WO2024099150A1 - 玻璃天线与车辆 - Google Patents

玻璃天线与车辆 Download PDF

Info

Publication number
WO2024099150A1
WO2024099150A1 PCT/CN2023/128004 CN2023128004W WO2024099150A1 WO 2024099150 A1 WO2024099150 A1 WO 2024099150A1 CN 2023128004 W CN2023128004 W CN 2023128004W WO 2024099150 A1 WO2024099150 A1 WO 2024099150A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive wire
glass
electrically connected
coupling element
antenna
Prior art date
Application number
PCT/CN2023/128004
Other languages
English (en)
French (fr)
Inventor
周圣
王新全
陈怀东
张旭
吴腾
Original Assignee
福耀玻璃工业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福耀玻璃工业集团股份有限公司 filed Critical 福耀玻璃工业集团股份有限公司
Publication of WO2024099150A1 publication Critical patent/WO2024099150A1/zh

Links

Definitions

  • the present application relates to the technical field of vehicle antennas, and in particular to a glass antenna and a vehicle.
  • glass antennas usually include glass antennas, shark fin antennas, whip antennas and other broadcast antenna structures. Compared with other broadcast antennas such as shark fin antennas and whip antennas, glass antennas have become the preferred broadcast antennas of major automobile manufacturers due to their advantages in mechanics, aesthetics, electromagnetics and aerodynamics.
  • the reception performance of the glass antenna is slightly lower than that of the whip antenna.
  • the present application provides a glass antenna and a vehicle.
  • the technical solution includes the following: a glass antenna, the glass antenna comprising:
  • a first power feeding portion disposed on the glass body
  • a first antenna structure is arranged on the glass body, the first antenna structure includes a first conductive wire, a second conductive wire, a third conductive wire, a fourth conductive wire and a fifth conductive wire, one end of the first conductive wire, one end of the second conductive wire and one end of the third conductive wire are all electrically connected to the first feeding part, the first conductive wire, the second conductive wire and the third conductive wire are arranged in sequence at intervals and their lengths tend to increase, one end of the fourth conductive wire is electrically connected to the middle part of the second conductive wire, and the other end of the fourth conductive wire extends toward the direction of the first feeding part, one end of the fifth conductive wire is electrically connected to the middle part of the third conductive wire, the fifth conductive wire is also electrically connected to the other end of the second conductive wire, and the other end of the fifth conductive wire extends toward the direction of the first feeding part.
  • the length of the first conductive wire is 110mm-300mm
  • the length of the second conductive wire is 300mm-360mm
  • the length of the third conductive wire is 350mm-650mm
  • the length of the fourth conductive wire is 350mm-650mm
  • the length of the fifth conductive wire is 350mm-650mm.
  • the glass antenna also includes a coupling antenna unit disposed on the glass body and coupled to the third conductive line; the coupling antenna unit includes a first coupling element and a first grid line electrically connected to the first coupling element, and the first coupling element is spaced apart from the third conductive line.
  • the first grid line includes at least two first transverse strips arranged in sequence and at least two first longitudinal strips arranged in sequence and at least two first longitudinal strips arranged in sequence and at least two first longitudinal strips arranged in sequence, and the first transverse strips cross and are electrically connected to each other.
  • the coupling antenna unit further comprises: A second coupling element is arranged in the extending direction, and the second coupling element is spaced apart from the first coupling element, the third conductive line, and the first feeding portion respectively.
  • the glass antenna also includes a defogger heating unit, which includes two busbars spaced apart, a plurality of second transverse strips electrically connected between the two busbars and spaced apart in sequence, and a third coupling element; one end of the third coupling element is electrically connected to the first feeding unit, and the third coupling element is coupled to one of the busbars.
  • a defogger heating unit which includes two busbars spaced apart, a plurality of second transverse strips electrically connected between the two busbars and spaced apart in sequence, and a third coupling element; one end of the third coupling element is electrically connected to the first feeding unit, and the third coupling element is coupled to one of the busbars.
  • the defogger heating unit further includes at least one second longitudinal strip; the second longitudinal strip and the second transverse strip are cross-arranged and electrically connected to each other.
  • the glass antenna also includes a second feeding part and a second antenna structure arranged on the glass body, the second antenna structure includes a third grid line, the second feeding part is electrically connected to the third grid line; the edge line of the third grid line is used to be spaced apart from the body sheet metal.
  • the third grid lines include at least four third transverse bars arranged in sequence and at least three third longitudinal bars arranged in sequence and at least three third transverse bars arranged in sequence, and the third transverse bars cross and are electrically connected to the third longitudinal bars; the length of the third transverse bar is 900mm-1300mm; and the interval between two adjacent third transverse bars is 15mm-21mm.
  • the glass antenna further includes a low noise amplifier module, a first feeder and a second feeder, the two ends of the first feeder are electrically connected to the low noise amplifier module and the first feeding unit, respectively, and the two ends of the second feeder are electrically connected to the low noise amplifier module and the second feeding unit, respectively; the length of the first feeder is 80mm-110mm.
  • a vehicle comprises a vehicle body; the vehicle further comprises at least one glass antenna; each glass antenna is correspondingly mounted on the vehicle body.
  • FIG1 is a schematic structural diagram of a glass antenna according to an embodiment of the present application.
  • FIG2 is a schematic structural diagram of a first antenna structure in a glass antenna according to an embodiment of the present application.
  • FIG3 is a schematic diagram of the structure of a coupling antenna unit in a glass antenna according to an embodiment of the present application.
  • FIG4 is a schematic structural diagram of a combination of a first antenna structure and a coupling antenna unit in a glass antenna according to an embodiment of the present application;
  • FIG5 is a schematic diagram of a structure in which a third coupling element and a busbar are coupled to each other in a glass antenna according to an embodiment of the present application;
  • FIG6 is a schematic structural diagram of a second antenna structure in a glass antenna according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a low noise amplifier module in a glass antenna according to an embodiment of the present application.
  • the frequency bands involved in the glass antenna in this embodiment mainly include AM: 531KHz-1710KHz, FM: 76MHz-108MHz, and DAB: 170MHz-240MHz.
  • the wavelength corresponding to the AM band when transmitted in glass is defined as ⁇ 1 , and ⁇ 1 is set to 50m-200m; the wavelength corresponding to the FM band when transmitted in glass is defined as ⁇ 2 , and ⁇ 2 is set to 1000mm-1500mm; the wavelength corresponding to the DAB band when transmitted in glass is defined as ⁇ 3 , and ⁇ 3 is set to 450mm-700mm.
  • the wavelength of the antenna signal when transmitted in glass is calculated according to the following formula:
  • is the wavelength
  • C glass is the speed at which the antenna signal is transmitted in the glass
  • f is the frequency
  • C is the speed of light
  • ⁇ r is the relative dielectric constant of the glass, specifically taking 7.3 as an example (the square root is approximately 2.7)
  • ⁇ r is the relative magnetic permeability of the glass, which is generally 1.
  • the relative dielectric constant of the glass in the present application is not limited to 7.3; “coupled and connected” means that the two conductive elements are not directly electrically connected, but are spaced apart so that the signal is transmitted between the two conductive elements by coupling.
  • FIG. 1 shows a schematic diagram of the structure of a glass antenna according to an embodiment of the present application.
  • FIG2 shows a schematic diagram of the structure of the first antenna structure 30 in the glass antenna of an embodiment of the present application.
  • An embodiment of the present application provides a glass antenna, the glass antenna comprising: a glass body 10, a first feeder 20 disposed on the glass body 10, and a first antenna structure 30 disposed on the glass body 10.
  • the first antenna structure 30 comprises a first conductive wire 31, a second conductive wire 32, a third conductive wire 33, a fourth conductive wire 34 and a fifth conductive wire 35.
  • One end of the first conductive wire 31, one end of the second conductive wire 32, and one end of the third conductive wire 33 are all electrically connected to the first feeder 20, and the first conductive wire 31, the second conductive wire 32, and the third conductive wire 33 are arranged in sequence at intervals and their lengths tend to increase.
  • One end of the fourth conductive wire 34 is electrically connected to the middle part of the second conductive wire 32, and the other end of the fourth conductive wire 34 extends toward the direction of the first feeder 20.
  • One end of the fifth conductive line 35 is electrically connected to the middle of the third conductive line 33 , and the fifth conductive line 35 is also electrically connected to the other end of the second conductive line 32 . The other end of the fifth conductive line 35 extends toward the first feeding unit 20 .
  • the length of the first conductive wire 31 is 110 mm-300 mm
  • the length of the second conductive wire 32 is 300 mm-360 mm
  • the length of the third conductive wire 33 is 350 mm-650 mm
  • the length of the fourth conductive wire 34 is 350 mm-650 mm
  • the length of the fifth conductive wire 35 is 350 mm-650 mm.
  • solid dots are added to the ends of the conductive wires and the joints between the two conductive wires in FIG. 1 to indicate the positions, and the solid dots should not be understood as specific structural components set on the glass body 10.
  • the first antenna structure 30 is provided with five signal transmission paths.
  • the first signal transmission path is the first conductive wire 31 (such as Q1-Q2-Q3-Q4 in FIG. 2 ), with a length of 110 mm-300 mm, between 1/4 ⁇ 3 and 1/2 ⁇ 3 ;
  • the second signal transmission path is from the middle part of the second conductive wire 32 to the fourth conductive wire 34 (such as Q1-Q2-Q3-Q6-Q5 in FIG. 2 ), with a length of 220 mm-600 mm, between 1/4 ⁇ 3 and 1/2 ⁇ 3;
  • the third signal transmission path is the third conductive wire 33 (such as Q1-Q9-Q10 in FIG.
  • the fourth signal transmission path is from the middle part of the second conductive wire 32 to the fourth conductive wire 34 (such as Q1-Q2-Q3-Q6-Q5 in FIG. 2 ), with a length of 220 mm-600 mm, between 1/4 ⁇ 3 and 1/2 ⁇ 3 ;
  • the transmission path is from the second conductive wire 32 to the fifth conductive wire 35 (such as Q1-Q2-Q3-Q6-Q7-Q8 in FIG.
  • the fifth signal transmission path is from the middle part of the third conductive wire 33 to the fifth conductive wire 35 (such as Q1-Q2-Q9-Q7-Q8 in FIG. 2 ), with a length of 350 mm-650 mm, between 1/4 ⁇ 2 and 1/2 ⁇ 2.
  • the first antenna structure 30 can cover both the DAB frequency band and the FM frequency band, so that the performance of the glass antenna can be improved.
  • the arrangement can achieve a compact structure and reduce the volume.
  • the length of the first signal transmission path is, for example, 110mm, 170mm, 200mm, or 300mm; the length of the second signal transmission path is, for example, 220mm, 315mm, 400mm, or 600mm; the length of the third signal transmission path is, for example, 350mm, 450mm, 475mm, 500mm, or 650mm; the length of the fourth signal transmission path is, for example, 350mm, 400mm, 445mm, 500mm, or 650mm; the length of the fifth signal transmission path is, for example, 350mm, 400mm, 450mm, 500mm, or 650mm.
  • the fourth conductive line 34 is specifically designed to be L-shaped, for example.
  • One section of the fourth conductive line 34 is vertically connected to the middle portion of the second conductive line 32, and another section of the fourth conductive line 34 is parallel to the second conductive line 32 and extends toward the first feeder 20.
  • the fifth conductive line 35 is specifically designed to be L-shaped, for example.
  • One section of the fifth conductive line 35 is vertically connected to the middle portion of the third conductive line 33, and another section of the fifth conductive line 35 is parallel to the third conductive line 33 and extends toward the first feeder 20.
  • Figure 3 shows a schematic diagram of the structure of the coupling antenna unit 40 in the glass antenna of an embodiment of the present application
  • Figure 4 shows a schematic diagram of the structure of the first antenna structure 30 and the coupling antenna unit 40 in the glass antenna of an embodiment of the present application.
  • the glass antenna also includes a coupling antenna unit 40 disposed on the glass body 10 and coupled to the third conductive line 33.
  • the coupling antenna unit 40 includes a first coupling element 41 and a first grid line 42 electrically connected to the first coupling element 41.
  • the first coupling element 41 is spaced apart from the third conductive line 33, thereby realizing
  • the antenna signal can be transmitted through the first feeding portion 20, the third conductive line 33, the first coupling element 41 and the first grid line 42; in addition, the first grid line 42 is used to form a multi-loop printed line structure between 1/4 ⁇ 2 , 1/2 ⁇ 2 , 3/4 ⁇ 2 , ⁇ 2 , 5/4 ⁇ 2 , 3/2 ⁇ 2 , etc., which can optimize the performance of the FM band antenna.
  • the interval between the first coupling element 41 and the third conductive line 33 is set to include but not limited to 14 mm-34 mm, specifically, for example, 14 mm, 20 mm, 24 mm, 28 mm, 34 mm, etc.
  • the coupling degree between the first coupling element 41 and the third conductive line 33 can be adjusted, thereby improving the antenna performance.
  • the first grid line 42 includes at least two first transverse strips 421 disposed sequentially and spaced apart and at least two first longitudinal strips 422 disposed sequentially and spaced apart.
  • the first transverse strips 421 and the first longitudinal strips 422 intersect and are electrically connected to each other.
  • the number of the first transverse strips 421 and/or the first longitudinal strips 422 is greater, the number of grids of the first grid lines 42 is correspondingly greater, and the effect of improving the antenna performance will be more obvious.
  • the coupling antenna unit 40 further includes a second coupling element 43 arranged along the extension direction of the first coupling element 41.
  • the second coupling element 43 is spaced apart from the first coupling element 41, the third conductive line 33, and the first feeding portion 20.
  • the first feeding portion 20 and the third conductive line 33 transmit the antenna signal to the second coupling element 43 by coupling
  • the second coupling element 43 can transmit the antenna signal to the first coupling element 41 by coupling
  • the first coupling element 41 is not only coupled and connected to the third conductive line 33, but also coupled and connected to the first coupling element 41, so that the antenna performance is optimized.
  • the first coupling element 41 and the second coupling element 43 are specifically designed to include:
  • the printed line is not limited to being a printed line.
  • the shape of the printed line can be a straight line, a curved line, or other various shapes set according to actual needs.
  • the length of the second coupling element 43 includes but is not limited to 40 mm-60 mm, specifically, for example, 40 mm, 45 mm, 50 mm, 55 mm, 60 mm, etc.
  • the length of the first coupling element 41 can be flexibly adjusted according to different vehicle models to adjust the coupling degree between the first coupling element 41 and the third conductive line 33, thereby achieving the purpose of adjusting the antenna performance.
  • the second coupling element 43 is arranged in the extension direction of the first coupling element 41, so the spacing distance between the second coupling element 43 and the third conductive line 33 is consistent with the spacing distance between the first coupling element 41 and the third conductive line 33. That is, the spacing distance between the second coupling element 43 and the third conductive line 33 includes but is not limited to 14 mm-34 mm, specifically, for example, 14 mm, 20 mm, 24 mm, 28 mm, 34 mm, etc.
  • the respective number, arrangement position, length, line width, specific shape, etc. of the first transverse strip 421 and the first longitudinal strip 422 refer to the specific design forms of the conductive lines, the first coupling element 41 and the second coupling element 43 of the first antenna structure 30, so that the whole formed by the first antenna structure 30 and the coupling antenna unit 40 is a symmetrical shape, thereby obtaining a good appearance, ensuring a compact arrangement, reducing the product volume, and improving the product performance.
  • a suspended printed line 36 can be added to the relevant arrangement area of the first antenna structure 30 according to actual needs.
  • the "suspended" in the suspended printed line 36 means that it is not electrically connected to the first antenna structure 30 and the coupling antenna unit 40, and has no actual effect on the antenna performance.
  • the main purpose is to make the structure more beautiful and ensure the symmetry of the overall structure.
  • the DAB frequency band and the FM frequency band can be covered at the same time.
  • the first antenna structure 30 that is separately provided has a better broadcast signal receiving function.
  • Figure 5 shows a schematic diagram of the structure in which the third coupling element 53 and the busbar 51 in the glass antenna of an embodiment of the present application are coupled to each other.
  • the glass antenna also includes a defogger heating unit 50.
  • the defogger heating unit 50 includes two busbars 51 arranged at intervals, a plurality of second transverse strips 52 electrically connected between the two busbars 51 and arranged in sequence at intervals, and a third coupling element 53.
  • One end of the third coupling element 53 is electrically connected to the first feeding unit 20, and the third coupling element 53 is coupled to one of the busbars 51.
  • the second transverse strip 52 will heat up and play a role in defogger; on the other hand, since the first feeding unit 20 is coupled to one of the busbars 51 through the third coupling element 53, the antenna performance can be further improved, so that the second transverse strip 52 can also transmit signals in the DAB band and the FM band.
  • the defogging heater is also arranged adjacent to the coupling antenna unit 40 to achieve coupling connection, thereby further improving the antenna performance, so that the second transverse strip 52 can also transmit signals of the DAB band and the FM band.
  • the second transverse strip 52 close to the first coupling element 41 is arranged at a distance from the first coupling element 41, thereby achieving coupling connection between the two.
  • the demisting heating unit 50 further includes at least one second longitudinal strip 54.
  • the second longitudinal strip 54 and the second transverse strip 52 are arranged crosswise and electrically connected to each other.
  • the second longitudinal strip 54 and the second transverse strip 52 are combined to form a second grid line, so as to correspond to different wavelengths and frequency bands, further improving the antenna performance.
  • the glass antenna further includes a second feeder 60 and a second antenna structure 70 disposed on the glass body 10.
  • the second antenna structure 70 includes a third grid line 71.
  • the second feeder 60 is electrically connected to the third grid line 71.
  • the edge lines of the third grid line 71 (specifically, the third transverse strip 711 and the third longitudinal strip 712 described below) are used to contact the body sheet metal 80.
  • the third grid lines 71 are arranged at intervals, and the distance between the edge lines of the third grid lines 71 and the body sheet metal 80 (as shown by the double arrow S in FIG6 ) is not less than 12 mm.
  • the third grid line 71 includes at least four third transverse bars 711 arranged in sequence and at least three third longitudinal bars 712 arranged in sequence and at intervals.
  • the third transverse bars 711 and the third longitudinal bars 712 intersect and are electrically connected to each other.
  • the length of the third transverse bar 711 is 900 mm-1300 mm.
  • the interval between two adjacent third transverse bars 711 is 15 mm-21 mm.
  • the second antenna structure 70 is mainly used to cover the signal of the AM frequency band.
  • the number of the third transverse strips 711 includes but is not limited to 4, 5, 6, 7, etc.
  • the number of the third longitudinal strips 712 includes but is not limited to 3, 4, 5, 6, 7, 8, etc.
  • the length of each strip segment formed by the third transverse strip 711 separated by the third longitudinal strip 712 is not less than 50 mm. In this way, the antenna performance of the second antenna structure 70 can be guaranteed.
  • third transverse strips 711 there are, for example, 6 third transverse strips 711 , each having a length of, for example, 1100 mm, and a mutual spacing of, for example, 18 mm.
  • the third transverse strips 711 are evenly divided into six parts by 7 third longitudinal strips 712 , wherein two third longitudinal strips 712 are respectively connected to the two ends of the third transverse strip 711 .
  • Figure 7 shows a schematic diagram of the structure of a low-noise amplifier module 90 in a glass antenna according to an embodiment of the present application.
  • the glass antenna further includes a low-noise amplifier module 90 (Low-noise Amplifier, LNA), a first feeder 91 and a second feeder 92.
  • LNA Low-noise Amplifier
  • the two ends of the first feeder 91 are electrically connected to the low-noise amplifier module 90 and the first feeding unit 20, respectively, and the two ends of the second feeder 92 are electrically connected to the low-noise amplifier module 90 and the second feeding unit 60, respectively.
  • the length of the first feeder 91 is 80mm-110mm.
  • the first feeder 91 and the second feeder 92 are connected to the first The first antenna structure 30, the second antenna structure 70 and the low noise amplifier module 90 are used together; on the other hand, due to the small wavelength size of the FM/DAB frequency band ( ⁇ /4 is approximately 0.3m-1m), the feeder length has a greater impact on the antenna performance.
  • the length of the first feeder 91 is limited and specifically set to 80mm-110mm, so that the length and placement posture of the first feeder 91 have little effect on the antenna performance of the first antenna structure 30; in addition, since the AM frequency band is a medium wave signal and its wavelength ⁇ 1 is approximately 300m-3000m, the length of the second feeder 92 accounts for a small proportion of the length of the wavelength ⁇ 1 , and has little effect on the antenna performance of the second antenna structure 70, so the length of the second feeder 92 can be designed to be relatively long, for example, it can be set within 10 meters to meet actual needs.
  • the first antenna structure 30 and the coupling antenna unit 40 are both arranged in the lower area of the surface of the glass body 10
  • the defogging heating unit 50 is arranged in the middle area of the surface of the glass body 10
  • the second antenna structure 70 is arranged in the upper area of the surface of the glass body 10.
  • the low noise amplifier module 90 is arranged on one side of the surface of the glass body 10. Specifically, in order to meet the length design of the first feed line 91, the low noise amplifier module 90 is set on one side of the sheet metal of the surface of the glass body 10 and close to the bottom.
  • the gains of LNA in the AM band, FM band, and DAB band are AM: 0dB, FM: 8dB, and DAB: 15dB, respectively.
  • the LNA position is considered during design, the printing position of the glass antenna is planned, and the conductive material such as silver paste is baked on the glass body 10.
  • the antenna bandwidth, impedance, radiation direction (receiving direction), and other performances are adjusted by adjusting the length, number, or interval between different silver paste lines.
  • a vehicle in one embodiment, includes a vehicle body; the vehicle also includes a glass antenna according to any of the above embodiments. Each glass antenna is mounted on the vehicle body.
  • the glass body 10 includes but is not limited to one or more of a front windshield, a side window glass, a rear windshield, and a sunroof glass.
  • the first antenna structure 30 is provided with five signal transmission paths, the first signal transmission path is the first conductive line 31 (such as Q1-Q2-Q3-Q4 in FIG. 2 ); the second signal transmission path is the first conductive line 31 (such as Q1-Q2-Q3-Q4 in FIG. 2 ); The middle part of the second conductive wire 32 is to the fourth conductive wire 34 (such as Q1-Q2-Q3-Q6-Q5 in FIG. 2 ); the third signal transmission path is the third conductive wire 33 (such as Q1-Q9-Q10 in FIG.
  • the fourth signal transmission path is from the second conductive wire 32 to the fifth conductive wire 35 (such as Q1-Q2-Q3-Q6-Q7-Q8 in FIG. 2 ); the fifth signal transmission path is from the middle part of the third conductive wire 33 to the fifth conductive wire 35 (such as Q1-Q2-Q9-Q7-Q8 in FIG. 2 ).
  • the first antenna structure 30 can cover both the DAB frequency band and the FM frequency band, thereby improving the performance of the glass antenna.
  • the arrangement can achieve a compact structure and reduce the volume.
  • first and second are used only for descriptive purposes and should not be understood as indicating or The relative importance is implied or the number of technical features indicated is implicitly indicated.
  • a feature defined as “first” or “second” may explicitly or implicitly include at least one of the features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise explicitly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • installed can be a fixed connection, a detachable connection, or an integral connection
  • it can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “above” or “below” a second feature may mean that the first and second features are in direct contact, or that the first and second features are in indirect contact through an intermediate medium.
  • a first feature being “above”, “above” or “above” a second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • a first feature being “below”, “below” or “below” a second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is lower in level than the second feature.

Landscapes

  • Details Of Aerials (AREA)

Abstract

本申请涉及一种玻璃天线和车辆。玻璃天线包括玻璃本体(10)、第一馈电部(20)以及第一天线结构(30)。第一天线结构(30)包括第一导电线(31)、第二导电线(32)、第三导电线(33)、第四导电线(34)与第五导电线(35)。第一导电线(31)的一端、第二导电线(32)的一端、第三导电线(33)的一端均和第一馈电部(20)电性连接,第一导电线(31)、第二导电线(32)、第三导电线(33)依次间隔设置且长度呈增大趋势。第四导电线(34)的一端与第二导电线(32)的中部部位电性连接。第五导电线(35)一端与第三导电线(33)的中部电性连接,第五导电线(35)还与第二导电线(32)的另一端电性连接。

Description

玻璃天线与车辆
相关申请的交叉引用
本公开要求于2022年11月09日提交中国专利局、申请号为2022113991469、名称为“玻璃天线与车辆”的中国专利的优先权,所述专利申请的全部内容通过引用结合在本公开中。
技术领域
本申请涉及车用天线技术领域,特别是涉及一种玻璃天线和车辆。
背景技术
随着汽车工业的快速发展,人们对通信系统的要求也越来越高。而玻璃天线作为通信系统中必不可少的部件,其性能、尺寸、安放位置都极大地影响着通信系统的质量。
其中,玻璃天线通常包括玻璃天线、鲨鱼鳍天线与鞭状天线等广播天线结构形式,与其他广播天线如鲨鱼鳍天线、鞭状天线等相比,玻璃天线以其在力学、美学、电磁学和空气动力学上的优势,成为了各大汽车制造公司首选的广播用天线。
然而,相对于鞭状天线而言,玻璃天线的接收性能略低。
发明内容
根据本申请的各种实施例,本申请提供一种玻璃天线和车辆。
其技术方案包括如下:一种玻璃天线,所述玻璃天线包括:
玻璃本体;
设置于所述玻璃本体上的第一馈电部;
设置于所述玻璃本体上的第一天线结构,所述第一天线结构包括第一导电线、第二导电线、第三导电线、第四导电线与第五导电线,所述第一导电线的一端、所述第二导电线的一端、所述第三导电线的一端均和所述第一馈电部电性连接,所述第一导电线、所述第二导电线、所述第三导电线依次间隔设置且长度呈增大趋势,所述第四导电线的一端与所述第二导电线的中部部位电性连接,所述第四导电线的另一端朝向所述第一馈电部的方向延伸,所述第五导电线一端与所述第三导电线的中部电性连接,所述第五导电线还与所述第二导电线的另一端电性连接,所述第五导电线另一端朝向所述第一馈电部的方向延伸。
在其中一个实施例中,所述第一导电线的长度为110mm-300mm,所述第二导电线的长度为300mm-360mm,所述第三导电线的长度为350mm-650mm,所述第四导电线的长度为350mm-650mm,所述第五导电线的长度为350mm-650mm。
在其中一个实施例中,所述玻璃天线还包括设置于所述玻璃本体上并与所述第三导电线耦合相连的耦合天线单元;所述耦合天线单元包括第一耦合元件以及与所述第一耦合元件电性连接的第一网格线,所述第一耦合元件与所述第三导电线间隔设置。
在其中一个实施例中,所述第一网格线包括依次间隔设置的至少两个第一横向条以及依次间隔设置的至少两个第一纵向条,所述第一横向条与所述第一纵向条相互交叉并电性连接。
在其中一个实施例中,所述耦合天线单元还包括沿所述第一耦合元件的 延伸方向布置的第二耦合元件,所述第二耦合元件分别与所述第一耦合元件、所述第三导电线、所述第一馈电部设有间隔。
在其中一个实施例中,所述玻璃天线还包括除雾加热单元,所述除雾加热单元包括间隔设置的两个母线、电性连接于两个所述母线之间且依次间隔设置的多个第二横向条、以及第三耦合元件;所述第三耦合元件一端与所述第一馈电部电性连接,所述第三耦合元件与其中一个所述母线耦合相连。
在其中一个实施例中,所述除雾加热单元还包括至少一个第二纵向条;所述第二纵向条与所述第二横向条交叉设置并相互电性连接。
在其中一个实施例中,所述玻璃天线还包括设置于所述玻璃本体上的第二馈电部以及第二天线结构,所述第二天线结构包括第三网格线,所述第二馈电部与所述第三网格线电性连接;所述第三网格线的边缘线条用于与车身钣金间隔设置。
在其中一个实施例中,所述第三网格线包括依次间隔设置的至少四个第三横向条以及依次间隔设置的至少三个第三纵向条,所述第三横向条与所述第三纵向条相互交叉并电性连接;所述第三横向条的长度为900mm-1300mm;相邻两个所述第三横向条的间隔为15mm-21mm。
在其中一个实施例中,所述玻璃天线还包括低噪放模块、第一馈线与第二馈线,所述第一馈线的两端分别与所述低噪放模块、所述第一馈电部电性连接,所述第二馈线的两端分别与所述低噪放模块、所述第二馈电部电性连接;所述第一馈线的长度为80mm-110mm。
一种车辆,所述车辆包括车身;所述车辆还包括至少一个所述的玻璃天线;各所述玻璃天线对应安装在所述车身上。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请 的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
构成本申请的一部分的附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例的玻璃天线的结构示意图;
图2为本申请一实施例的玻璃天线中的第一天线结构的结构示意图;
图3为本申请一实施例的玻璃天线中的耦合天线单元的结构示意图;
图4为本申请一实施例的玻璃天线中的第一天线结构与耦合天线单元组合在一起的结构示意图;
图5为本申请一实施例的玻璃天线中的第三耦合元件与母线相互耦合的结构示意图;
图6为本申请一实施例的玻璃天线中的第二天线结构的结构示意图;
图7为本申请一实施例的玻璃天线中的低噪放模块的结构示意图。
10、玻璃本体;20、第一馈电部;30、第一天线结构;31、第一导电线;32、第二导电线;33、第三导电线;34、第四导电线;35、第五导电线;36、悬浮印刷线;40、耦合天线单元;41、第一耦合元件;42、第一网格线;421、第一横向条;422、第一纵向条;43、第二耦合元件;50、除雾加热单元;51、母线;52、第二横向条;53、第三耦合元件;54、第二纵向条;60、第二馈 电部;70、第二天线结构;71、第三网格线;711、第三横向条;712、第三纵向条;80、车身钣金;90、低噪放模块;91、第一馈线;92、第二馈线。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
需要说明的是,本实施例中的玻璃天线涉及的频段主要包括AM:531KHz-1710KHz,FM:76MHz-108MHz,DAB:170MHz-240MHz。AM频段在玻璃中传输时对应的波长定义为λ1,λ1设定为50m-200m;FM频段在玻璃中传输时对应的波长定义为λ2,λ2设定为1000mm-1500mm;DAB频段在玻璃中传输时对应的波长定义为λ3,λ3设定为450mm-700mm。
需要说明的是,天线信号在玻璃中传输时的波长按照如下公式计算:
其中,λ为波长,Cglass为天线信号在玻璃中传输的速度,f为频率大小,C为光速,εr为玻璃的相对介电常数,具体以7.3为例(根号下约为2.7),μr为玻璃的相对磁导率,一般为1。
需要说明的是,本申请中的玻璃的相对介电常数不以7.3为限;“耦合相连”指的是两个导电元件并未直接电性连接,而是设有间隔,从而通过耦合的方式使得信号在两个导电元件之间传输。
参阅图1与图2,图1示出了本申请一实施例的玻璃天线的结构示意图, 图2示出了本申请一实施例的玻璃天线中的第一天线结构30的结构示意图。本申请一实施例提供的一种玻璃天线,玻璃天线包括:玻璃本体10、设置于玻璃本体10上的第一馈电部20、以及设置于玻璃本体10上的第一天线结构30。第一天线结构30包括第一导电线31、第二导电线32、第三导电线33、第四导电线34与第五导电线35。第一导电线31的一端、第二导电线32的一端、第三导电线33的一端均和第一馈电部20电性连接,第一导电线31、第二导电线32、第三导电线33依次间隔设置且长度呈增大趋势。第四导电线34的一端与第二导电线32的中部部位电性连接,第四导电线34的另一端朝向第一馈电部20的方向延伸。第五导电线35一端与第三导电线33的中部电性连接,第五导电线35还与第二导电线32的另一端电性连接,第五导电线35另一端朝向第一馈电部20的方向延伸。
具体而言,第一导电线31的长度为110mm-300mm,第二导电线32的长度为300mm-360mm,第三导电线33的长度为350mm-650mm,第四导电线34的长度为350mm-650mm,第五导电线35的长度为350mm-650mm。
需要说明的是,为了能便于下文介绍区分信号传输路径,在附图1中导电线的端部、两个导电线的对接位置处增加有实心圆点标记进行示意位置,而不能将实心圆点理解为设置在玻璃本体10上的具体结构件。
上述的玻璃天线,第一天线结构30设有五条信号传输路径,第一条信号传输路径为第一导电线31(如图2中的Q1-Q2-Q3-Q4),长度为110mm-300mm,介于1/4λ3至1/2λ3之间;第二条信号传输路径为第二导电线32中部部位至第四导电线34(如图2中的Q1-Q2-Q3-Q6-Q5),长度为220mm-600mm,介于1/4λ3至1/2λ3之间;第三条信号传输路径为第三导电线33(如图2中的Q1-Q9-Q10),长度为350mm-650mm,介于1/4λ2至1/2λ2之间;第四条信号 传输路径为第二导电线32至第五导电线35(如图2中的Q1-Q2-Q3-Q6-Q7-Q8),长度为350mm-650mm,介于1/4λ2至1/2λ2之间;第五条信号传输路径为第三导电线33中部部位至第五导电线35(如图2中的Q1-Q2-Q9-Q7-Q8),长度为350mm-650mm,介于1/4λ2至1/2λ2之间。如此可见,第一天线结构30能同时覆盖DAB频段与FM频段,使得玻璃天线的性能得以提升,此外,布置形式能实现结构紧凑,减小体积。
在一个实施例中,第一条信号传输路径的长度例如为110mm、170mm、200mm、300mm;第二条信号传输路径的长度例如为220mm、315mm、400mm、600mm;第三条信号传输路径的长度例如为350mm、450mm、475mm、500mm、650mm;第四条信号传输路径的长度例如为350mm、400mm、445mm、500mm、650mm;第五条信号传输路径的长度例如为350mm、400mm、450mm、500mm、650mm。
请参阅图2,在一个实施例中,第四导电线34具体例如设计成L形状,第四导电线34的其中一段垂直连接于第二导电线32的中部部位,第四导电线34的另一段平行于第二导电线32,并朝向第一馈电部20的方向延伸。此外,第五导电线35具体例如设计成L形状,第五导电线35的其中一段垂直连接于第三导电线33的中部部位,第五导电线35的另一段平行于第三导电线33,并朝向第一馈电部20的方向延伸。
请参阅图2至图4,图3示出了本申请一实施例的玻璃天线中的耦合天线单元40的结构示意图,图4示出了本申请一实施例的玻璃天线中的第一天线结构30与耦合天线单元40组合在一起的结构示意图。在一个实施例中,玻璃天线还包括设置于玻璃本体10上并与第三导电线33耦合相连的耦合天线单元40。耦合天线单元40包括第一耦合元件41以及与第一耦合元件41电性连接的第一网格线42。第一耦合元件41与第三导电线33间隔设置,从而实 现耦合相连。如此,天线信号可以通过第一馈电部20、第三导电线33、第一耦合元件41与第一网格线42进行传输;此外,第一网格线42用以形成介于1/4λ2、1/2λ2、3/4λ2、λ2、5/4λ2、3/2λ2等多回路印刷线结构,能对FM频段天线性能进行优化。
请参阅图3与图4,在一个实施例中,第一耦合元件41与第三导电线33的间隔设为包括但不限于14mm-34mm,具体例如为14mm、20mm、24mm、28mm、34mm等等。通过调节第一耦合元件41与第三导电线33的间隔,可调节第一耦合元件41与第三导电线33间的耦合度,从而改善天线性能。
请参阅图3与图4,在一个实施例中,第一网格线42包括依次间隔设置的至少两个第一横向条421以及依次间隔设置的至少两个第一纵向条422。第一横向条421与第一纵向条422相互交叉并电性连接。
可选地,当第一横向条421和/或第一纵向条422的数量越多时,第一网格线42的网格数量相应越多,改善天线性能的作用将越明显。
此外,经研究发现,当对第一纵向条422的布置位置和/或间隔距离大小进行调整时,能对FM频段的天线性能进行优化。
请参阅图3与图4,在一个实施例中,耦合天线单元40还包括沿第一耦合元件41的延伸方向布置的第二耦合元件43。第二耦合元件43分别与第一耦合元件41、第三导电线33、第一馈电部20设有间隔。如此,第一馈电部20、第三导电线33通过耦合的方式将天线信号传输给第二耦合元件43,第二耦合元件43能将天线信号通过耦合的方式传输给第一耦合元件41,进而第一耦合元件41不止与第三导电线33耦合相连,还与第一耦合元件41耦合相连,从而使得天线性能得到优化。
在一个实施例中,第一耦合元件41与第二耦合元件43具体设计包括但 不限于为印刷线,印刷线的形状既可以是直线,又可以是弯曲线,还可以是根据实际需求设置的其它各种形状。
可选地,第二耦合元件43的长度包括但不限于为40mm-60mm,具体例如设置为40mm、45mm、50mm、55mm、60mm等等。其中,可以根据不同车型,灵活地调整第一耦合元件41的长度以实现调整第一耦合元件41与第三导电线33的耦合度,从而达到调节天线性能的目的。
可选地,第二耦合元件43是按照第一耦合元件41的延伸方向布置,因此,第二耦合元件43与第三导电线33的间隔距离大小与第一耦合元件41与第三导电线33的间隔距离大小保持一致。即,第二耦合元件43与第三导电线33的间隔距离大小包括但不限于为14mm-34mm,具体例如为14mm、20mm、24mm、28mm、34mm等等。
在一个实施例中,第一网格线42在具体设计时,第一横向条421与第一纵向条422的各自数量、布置位置、长度、线宽、具体形状等等参照于第一天线结构30的各个导电线、第一耦合元件41与第二耦合元件43的具体设计形式,以使得第一天线结构30与耦合天线单元40所形成的整体为对称形状,从而获得良好的外观,也能保证布置紧凑,减小产品体积,以及提升产品性能。
请参阅图4,此外,为了保证整体为对称形状,可以根据实际需求在第一天线结构30的相关布置区域增设悬浮印刷线36。悬浮印刷线36中的“悬浮”指的是与第一天线结构30、耦合天线单元40都没有电性连接,并对天线性能无实际影响,主要目的是使结构性更美观,保证整体结构的对称性。
另外,通过研究发现,将第一天线结构30以及与第一天线结构30相互耦合的耦合天线单元40组合在一起时,能同时覆盖DAB频段与FM频段,相 对于单独设置的第一天线结构30而言,具有更好的广播信号接收功能。
请参阅图1、图4与图5,图5示出了本申请一实施例的玻璃天线中的第三耦合元件53与母线51相互耦合的结构示意图。在一个实施例中,玻璃天线还包括除雾加热单元50。除雾加热单元50包括间隔设置的两个母线51、电性连接于两个母线51之间且依次间隔设置的多个第二横向条52、以及第三耦合元件53。第三耦合元件53一端与第一馈电部20电性连接,第三耦合元件53与其中一个母线51耦合相连。如此,一方面,当两个母线51分别接入电源的正极与负极后,第二横向条52会发热,起到除雾的作用;另一方面,由于第一馈电部20通过第三耦合元件53与其中一个母线51耦合相连,从而能进一步改善天线性能,使得第二横向条52还能传输DAB频段与FM频段的信号。
请参阅图1、图4与图5,在一个实施例中,除雾加热器还与耦合天线单元40邻近设置,实现耦合相连,从而能进一步改善天线性能,使得第二横向条52还能传输DAB频段与FM频段的信号。具体而言,靠近于第一耦合元件41的第二横向条52与第一耦合元件41间隔设置,从而实现两者耦合相连。
请参阅图1,在一个实施例中,除雾加热单元50还包括至少一个第二纵向条54。第二纵向条54与第二横向条52交叉设置并相互电性连接。如此,第二纵向条54与第二横向条52组合形成第二网格线,从而能对应于不同波长与频段,进一步改善天线性能。
请参阅图1与图6,在一个实施例中,玻璃天线还包括设置于玻璃本体10上的第二馈电部60以及第二天线结构70。第二天线结构70包括第三网格线71。第二馈电部60与第三网格线71电性连接。第三网格线71的边缘线条(具体例如下文中的第三横向条711与第三纵向条712)用于与车身钣金80 间隔设置,且第三网格线71的边缘线条与车身钣金80的间距(如图6的双箭头S所示)不小于12mm。如此,经研究发现,将第二网格线的边缘线条按照此间距间隔设置时,无论第三网格线71覆盖的是DAB频段与FM频段的信号,还是覆盖AM频段的信号,都能降低车身钣金80对天线性能的影响。
请参阅图1与图6,在一个实施例中,第三网格线71包括依次间隔设置的至少四个第三横向条711以及依次间隔设置的至少三个第三纵向条712。第三横向条711与第三纵向条712相互交叉并电性连接。第三横向条711的长度为900mm-1300mm。相邻两个第三横向条711的间隔为15mm-21mm。如此,第二天线结构70主要是用于覆盖AM频段的信号。
需要说明的是,第三横向条711的设置数量包括但不限于为4个、5个、6个、7个等等。第三纵向条712的设置数量包括但不限于为3个、4个、5个、6个、7个、8个等等。此外,第三横向条711被第三纵向条712分隔形成的各个条段的长度均不小于50mm。如此,能保证第二天线结构70的天线性能。
在一个具体实施例中,第三横向条711例如为6条,长度例如为1100mm,相互间隔距离例如为18mm,再由7个第三纵向条712将其均匀分隔为六份,其中两个第三纵向条712分别与第三横向条711的两端相连。
请参阅图1与图7,图7示出了本申请一实施例的玻璃天线中的低噪放模块90的结构示意图。在一个实施例中,玻璃天线还包括低噪放模块90(Low-noise Amplifier,LNA)、第一馈线91与第二馈线92。第一馈线91的两端分别与低噪放模块90、第一馈电部20电性连接,第二馈线92的两端分别与低噪放模块90、第二馈电部60电性连接。具体而言,第一馈线91的长度为80mm-110mm。如此,一方面,通过第一馈线91与第二馈线92将第一天 线结构30、第二天线结构70与低噪放模块90三者结合在一起使用;另一方面,由于FM/DAB频段波长尺寸较小(λ/4约为0.3m-1m),馈线长度对天线性能影响增大,为降低其影响,通过对第一馈线91的长度进行限制,并具体设置为80mm-110mm,这样第一馈线91的长度、摆放姿态对第一天线结构30的天线性能影响较小;此外,由于AM频段为中波信号其波长λ1约为300m-3000m,第二馈线92长度相对于波长λ1的长度占比不大,对第二天线结构70的天线性能影响较小,故第二馈线92的长度可以设计的相对较长,具体例如设置在10米以内即可满足实际需求。
请再参阅图1,在一个实施例中,第一天线结构30与耦合天线单元40两者布置在玻璃本体10表面的下部区域,除雾加热单元50布置在玻璃本体10表面的中部区域,第二天线结构70布置于玻璃本体10表面的上部区域。此外,低噪放模块90布置于玻璃本体10表面的其中一侧。具体而言,为了满足于第一馈线91的长度设计,低噪放模块90设置在玻璃本体10表面的其中一侧钣金并靠近于下方的位置。
在一个实施例中,LNA在AM频段、FM频段、DAB频段的增益分别为AM:0dB、FM:8dB、DAB:15dB。设计时考虑LNA位置,对玻璃天线印刷位置进行规划,将银浆等导电煤质烘结在玻璃本体10上,通过调节不同银浆线的长度、数量或其之间间隔来调节天线带宽、阻抗、辐射方向(接收方向)等性能。
在一个实施例中,一种车辆,车辆包括车身;车辆还包括上述任一实施例的玻璃天线。各玻璃天线对应安装在车身上。其中,玻璃本体10包括但不限于为前挡风玻璃、侧窗玻璃、后挡风玻璃、天窗玻璃中的一种或多种。
上述的车辆,第一天线结构30设有五条信号传输路径,第一条信号传输路径为第一导电线31(如图2中的Q1-Q2-Q3-Q4);第二条信号传输路径为第 二导电线32中部部位至第四导电线34(如图2中的Q1-Q2-Q3-Q6-Q5);第三条信号传输路径为第三导电线33(如图2中的Q1-Q9-Q10);第四条信号传输路径为第二导电线32至第五导电线35(如图2中的Q1-Q2-Q3-Q6-Q7-Q8);第五条信号传输路径为第三导电线33中部部位至第五导电线35(如图2中的Q1-Q2-Q9-Q7-Q8)。如此可见,第一天线结构30能同时覆盖DAB频段与FM频段,使得玻璃天线的性能得以提升,此外,布置形式能实现结构紧凑,减小体积。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或 暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。

Claims (11)

  1. 一种玻璃天线,所述玻璃天线包括:
    玻璃本体;
    设置于所述玻璃本体上的第一馈电部;
    设置于所述玻璃本体上的第一天线结构,所述第一天线结构包括第一导电线、第二导电线、第三导电线、第四导电线与第五导电线,所述第一导电线的一端、所述第二导电线的一端、所述第三导电线的一端均和所述第一馈电部电性连接,所述第一导电线、所述第二导电线、所述第三导电线依次间隔设置且长度呈增大趋势,所述第四导电线的一端与所述第二导电线的中部部位电性连接,所述第四导电线的另一端朝向所述第一馈电部的方向延伸,所述第五导电线一端与所述第三导电线的中部电性连接,所述第五导电线还与所述第二导电线的另一端电性连接,所述第五导电线另一端朝向所述第一馈电部的方向延伸。
  2. 根据权利要求1所述的玻璃天线,其中,所述第一导电线的长度为110mm-300mm,所述第二导电线的长度为300mm-360mm,所述第三导电线的长度为350mm-650mm,所述第四导电线的长度为350mm-650mm,所述第五导电线的长度为350mm-650mm。
  3. 根据权利要求1或2所述的玻璃天线,其中,所述玻璃天线还包括设置于所述玻璃本体上并与所述第三导电线耦合相连的耦合天线单元;所述耦合天线单元包括第一耦合元件以及与所述第一耦合元件电性连接的第一网格线,所述第一耦合元件与所述第三导电线间隔设置。
  4. 根据权利要求3所述的玻璃天线,其中,所述第一网格线包括依次间 隔设置的至少两个第一横向条以及依次间隔设置的至少两个第一纵向条,所述第一横向条与所述第一纵向条相互交叉并电性连接。
  5. 根据权利要求3或4所述的玻璃天线,其中,所述耦合天线单元还包括沿所述第一耦合元件的延伸方向布置的第二耦合元件,所述第二耦合元件分别与所述第一耦合元件、所述第三导电线、所述第一馈电部设有间隔。
  6. 根据权利要求3至5任一项所述的玻璃天线,其中,所述玻璃天线还包括除雾加热单元,所述除雾加热单元包括间隔设置的两个母线、电性连接于两个所述母线之间且依次间隔设置的多个第二横向条、以及第三耦合元件;所述第三耦合元件一端与所述第一馈电部电性连接,所述第三耦合元件与其中一个所述母线耦合相连。
  7. 根据权利要求6所述的玻璃天线,其中,所述除雾加热单元还包括至少一个第二纵向条;所述第二纵向条与所述第二横向条交叉设置并相互电性连接。
  8. 根据权利要求1-7任一项所述的玻璃天线,其中,所述玻璃天线还包括设置于所述玻璃本体上的第二馈电部以及第二天线结构,所述第二天线结构包括第三网格线,所述第二馈电部与所述第三网格线电性连接;所述第三网格线的边缘线条用于与车身钣金间隔设置。
  9. 根据权利要求8所述的玻璃天线,其中,所述第三网格线包括依次间隔设置的至少四个第三横向条以及依次间隔设置的至少三个第三纵向条,所述第三横向条与所述第三纵向条相互交叉并电性连接;所述第三横向条的长度为900mm-1300mm;相邻两个所述第三横向条的间隔为15mm-21mm。
  10. 根据权利要求8或9所述的玻璃天线,其中,所述玻璃天线还包括低噪放模块、第一馈线与第二馈线,所述第一馈线的两端分别与所述低噪放模 块、所述第一馈电部电性连接,所述第二馈线的两端分别与所述低噪放模块、所述第二馈电部电性连接;所述第一馈线的长度为80mm-110mm。
  11. 一种车辆,其中,所述车辆包括车身;所述车辆还包括至少一个权利要求1至10任一项所述的玻璃天线;各所述玻璃天线对应安装在所述车身上。
PCT/CN2023/128004 2022-11-09 2023-10-31 玻璃天线与车辆 WO2024099150A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211399146.9A CN115732891A (zh) 2022-11-09 2022-11-09 玻璃天线与车辆
CN202211399146.9 2022-11-09

Publications (1)

Publication Number Publication Date
WO2024099150A1 true WO2024099150A1 (zh) 2024-05-16

Family

ID=85294950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/128004 WO2024099150A1 (zh) 2022-11-09 2023-10-31 玻璃天线与车辆

Country Status (2)

Country Link
CN (1) CN115732891A (zh)
WO (1) WO2024099150A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115732891A (zh) * 2022-11-09 2023-03-03 福耀玻璃工业集团股份有限公司 玻璃天线与车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872465A (zh) * 2014-04-18 2014-06-18 福耀玻璃工业集团股份有限公司 一种真有源玻璃天线及其制造方法
JP2018133798A (ja) * 2017-02-14 2018-08-23 Agc株式会社 ガラスアンテナ及び車両用窓ガラス
CN109417222A (zh) * 2016-07-01 2019-03-01 日本板硝子株式会社 车辆用窗玻璃
JP2019114991A (ja) * 2017-12-25 2019-07-11 日本板硝子株式会社 車両用窓ガラス
CN115732891A (zh) * 2022-11-09 2023-03-03 福耀玻璃工业集团股份有限公司 玻璃天线与车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872465A (zh) * 2014-04-18 2014-06-18 福耀玻璃工业集团股份有限公司 一种真有源玻璃天线及其制造方法
CN109417222A (zh) * 2016-07-01 2019-03-01 日本板硝子株式会社 车辆用窗玻璃
JP2018133798A (ja) * 2017-02-14 2018-08-23 Agc株式会社 ガラスアンテナ及び車両用窓ガラス
JP2019114991A (ja) * 2017-12-25 2019-07-11 日本板硝子株式会社 車両用窓ガラス
CN115732891A (zh) * 2022-11-09 2023-03-03 福耀玻璃工业集团股份有限公司 玻璃天线与车辆

Also Published As

Publication number Publication date
CN115732891A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
WO2024099150A1 (zh) 玻璃天线与车辆
JP3972054B2 (ja) 車両用リアガラスに形成されるデフォッガの熱線パターン構造および車両用リアガラス
TWI309093B (zh)
EP2343773B1 (en) Vehicular glass antenna
JP3974087B2 (ja) 車両用ガラスアンテナ
US10985438B2 (en) Vehicle window glass
US20100097278A1 (en) High frequency glass antenna for automobiles
JP5428847B2 (ja) 自動車用のガラスアンテナ
JP2008172627A (ja) Am/fm受信用アンテナ
JP6094334B2 (ja) 車両用ガラスアンテナ
JP2009049706A (ja) 車両用ガラスアンテナ
EP2159872A1 (en) Glass antenna and window glass for vehicle
JP2005142616A (ja) 車両用ガラスアンテナおよび車両用ガラスアンテナ装置
JPH10261911A (ja) 窓ガラスアンテナ
WO2017208569A1 (ja) ガラスアンテナ
JP2012044254A (ja) 車両用アンテナ
US8294624B2 (en) Automobile glass antenna and automobile window glass sheet
JP7392550B2 (ja) 車両用窓ガラス
JP2001230615A (ja) 車両用ガラスアンテナ
JP5109089B2 (ja) 車両用ガラスアンテナ及び車両用窓ガラス
JPS5913404A (ja) 自動車後部窓用アンテナガラス
JPH0349443Y2 (zh)
US20140132464A1 (en) Glass Antenna for Vehicle
JP6481377B2 (ja) ガラスアンテナ及び窓ガラス
JP4746576B2 (ja) 車両用リアガラスに形成されるデフォッガの熱線パターン構造および車両用リアガラス