の方法に比べて入手しやすい原料を用いて、簡便且つ高収率、高純度で得ることができる1-アルキル-5-ヒドロキシピラゾールの工業的な製造方法を提供することにある。
 本発明者らは、反応が容易で、かつ入手しやすい原料として、ジアルキルアミノアクリル酸エステルに注目し、下記反応式Aに示されるように、ジアルキルアミノアクリル酸エステルとアルキルヒドラジンとを反応することにより、1-アルキル-5-ヒドロキシピラゾールを簡便に得ることができることを見出し、本発明を完成するに至った。本反応によれば、副生する位置異性体は少なく、高純度の1-アルキル-5-ヒドロキシピラゾールを高収率で得ることができる。
(反応式A)
Figure JPOXMLDOC01-appb-C000004

(式中、R、R、およびRはそれぞれ独立にC1~C6のアルキル基であり、Rは水素原子、C1~C6のアルキル基、C2~C6のアルケニル基、C3~C6のシクロアルキル基、またはアリール基であり、これらの基はハロゲン、水酸基、アルコキシ基、またはC1~C6のアルキル基で置換されていてもよい。)
 本発明に係る1-アルキル-5-ヒドロキシピラゾールの製造方法によれば、入手しやすいジアルキルアミノアクリル酸エステルから短工程で簡便な操作によって、農業用除草剤等を製造する上に有用な1-アルキル-5-ヒドロキシピラゾールを、従来の方法に比べて簡便且つ高収率、高純度で得ることが可能であり、工業的な製造方法として使用することができる製造方法が提供される。
 本発明に係る1-アルキル-5-ヒドロキシピラゾールの製造方法は、上記反応式Aで表されるように、一般式(1)で表されるジアルキルアミノアクリル酸エステルと、一般式(2)で表されるアルキルヒドラジンと、を反応させることにより、一般式(3)で表される1-アルキル-5-ヒドロキシピラゾールを製造するものである。
 以下、本発明に係る1-アルキル-5-ヒドロキシピラゾールの製造方法について、出発原料となる化合物や目的化合物、および反応方法を含む製造方法などについて具体的に説明する。
(ジアルキルアミノアクリル酸エステル)
 出発原料となるジアルキルアミノアクリル酸エステルは、次の一般式(1)で表されるものである。
一般式(1):
Figure JPOXMLDOC01-appb-C000005

 式中の、R、R、およびRはそれぞれ独立に炭素数が1~6、すなわちC1~C6のアルキル基である。当該アルキル基には、直鎖のアルキル基および分岐鎖を有するアルキル基のいずれもが含まれる。これらのアルキル基のうちでは、RおよびRとしては、メチル基、エチル基が、除去のしやすさならびに経済性の観点から好ましく、メチル基が特に好ましい。また、Rとしてはメチル基、エチル基が、除去のしやすさならびに経済性の観点から好ましく、エチル基が特に好ましい。
 このような式(1)で表されるジアルキルアミノアクリル酸エステルは、近年需要が大幅に増えているシプロキサン、タリビット、クラビット、ノルフロキサシンなどのフルオロキノロン合成抗菌薬の原料として需要が増加しているものである。
 また、このような式(1)で表されるジアルキルアミノアクリル酸エステルは、酢酸エステルとナトリウムアルコキシドに、一酸化炭素もしくはギ酸エステルを反応させた後、ジアルキルアミンないしはその鉱酸塩を反応させることで容易に合成することができる。例えば、東京化成工業株式会社や富士フイルム和光純薬株式会社などから市販品としても入手が可能である。
(アルキルヒドラジン)
 また、上記ジアルキルアミノアクリル酸エステルと反応させる、アルキルヒドラジンは、一般式(2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000006

 式中のRは水素原子、炭素数1~6、すなわちC1~C6のアルキル基、C2~C6のアルケニル基、C3~C6のシクロアルキル基、またはアリール基であり、これらの基はハロゲン、水酸基、アルコキシ基、またはC1~C6のアルキル基で置換されていてもよい。
 ここで、本発明は、1-アルキル-5-ヒドロキシピラゾールを得ることを主たる目的とし、1-アルキル-5-ヒドロキシピラゾールの場合について説明する。Rが水素原子、アルケニル基またはアリール基の場合、生成物は、それぞれ5-ヒドロキシピラゾール、1-アルケニル-5-ヒドロキシピラゾール、および1-アリール-5-ヒドロキシピラゾールとなり、アルキル基とは異なる置換基となる。しかしながら、この場合であっても、本発明で説明するアルキルヒドラジンを用いて1-アルキル-5-ヒドロキシピラゾールを合成する場合と同様に合成することができる。
 したがって、反応に用いるヒドラジンの誘導体として、アルキル基でないものも含めた結果、厳密にみて「アルキル」とは言えないものの、本明細書では、一般式(2)で表される化合物について、アルキル基以外の場合を含めて「アルキルヒドラジン」と総称する。アルキルヒドラジンを用いて得られる反応生成物である一般式(3)で表される化合物についても同様に、アルキル基でない場合も含めて「1-アルキル-5-ヒドロキシピラゾール」と総称する。
 反応に用いる炭素数が1~6、すなわちC1~C6のアルキル基としては、直鎖のアルキル基および分岐鎖を有するアルキル基のいずれのアルキル基も含まれる。これらのアルキル基のうちでは、メチル基、エチル基が、経済性の観点から好ましく、メチル基が特に好ましい。
 また、炭素数が2~6、すなわちC2~C6のアルケニル基としては、直鎖でも分岐鎖のものでもよい。二重結合の位置は、末端ないし中間を問わず何れの位置にあってもよい。このようなアルケニル基としては、アリル基が、生理活性や更なる修飾反応の応用性の観点から好ましい。
 また、炭素数が3~6、すなわちC3~C6のシクロアルキル基としては、シクロアルキル基にアルキル基が置換したものやアルキレン基を介してシクロアルキル基が結合した場合も含まれる。なお、シクロアルキル基の場合、炭素数としては、環を構成する炭素の数を意味し、環に結合するアルキル基やアルキレン基の炭素数は、上記の炭素数3~6のものには含まれない。これらの、シクロアルキル基としては、シクロプロピル基が、生理活性の観点から好ましい。
 また、これらの基はハロゲン、水酸基、アルコキシ基、またはC1~C6のアルキル基で置換されていてもよいが、式中のRは炭素数が大きくなると反応性が低下するため、炭素数の上限はC18であることが好ましい。なお、Rとして、C1~C6のアルキル基、およびC2~C6のアルケニル基の場合、これらの基に上記のC1~C6のアルキル基が置換しているとみなしたとしても、当該アルキル基およびアルキニル基の炭素数は、いずれも6以内のものであることが必要となり、C1~C6のアルキル基が置換している場合を考える必要はない。
 なお、これらの置換基Rは、医薬、農薬などの中間原料として用いられる場合には、これらに医薬、農薬の中間原料として適合するものが選ばれるが、一般に、アルキル基、アリール基であることが多い。
 上記のアルキルヒドラジンは、ヒドラジンのアルキル化により合成できる。例えば、東京化成工業株式会社や富士フイルム和光純薬株式会社などより市販品としても入手することができる。また、このようなアルキルヒドラジンは、水溶液としても市販されており、その濃度は、アルキルヒドラジンの種類によって異なるものの、一般に、30~50%程度である。本発明の製造方法においては、アルキルヒドラジンそのものでも、市販されているような、水溶液でも用いることができる。
(1-アルキル-5-ヒドロキシピラゾール)
 上記の式(1)のジアルキルアミノアクリル酸エステルと、式(2)のアルキルヒドラジンとを反応させて得られる生成物は一般式(3)で表される、1-アルキル-5-ヒドロキシピラゾールである。
一般式(3)
Figure JPOXMLDOC01-appb-C000007

 式中の、Rは、式(2)で表されるアルキルヒドラジンのRと同じ置換基であり、得られる式(3)で表される化合物が農薬や医薬の中間原料であることを考慮すると、Rとしては、アルキル基、アリール基であることが好ましく、これらの基はハロゲン、水酸基、アルコキシ基、またはC1~C6のアルキル基で置換されていてもよい。
 ところで、3-置換(例えば、3-アルコキシ基)-アクリル酸エステルとアルキルヒドラジンとの反応による1-アルキル-5-ヒドロキシピラゾールの合成では、生成物である1-アルキル-5-ヒドロキシピラゾールが酸性を示すため、アルキルヒドラジンと塩を形成する。そのため、反応を終結させるためには、アルキルヒドラジンを過剰に用いるか、あるいは、1-アルキル-5-ヒドロキシピラゾールと塩を形成する塩基成分の添加が必要であった。
 これに対して、本発明の製造方法では、式(1)のジアルキルアミノアクリル酸エステルと、式(2)のアルキルヒドラジンとを反応させることにより、1-アルキル-5-ヒドロキシピラゾールが得られる。この際、ジアルキルアミンが副生すると共に、生成物である1-アルキル-5-ヒドロキシピラゾールとジアルキルアミンとが塩を形成する。そのため、過剰な塩基成分を添加することなく、反応が終結することから、簡便且つ高収率、高純度で目的物を得ることができる。
 本発明の1-アルキル-5-ヒドロキシピラゾールを製造するには、反応式Aで示されるように、式(1)のジアルキルアミノアクリル酸エステルと、式(2)のアルキルヒドラジンとを、無溶媒下もしくは溶媒の存在下で反応させ、副生したジアルキルアミンを除去したのち、晶析することにより、容易に目的化合物である式(3)の1-アルキル-5-ヒドロキシピラゾールを得ることができる。
 本発明では、反応における式(1)で表されるジアルキルアミノアクリル酸エステルと、式(2)で表されるアルキルヒドラジンとの仕込量は、ジアルキルアミノアクリル酸エステル1.0当量に対してアルキルヒドラジンが好ましくは0.5~2.0当量の範囲であり、より好ましくは0.8~1.2当量の範囲であり、更に好ましくは1.0当量である。ジアルキルアミノアクリル酸エステルを過剰に仕込むと、目的化合物である1-アルキル-5-ヒドロキシピラゾールとジアルキルアミノアクリル酸エステルとの副反応により収率が低下する。アルキルヒドラジンを過剰に仕込むと、晶析工程にアルキルヒドラジンが残存し易く、目的化合物である1-アルキル-5-ヒドロキシピラゾールの母液へのロスが増加し、収率が低下する。
 本発明では、式(2)で表されるアルキルヒドラジンは、上述のごとく、アルキルヒドラジンそのもの、すなわち、高純度のアルキルヒドラジンで反応することができるのはもちろんであるが、水や他の溶媒を含有したアルキルヒドラジンであっても反応することができる。例えば、市販されている水を含むアルキル(例えば、メチル)ヒドラジンも、水を除去することなく、水を含有する水溶液の状態でそのまま用いることができ、アルキル(メチル)ヒドラジンをそのまま用いた場合とほぼ同等の結果を得ることができる。アルキルヒドラジンは一般的に引火点が低く、酸化により引火しやすい性質を持つが、水の存在は、アルキルヒドラジンの引火点を低下させ、取り扱いが容易となるという面で好ましいこともある。
 本発明では、反応は無溶媒でも可能であるが、反応熱を除去するため溶媒を使用してもよい。溶媒としては、水;メタノール、エタノール、イソプロパノールなどのアルコール;ペンタン、ヘキサン、シクロヘキサン、石油エーテルなどの脂肪族炭化水素;トルエン、キシレンなどの芳香族炭化水素;ジエチルエーテル、ジイソプロピルエーテルなどのエーテル;塩化メチレン、クロロホルムなどのハロゲン化炭化水素;アセトニトリル、プロピオニトリルなどのニトリルが挙げられる。これらの溶媒のうち、アルコール、ニトリルが好ましく、アルコールが特に好ましい。これらの溶媒は単独でも2種以上を混合しても使用が可能であり、混合比率は任意の割合が可能である。溶媒の使用量は式(1)で表されるジアルキルアミノアクリル酸エステル1.0重量部に対して好ましくは0.01~5.0重量部の範囲であり、より好ましくは0.1~1.0重量部の範囲である。
 反応は、式(1)のジアルキルアミノアクリル酸エステルと式(2)のアルキルヒドラジンとを反応させればよく、式(1)のジアルキルアミノアクリル酸エステルと式(2)のアルキルヒドラジンとを反応容器中に同時に添加、混合して反応してもよいし、式(1)のジアルキルアミノアクリル酸エステルと式(2)のアルキルヒドラジンとの何れかの化合物に、他方の化合物を添加しつつ反応させてもよい。本反応は発熱を伴うことから、式(1)で表されるジアルキルアミノアクリル酸エステルあるいは式(2)で表されるアルキルヒドラジンの何れかを滴下して反応すること、または式(1)で表されるジアルキルアミノアクリル酸エステルと式(2)で表されるアルキルヒドラジンを同時に滴下して反応することが好ましい。未反応のジアルキルアミノアクリル酸エステルは温度が高いと分解が進行するため、式(1)で表されるジアルキルアミノアクリル酸エステルを滴下することがより好ましい。
 原料の滴下温度は、式(2)で表されるアルキルヒドラジンを滴下することで反応する場合、または式(1)で表されるジアルキルアミノアクリル酸エステルと式(2)で表されるアルキルヒドラジンと同時に滴下することで反応する場合は、低い温度が好ましい。原料滴下の温度範囲は好ましくは-20℃~60℃であり、0℃~40℃がより好ましい。原料滴下後の反応温度の範囲は好ましくは0℃~80℃であり、0℃~60℃がより好ましい。式(1)で表されるジアルキルアミノアクリル酸エステルを滴下することで反応する場合、原料の滴下温度および原料滴下後の反応温度の範囲は好ましくは0℃~80℃であり、0℃~60℃がより好ましい。反応が進行するにしたがって反応速度が低下することから、反応後半は反応温度を上げることが好ましい。本発明では、原料の滴下時間は好ましくは1~20時間の範囲であり、より好ましくは2~10時間の範囲である。原料滴下後の反応時間は好ましくは1~30時間の範囲であり、より好ましくは2~20時間の範囲である。
 これらの反応温度の範囲、反応時間の範囲であれば、位置異性体の生成が少なく、高純度かつ高収率で最終反応物を得ることができる。なお、反応温度が上記範囲よりも高い場合、および反応時間が上記範囲よりも長い場合には、副反応が起こり、収率の低下や純度の低下が見られるため、上記の温度範囲および時間の範囲で反応を行うことが好ましい。
 また、原料滴下際の滴下温度は、滴下中の過剰な反応を避けるため、低い方が好ましい。上記の滴下温度、滴下時間の範囲であれば、滴下後の反応に影響を与えることがなく、好ましいものとなる。
 本発明では、式(3)で表される1-アルキル-5-ヒドロキシピラゾールの結晶を晶析により、容易に取得することができ、晶析のため、反応で副生するジアルキルアミンを、晶析前に除去することが好ましい。ジアルキルアミンは濃縮や蒸留、中和、濾過、分液操作により除去できる。除去方法は特に限定されるものではなく、組み合わせてもよい。
 副生するジアルキルアミンを濃縮や蒸留により除去する場合は、常圧や減圧により留去することができる。副生するジアルキルアミンの種類にもよるが、一般に濃縮や蒸留温度は30~150℃の範囲であり、好ましくは50~120℃の範囲である。減圧度は常圧から真空までの範囲で実施できる。
 副生するジアルキルアミンは、酸を添加することにより中和し、ジアルキルアミン塩を形成した後、生成したジアルキルアミン塩を濾過や洗浄・分液することにより除去できる。酸としては、塩化水素、臭化水素、硝酸、硫酸などの鉱酸;ギ酸、酢酸、クエン酸、シュウ酸、安息香酸などのカルボン酸;メタンスルホン酸、パラトルエンスルホン酸などの有機スルホン酸;酸性イオン交換樹脂;ゼオライトなどの固体酸等が挙げられる。
 本発明では、式(3)で表される1-アルキル-5-ヒドロキシピラゾールを再結晶により結晶として取得する。晶析前に、副生するジアルキルアミンを除去することが重要であり、90%以上除去することが好ましい。晶析溶媒としてはメタノール、エタノール、イソプロパノールなどのアルコール;ペンタン、ヘキサン、シクロヘキサン、石油エーテルなどの脂肪族炭化水素;トルエン、キシレンなどの芳香族炭化水素;ジエチルエーテル、ジイソプロピルエーテルなどのエーテル;塩化メチレン、クロロホルムなどのハロゲン化炭化水素;アセトニトリル、プロピオニトリルなどのニトリル;酢酸エチル、酢酸ブチルなどのエステルが好ましく、特にアセトニトリルや酢酸エチルが好ましい。
 再結晶後に濾過、乾燥することにより、高純度の一般式(3)で表される1-アルキル-5-ヒドロキシピラゾールを得ることができる。この場合、蒸留やカラムクロマトグラフィー等の精製工程は一切必要としない、簡便な製造方法が提供される。
 以下、実施例に基づいて本発明をより詳細に説明するが、これらの実施例により本発明は限定されるものではない。
実施例1
 冷媒冷却還流管を付した2Lの4つ口フラスコ中にジメチルアミノアクリル酸エチル572.8g(4.0mol)とメタノール256.3gを加え、温度を5℃以下に保持しながら、メチルヒドラジン184.3g(4.0mol)を2時間かけて滴下した。滴下終了後、5℃で20時間撹拌した。反応液を液体クロマトグラフィーで分析したところ、1-メチル-5-ヒドロキシピラゾールの収率は95.3%、位置異性体である1-メチル-3-ヒドロキシピラゾールの収率は0.5%であった。
 反応終了後、反応液253.3gを減圧濃縮により溶媒とともに副生したジメチルアミンを除去した。濃縮終了時の濃縮液温度は100℃であり、減圧度は5mmHgであった。濃縮液中のジメチルアミンを分析すると1.8gであり、副生量の96%が除去された。濃縮後、アセトニトリル110.0gを加え、60℃で溶解後に、0℃に冷却して結晶を析出させた。析出した結晶を濾過し、集めた結晶を乾燥すると、1-メチル-5-ヒドロキシピラゾールが71.7g(0.73mol)得られた。収率は73.1%であり、純度は99.9%であった。異性体である1-メチル-3-ヒドロキシピラゾールは検出されなかった。
実施例2
 冷媒冷却還流管を付した300mLの4つ口フラスコ中にジメチルアミノアクリル酸エチル143.2g(1.0mol)とメタノール51.3gを加え、温度を5℃以下に保持しながら、35%メチルヒドラジン131.6g(1.0mol)を2時間かけて滴下した。滴下終了後、5℃で30時間撹拌した。反応液を液体クロマトグラフィーで分析したところ、1-メチル-5-ヒドロキシピラゾールの収率は91.0%、位置異性体である1-メチル-3-ヒドロキシピラゾールの収率は1.5%であった。
 反応終了後、反応液を減圧濃縮により溶媒とともに、副生したジメチルアミンを除去した。濃縮終了時の濃縮液温度は100℃であり、減圧度は5mmHgであった。濃縮液中のジメチルアミンを分析すると2.7gであり、副生量の94%が除去された。濃縮後、アセトニトリル110.0gを加え、60℃で溶解後、0℃に冷却して結晶を析出させた。析出した結晶を濾過し、集めた結晶を乾燥すると、1-メチル-5-ヒドロキシピラゾールが60.6g(0.62mol)得られた。収率は61.8%であり、純度は99.9%であった。異性体である1-メチル-3-ヒドロキシピラゾールは検出されなかった。
実施例3
 実施例1と同様の条件にて得られた反応液253.3gを減圧度15mmHgに減圧して濃縮し、溶媒とともに、副生したジメチルアミンを除去した。濃縮液の温度は100℃で濃縮を終了した。濃縮液中のジメチルアミンを分析すると6.1gであり、副生量の13.5%が残存していた。濃縮液にアセトニトリル110.0gを加え、70℃で溶解した。強酸性イオン交換樹脂(商品名、アンバーリスト15DRY、オルガノ株式会社製)35gを添加し、10分撹拌した後に、イオン交換樹脂を熱時濾過にて濾別した。濾別した溶液中にジメチルアミンは検出されなかった。溶液を、0℃に冷却して結晶を析出させた。析出した結晶を濾過し、集めた結晶を乾燥すると、1-メチル-5-ヒドロキシピラゾールが75.8g(0.77mol)得られた。収率は77.3%であり、純度は99.9%であった。異性体である1-メチル-3-ヒドロキシピラゾールは検出されなかった。
実施例4
 実施例1と同様の条件にて得られた反応液253.3gを減圧濃縮により溶媒とともに、副生したジメチルアミンを除去した。濃縮終了時の濃縮液温度は100℃であり、減圧度は20mmHgであった。濃縮液中のジメチルアミンを分析すると4.7gであり、副生量の10.5%(副生量の89.5%が除去された)が残存した。濃縮液にアセトニトリル110.0gを加え、60℃に溶解後、0℃に冷却して結晶を析出させた。析出した結晶を濾過し、集めた結晶を乾燥すると、1-メチル-5-ヒドロキシピラゾールが45.9g(0.47mol)得られた。収率は46.8%であり、純度は99.9%であった。異性体である1-メチル-3-ヒドロキシピラゾールは検出されなかった。
実施例5
 冷媒冷却還流管を付した100mLの4つ口フラスコ中にメチルヒドラジン11.6g(0.25mol)とメタノール16.1gを加え、温度を30℃に保ちながら、ジメチルアミノアクリル酸エチル35.8g(0.25mol)を2時間かけて滴下した。滴下終了後、60℃で2時間撹拌した。反応液を液体クロマトグラフィーで分析したところ、1-メチル-5-ヒドロキシピラゾールの収率は92.0%、位置異性体である1-メチル-3-ヒドロキシピラゾールの収率は0.3%であった。
実施例6
 冷媒冷却還流管を付した100mLの4つ口フラスコ中にメタノール16.1gを加え、温度を30℃に保ちながら、ジメチルアミノアクリル酸エチル35.8g(0.25mol)と、メチルヒドラジン11.6g(0.25mol)とを、2時間かけて滴下した。滴下終了後、60℃で2時間撹拌した。反応液を液体クロマトグラフィーで分析したところ、1-メチル-5-ヒドロキシピラゾールの収率は85.0%、位置異性体である1-メチル-3-ヒドロキシピラゾールの収率は0.1%であった。
実施例7
 冷媒冷却還流管を付した100mLの4つ口フラスコ中にジメチルアミノアクリル酸エチル35.8g(0.25mol)とメタノール16.1gを加え、温度を5℃以下に保持しながら、水加ヒドラジン12.5g(0.25mol)を2時間かけて滴下した。滴下終了後、30℃で2時間撹拌した。反応液を液体クロマトグラフィーで分析したところ、5-ヒドロキシピラゾールの収率は98.5%であった。
比較例1
 冷媒冷却還流管を付した300mLの4つ口フラスコ中に3-メトキシアクリル酸メチル116.4g(1.0mol)とメタノール64.1gを加え、温度を25℃以下に保持しながら、メチルヒドラジン46.1g(1.0mol)を2時間かけて滴下した。滴下終了後、25℃で20時間撹拌した。反応液を液体クロマトグラフィーで分析したところ、3-メトキシアクリル酸メチルとメチルヒドラジンの反応転化率は、それぞれ89.1%と88.7%であり、1-メチル-5-ヒドロキシピラゾールの収率は77.6%、位置異性体である1-メチル-3-ヒドロキシピラゾールの収率は1.8%であった。
 本発明の製造方法は、農薬用除草剤として有用な1-アルキル-5-ヒドロキシピラゾールを、入手しやすいジアルキルアミノアクリル酸エステルから簡便且つ高収率、高純度で得ることができ、工業的な製造方法として有用なものである。

Claims (8)

  1.  一般式(1):
    Figure JPOXMLDOC01-appb-C000001

    (式中、R、R、およびRはそれぞれ独立にC1~C6のアルキル基を表す。)
    で表されるジアルキルアミノアクリル酸エステルと、一般式(2)
    Figure JPOXMLDOC01-appb-C000002

    (式中、Rは水素原子、C1~C6のアルキル基、C2~C6のアルケニル基、C3~C6のシクロアルキル基、またはアリール基であり、これらの基はハロゲン、水酸基、アルコキシ基、またはC1~C6のアルキル基で置換されていてもよい。)
    で表されるアルキルヒドラジンと、を反応させることを特徴とする一般式(3)
    Figure JPOXMLDOC01-appb-C000003

    (式中、Rは水素原子、C1~C6のアルキル基C2~C6のアルケニル基、C3~C6のシクロアルキル基、またはアリール基であり、これらの基はハロゲン、水酸基、アルコキシ基、またはC1~C6のアルキル基で置換されていてもよい。)
    で表される1-アルキル-5-ヒドロキシピラゾールの製造方法。
  2.  前記反応を、一般式(2)で表されるアルキルヒドラジンもしくは一般式(1)で表されるジアルキルアミノアクリル酸エステルを滴下する方法、または一般式(2)で表されるアルキルヒドラジンと一般式(1)で表されるジアルキルアミノアクリル酸エステルとを同時に滴下する方法で反応させる、請求項1に記載の製造方法。
  3.  一般式(2)で表されるアルキルヒドラジンが水溶液である、請求項1又は2に記載の製造方法。
  4.  副生するジアルキルアミンを除去し、晶析により一般式(3)で表される1-アルキル-5-ヒドロキシピラゾールの結晶を取得する、請求項1~3のいずれか一項に記載の製造方法。
  5.  副生するジアルキルアミンを90%以上除去する、請求項4に記載の製造方法。
  6.  副生するジアルキルアミンを減圧濃縮により除去する、請求項5に記載の製造方法。
  7.  副生するジアルキルアミンをイオン交換樹脂により除去する、請求項5に記載の製造方法。
  8.  一般式(2)および(3)におけるRがメチル基またはエチル基である、請求項1~7のいずれか一項に記載の製造方法。
PCT/JP2022/041682 2022-11-09 2022-11-09 1-アルキル-5-ヒドロキシピラゾールの製造方法 WO2024100791A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041682 WO2024100791A1 (ja) 2022-11-09 2022-11-09 1-アルキル-5-ヒドロキシピラゾールの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041682 WO2024100791A1 (ja) 2022-11-09 2022-11-09 1-アルキル-5-ヒドロキシピラゾールの製造方法

Publications (1)

Publication Number Publication Date
WO2024100791A1 true WO2024100791A1 (ja) 2024-05-16

Family

ID=91032531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041682 WO2024100791A1 (ja) 2022-11-09 2022-11-09 1-アルキル-5-ヒドロキシピラゾールの製造方法

Country Status (1)

Country Link
WO (1) WO2024100791A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10175957A (ja) * 1996-10-18 1998-06-30 Ube Ind Ltd 1−エチル−5−ヒドロキシピラゾールの製法
JP2002530380A (ja) * 1998-11-19 2002-09-17 ビーエーエスエフ アクチェンゲゼルシャフト 1−置換−5−ヒドロキシピラゾールの製造方法
JP2002371067A (ja) * 2001-06-15 2002-12-26 Japan Hydrazine Co Inc 1−メチル−5−ハイドロキシピラゾールの製造法
JP2016501882A (ja) * 2012-12-06 2016-01-21 クオンティセル ファーマシューティカルズ,インク. ヒストンデメチラーゼ阻害剤
JP2022184396A (ja) * 2021-06-01 2022-12-13 株式会社日本ファインケム 1-アルキル-5-ヒドロキシピラゾールの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10175957A (ja) * 1996-10-18 1998-06-30 Ube Ind Ltd 1−エチル−5−ヒドロキシピラゾールの製法
JP2002530380A (ja) * 1998-11-19 2002-09-17 ビーエーエスエフ アクチェンゲゼルシャフト 1−置換−5−ヒドロキシピラゾールの製造方法
JP2002371067A (ja) * 2001-06-15 2002-12-26 Japan Hydrazine Co Inc 1−メチル−5−ハイドロキシピラゾールの製造法
JP2016501882A (ja) * 2012-12-06 2016-01-21 クオンティセル ファーマシューティカルズ,インク. ヒストンデメチラーゼ阻害剤
JP2022184396A (ja) * 2021-06-01 2022-12-13 株式会社日本ファインケム 1-アルキル-5-ヒドロキシピラゾールの製造方法

Similar Documents

Publication Publication Date Title
KR20180018749A (ko) 치환 페닐 케톤의 제조 방법
JPWO2006090778A1 (ja) 1−置換−3−フルオロアルキルピラゾール−4−カルボン酸エステルの製造方法
KR20100017431A (ko) 피라졸의 제조 방법
JP6149104B2 (ja) トリアゾール化合物の調製方法
JP2022184396A (ja) 1-アルキル-5-ヒドロキシピラゾールの製造方法
EP4136066A1 (en) A process for preparation of substituted enamine compounds
WO2007105793A1 (ja) イソ尿素類のニトロ化方法
WO2024100791A1 (ja) 1-アルキル-5-ヒドロキシピラゾールの製造方法
JP5140776B1 (ja) 1−置換−3−フルオロアルキルピラゾール−4−カルボン酸エステルの製造方法
US7368464B2 (en) Preparation for the production of 1,2,4-triazolylmethyl-oxiranes
JP4727576B2 (ja) ジフルオロアセト酢酸のアルキルエステルを調製するための方法
JP2024058272A (ja) 1-アルキル-5-ヒドロキシピラゾールの製造方法
JP4641667B2 (ja) 1−メチル−5−ハイドロキシピラゾールの製造法
US5663365A (en) Process for the preparation of pyrazolones
JP5763179B2 (ja) 1−アルキル−3−ジフルオロメチル−5−ヒドロキシピラゾール類の製造方法
US11649213B2 (en) Synthetic method for the preparation of a 3-[5-amino-4-(3-cyanobenzoyl)-pyrazol compound
CA1052383A (en) Process for the production of 1,2,4-triazole derivatives
JP3855686B2 (ja) 3,3−ジアルコキシ−2−ヒドロキシイミノ誘導体及びその製造法
EP2282989A1 (en) Process for preparing 3-(2,2-dimethylhydrazino)methylpropionate
JPH10175957A (ja) 1−エチル−5−ヒドロキシピラゾールの製法
JP4929717B2 (ja) N,n’−ジアルコキシ−n,n’−ジアルキルオキサミドの製法
JP2717995B2 (ja) 1,2,3−トリアゾールの製法
JP3719736B2 (ja) ピラゾロン類の製造法
JP4013772B2 (ja) 2−ヒドロキシイミノ−3−オキソプロピオニトリル及びその製法
JP2743441B2 (ja) シクロペンタ〔1,2―c〕―3―ピラゾールカルボン酸誘導体