WO2024099292A1 - 涡旋组件和涡旋压缩机 - Google Patents

涡旋组件和涡旋压缩机 Download PDF

Info

Publication number
WO2024099292A1
WO2024099292A1 PCT/CN2023/130088 CN2023130088W WO2024099292A1 WO 2024099292 A1 WO2024099292 A1 WO 2024099292A1 CN 2023130088 W CN2023130088 W CN 2023130088W WO 2024099292 A1 WO2024099292 A1 WO 2024099292A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation
scroll
holes
assembly
group
Prior art date
Application number
PCT/CN2023/130088
Other languages
English (en)
French (fr)
Inventor
钱源
许美玲
喻燕
Original Assignee
谷轮环境科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222972367.2U external-priority patent/CN219220722U/zh
Priority claimed from CN202211392101.9A external-priority patent/CN118030515A/zh
Application filed by 谷轮环境科技(苏州)有限公司 filed Critical 谷轮环境科技(苏州)有限公司
Publication of WO2024099292A1 publication Critical patent/WO2024099292A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present disclosure relates to a scroll compressor, and more particularly, to a scroll compressor having a capacity adjustment mechanism.
  • the scroll compressor can change the working capacity of the compressor in a variety of ways, such as changing the compressor speed and/or unloading the scroll assembly.
  • a mechanism for achieving capacity regulation without changing the compressor speed and without unloading the scroll assembly is also known, the mechanism includes components such as a modulation ring, a seal, and a control valve.
  • the modulation ring and the seal form a variable pressure chamber, and the variable pressure chamber is controlled by the control valve to communicate with a higher pressure area in the compressor or with a lower pressure area in the compressor.
  • the pressure difference between the upper and lower sides of the modulation ring can be controlled, so that the modulation ring moves up and down to open or close the modulation hole arranged on the fixed scroll and connected to at least one intermediate compression chamber in the scroll assembly.
  • the modulation hole is opened, at least one intermediate compression chamber is connected to the lower pressure area in the compressor through the modulation hole, and the profile of the front part of the scroll assembly hardly participates in the compression, thereby achieving the purpose of the compressor working under partial load.
  • the present disclosure is directed to providing a compressor with an improved capacity modulation system to enhance the performance of the compressor under part-load conditions.
  • One of the purposes of the present disclosure is to provide a scroll compressor with an improved capacity regulation system, wherein the arrangement of the modulation holes is designed so that the modulation holes can connect the compression chamber that needs to be bypassed with the lower pressure area in the compressor at the first time, thereby avoiding the fluid in the compression chamber from being bypassed after being compressed, thereby saving energy and improving the energy efficiency of the compressor.
  • Another object of the present disclosure is to provide a scroll compressor with a back pressure design, wherein the arrangement of the modulation holes is designed so that the number of modulation holes that can be connected to the back pressure holes (or the flow area of the modulation holes) is reduced, thereby avoiding excessive reduction of pressure in the back pressure chamber under partial load conditions, which is beneficial to the sealing fit between the fixed scroll and the movable scroll, thereby reducing compressor noise and improving compressor performance.
  • the present disclosure provides a scroll assembly, comprising: a movable scroll, the movable scroll having a movable scroll end plate and a movable scroll blade formed on the movable scroll end plate; and a fixed scroll, the fixed scroll having a fixed scroll end plate and a fixed scroll blade formed on a first side of the fixed scroll end plate, wherein the scroll assembly has a suction port for sucking a working fluid into the scroll assembly and an exhaust port for discharging the compressed working fluid out of the scroll assembly, the movable scroll blade and the fixed scroll blade engage with each other to form a suction chamber connected to the suction port, a central compression chamber connected to the exhaust port, and an intermediate compression chamber between the suction chamber and the central compression chamber between the movable scroll and the fixed scroll.
  • a compression chamber wherein the fixed scroll end plate is provided with a modulation hole, and the working fluid inside the scroll assembly can leak through the modulation hole to the suction pressure area outside the scroll assembly to achieve a partial load working state of the scroll assembly
  • the modulation hole includes a plurality of groups of modulation holes spaced apart from each other in the direction of the fixed scroll profile, and the first group of modulation holes among the plurality of groups of modulation holes is arranged at a position closer to the suction port than other groups of modulation holes, so that at the moment when the suction chamber begins to seal to form a first intermediate compression chamber adjacent to the suction chamber in the intermediate compression chamber, the first group of modulation holes just begins to be exposed or has been exposed in advance in the first intermediate compression chamber.
  • the plurality of groups of modulation holes are configured to include a first group of modulation holes and an additional second group of modulation holes.
  • the two groups of modulation holes, the first group of modulation holes and the second group of modulation holes are respectively constructed to include one or more modulation holes, and the first group of modulation holes and the second group of modulation holes are arranged roughly along the profile direction of the fixed vortex.
  • the spacing angle between the first group of modulation holes and the second group of modulation holes is greater than the spacing angle between adjacent modulation holes in the same group of modulation holes in the first group of modulation holes and the second group of modulation holes.
  • the fixed scroll end plate is also provided with a back pressure hole, and a back pressure chamber is provided on the second side of the fixed scroll end plate opposite to the first side.
  • the back pressure chamber is connected with one of the intermediate compression chambers via the back pressure hole, and the back pressure hole is closer to the exhaust port than the modulation hole.
  • the second group of modulation holes can be exposed to an intermediate compression chamber together with the back pressure holes, while the first group of modulation holes are not exposed to an intermediate compression chamber.
  • the first group of modulation holes and the second group of modulation holes can be exposed in the same intermediate compression chamber.
  • the scroll assembly also includes a modulation ring arranged on the second side of the fixed scroll end plate.
  • the modulation ring seal covers the modulation hole to cut off the leakage of the working fluid inside the scroll assembly to the suction pressure area.
  • the modulation ring moves away from the modulation hole to allow the leakage of the working fluid inside the scroll assembly to the suction pressure area.
  • variable pressure chamber is formed on one side of the modulation ring close to the fixed scroll end plate, and a back pressure chamber arranged on a second side of the fixed scroll end plate opposite to the first side is formed on the side of the modulation ring opposite to the variable pressure chamber, and the variable pressure chamber can be selectively connected to the back pressure chamber or the suction pressure zone.
  • variable pressure chamber is selectively connected to the back pressure chamber or the suction pressure area through a control valve.
  • the modulation ring moves to cover the modulation hole, and when the variable pressure chamber is connected to the back pressure chamber, the modulation ring moves away from the modulation hole.
  • the modulation holes are arranged on both sides of the exhaust port in a substantially radially symmetrical manner about the center of the fixed scroll end plate, and the modulation holes located on at least one side of the exhaust port are configured to include a plurality of groups of modulation holes.
  • the total flow area of the first group of modulation holes is greater than the total flow area of other groups of modulation holes, and/or the number of the first group of modulation holes is greater than the total number of the other groups of modulation holes.
  • two compression paths of the scroll assembly located on both sides of the exhaust port in the radial direction have substantially the same pressure ratio.
  • the present disclosure also provides a scroll compressor, which includes the scroll assembly as described above.
  • the scroll compressor according to the present disclosure brings at least one of the following beneficial effects: due to the optimized distribution of the modulation holes, the scroll compressor according to the present disclosure can achieve the matching of the bypass area of the modulation holes and the compression state of the compression chamber, avoiding the situation where the fluid in the compression chamber is bypassed after being compressed under partial load, thereby improving the energy efficiency of the compressor; due to the optimized distribution of the modulation holes, the compressor according to the present disclosure can reduce the situation of insufficient back pressure chamber pressure caused by the connection between the back pressure holes and the modulation holes, thereby improving the problems of unstable operation of the compressor, excessive noise and performance degradation caused by insufficient back pressure.
  • FIG1 shows a longitudinal sectional view of a scroll compressor according to a first embodiment of the present disclosure
  • FIG2 shows a perspective schematic diagram of a fixed scroll of a scroll compressor according to a first embodiment of the present disclosure
  • FIG3 shows a bottom view of the fixed scroll of the scroll compressor according to the first embodiment of the present disclosure
  • FIG. 4a and 4b respectively show cross-sectional schematic diagrams of a scroll assembly of a scroll compressor according to the first embodiment of the present disclosure at different moments, wherein FIG. 4a shows the moment when the suction chamber in the scroll assembly begins to seal and only the first group of modulation holes are exposed in the compression chamber, and FIG. 4b shows the moment when the scroll assembly further rotates from the moment shown in FIG. 4a and the first group of modulation holes ends bypassing and only the second group of modulation holes is exposed in the compression chamber;
  • FIG5 shows a bottom view of a fixed scroll of a scroll compressor in a comparative example
  • Fig. 6a and Fig. 6b respectively show cross-sectional schematic diagrams of a scroll assembly of a scroll compressor of a comparative example at different moments, wherein Fig. 6a shows the moment when the suction chamber in the scroll assembly starts to seal, and Fig. 6b shows the moment when the scroll assembly further rotates from the moment shown in Fig. 6a and the modulation hole is exposed in the compression chamber;
  • FIG. 7 is a graph showing a comparison between the bypass area of the modulation hole and the pressure in the compression chamber in the scroll compressor according to the first embodiment of the present disclosure and the scroll compressor of the comparative example;
  • FIG. 8 is a perspective schematic diagram showing a fixed scroll of a scroll compressor according to a second embodiment of the present disclosure.
  • FIG. 1 A basic configuration and principle of a scroll compressor 100 according to a first embodiment of the present disclosure will be described below with reference to FIG. 1 .
  • a scroll compressor (hereinafter also referred to as a compressor) 100 generally includes a housing 80, a scroll assembly CM disposed in the housing 80, a main bearing seat 50 for supporting the scroll assembly CM, and a motor 70 and a rotating shaft 60 for driving the scroll assembly CM.
  • the housing 80 may be composed of a substantially cylindrical body portion 81, a top cover 82 disposed at one end of the body portion 81, and a bottom cover 83 disposed at the other end of the body portion 81.
  • a partition 84 is disposed between the top cover 82 and the body portion 81 to separate the internal space of the housing 80, wherein the space between the partition 84 and the top cover 82 constitutes an exhaust pressure zone HP, and the space between the partition 84, the body portion 81, and the bottom cover 83 constitutes an intake pressure zone LP.
  • An intake joint for sucking in fluid is disposed on one side of the intake pressure zone LP, and an exhaust joint for discharging compressed fluid is disposed on one side of the exhaust pressure zone HP.
  • the scroll assembly CM includes a fixed scroll 10 and an orbiting scroll 40.
  • the motor 70 is configured to rotate the rotary shaft 60, which in turn drives the orbiting scroll 40 to orbit relative to the fixed scroll 10 (i.e., the central axis of the orbiting scroll moves around the central axis of the fixed scroll, but the orbiting scroll does not rotate around its central axis).
  • the fixed scroll 10 may include a fixed scroll end plate 12, a fixed scroll blade 14 extending from a first side of the fixed scroll end plate 12, and a fixed scroll hub 16 extending from a second side of the fixed scroll end plate 12 opposite to the first side.
  • the fixed scroll 10 is also formed with an air intake port 15 for sucking the working fluid into the scroll assembly CM at the radial outer edge of its fixed scroll end plate 12, and is also formed with an exhaust port 123 (see Figures 2 and 3) for discharging the compressed working fluid from the scroll assembly CM at the center of its fixed scroll end plate 12.
  • the fixed scroll hub 16 is arranged around the exhaust port 123 to form an exhaust passage connected to the exhaust port 123 on the inner side of the fixed scroll hub 16.
  • the movable scroll 40 may include a movable scroll end plate 42 and a movable scroll blade 44 formed on one side of the movable scroll end plate 42.
  • the fixed scroll blades 14 and the movable scroll blades 44 can be engaged with each other, so that when the scroll compressor is running, a series of fluid chambers are formed between the fixed scroll blades 14 and the movable scroll blades 44.
  • the series of fluid chambers includes a suction chamber CS, a central compression chamber CD, and a plurality of intermediate compression chambers located between the suction chamber CS and the central compression chamber CD, such as the first intermediate compression chamber C1 (see Figures 4a and 4b).
  • the suction chamber CS located at the radially outermost side is connected to the suction port 15 and has the highest pressure therein.
  • the central compression chamber CD located at the innermost radial side is connected to the exhaust port 123 and has the highest pressure therein, and the multiple intermediate compression chambers (e.g., C1) located between the suction chamber CS and the central compression chamber CD have an intermediate pressure between the maximum pressure and the minimum pressure.
  • the scroll assembly CM is shown as having a symmetrical design, that is, the two compression paths located on the radial sides of the exhaust port 123 have approximately the same pressure ratio, but it can be understood by those skilled in the art that the present disclosure is also applicable to asymmetric scroll assemblies, that is, the two compression paths located on the radial sides of the exhaust port have different pressure ratios.
  • the scroll assembly CM also includes a modulation ring 20 arranged on the second side of the fixed scroll end plate 12 opposite to the first side, and the fixed scroll end plate 12 is provided with a modulation hole 121.
  • the modulation hole 121 can be arranged to extend through the fixed scroll end plate 12 in the axial direction, so as to form a bypass channel BP that selectively provides fluid communication between at least one intermediate compression chamber of the scroll assembly CM and the suction pressure area LP.
  • the modulation hole 121 includes a first opening end formed on the surface of the first side of the fixed scroll end plate 12 and a second opening end formed on the surface of the second side of the fixed scroll end plate 12.
  • the modulation ring 20 is mounted on the outer peripheral surface of the fixed scroll hub 16.
  • the modulation ring 20 includes a straight portion 22 that forms a surface contact with the top surface of the fixed scroll end plate 12 and a central arched portion 24 that is spaced apart from the fixed scroll hub 16.
  • the straight portion 22 of the modulation ring 20 can cover the second opening end of the sealing modulation hole 121 to achieve the closure of the bypass channel BP.
  • a first annular recess is defined between the central arched portion 24 of the modulation ring 20 and the fixed scroll hub 16, and a second annular recess is defined between the central arched portion 24 of the modulation ring 20 and the top surface of the fixed scroll end plate 12.
  • the first annular recess and the second annular recess are isolated from each other.
  • a closed back pressure chamber 26 can be formed in the first annular recess, and a closed variable pressure chamber 28 can be formed in the second annular recess. That is, the back pressure chamber 26 and the variable pressure chamber 28 are respectively arranged on both sides of the modulation ring 20.
  • the back pressure chamber 26 can be connected to at least one intermediate compression chamber of the scroll assembly CM via the back pressure hole 18 arranged in the fixed scroll end plate 12 and establish a back pressure P1 in the back pressure chamber 26.
  • the back pressure hole 18 is preferably one to reduce the restrictions on the arrangement of the modulation hole and reduce the possibility of back pressure leakage.
  • the fixed scroll 10 and the movable scroll 40 are kept against each other during the process of compressing gas in the scroll assembly CM, while providing the axial flexibility of the scroll component, thereby ensuring safe and reliable operation and floating seal of the compressor.
  • the scroll assembly CM further includes a control valve (not shown in the figure), which can selectively connect the variable pressure chamber 28 to the back pressure chamber 26 or connect the variable pressure chamber 28 to the suction pressure area LP (the passage for connection is not shown in the figure).
  • a control valve controls the variable pressure chamber 28 to connect to the suction pressure area LP
  • the pressure of the variable pressure chamber 28 is lower than the pressure of the back pressure chamber 26, thereby modulating the setting of the ring 20.
  • the pressure on the side with the variable pressure chamber 26 (shown as the lower side in FIG. 1 ) is lower than the pressure on the side with the back pressure chamber 26 (shown as the upper side in FIG. 1 ).
  • the modulation ring 20 moves axially toward the fixed scroll end plate 12, so that the straight portion 22 of the modulation ring 20 covers the second open end of the sealed modulation hole 121, and the bypass channel BP is closed. At this time, the working fluid in the middle compression chamber of the scroll assembly CM cannot flow out through the bypass channel BP, and the scroll compressor is in full load working state.
  • the control valve controls the variable pressure chamber 28 to communicate with the back pressure chamber 26
  • the pressure of the variable pressure chamber 28 is equal to that of the back pressure chamber 26, but the modulation ring 20 is also subjected to the pressure applied to the modulation ring 20 by the working fluid at the modulation hole, so that the pressure of the side of the modulation ring 20 provided with the variable pressure chamber 26 (shown as the lower side in FIG. 1 ) is greater than the pressure of the side provided with the back pressure chamber 26 (shown as the upper side in FIG. 1 ).
  • the modulation ring 20 moves axially in the direction away from the fixed scroll end plate 12, so that the straight portion 22 of the modulation ring 20 leaves the second open end of the modulation hole 121, and the bypass channel BP is opened.
  • the working fluid in the intermediate compression chamber connected to the modulation hole 121 leaks to the suction pressure area LP outside the scroll assembly CM through the modulation hole 121.
  • the scroll profile portion corresponding to the intermediate compression chamber connected to the modulation hole 121 and the front part of the scroll profile portion are almost no longer involved in compression, and the scroll compressor 100 is therefore in a partial load working state.
  • the back pressure hole 18 is arranged closer to the exhaust port 123 than the modulation hole 121, thereby ensuring that the back pressure hole 18 can provide back pressure to the back pressure chamber 26 regardless of whether the compressor is in a full load working state or a partial load working state.
  • the modulation hole 121 can be arranged at a position closer to the radial outer side of the fixed scroll end plate 12, while the back pressure hole 18 is arranged at a position closer to the radial inner side of the fixed scroll end plate 12 and passes through the outer portion of the fixed scroll hub 16 to lead to the back pressure chamber 26.
  • the modulation holes 121 are arranged on both sides of the exhaust port 123 in a roughly radially symmetrical manner about the center of the fixed scroll end plate 12.
  • the "roughly radially symmetrical" herein means that the number of modulation holes on both sides of the exhaust port 123 is basically the same, and the positions are basically radially symmetrical about the center of the fixed scroll end plate, but the intervals between adjacent modulation holes in the modulation holes on each side may be different.
  • the modulation holes 121 located on one side of the exhaust port 123 are constructed to include a first group of modulation holes 1211 and a second group of modulation holes 1212 arranged along the line direction of the fixed scroll 10 and spaced apart from each other in the line direction of the fixed scroll 10, while the modulation holes 121 located on the other side of the exhaust port 123 are constructed to be a group of modulation holes uniformly arranged along the line direction of the fixed scroll 10.
  • the first group of modulation holes 1211 is arranged at a position closer to the suction port 15 than the other modulation holes (the second group of modulation holes 1212), thereby, when the compressor is in a partial load working state
  • the first group of modulation holes 1211 can achieve bypass earlier, thereby achieving the effect of improving energy efficiency, which will be described in detail below.
  • Figure 4a shows the moment when the suction chamber CS in the scroll assembly CM begins to seal to form the first intermediate compression chamber C1 adjacent to the suction chamber CS in the intermediate compression chamber, and the first group of modulation holes 1211 just begins to be exposed or has been exposed in advance in the first intermediate compression chamber C1 ( Figure 4a shows that a part of the first four modulation holes of the first group of modulation holes 1211 are exposed in the first intermediate compression chamber C1), while at this time the second group of modulation holes 1212 are blocked by the passive scroll blades 44 or are located in an intermediate compression chamber different from the first intermediate compression chamber C1 and are not exposed in the first intermediate compression chamber C1.
  • the first group of modulation holes 1211 exposed in advance in the first intermediate compression chamber C1 allows the working fluid in the first intermediate compression chamber C1 to leak to the suction pressure area LP in a timely manner.
  • the first group of modulation holes 1211 are gradually exposed to the first intermediate compression chamber C1 and the second group of modulation holes 1212 begin to be at least partially exposed to the first intermediate compression chamber C1, that is, the first group of modulation holes 1211 and the second group of modulation holes 1212 can be exposed in the same intermediate compression chamber to provide sufficient bypass area under the partial load working state of the compressor.
  • the first group of modulation holes 1211 are gradually blocked by the movable scroll blade 44, and then reach the moment shown in Figure 4b.
  • the first group of modulation holes 1211 is completely blocked by the passive vortex blades 44 or the first group of modulation holes 1211 is at least partially exposed in a chamber different from the intermediate compression chamber exposed by the second group of modulation holes 1212 (for example, the suction chamber CS), while the second group of modulation holes 1212 and the back pressure holes 18 are exposed in the same intermediate compression chamber, which is the first intermediate compression chamber C1 or other intermediate compression chamber different from the first intermediate compression chamber C1.
  • the second group of modulation holes 1212 still allows the working fluid in the intermediate compression chamber to leak to the suction pressure zone LP.
  • the first group of modulation holes 1211 is never exposed in the same intermediate compression chamber as the back pressure holes 18, so as to avoid insufficient back pressure caused by leakage of the working fluid in the back pressure chamber 26 through the first group of modulation holes 1211 under partial load working conditions.
  • the structure of the fixed scroll of the scroll compressor in the comparative example will be described below in conjunction with Figures 5, 6a, and 6b, and the effect of the first embodiment of the present disclosure will be described by comparing the first embodiment of the present disclosure with the comparative example.
  • the structure and working principle of the scroll compressor in the comparative example are basically the same as the structure and working principle of the scroll compressor in the first embodiment of the present disclosure, so they will not be repeated here.
  • the scroll compressor in the comparative example includes a scroll assembly CMa, and the scroll assembly CMa includes a fixed scroll 10a and a movable scroll 40.
  • the fixed scroll 10a includes a fixed scroll end plate 12 and a fixed scroll blade 14 extending from a first side of the fixed scroll end plate 12, similar to the first embodiment of the present disclosure.
  • the fixed scroll 10a also includes an intake port 15 for sucking the working fluid into the scroll assembly CM and an exhaust port 123 for discharging the compressed working fluid from the scroll assembly.
  • the fixed scroll end plate 12 is also provided with a modulation hole 121a, and the modulation hole 121a can be arranged to extend through the fixed scroll end plate 12 in an axial direction, thereby forming a bypass channel BP that selectively provides fluid communication between at least one intermediate compression chamber of the scroll assembly CMa and the suction pressure zone LP.
  • the scroll assembly CMa also includes a modulation ring 20 arranged on the second side of the fixed scroll end plate 12. When the scroll assembly is in a full-load working state, the modulation ring 20 seals and covers the modulation hole to cut off the leakage of the working fluid inside the scroll assembly to the suction pressure area LP. When the scroll assembly is in a partial-load working state, the modulation ring 20 moves away from the modulation hole 121a to allow the leakage of the working fluid inside the scroll assembly to the suction pressure area LP.
  • the modulation holes 121a are arranged on both sides of the exhaust port 123 in a substantially radially symmetrical manner with respect to the center of the fixed scroll end plate 12.
  • the modulation holes 121a on each side of the exhaust port 123 are configured as a group of modulation holes uniformly arranged along the profile direction of the fixed scroll 10a. That is, for the modulation holes 121a on each side of the exhaust port 123, the spacing distances between adjacent modulation holes in a group of modulation holes on that side are substantially equal.
  • FIG6a shows the moment when the suction chamber CS in the scroll assembly CMa begins to seal to form the first intermediate compression chamber C1 adjacent to the suction chamber CS in the intermediate compression chamber.
  • the modulation hole 121a on each side of the exhaust port 123 is blocked by the passive scroll blade 44 or is located in an intermediate compression chamber different from the first intermediate compression chamber C1 and is not exposed to the first intermediate compression chamber C1. Therefore, when the compressor is in a partial load working state, at the moment shown in FIG6a, the bypass has not yet begun.
  • the modulation hole 121a is gradually exposed to the first intermediate compression chamber C1, and the working fluid in the first intermediate compression chamber C1 leaks to the suction pressure area through the modulation hole 121a, and then reaches the moment shown in FIG6b.
  • the modulation hole 121a on one side of the exhaust port 123 and the back pressure hole 18 are exposed in the same intermediate compression chamber, which is the first intermediate compression chamber C1, or it can be another intermediate compression chamber different from the first intermediate compression chamber C1.
  • FIG. 7 shows the flow area of the modulation holes and the pressure in the compression chamber as the suction seal angle increases in the first embodiment of the present disclosure and the comparative example.
  • a curve graph changes with changes, wherein the thick solid line and the thin solid line represent the change curve graph of the flow area of the modulation hole in the first embodiment of the present disclosure and in the comparative example, respectively, the thick dotted line and the thin dotted line represent the change curve graph of the pressure in the compression chamber in the first embodiment of the present disclosure and in the comparative example, respectively, and the suction sealing angle of 0° is defined as the angular position corresponding to the starting sealing point of the suction chamber CS at the moment when the suction chamber CS of the scroll assembly just begins to seal and form the first intermediate compression chamber, and as the movable scroll rotates relative to the fixed scroll, the sealing point gradually moves, and the compression of the first intermediate compression chamber ends when it moves to 360°.
  • the modulation hole 121a has not yet been exposed in the first intermediate compression chamber C1, that is, the fluid area of the modulation hole is equal to 0, and even when the suction chamber CS of the scroll assembly has been sealed, the modulation hole 121a has not yet begun to be exposed in the first intermediate compression chamber. Since the modulation hole cannot be exposed in the first intermediate compression chamber in time, the first intermediate compression chamber cannot be connected to the suction pressure zone in time.
  • the working fluid undergoes more compression in the first intermediate compression chamber C1, so the pressure in the compression chamber (first intermediate compression chamber C1) has a significant increase and fluctuation in the startup stage, and then as the modulation hole 121a is gradually exposed in the first intermediate compression chamber C1, the working fluid that has undergone more compression is discharged to the outside of the scroll assembly through the modulation hole 121a, and the pressure in the first intermediate compression chamber C1 gradually decreases.
  • this process of first compressing the working fluid and then bypassing the compressed working fluid results in a waste of work done by the scroll assembly, and thus the energy efficiency of the compressor is low.
  • the modulation hole 121 (the first group of modulation holes 1211) has been partially exposed in the first intermediate compression chamber C1, that is, at this time, the flow area of the modulation hole is greater than 0. Since the modulation hole 121 is exposed in advance in the first intermediate compression chamber C1, the modulation hole 121 can timely connect the first intermediate compression chamber C1 with the suction pressure area LP, so that in the startup stage (corresponding to the stage where the suction sealing angle is about 0°-80° in FIG.
  • the working fluid does not experience any compression or only experiences very little compression in the first intermediate compression chamber C1, so the pressure in the compression chamber (the first intermediate compression chamber C1) does not fluctuate significantly during the startup stage.
  • the working fluid since the working fluid does not undergo more compression during the startup stage and then is discharged through the modulation hole, no energy waste will be generated due to the compression during the startup stage, thereby improving the energy efficiency of the compressor.
  • the pressure in the first intermediate compression chamber is substantially equal to the pressure in the suction pressure zone.
  • the passive scroll blades 44 of some modulation holes 121 e.g., the first group of modulation holes 1211
  • the passive scroll blades 44 of some modulation holes 121 cover or are located in other chambers (e.g., the suction chamber CS) different from the first intermediate compression chamber C1, and the bypass of the first intermediate compression chamber C1 is ended.
  • the number of modulation holes for connecting the first intermediate compression chamber C1 and the suction pressure zone LP is reduced (or the flow area is reduced).
  • the working fluid in the first intermediate compression chamber C1 begins to experience compression because it cannot be discharged to the outside of the scroll assembly in time.
  • the pressure in the first intermediate compression chamber C1 gradually rises, and after the movable scroll rotates relative to the fixed scroll to a suction seal angle of 360 degrees, the working fluid enters the next stage compression chamber for compression.
  • the modulation hole 121a is not yet covered by the passive scroll blade or is located in a chamber other than the first intermediate compression chamber, but is still completely exposed in the first intermediate compression chamber C1, so the pressure in the first intermediate compression chamber C1 remains substantially equal to the pressure in the intake pressure zone.
  • the pressure in the back pressure chamber 26 will leak to the first intermediate compression chamber C1 and leak to the outside of the scroll assembly through the back pressure hole 18, resulting in insufficient back pressure, and the fixed scroll and the movable scroll cannot form an effective seal and leak, and the working fluid may undergo repeated compression in the compression chamber, thereby causing the exhaust temperature to rise, the compressor performance to decline, and noise to be generated.
  • the modulation hole 121 including the first group of modulation holes 1211 and the second group of modulation holes 1212 on the exhaust port 123 side in the first embodiment of the present disclosure ends bypassing earlier than the modulation hole 121a in the comparative example, so that the pressure in the first intermediate compression chamber C1 starts to rise earlier, which is of great significance for maintaining the pressure stability in the back pressure chamber.
  • the pressure of the first intermediate compression chamber rises, thereby ensuring that the working fluid in the back pressure chamber will not leak too much into the first intermediate compression chamber through the back pressure hole, and the pressure in the back pressure chamber will not be excessively reduced, thereby providing a reliable back pressure for the scroll assembly.
  • the first group of modulation holes and the second group of modulation holes are respectively configured as one or more.
  • the number of the first group of modulation holes is greater than the total number of the other groups of modulation holes (the second group of modulation holes in the first embodiment of the present disclosure), or preferably, the total flow area of the first group of modulation holes is greater than the total flow area of the other groups of modulation holes (the second group of modulation holes in the first embodiment of the present disclosure), so as to better avoid pressure fluctuations in the startup phase and better reduce pressure leakage in the back pressure chamber.
  • the first group of modulation holes 1211 is configured as 5
  • the second group of modulation holes 1212 is configured as 2.
  • the number of the first group of modulation holes can also be equal to or less than the number of the other groups of modulation holes.
  • the first group of modulation holes 1211 and the second group of modulation holes 1212 are spaced apart by a first angle (i.e., the angle between a modulation hole in the first group of modulation holes 1211 that is closest to the second group of modulation holes 1212 and a modulation hole in the second group of modulation holes 1212 that is closest to the first group of modulation holes 1211), and adjacent modulation holes in the first group of modulation holes 1211 and adjacent modulation holes in the second group of modulation holes 1212 are spaced apart by approximately the same second angle, and the first angle is greater than the second angle.
  • the first angle is configured to be 2 to 10 times the second angle, and more preferably, the first angle is configured to be more than 5 times the second angle.
  • the capacity of the compressor can be adjusted by adjusting the position of the second group of modulation holes 1212.
  • the scroll compressor 100 operates at 80% of its capacity under partial load working conditions
  • the second group of modulation holes is arranged at a position closer to the exhaust port 123 along the profile direction of the fixed scroll 10 than the second group of modulation holes 1212 in the first embodiment, the compressor will operate at a capacity lower than 80% under partial load working conditions.
  • the scroll compressor includes a scroll assembly, and the scroll assembly includes a fixed scroll 10b and a movable scroll 40.
  • the fixed scroll 10b includes a fixed scroll end plate 12 and a fixed scroll blade 14 extending from a first side of the fixed scroll end plate 12, similar to the first embodiment of the present disclosure.
  • the fixed scroll 10b also includes an intake port 15 for sucking the working fluid into the scroll assembly and an exhaust port 123 for discharging the compressed working fluid from the scroll assembly.
  • the fixed scroll end plate 12 is also provided with a modulation hole 121b, and the modulation hole 121b can be arranged to extend through the fixed scroll end plate 12 in the axial direction, thereby forming A bypass channel BP for fluid communication is selectively provided between at least one intermediate compression chamber of the scroll assembly and the suction pressure zone LP.
  • the scroll assembly also includes a modulation ring 20 disposed on the second side of the fixed scroll end plate 12. When the scroll assembly is in a full-load working state, the modulation ring 20 seals and covers the modulation hole to cut off the leakage of the working fluid inside the scroll assembly to the suction pressure zone LP. When the scroll assembly is in a partial-load working state, the modulation ring 20 moves away from the modulation hole 121b to allow the leakage of the working fluid inside the scroll assembly to the suction pressure zone.
  • the modulation holes 121b are arranged on both sides of the exhaust port 123 in a substantially radially symmetrical manner about the center of the fixed scroll end plate 12. Different from the first embodiment of the present disclosure, the modulation holes 121b on each side of the exhaust port 123 are configured to include a first group of modulation holes 1211b and a second group of modulation holes 1212b arranged along the profile direction of the fixed scroll 10b and spaced apart from each other in the profile direction of the fixed scroll 10b.
  • the first group of modulation holes 1211b is arranged at a position closer to the suction port 15 than other modulation holes (the second group of modulation holes 1212b), so that at the moment when the suction chamber begins to seal to form the first intermediate compression chamber, the first group of modulation holes 1211b on both sides of the exhaust port 123 can just begin to be exposed or have been exposed in advance in the first intermediate compression chamber corresponding to each other.
  • the modulation holes on both sides of the exhaust port 123 are the same in terms of the number of groups of modulation holes, the number of modulation holes, the size, the spacing angle between each group of modulation holes, and the spacing angle between adjacent modulation holes in the same group of modulation holes. That is, the modulation holes 121 b may be arranged on both sides of the exhaust port 123 in complete radial symmetry with respect to the center of the fixed scroll end plate 12 .
  • the compressor according to the second embodiment of the present disclosure can obtain the same effects of improving energy efficiency, maintaining stable back pressure chamber pressure, and reducing noise as the compressor according to the first embodiment of the present disclosure.
  • the modulation holes 121b are arranged more radially symmetrically on both sides of the exhaust port 123 with respect to the center of the fixed scroll end plate 12, the pressure on both sides of the exhaust port 123 of the scroll assembly CM is more balanced, making the operation of the compressor smoother.
  • the exhaust temperature of the compressor according to the first embodiment of the present disclosure is reduced by 19F compared with the compressor according to the comparative example; the exhaust temperature of the compressor according to the second embodiment of the present disclosure is reduced by 15F compared with the compressor according to the comparative example.
  • the modulation hole 121 may optionally include an inclined hole (i.e., a hole extending obliquely relative to the axis of the fixed scroll 10), a combination of an axial hole and a transverse hole (i.e., a hole extending perpendicular to the axis of the fixed scroll 10) disposed in the fixed scroll end plate 12 and fluidically connected to each other, or a combination of an axial hole and an inclined hole (not shown), as long as the modulation hole 121 is able to connect the predetermined intermediate compression chamber with the suction pressure zone under the partial load working state of the compressor.
  • an inclined hole i.e., a hole extending obliquely relative to the axis of the fixed scroll 10
  • a combination of an axial hole and a transverse hole i.e., a hole extending perpendicular to the axis of the fixed scroll 10
  • a combination of an axial hole and an inclined hole not shown
  • the modulation holes on one or both sides of the exhaust port 123 in the radial direction are described in the embodiment of the present disclosure as including two groups of modulation holes (a first group of modulation holes and a second group of modulation holes) spaced apart in the direction of the fixed scroll profile, optionally, for the modulation holes on one side, the modulation holes may include three or more groups of modulation holes spaced apart in the direction of the fixed scroll profile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

一种涡旋组件(CM)和涡旋压缩机(100),涡旋组件(CM)包括动涡旋(40)和定涡旋(10),涡旋组件(CM)还具有吸气口(15)和排气口(123),动涡旋叶片(44)与定涡旋叶片(14)彼此接合以在动涡旋(40)与定涡旋(10)之间形成吸气腔(CS)、中央压缩腔(CD)以及位于吸气腔(CS)与中央压缩腔(CD)之间的中间压缩腔,其中,定涡旋端板(12)设置有调制孔(121、121b),调制孔(121、121b)包括在定涡旋(10)的型线方向上彼此间隔开的多组调制孔,多组调制孔中的第一组调制孔(1211、1211b)设置在相较于其他组调制孔更靠近吸气口(15)的位置处,使得在吸气腔(CS)开始密封从而形成中间压缩腔中的紧邻吸气腔(CS)的第一中间压缩腔(C1)的时刻,第一组调制孔(1211、1211b)刚好开始暴露或者已经提前暴露在第一中间压缩腔(C1)中;所述涡旋组件(CM)和涡旋压缩机(100),能效高、运行稳定安全且噪音小。

Description

涡旋组件和涡旋压缩机
本申请要求以下中国专利申请的优先权:于2022年11月8日提交中国专利局的申请号为202211392101.9、发明创造名称为“涡旋组件和涡旋压缩机”的中国专利申请;于2022年11月8日提交中国专利局的申请号为202222972367.2、发明创造名称为“涡旋组件和涡旋压缩机”的中国专利申请。这些专利申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及一种涡旋压缩机,更具体地,涉及一种具有容量调节机构的涡旋压缩机。
背景技术
本部分的内容仅提供了与本公开相关的背景信息,其可能并不构成现有技术。
已知的是,根据工况的需要,涡旋压缩机可以以多种方式改变压缩机的工作容量,例如改变压缩机转速和/或使涡旋组件卸载。另外,还已知一种在不改变压缩机转速并且在涡旋组件不卸载的情况下实现容量调节的机构,该机构包括调制环、密封件、控制阀等部件,调制环和密封件形成可变压力腔,通过控制阀控制可变压力腔与压缩机内较高压力区域连通或者与压缩机内较低压力区域连通,能够控制调制环上下侧的压差,从而使得调制环上下移动,以打开或者关闭设置在定涡旋上的与涡旋组件中的至少一个中间压缩腔连通的调制孔。当调制孔打开时,至少一个中间压缩腔通过调制孔与压缩机内较低压力区域连通,涡旋组件前部分的型线几乎不参与压缩,从而实现压缩机在部分负荷下工作的目的。
在压缩机处于部分负荷工作状态下,当涡旋组件的吸气腔开始密封从而形成压缩腔时,如果调制孔不能在第一时间将压缩腔与压缩机内较低压力区域连通,压缩腔内的流体将被压缩后再经调制孔旁通,从而造成不必要的能量损耗。
此外,对于具有背压腔设计的压缩机,在压缩机处于部分负荷的情况下,如果调制孔与背压孔暴露于同一压缩腔,将导致背压腔的压力降低而无法提供 有效的背压,影响压缩机性能。
因此,本公开旨在提供一种具有改善的容量调节系统的压缩机,以提高压缩机在部分负荷工况下的性能。
发明内容
在本部分中提供本公开的总体概要,而不是本公开完全范围或本公开所有特征的全面公开。
本公开的目的之一是提供一种具有改善的容量调节系统的涡旋压缩机,其中通过对调制孔的布置进行设计,使得调制孔能够在第一时间将需要旁通的压缩腔与压缩机内较低压力区域连通,从而避免了压缩腔内的流体经压缩后再被旁通,由此节约能源、提高压缩机能效。
本公开的另一目的是提供一种具有背压设计的涡旋压缩机,其中通过对调制孔的布置进行设计,使得能够与背压孔连通的调制孔的数量(或者调制孔的流通面积)减少,从而避免背压腔内的压力在部分负荷的情况下过度降低,有利于定涡旋与动涡旋之间的密封贴合,由此降低压缩机噪音、改善压缩机性能。
本公开提供了一种涡旋组件,包括:动涡旋,动涡旋具有动涡旋端板和形成在动涡旋端板上的动涡旋叶片;以及定涡旋,定涡旋具有定涡旋端板和形成在定涡旋端板的第一侧的定涡旋叶片,其中,涡旋组件具有用于将工作流体吸入涡旋组件的吸气口以及用于将经过压缩的工作流体排出涡旋组件的排气口,动涡旋叶片与定涡旋叶片彼此接合以在动涡旋与定涡旋之间形成与吸气口连通的吸气腔、与排气口连通的中央压缩腔以及位于吸气腔与中央压缩腔之间的中间压缩腔,其中,定涡旋端板设置有调制孔,涡旋组件的内部的工作流体能够经由调制孔泄漏至涡旋组件的外部的吸气压力区以实现涡旋组件的部分负荷工作状态,其中,调制孔包括在定涡旋的型线方向上彼此间隔开的多组调制孔,多组调制孔中的第一组调制孔设置在相较于其他组调制孔更靠近吸气口的位置处,使得在吸气腔开始密封从而形成中间压缩腔中的紧邻吸气腔的第一中间压缩腔的时刻,第一组调制孔刚好开始暴露或者已经提前暴露在第一中间压缩腔中。
可选地,多组调制孔构造为包括第一组调制孔和另外的第二组调制孔的 两组调制孔,第一组调制孔和第二组调制孔分别构造为包括一个或多个调制孔,第一组调制孔和第二组调制孔大致沿着定涡旋的型线方向布置。
可选地,在第一组调制孔和/或第二组调制孔构造为包括多个调制孔的情况下,第一组调制孔与第二组调制孔之间的间隔角度大于第一组调制孔和第二组调制孔中的同组调制孔中的相邻调制孔之间的间隔角度。
可选地,定涡旋端板还设置有背压孔,定涡旋端板的与第一侧相反的第二侧设置有背压腔,背压腔经由背压孔与中间压缩腔中的一个中间压缩腔连通,背压孔相较于调制孔更靠近排气口。
可选地,在涡旋组件的运行过程中,第二组调制孔能够与背压孔一起暴露在一个中间压缩腔中,与此同时第一组调制孔并未暴露在一个中间压缩腔中。
可选地,在涡旋组件的运行过程中,第一组调制孔与第二组调制孔能够暴露在同一个中间压缩腔中。
可选地,涡旋组件还包括设置在定涡旋端板的第二侧的调制环,在涡旋组件的全负荷工作状态下,调制环密封覆盖调制孔从而关断涡旋组件的内部的工作流体至吸气压力区的泄漏,在涡旋组件的部分负荷工作状态下,调制环移动远离调制孔从而允许涡旋组件的内部的工作流体至吸气压力区的泄漏。
可选地,在调制环的靠近定涡旋端板的一侧形成有可变压力腔,设置在定涡旋端板的与第一侧相反的第二侧的背压腔形成在调制环的与可变压力腔相反的一侧,可变压力腔能够选择性地与背压腔或吸气压力区连通。
可选地,可变压力腔通过控制阀而选择性地与背压腔或吸气压力区连通,当可变压力腔与吸气压力区连通时,调制环移动成覆盖调制孔,而当可变压力腔与背压腔连通时,调制环移动远离调制孔。
可选地,调制孔关于定涡旋端板的中心大致径向对称地布置在排气口的两侧,位于排气口的至少一侧的调制孔构造为包括多组调制孔。
可选地,第一组调制孔的总流通面积大于其他组调制孔的总流通面积,并且/或者,第一组调制孔的数目大于其他组调制孔的总数目。
可选地,涡旋组件的位于排气口的径向两侧的两个压缩路径具有大致相同的压比。
本公开还提供了一种涡旋压缩机,该涡旋压缩机包括如上文所描述的涡旋组件。
总体上,根据本公开的涡旋压缩机至少带来以下有益效果之一:由于调制孔的优化分布,根据本公开的涡旋压缩机能够实现调制孔的旁通面积与压缩腔的压缩状态的匹配,避免了在部分负荷的状态下压缩腔内的流体经压缩后又被旁通的情况,提高了压缩机能效;由于调制孔的优化分布,根据本公开的压缩机能够减少背压孔与调制孔连通而导致的背压腔压力不足的情况,改善了由于背压不足导致的压缩机运行不稳定、噪音过大以及性能下降的问题。
附图说明
根据以下参照附图的详细描述,本公开的前述及另外的特征和优点将变得更加清楚,这些附图仅作为示例并且不一定是按比例绘制。在附图中采用相同的附图标记指示相同的部件,在附图中:
图1示出了根据本公开的第一实施方式的涡旋压缩机的纵剖视图;
图2示出了根据本公开的第一实施方式的涡旋压缩机的定涡旋的立体示意图;
图3示出了根据本公开的第一实施方式的涡旋压缩机的定涡旋的仰视图;
图4a和图4b分别示出了根据本公开的第一实施方式的涡旋压缩机的涡旋组件在不同时刻下的横截面示意图,其中,图4a示出了涡旋组件中的吸气腔开始密封、仅第一组调制孔在压缩腔内暴露的时刻,涡旋组件图4b示出了涡旋组件从图4a所示的时刻进一步转动、第一组调制孔结束旁通而仅第二组调制在压缩腔内暴露的时刻;
图5示出了对比示例中的涡旋压缩机的定涡旋的仰视图;
图6a和图6b分别示出了对比示例的涡旋压缩机的涡旋组件在不同时刻下的横截面示意图,其中,图6a示出了涡旋组件中的吸气腔开始密封的时刻,图6b示出了涡旋组件从图6a所示的时刻进一步转动、调制孔在压缩腔内暴露的时刻;
图7示出了根据本公开的第一实施方式的涡旋压缩机和对比示例的涡旋压缩机中的调制孔的旁通面积与压缩腔内的压力的对比曲线图;以及
图8示出了根据本公开的第二实施方式的涡旋压缩机的定涡旋的立体示意图。
具体实施方式
现在将结合图1至图8对本公开的优选实施方式进行详细描述。在各视图中,相对应的构件或部分采用相同的参考标记。以下的描述在本质上只是示例性的而非意在限制本公开及其应用或用途。
下面将参照图1描述根据本公开的第一实施方式的涡旋压缩机100的基本构造和原理。
如图1所示,涡旋压缩机(在下文中也被称之为压缩机)100通常包括壳体80、设置在壳体80中的涡旋组件CM、用于支撑涡旋组件CM的主轴承座50、以及用于驱动涡旋组件CM的马达70和旋转轴60等。壳体80可以由大致圆筒形的本体部81、设置在本体部81的一端的顶盖82、设置在本体部81的另一端的底盖83构成。在顶盖82和本体部81之间设置有隔板84以将壳体80的内部空间分隔开,其中隔板84和顶盖82之间的空间构成排气压力区HP,而隔板84、本体部81和底盖83之间的空间构成吸气压力区LP。在吸气压力区LP的一侧设置有用于吸入流体的进气接头,在排气压力区HP的一侧设置有用于排出压缩后的流体的排气接头。
涡旋组件CM包括定涡旋10和动涡旋40。马达70构造成使旋转轴60旋转,接着,旋转轴60驱动动涡旋40相对于定涡旋10绕动运动(即,动涡旋的中心轴线绕定涡旋的中心轴线运动,但是动涡旋不会绕其中心轴线旋转)。
定涡旋10可以包括定涡旋端板12、从定涡旋端板12的第一侧延伸的定涡旋叶片14以及从定涡旋端板12的与第一侧相反的第二侧延伸的定涡旋毂部16。定涡旋10在其定涡旋端板12的径向外缘处还形成有用于将工作流体吸入涡旋组件CM内的吸气口15,并且在其定涡旋端板12的中心处还形成有用于将经压缩的工作流体从涡旋组件CM排出的排气口123(参见图2、图3)。定涡旋毂部16围绕排气口123布置以在定涡旋毂部16的内侧形成与排气口123连通的排气通道。动涡旋40可以包括动涡旋端板42、形成在动涡旋端板42一侧的动涡旋叶片44。定涡旋叶片14与动涡旋叶片44能够彼此接合,使得当涡旋压缩机运行时在定涡旋叶片14和动涡旋叶片44之间一系列流体腔。该一系列流体腔包括吸气腔CS、中央压缩腔CD以及位于吸气腔CS与中央压缩腔CD之间的多个中间压缩腔,例如第一中间压缩腔C1(参见图4a、图4b)。在该一系列流体腔中,位于径向最外侧的吸气腔CS与吸气口15连通并且其中的压力最 小,位于径向最内侧的中央压缩腔CD与排气口123连通并且其中的压力最大,位于吸气腔CS与中央压缩腔CD之间的多个中间压缩腔(例如C1)具有介于最大压力与最小压力之间的中间压力。在本公开的实施方式中,涡旋组件CM示出为具有对称设计,即位于排气口123的径向两侧的两个压缩路径具有大致相同的压比,但本领域技术人员可以理解的是,本公开同样适用于非对称的涡旋组件,即位于排气口的径向两侧的两个压缩路径具有不同的压比。
为了实现压缩机的容量调节而涡旋组件CM还包括设置在定涡旋端板12的与第一侧相反的第二侧的调制环20,定涡旋端板12设置有调制孔121。调制孔121可以设置成沿轴向方向延伸穿过定涡旋端板12,从而形成在涡旋组件CM的至少一个中间压缩腔与吸气压力区LP之间选择性地提供流体连通的旁通通道BP。调制孔121包括形成在定涡旋端板12的第一侧的表面上的第一开口端和形成在定涡旋端板12的第二侧的表面上的第二开口端。调制环20配装在定涡旋毂部16的外周面处。如图1所示,调制环20包括与定涡旋端板12的顶表面形成面接触的平直部分22和与定涡旋毂部16间隔开的中央拱形部分24。调制环20的平直部分22能够覆盖密封调制孔121的第二开口端从而实现对旁通通道BP的关闭。调制环20的中央拱形部分24与定涡旋毂部16之间限定出第一环形凹部,并且调制环20的中央拱形部分24与定涡旋端板12的顶表面之间限定出第二环形凹部。第一环形凹部和第二环形凹部彼此隔离。可以在第一环形凹部内形成密闭的背压腔26,并且可以在第二环形凹部内形成密闭的可变压力腔28。也就是说,背压腔26与可变压力腔28分别设置在调制环20的两侧。背压腔26可以经由设置在定涡旋端板12中的背压孔18与涡旋组件CM的至少一个中间压缩腔连通并在背压腔26建立背压P1。在本公开的实施方式中,背压孔18优选地为一个,以减少对调制孔的布置的限制并且减少背压泄漏的可能性。由此,在涡旋组件CM压缩气体的过程中保持定涡旋10和动涡旋40彼此抵靠,同时提供涡旋部件的轴向柔性,从而确保压缩机安全可靠的运行和浮动密封。
涡旋组件CM还包括控制阀(图中未示出),控制阀能够选择性地将可变压力腔28与背压腔26流体连通或者将可变压力腔28与吸气压力区LP流体连通(图中未示出用于连通的通道)。当控制阀控制可变压力腔28与吸气压力区LP连通时,可变压力腔28的压力小于背压腔26的压力,由此调制环20的设 有可变压力腔26的一侧(在图1中示出为下侧)的压力小于设有背压腔26的一侧(在图1中示出为上侧)的压力,在两侧压力差的作用下,调制环20沿轴向朝向定涡旋端板12移动,使得调制环20的平直部分22覆盖密封调制孔121的第二开口端,从当关闭旁通通道BP。此时,涡旋组件CM的中间压缩腔内的工作流体无法通过旁通通道BP流出,涡旋压缩机处于全负荷工作状态。当控制阀控制可变压力腔28与背压腔26连通时,可变压力腔28与背压腔26的压力相等,但调制环20还受到调制孔处工作流体施加至调制环20的压力,由此调制环20的设有可变压力腔26的一侧(在图1中示出为下侧)的压力大于设有背压腔26的一侧(在图1中示出为上侧)的压力,在两侧压力差的作用下,调制环20沿轴向朝向远离定涡旋端板12的方向移动,使得调制环20的平直部分22离开调制孔121的第二开口端,从当打开旁通通道BP。此时,与调制孔121连通的中间压缩腔内的工作流体经由调制孔121泄漏至涡旋组件CM外部的吸气压力区LP。此时,与调制孔121连通的中间压缩腔所对应的涡旋型线部分及其该涡旋型线部分的前部几乎不再参与压缩,涡旋压缩机100因而处于部分负荷工作状态。
在本公开的第一实施方式中,背压孔18设置成相较于调制孔121更靠近排气口123,由此保证背压孔18无论在压缩机的全负荷工作状态或者部分负荷工作状态下均能够向背压腔26提供背压。例如,如图1、2所示,调制孔121可以设置在定涡旋端板12的更靠近径向外侧的位置处,而背压孔18则设置在定涡旋端板12的更靠近径向内侧的位置处并穿过定涡旋毂部16的外侧部分而通向背压腔26。
如图2、3所示,调制孔121关于定涡旋端板12的中心大致径向对称地布置在排气口123的两侧,本文中的“大致径向对称”指在排气口123的两侧的调制孔的数量基本一致,位置基本上关于定涡旋端板的中心径向对称,但每一侧的调制孔中的相邻调制孔之间的间隔可以不同。其中,位于排气口123的一侧的调制孔121构造为包括沿着定涡旋10的型线方向布置的、在定涡旋10的型线方向上彼此间隔开的第一组调制孔1211和第二组调制孔1212,而位于排气口123的另一侧的调制孔121构造为沿着定涡旋10的型线方向均匀布置的一组调制孔。特别地,第一组调制孔1211设置在相较于其他调制孔(第二组调制孔1212)更靠近吸气口15的位置处,由此,在压缩机处于部分负荷工作状态 下,第一组调制孔1211能够更早地实现旁通,从而获得提高能效的效果,这部分内容将在下文进行具体描述。
下面将结合图4a和图4b来描述当压缩机处于部分负荷工作状态下时调制孔121的实现旁通的过程。图4a示出了在涡旋组件CM中的吸气腔CS开始密封从而形成中间压缩腔中的紧邻吸气腔CS的第一中间压缩腔C1的时刻,第一组调制孔1211刚好开始暴露或者已经提前暴露在第一中间压缩腔C1中(在图4a中示出了第一组调制孔1211的前四个调制孔的一部分暴露在第一中间压缩腔C1中),而此时第二组调制孔1212被动涡旋叶片44遮挡或者位于与第一中间压缩腔C1不同的中间压缩腔中而未暴露在第一中间压缩腔C1中。在压缩机处于部分负荷工作状态下,提前暴露在第一中间压缩腔C1中的第一组调制孔1211允许第一中间压缩腔C1中的工作流体及时地泄露至吸气压力区LP。随着动涡旋40继续绕定涡旋10转动,第一组调制孔1211逐渐全部暴露在第一中间压缩腔C1中并且第二调制孔1212开始至少部分地暴露在第一中间压缩腔C1中,也就是说,第一组调制孔1211和第二组调制1212可以暴露在同一个中间压缩腔中,以在压缩机的部分负荷工作状态下提供足够的旁通面积。随着动涡旋40继续绕定涡旋10转动,第一组调制孔1211逐渐被动涡旋叶片44遮挡,然后达到图4b所示的时刻。在图4b所示的时刻,第一组调制孔1211被动涡旋叶片44完全遮挡或者第一组调制孔1211至少部分地暴露在与第二组调制孔1212暴露的中间压缩腔不同的腔室(例如吸气腔CS)中,而第二组调制孔1212与背压孔18暴露在同一中间压缩腔中,该中间压缩腔是第一中间压缩腔C1,也可以是与第一中间压缩腔C1不同的其他中间压缩腔,此时第二组调制孔1212仍允许中间压缩腔中的工作流体泄露至吸气压力区LP。
优选地,在涡旋组件的整个运行过程中,第一组调制孔1211始终不与背压孔18暴露在同一中间压缩腔中,以避免在部分负荷工作状态下背压腔26内的工作流体经由第一组调制孔1211泄漏而导致的背压不足。
下面将结合图5、图6a、图6b描述对比示例中的涡旋压缩机的定涡旋的结构,并通过对比本公开的第一实施方式与对比示例来描述本公开的第一实施方式的效果。其中,对比示例中的涡旋压缩机的结构及工作原理与本公开的第一实施方式的涡旋压缩机的结构及工作原理基本相同,因而在此不再赘述。
对比示例中的涡旋压缩机包括涡旋组件CMa,涡旋组件CMa包括定涡旋 10a和动涡旋40。如图5所示,定涡旋10a与本公开的第一实施方式类似地包括定涡旋端板12以及从定涡旋端板12的第一侧延伸的定涡旋叶片14。定涡旋10a还包括用于将工作流体吸入涡旋组件CM内的吸气口15以及用于将经过压缩的工作流体从涡旋组件排出的排气口123。定涡旋端板12还设有调制孔121a,调制孔121a可以设置成沿轴向方向延伸穿过定涡旋端板12,从而形成在涡旋组件CMa的至少一个中间压缩腔与吸气压力区LP之间选择性地提供流体连通的旁通通道BP。涡旋组件CMa还包括设置在定涡旋端板12的第二侧的调制环20,在涡旋组件的全负荷工作状态下,调制环20密封覆盖调制孔从而关断涡旋组件的内部的工作流体至吸气压力区LP的泄漏,在涡旋组件的部分负荷工作状态下,调制环20移动远离调制孔121a从而允许涡旋组件的内部的工作流体至吸气压力区LP的泄漏。
调制孔121a关于定涡旋端板12的中心大致径向对称地布置在排气口123的两侧。与本公开的第一实施方式不同的是,排气口123的每一侧的调制孔121a均构造为沿着定涡旋10a的型线方向均匀布置的一组调制孔。也就是说,对于排气口123的每一侧的调制孔121a,该侧的一组调制孔中的相邻调制孔之间的间隔距离是基本相等的。
图6a示出了在涡旋组件CMa中的吸气腔CS开始密封从而形成中间压缩腔中的紧邻吸气腔CS的第一中间压缩腔C1的时刻,排气口123的每一侧的调制孔121a被动涡旋叶片44遮挡或者位于与第一中间压缩腔C1不同的中间压缩腔中而未暴露在第一中间压缩腔C1中,因此,在压缩机处于部分负荷工作状态下,在图6a所示的时刻,旁通尚未开始。随着动涡旋40继续绕定涡旋10转动,调制孔121a逐渐暴露在第一中间压缩腔C1中,第一中间压缩腔C1内的工作流体经由调制孔121a泄漏至吸气压力区,然后到达图6b所示的时刻。在图6b所示的时刻,排气口123一侧的调制孔121a与背压孔18暴露在同一中间压缩腔中,该中间压缩腔是第一中间压缩腔C1,也可以是与第一中间压缩腔C1不同的其他中间压缩腔。
由于本公开的第一实施方式中的定涡旋上的调制孔与对比示例中的定涡旋上的调制孔的布置不同,在压缩机处于部分负荷工作状态下通过调制孔构建的旁通过程也不相同,因此产生了不同的效果。图7示出了在本公开的第一实施方式和对比示例中调制孔的流通面积与压缩腔内的压力随着吸气密封角度的 变化而变化的曲线图,其中,粗实线和细实线分别代表在本公开的第一实施方式中以及在对比示例中的调制孔的流通面积的变化曲线图,粗虚线和细虚线分别代表在在本公开的第一实施方式中以及在对比示例中的压缩腔内的压力的变化曲线图,而吸气密封角度为0°被定义为在涡旋组件的吸气腔CS刚开始密封而形成第一中间压缩腔的时刻吸气腔CS的起始密封点所对应的角度位置,随着动涡旋相对于定涡旋的绕动转动,该密封点逐渐移动,并在移动至360°时结束第一中间压缩腔的压缩。
如图7所示,在对比示例中,在涡旋组件CMa的吸气腔CS刚开始密封而形成第一中间压缩腔C1的时刻,调制孔121a尚未暴露在第一中间压缩腔C1中,即调制孔的流体面积等于0,甚至在涡旋组件的吸气腔CS已经密封时,调制孔121a还未开始暴露在第一中间压缩腔。由于调制孔不能及时在第一中间压缩腔中暴露,也就不能及时将第一中间压缩腔与吸气压力区连通,在第一级压缩启动阶段(对应于图7中吸气密封角度约为0°-80°的阶段),工作流体在第一中间压缩腔C1中经历较多压缩,因此压缩腔(第一中间压缩腔C1)内的压力在启动阶段有明显的升高波动,然后随着调制孔121a逐渐在第一中间压缩腔内C1暴露,经历较多压缩后的工作流体经由调制孔121a排出至涡旋组件外部,第一中间压缩腔C1内的压力逐渐减低。本领域技术人员可以理解,这一先压缩工作流体然后再将压缩后的工作流体旁通的过程,导致涡旋组件做功浪费,因此压缩机的能效较低。相反,在本公开的第一实施方式中,在涡旋组件CM的吸气腔CS刚开始密封而形成第一中间压缩腔C1的时刻,调制孔121(第一组调制孔1211)已经部分地暴露在第一中间压缩腔C1中,即此时调制孔的流通面积大于0。由于调制孔121在第一中间压缩腔C1中提前暴露,调制孔121能够及时将第一中间压缩腔C1与吸气压力区LP连通,使得在启动阶段(对应于图7中吸气密封角度约为0°-80°的阶段)工作流体在第一中间压缩腔C1中完全不经历压缩或者只经历极少的压缩,因此压缩腔(第一中间压缩腔C1)内的压力在启动阶段无明显升高波动。本领域技术人员可以理解,在本公开的第一实施方式中,由于工作流体并未在启动阶段经历较多压缩后再经由调制孔排出,不会由于该启动阶段的压缩而产生能量浪费,由此提高了压缩机的能效。
接着,在本公开的第一实施方式和对比示例两者中,随着动涡旋相对于定涡旋的绕动转动,更多的调制孔暴露在第一中间压缩腔中,即调制孔的流通面 积进一步增大,直至调制孔全部暴露在第一中间压缩腔中,调制孔的流体面积达到最大,此时第一中间压缩腔内的压力基本等于吸气压力区的压力。接着,当动涡旋相对于定涡旋的绕动转动至吸气密封角度为250度左右时,本公开的第一实施方式中的排气口123一侧的调制孔中的部分调制孔121(例如第一组调制孔1211)被动涡旋叶片44覆盖或者位于不同于第一中间压缩腔C1的其他腔室(例如吸气腔CS)中而结束对第一中间压缩腔C1的旁通,用于连通第一中间压缩腔C1和吸气压力区LP的调制孔的数量减少(或者说流通面积减小),第一中间压缩腔C1内的工作流体由于不能被及时排出至涡旋组件外部而开始经历压缩,第一中间压缩腔C1内的压力逐渐上升,并在动涡旋相对于定涡旋的绕动转动至吸气密封角度为360度后,工作流体进入下一级压缩腔进行压缩。相比之下,在对比示例中,当动涡旋相对于定涡旋的绕动转动至吸气密封角度为250度左右时,调制孔121a尚未被动涡旋叶片覆盖或者位于不同于第一中间压缩腔的其他腔室中,而是仍然全部暴露在第一中间压缩腔C1中,因此第一中间压缩腔C1内的压力仍然保持与吸气压力区的压力基本相等。此时,背压孔18如果也位于第一压缩腔内,将导致背压腔26内的压力经由背压孔18泄漏至第一中间压缩腔C1并泄漏至涡旋组件的外部,从而导致背压不足,定涡旋与动涡旋之间无法形成有效密封而产生泄漏,工作流体在压缩腔内可能经历重复压缩,由此导致排气温度升高、压缩机性能下降并且产生噪音。
也就是说,在第一级压缩终止阶段(对应于图7中吸气密封角度约为230°-360°的阶段),本公开的第一实施方式中的排气口123一侧的包括第一组调制孔1211和第二组调制孔1212的调制孔121相较于对比示例中的调制孔121a更早地结束旁通,使得第一中间压缩腔C1内的压力更早地开始上升,这对于维持背压腔内的压力稳定具有重要意义。例如,如果背压孔与调制孔能够共同暴露于第一中间压缩腔,在第一级压缩终止阶段,由于本公开的第一实施方式中的用于连通第一中间压缩腔和吸气压力区的调制孔的数量减少(只有第二组调制孔与吸气压力区连通,第一组调制孔不与吸气压力区连通),第一中间压缩腔的压力上升,从而保证背压腔内的工作流体不会过多地经由背压孔泄漏至第一中间压缩腔中,背压腔内的压力不会过度降低,从而为涡旋组件提供可靠的背压。
在本公开的中,第一组调制孔和第二组调制孔分别构造为一个或多个。优 选地,第一组调制孔的数目大于其他组调制孔(在本公开的第一实施方式中为第二组调制孔)的总数目,或者优选地,第一组调制孔的总流通面积大于其他组调制孔(在本公开的第一实施方式中为第二组调制孔)的总流通面积,从而更好地避免启动阶段的压力波动以及更好地减少背压腔的压力泄漏。例如如图2、3所示,第一组调制孔1211构造为5个,第二组调制孔1212构造为2个。但本领域技术人员可以理解,第一组调制孔的数目也可以等于或小于其他组调制孔的数目。
第一组调制孔1211与第二组调制孔1212之间间隔第一角度(即第一组调制孔1211中的最靠近第二组调制孔1212的一个调制孔与第二组调制孔1212中的最靠近第一组调制孔1211的一个调制孔之间间隔的角度),第一组调制孔1211中的相邻调制孔之间与第二组调制孔1212中的相邻调制孔之间均间隔大致相同的第二角度,并且第一角度大于第二角度。优选地,第一角度构造为第二角度的2倍至10倍,更优选地,第一角度构造为第二角度的5倍以上。由此,不仅能够保证第一组调制孔1211在第一中间压缩腔中的提前暴露从而防止启动阶段的压力波动,而且能够通过调整第二组调制孔1212的位置而实现压缩机的容量的调整。例如,假定在如图1至图4b所示的本公开的第一实施方式中,涡旋压缩机100在部分负荷工作状态下以80%的容量工作,那么如果第二组调制孔布置在相较于第一实施方式中的第二组调制孔1212沿着定涡旋10的型线方向更靠近排气口123的位置处时,压缩机在部分负荷工作状态下将以低于80%的容量工作。
下面将结合图8描述根据本公开的第二实施方式中的涡旋压缩机的定涡旋的结构。其中,本公开的第二实施方式中的涡旋压缩机的结构及工作原理与本公开的第一实施方式的涡旋压缩机的结构及工作原理基本相同,因而在此不再赘述。
根据本公开的第二实施方式中的涡旋压缩机包括涡旋组件,涡旋组件包括定涡旋10b和动涡旋40。如图8所示,定涡旋10b与本公开的第一实施方式类似地包括定涡旋端板12以及从定涡旋端板12的第一侧延伸的定涡旋叶片14。定涡旋10b还包括用于将工作流体吸入涡旋组件内的吸气口15以及用于将经过压缩的工作流体从涡旋组件排出的排气口123。定涡旋端板12还设有调制孔121b,调制孔121b可以设置成沿轴向方向延伸穿过定涡旋端板12,从而形成 在涡旋组件的至少一个中间压缩腔与吸气压力区LP之间选择性地提供流体连通的旁通通道BP。涡旋组件还包括设置在定涡旋端板12的第二侧的调制环20,在涡旋组件的全负荷工作状态下,调制环20密封覆盖调制孔从而关断涡旋组件的内部的工作流体至吸气压力区LP的泄漏,在涡旋组件的部分负荷工作状态下,调制环20移动远离调制孔121b从而允许涡旋组件的内部的工作流体至吸气压力区的泄漏。
调制孔121b关于定涡旋端板12的中心大致径向对称地布置在排气口123的两侧。与本公开的第一实施方式不同的是,排气口123的每一侧的调制孔121b均构造为包括沿着定涡旋10b的型线方向布置的、在定涡旋10b的型线方向上彼此间隔开的第一组调制孔1211b和第二组调制孔1212b。第一组调制孔1211b设置在相较于其他调制孔(第二组调制孔1212b)更靠近吸气口15的位置处,使得在吸气腔开始密封从而形成第一中间压缩腔的时刻,排气口123两侧的第一组调制孔1211b均能够刚好开始暴露或者已经提前暴露在各自对应的第一中间压缩腔中。在一些示例中,排气口123两侧的调制孔,在调制孔的组数、调制孔个数、尺寸、各组调制孔之间的间隔角度、同组调制孔中相邻调制孔之间的间隔角度等方面是相同的。也就是说,调制孔121b可以关于定涡旋端板12的中心完全径向对称地布置在排气口123的两侧。
根据本公开的第二实施方式的压缩机能够获得与根据本公开的第一实施方式的压缩机相同的提高能效、维持背压腔压力稳定、减少噪音的效果,此外,由于在第二实施方式中,调制孔121b关于定涡旋端板12的中心更加径向对称地布置在排气口123的两侧,因此涡旋组件CM的排气口123两侧的压力更加平衡,使得压缩机的运行更加平稳。
实验证明,在蒸发温度为50F、冷凝温度为100F的工况下,当压缩机处于部分负荷工作状态时,根据本公开的第一实施方式的压缩机相较于根据对比示例的压缩机,容量提高2.3%,总能效提高1.1%;根据本公开的第二实施方式的压缩机相较于根据对比示例的压缩机,容量提高1.2%。在蒸发温度为45F,冷凝温度为140F的工况下,当压缩机处于部分负荷工作状态时,根据本公开的第一实施方式的压缩机相较于根据对比示例的压缩机,排气温度降低19F;根据本公开的第二实施方式的压缩机相较于根据对比示例的压缩机,排气温度下降15F。
本领域技术人员可以理解,尽管图1所示的实施方式中仅示出了沿轴向方向延伸穿过定涡旋端板12的调制孔121,但是可选地,调制孔121还可以包括倾斜孔(即,相对于定涡旋10的轴线倾斜地延伸的孔)、轴向孔与设置在定涡旋端板12中且彼此流体连通的横向孔(即,垂直于定涡旋10的轴线而延伸的孔)的组合、或轴向孔与倾斜孔的组合(未图示),只要调制孔121能够在压缩机的部分负荷工作状态下将预定的中间压缩腔与吸气压力区连通即可。另外,尽管在本公开的实施方式中描述在排气口123的在径向上的一侧或两侧的调制孔包括在定涡旋的型线方向上间隔开两组调制孔(第一组调制孔和第二组调制孔),但是可选地,对于单侧的调制孔而言,调制孔可以包括在定涡旋的型线方向上间隔开三组或更多组调制孔。
上文结合具体实施方式描述了根据本公开的优选实施方式的涡旋组件和涡旋压缩机。可以理解,以上描述仅为示例性的而非限制性的,在不背离本公开的范围的情况下,本领域技术人员参照上述描述可以想到多种变型和修改。这些变型和修改同样包含在本公开的保护范围内。

Claims (13)

  1. 一种涡旋组件(CM),包括:
    动涡旋(40),所述动涡旋具有动涡旋端板(42)和形成在所述动涡旋端板上的动涡旋叶片(44);以及
    定涡旋(10),所述定涡旋具有定涡旋端板(12)和形成在所述定涡旋端板的第一侧的定涡旋叶片(14),
    其中,所述涡旋组件具有用于将工作流体吸入所述涡旋组件的吸气口(15)以及用于将经过压缩的工作流体排出所述涡旋组件的排气口(123),所述动涡旋叶片与所述定涡旋叶片彼此接合以在所述动涡旋与所述定涡旋之间形成与所述吸气口连通的吸气腔(CS)、与所述排气口连通的中央压缩腔(CD)以及位于所述吸气腔与所述中央压缩腔之间的中间压缩腔,
    其中,所述定涡旋端板设置有调制孔(121、121b),所述涡旋组件的内部的工作流体能够经由所述调制孔泄漏至所述涡旋组件的外部的吸气压力区以实现所述涡旋组件的部分负荷工作状态,
    其特征在于,所述调制孔包括在所述定涡旋的型线方向上彼此间隔开的多组调制孔,所述多组调制孔中的第一组调制孔(1211、1211b)设置在相较于其他组调制孔更靠近所述吸气口的位置处,使得在所述吸气腔开始密封从而形成所述中间压缩腔中的紧邻所述吸气腔的第一中间压缩腔(C1)的时刻,所述第一组调制孔刚好开始暴露或者已经提前暴露在所述第一中间压缩腔中。
  2. 根据权利要求1所述的涡旋组件(CM),其中,所述多组调制孔构造为包括所述第一组调制孔(1211、1211b)和另外的第二组调制孔(1212、1212b)的两组调制孔,所述第一组调制孔和所述第二组调制孔分别构造为包括一个或多个调制孔,所述第一组调制孔和所述第二组调制孔大致沿着所述定涡旋的型线方向布置。
  3. 根据权利要求2所述的涡旋组件(CM),其中,在所述第一组调制孔和/或所述第二组调制孔构造为包括多个调制孔的情况下,所述第一组调制孔与所述第二组调制孔之间的间隔角度大于所述第一组调制孔和所述第二组调 制孔中的同组调制孔中的相邻调制孔之间的间隔角度。
  4. 根据权利要求2所述的涡旋组件(CM),其中,所述定涡旋端板还设置有背压孔(18),所述定涡旋端板的与所述第一侧相反的第二侧设置有背压腔(26),所述背压腔经由所述背压孔与所述中间压缩腔中的一个中间压缩腔连通,所述背压孔相较于所述调制孔更靠近所述排气口。
  5. 根据权利要求4所述的涡旋组件(CM),其中,在所述涡旋组件的运行过程中,所述第二组调制孔(1212、1212b)能够与所述背压孔一起暴露在所述一个中间压缩腔中,与此同时所述第一组调制孔并未暴露在所述一个中间压缩腔中。
  6. 根据权利要求2至5中的任一项所述的涡旋组件(CM),其中,在所述涡旋组件的运行过程中,所述第一组调制孔与所述第二组调制孔能够暴露在同一个中间压缩腔中。
  7. 根据权利要求1至5中的任一项所述的涡旋组件(CM),其中,所述涡旋组件还包括设置在所述定涡旋端板的与所述第一侧相反的第二侧的调制环(20),在所述涡旋组件的全负荷工作状态下,所述调制环密封覆盖所述调制孔从而关断所述涡旋组件的内部的工作流体至所述吸气压力区的泄漏,在所述涡旋组件的所述部分负荷工作状态下,所述调制环移动远离所述调制孔从而允许所述涡旋组件的内部的工作流体至所述吸气压力区的泄漏。
  8. 根据权利要求7所述的涡旋组件(CM),其中,在所述调制环的靠近所述定涡旋端板的一侧形成有可变压力腔(28),设置在所述定涡旋端板的与所述第一侧相反的第二侧的背压腔(26)形成在所述调制环的与所述可变压力腔相反的一侧,所述可变压力腔能够选择性地与所述背压腔或所述吸气压力区连通。
  9. 根据权利要求8所述的涡旋组件(CM),其中,所述可变压力腔通过 控制阀而选择性地与所述背压腔或所述吸气压力区连通,当所述可变压力腔与所述吸气压力区连通时,所述调制环移动成覆盖所述调制孔,而当所述可变压力腔与所述背压腔连通时,所述调制环移动远离所述调制孔。
  10. 根据权利要求1至5中的任一项所述的涡旋组件(CM),其中,所述调制孔关于所述定涡旋端板的中心大致径向对称地布置在所述排气口的两侧,位于所述排气口的至少一侧的调制孔构造为包括所述多组调制孔。
  11. 根据权利要求1至5中的任一项所述的涡旋组件(CM),其中,所述第一组调制孔的总流通面积大于所述其他组调制孔的总流通面积,并且/或者,所述第一组调制孔的数目大于所述其他组调制孔的总数目。
  12. 根据权利要求1至5中的任一项所述的涡旋组件(CM),其中,所述涡旋组件的位于所述排气口的径向两侧的两个压缩路径具有大致相同的压比。
  13. 一种涡旋压缩机(100),其特征在于,所述涡旋压缩机包括如权利要求1至12中的任一项所述的涡旋组件(CM)。
PCT/CN2023/130088 2022-11-08 2023-11-07 涡旋组件和涡旋压缩机 WO2024099292A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202222972367.2U CN219220722U (zh) 2022-11-08 2022-11-08 涡旋组件和涡旋压缩机
CN202211392101.9A CN118030515A (zh) 2022-11-08 2022-11-08 涡旋组件和涡旋压缩机
CN202211392101.9 2022-11-08
CN202222972367.2 2022-11-08

Publications (1)

Publication Number Publication Date
WO2024099292A1 true WO2024099292A1 (zh) 2024-05-16

Family

ID=91031929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/130088 WO2024099292A1 (zh) 2022-11-08 2023-11-07 涡旋组件和涡旋压缩机

Country Status (1)

Country Link
WO (1) WO2024099292A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100135836A1 (en) * 2008-12-03 2010-06-03 Stover Robert C Scroll Compressor Having Capacity Modulation System
CN202971187U (zh) * 2012-11-23 2013-06-05 艾默生环境优化技术(苏州)有限公司 涡旋压缩机
CN106368946A (zh) * 2016-11-24 2017-02-01 广东美的暖通设备有限公司 喷气增焓涡旋压缩机及空调系统
CN110067749A (zh) * 2018-01-22 2019-07-30 艾默生环境优化技术(苏州)有限公司 具有容量调节系统的涡旋压缩机
US20200088197A1 (en) * 2018-09-19 2020-03-19 Lg Electronics Inc. Scroll compressor
CN111765079A (zh) * 2020-07-17 2020-10-13 珠海格力节能环保制冷技术研究中心有限公司 一种压缩机和空调器
CN113494451A (zh) * 2020-04-08 2021-10-12 艾默生环境优化技术(苏州)有限公司 压缩机构及涡旋压缩机
US20220025884A1 (en) * 2018-12-06 2022-01-27 Samsung Electronics Co., Ltd. High pressure scroll compressor
CN115217757A (zh) * 2021-04-20 2022-10-21 艾默生环境优化技术(苏州)有限公司 涡旋压缩机
CN219220722U (zh) * 2022-11-08 2023-06-20 艾默生环境优化技术(苏州)有限公司 涡旋组件和涡旋压缩机

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100135836A1 (en) * 2008-12-03 2010-06-03 Stover Robert C Scroll Compressor Having Capacity Modulation System
CN202971187U (zh) * 2012-11-23 2013-06-05 艾默生环境优化技术(苏州)有限公司 涡旋压缩机
CN106368946A (zh) * 2016-11-24 2017-02-01 广东美的暖通设备有限公司 喷气增焓涡旋压缩机及空调系统
CN110067749A (zh) * 2018-01-22 2019-07-30 艾默生环境优化技术(苏州)有限公司 具有容量调节系统的涡旋压缩机
US20200088197A1 (en) * 2018-09-19 2020-03-19 Lg Electronics Inc. Scroll compressor
US20220025884A1 (en) * 2018-12-06 2022-01-27 Samsung Electronics Co., Ltd. High pressure scroll compressor
CN113494451A (zh) * 2020-04-08 2021-10-12 艾默生环境优化技术(苏州)有限公司 压缩机构及涡旋压缩机
CN111765079A (zh) * 2020-07-17 2020-10-13 珠海格力节能环保制冷技术研究中心有限公司 一种压缩机和空调器
CN115217757A (zh) * 2021-04-20 2022-10-21 艾默生环境优化技术(苏州)有限公司 涡旋压缩机
CN219220722U (zh) * 2022-11-08 2023-06-20 艾默生环境优化技术(苏州)有限公司 涡旋组件和涡旋压缩机

Similar Documents

Publication Publication Date Title
KR101137288B1 (ko) 스크롤 기계
EP1039136B1 (en) Scroll machine with discharge valve
US6179589B1 (en) Scroll machine with discus discharge valve
JP6670924B2 (ja) 過給機および内燃機関
KR102196191B1 (ko) 나선 원리에 따른 용적형 기계, 용적형 기계를 작동시키기 위한 방법, 용적형 스파이럴, 차량 공기 조화 시스템, 및 차량
CN107476836A (zh) 双流涡轮机壳体式涡轮增压器
JPH09236020A (ja) ターボチャージャ
JP2007309140A (ja) ターボチャージャ
US4894990A (en) Variable-capacity exhaust gas turbine supercharger
KR19980041990A (ko) 역회전 소음을 감소시킨 스크롤머신
CN219220722U (zh) 涡旋组件和涡旋压缩机
WO2024099292A1 (zh) 涡旋组件和涡旋压缩机
JPH0581759B2 (zh)
JPH0642474A (ja) シングルスクリュー圧縮機
CN118030515A (zh) 涡旋组件和涡旋压缩机
WO2018090809A1 (zh) 涡旋压缩机
JP5773615B2 (ja) スクロール圧縮機
WO2021203639A1 (zh) 压缩机构及涡旋压缩机
WO2000049295A1 (en) Rotary vane compressor
JP3191543B2 (ja) スクロール圧縮機
JP2001263080A (ja) 可変容量ターボチャージャ
JP7207058B2 (ja) ベーン型圧縮機
JP4556369B2 (ja) 可変容量ターボチャージャ
WO2020151298A1 (zh) 膨胀机
JPS6128799A (ja) 遠心圧縮機