WO2024098904A1 - 电池正极材料及其制备方法以及应用 - Google Patents

电池正极材料及其制备方法以及应用 Download PDF

Info

Publication number
WO2024098904A1
WO2024098904A1 PCT/CN2023/116094 CN2023116094W WO2024098904A1 WO 2024098904 A1 WO2024098904 A1 WO 2024098904A1 CN 2023116094 W CN2023116094 W CN 2023116094W WO 2024098904 A1 WO2024098904 A1 WO 2024098904A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
battery
electrode active
active material
Prior art date
Application number
PCT/CN2023/116094
Other languages
English (en)
French (fr)
Inventor
钱冠男
郝雪蓉
吕菲
徐宁
Original Assignee
天津巴莫科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津巴莫科技有限责任公司 filed Critical 天津巴莫科技有限责任公司
Publication of WO2024098904A1 publication Critical patent/WO2024098904A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the technical field of lithium-ion batteries, and specifically relates to a battery positive electrode material and a preparation method and application thereof.
  • a titanate coupling agent is mixed with a nickel-cobalt-manganese ternary positive electrode active material in a liquid phase and then calcined in an oxygen-containing atmosphere to obtain a titanium dioxide coating layer with uniform, dense, nano-thickness, and a titanium dioxide-coated nickel-cobalt-manganese ternary positive electrode active material with a stable interface structure.
  • the coating layer has low ion conductivity, which will have an adverse effect on the transmission of lithium ions in the ternary positive electrode active material.
  • the present application provides a positive electrode material for a battery, comprising a positive electrode active material core and a coating layer coated on the surface of the positive electrode active material core, wherein the coating layer comprises fluoride and lithium-containing phosphate.
  • the molar ratio of the lithium-containing phosphate to the fluoride is 0.05:1 to 50:1.
  • the lithium-containing phosphate is selected from at least one of Li 3 PO 4 and LiPO 3
  • the fluoride is selected from at least one of LiF, ZrF 4 , TiF 4 and MgF 2 .
  • the coating layer includes LiF and Li 3 PO 4 , LiF and LiPO 3 , ZrF 4 and Li 3 PO 4 , ZrF 4 and LiPO 3 , TiF 4 and Li 3 PO 4 , or TiF 4 and LiPO 3 .
  • the present application also provides a method for preparing the above-mentioned battery positive electrode material, comprising the following steps:
  • the nanocomposite method is ball milling
  • the rotation speed of the ball milling is 50 to 1500 rpm
  • the time is 0.5 to 50 hours.
  • the molar ratio of the nanocomposite to the positive electrode active material core is 0.001-0.1:1.
  • the rotation speed of the ball milling in step B) is 50 to 1500 rpm.
  • the heat treatment method is: heating to 150-600°C at a heating rate of 1-15°C/min, keeping the temperature for 0.5-15 hours, and then cooling at a cooling rate of 0.5-15°C/min; the atmosphere of the heat treatment is an oxygen-containing atmosphere.
  • the present application also provides a lithium-ion battery, comprising the above-mentioned battery positive electrode material.
  • the present invention provides a positive electrode material for a battery, comprising a positive electrode active material core and a coating layer coated on the surface of the positive electrode active material core, wherein the coating layer comprises a fluoride and a lithium-containing phosphate.
  • the ion conduction after the fluoride and the lithium-containing phosphate are combined has a synergistic effect, and the ion conductivity is greater than that of a single fluoride or a single lithium-containing phosphate; in addition, the composite coating layer formed by the fluoride and the lithium-containing phosphate has an effect of improving the stability of the electrode/electrolyte interface: it can significantly improve the cycle stability and inhibit metal dissolution.
  • the present application provides a positive electrode material for a battery, comprising a positive electrode active material core and a coating layer coated on the surface of the positive electrode active material core, wherein the coating layer comprises fluoride and lithium-containing phosphate.
  • the ion conduction after the fluoride and the lithium-containing phosphate are combined has a synergistic effect, and the ion conductivity is greater than that of a single fluoride or a single lithium-containing phosphate; in addition, the composite coating layer formed by the fluoride and the lithium-containing phosphate has an improvement effect on the stability of the electrode/electrolyte interface: it can significantly improve the cycle stability and inhibit metal dissolution.
  • the battery positive electrode material provided in the present application includes a positive electrode active material core, and the positive electrode active material core may be a ternary positive electrode active material.
  • the molar ratio of the lithium-containing phosphate to the fluoride is 0.05:1 to 50:1, for example, 0.05:1, 0.1:1, 0.5:1, 1:1, 5:1, 10:1, 20:1, 30:1, 40:1, 50:1, or any value between 0.05:1 and 50:1. In some embodiments, the molar ratio of the lithium-containing phosphate to the fluoride is 0.5:1 to 5:1.
  • the lithium-containing phosphate is selected from at least one of Li 3 PO 4 and LiPO 3
  • the fluoride is selected from at least one of LiF, ZrF 4 , TiF 4 and MgF 2 .
  • the coating layer includes LiF and Li 3 PO 4 ;
  • the coating layer includes LiF and LiPO 3 ;
  • the coating layer includes ZrF 4 and Li 3 PO 4 ;
  • the coating layer includes ZrF 4 and LiPO 3 ;
  • the coating layer includes TiF 4 and Li 3 PO 4 ;
  • the coating layer includes TiF 4 and LiPO 3 .
  • the present application also provides a method for preparing a positive electrode material for a battery, comprising the following steps:
  • the present application firstly nanocompounds fluoride and lithium-containing phosphate to obtain a nanocomposite.
  • the nanocomposite method is ball milling
  • the rotation speed of the ball mill is 50 to 1500 rpm, for example, 50, 100, 300, 500, 800, 1000, 1200, 1500, or any value between 50 and 1500 rpm
  • the time is 0.5 to 50 hours, for example, 0.5, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, or any value between 0.5 and 50 hours.
  • the nanocomposite and the core particles of the positive electrode active material are ball-milled and then heat-treated to obtain a positive electrode material for a battery.
  • the molar ratio of the nanocomposite to the positive electrode active material core in the battery positive electrode material is 0.001:1 to 0.1:1, for example, 0.001:1, 0.003:1, 0.005:1, 0.008:1, 0.01:1, 0.03:1, 0.05:1, 0.08:1, 0.1:1, or any value between 0.001:1 and 0.1:1.
  • the rotation speed of the ball mill in step B) is 50 to 1500 rpm, for example, 50, 100, 300, 500, 800, 1000, 1200, 1500, or any value between 50 and 1500 rpm;
  • the heat treatment method is: heating to 150-600°C at a heating rate of 1-15°C/min, keeping the temperature for 0.5-15 hours, and then cooling at a cooling rate of 0.5-15°C/min;
  • the atmosphere of the heat treatment is an oxygen-containing atmosphere, such as oxygen or air.
  • the heating rate can be 1, 2, 5, 8, 10, 12, 15, or any value between 1 and 15 ° C / min.
  • the temperature is raised to 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, or any value between 150 and 600 ° C.
  • the holding time can be 1 to 7 hours.
  • the cooling rate can be 0.5, 1, 2, 5, 8, 10, 12, 15, or any value between 0.5 and 15°C/min.
  • This application uses lithium-containing phosphate and fluoride as the co-coating layer, first nanocomposites the two coating raw materials, and then mechanically fuses the nanocomposite with the core particles of the positive electrode active material to be coated by ball milling.
  • the binding force between the lithium-containing phosphate, fluoride and the core particles of the positive electrode active material is increased, and further strengthened after heat treatment.
  • the coating layer can effectively stabilize the surface structure of the positive electrode and inhibit interface side reactions.
  • the coating layer material will form crystal surface defects during the ball milling process. Even after heat treatment, these defects still exist and can serve as a fast channel for lithium ion transmission, which can significantly improve the problem of low fluoride ion conductivity, effectively reduce the interface impedance of the coated positive electrode material, and improve its rate performance.
  • the present application also provides a lithium-ion battery, comprising the above-mentioned battery positive electrode material.
  • the present application aims to provide a coating and preparation method of a positive electrode material for a battery, and the effect principle thereof is analyzed as follows:
  • the ion conductivity of lithium-containing phosphate is relatively high, and the interface impedance can be reduced after coating; at the same time, it is inert to the electrolyte and can reduce side reactions.
  • LiF is one of the products of electrolyte decomposition, LiFP 6 ⁇ LiF ⁇ +PF 5 ⁇ (1); PF 5 +H 2 O ⁇ POF 3 ⁇ +2HF ⁇ (2).
  • the presence of LiF can inhibit the forward progress of reaction (1), thereby reducing the amount of HF generated in reaction (2).
  • HF has a corrosive effect on positive electrode materials, can cause metal ions to dissolve, and accelerate the degradation of positive electrode materials.
  • LiF with large particle size or micron size has poor ion conductivity, which can be improved by nano-sizing; the nanocomposite is mechanically fused with the core particles of the positive electrode active material to be coated by ball milling.
  • the binding force between the lithium phosphate, fluoride and the core particles of the positive electrode active material is increased, and further strengthened after heat treatment.
  • the coating layer can effectively stabilize the surface structure of the positive electrode and inhibit the side reactions at the interface.
  • the coating layer material will form crystal surface defects during the ball milling process. Even after heat treatment, these defects still exist and can serve as a fast channel for lithium ion transmission, which can significantly improve the problem of low ion conductivity of fluoride, effectively reduce the interface impedance of the coated positive electrode material, and improve its rate performance.
  • LiF and 1157.9g Li 3 PO 4 (mass ratio 1:4.46; molar ratio 1:1) were added to a high-energy ball mill and mixed by ball milling at a speed of 500rpm/min for 15 hours to obtain a nano-scale coated raw material B.
  • 100g coated raw material B and 10000g LiNi 0.6 Co 0.2 Mn 0.2 O 2 positive electrode active material core particles were added to a high-energy ball mill and mixed by ball milling at a speed of 300rpm/min for 2 hours to obtain a composite B.
  • Composite B was heated to 500°C at a heating rate of 5°C/min in an oxygen atmosphere, kept at a constant temperature for 6 hours, cooled to below 200°C at a cooling rate of 3°C/min, and then naturally cooled to room temperature. After crushing, it was passed through a 325-mesh sieve to obtain product 2.
  • LiF and 1157.9g Li 3 PO 4 (mass ratio 1:4.46; molar ratio 1:1) were added to a high-energy ball mill and mixed by ball milling at 300rpm/min for 3 hours to obtain a nano-scale coated raw material C.
  • 100g coated raw material C and 10000g LiNi 0.6 Co 0.2 Mn 0.2 O 2 positive electrode active material core particles were added to a high-energy ball mill and mixed by ball milling at 300rpm/min for 5 hours to obtain a composite C.
  • the composite C was heated to 500°C at a heating rate of 5°C/min in an oxygen atmosphere, kept at a constant temperature for 6 hours, cooled to below 200°C at a cooling rate of 3°C/min, and then naturally cooled to room temperature. After crushing, it was passed through a 325-mesh sieve to obtain product 3.
  • LiF and 859.1g LiPO 3 (mass ratio 1:3.31; molar ratio 1:1) were added to a high-energy ball mill and mixed by ball milling at a speed of 500rpm/min for 15 hours to obtain a nano-scale coating raw material E.
  • 100g of coating raw material E and 10000g of LiNi 0.6 Co 0.2 Mn 0.2 O 2 positive electrode active material core particles were added to a high-energy ball mill and mixed by ball milling at a speed of 300rpm/min for 5 hours to obtain a composite E.
  • the composite E was heated to 500°C at a heating rate of 5°C/min in an oxygen atmosphere, kept at a constant temperature for 6 hours, cooled to below 200°C at a cooling rate of 3°C/min, and then naturally cooled to room temperature. After crushing, it was passed through a 325-mesh sieve to obtain a product 5.
  • the compound E was heated to 500°C at a heating rate of 5°C/min in an oxygen atmosphere, kept at this temperature for 6 hours, cooled to below 200°C at a cooling rate of 3°C/min, and then naturally cooled to room temperature. After being crushed, it was passed through a 325-mesh sieve to obtain product 7.
  • LiNi 0.6 Co 0.2 Mn 0.2 O 2 , 5% PVDF and 5% conductive graphite were mixed by mass percentage, dispersed with NMP, coated on aluminum foil, and vacuum dried at 120°C for 12 hours to prepare the positive electrode.
  • Elemental analysis test method After charging the batteries assembled in Examples 1 to 5 and Comparative Examples 1 to 5 to 4.5V, disassemble and take out the positive electrode plates, wash the residual electrolyte on the surface of the plates with dimethyl carbonate solvent, transfer the plates to 3ml electrolyte containing 1000ppm, seal and store at 45°C for 14 days. Afterwards, filter the electrolyte for storage and perform elemental analysis test.
  • Test results The composite coating of fluoride and lithium-containing phosphate can inhibit the generation of HF and reduce the dissolution of positive electrode metal elements. The results are shown in Table 1.
  • Rate test method Use a constant current charge and discharge tester to test, the test conditions are 25°C, 2.8-4.5V vs Li + /Li, the first cycle is tested at a rate of 0.1C charge/0.1C discharge, and the subsequent 50 cycles are tested at a rate of 1C charge/1C discharge.
  • Lithium ion diffusion coefficient test method The test conditions are 25°C, 2.8-4.5V vs Li + /Li, 0.1C charge for 15 minutes, stand for 2 hours until 4.5V, 0.1C discharge for 15 minutes, stand for 2 hours until 2.8V.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

提供了一种电池正极材料,包括正极活性材料核芯以及包覆于所述正极活性材料核芯表面的包覆层,所述包覆层包括氟化物和含锂磷酸盐。

Description

电池正极材料及其制备方法以及应用
相关申请
本申请要求2022年11月11日申请的,申请号为202211412387.2,名称为“一种电池正极材料及其制备方法以及应用”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请属于锂离子电池技术领域,具体涉及一种电池正极材料及其制备方法以及应用。
背景技术
在高充电电压条件下,锂离子电池中的正极活性材料容易与电解液发生副反应,导致正极活性材料降解,电池寿命降低。表面包覆是一种有效抑制正极活性材料表面有害反应进行的方法,例如申请号为CN202010273857.6的中国专利,将钛酸酯类偶联剂与镍钴锰三元正极活性材料通过液相混合后置于含氧气氛下进行煅烧,即得具有均匀、致密、纳米厚度的二氧化钛包覆层,且界面结构稳定的二氧化钛包覆镍钴锰三元正极活性材料,但该包覆层离子传导率低,会对锂离子在三元正极活性材料中的传输产生不利影响。
发明内容
本申请提供了一种电池正极材料,包括正极活性材料核芯以及包覆于所述正极活性材料核芯表面的包覆层,所述包覆层包括氟化物和含锂磷酸盐。
一些实施例中,所述含锂磷酸盐和氟化物的摩尔比为0.05:1~50:1。
一些实施例中,所述含锂磷酸盐选自Li3PO4和LiPO3中的至少一种,所述氟化物选自LiF、ZrF4、TiF4和MgF2中的至少一种。
一些实施例中,所述包覆层包括LiF与Li3PO4、LiF与LiPO3、ZrF4与Li3PO4、ZrF4与LiPO3、TiF4与Li3PO4或TiF4与LiPO3
一些实施例中,所述正极活性材料核芯包括镍钴锰酸锂LiaNixCoyMnzO2,其中0.9≤a≤1.1,0.3≤x≤1,0≤y≤0.4,0≤z≤0.4,且x+y+z=1。
一些实施例中,所述正极活性材料核芯包括镍钴铝酸锂LibNixCoyAlzO2,其中0.9≤b≤1.1,0.3≤x≤1,0≤y≤0.4,0≤z≤0.1,且x+y+z=1。
本申请还提供了一种上述电池正极材料的制备方法,包括以下步骤:
A)将氟化物和含锂磷酸盐进行纳米化复合,得到纳米复合物;
B)将所述纳米复合物与正极活性材料核芯颗粒进行球磨后进行热处理,得到电池正极材料。
一些实施例中,所述纳米化复合的方法为球磨,所述球磨的转速为50~1500转/分钟,时间为0.5~50小时。
一些实施例中,所述纳米复合物与正极活性材料核芯的摩尔比为0.001~0.1:1。
一些实施例中,步骤B)中球磨的转速为50~1500转/分钟。
一些实施例中,所述热处理的方法为:以1~15℃/min的升温速率升温至150~600℃,保温0.5~15小时,然后以0.5~15℃/min的降温速率降温;所述热处理的气氛为含氧气氛。
本申请还提供了一种锂离子电池,包括上述电池正极材料。
与现有技术相比,本发明申请提供了一种电池正极材料,包括正极活性材料核芯以及包覆于所述正极活性材料核芯表面的包覆层,所述包覆层包括氟化物和含锂磷酸盐。在本发明申请中,氟化物和含锂磷酸盐复合后的离子传导具有协同效应,离子传导率大于单一氟化物或含锂磷酸盐;另外,氟化物和含锂磷酸盐形成的复合包覆层对电极/电解液界面稳定性的提升效果:可以显著提高循环稳定性,抑制金属溶出。
具体实施方式
本申请提供了一种电池正极材料,包括正极活性材料核芯以及包覆于所述正极活性材料核芯表面的包覆层,所述包覆层包括氟化物和含锂磷酸盐。
在本申请中,氟化物和含锂磷酸盐复合后的离子传导具有协同效应,离子传导率大于单一氟化物或含锂磷酸盐;另外,氟化物和含锂磷酸盐形成的复合包覆层对电极/电解液界面稳定性具有提升效果:可以显著提高循环稳定性,抑制金属溶出。
本申请提供的电池正极材料包括正极活性材料核芯,所述正极活性材料核芯可以是三元正极活性材料。
一些实施例中,所述正极活性材料核芯包括镍钴锰酸锂LiaNixCoyMnzO2,其中0.9≤a≤1.1,0.3≤x≤1,0≤y≤0.4,0≤z≤0.4,且x+y+z=1。
一些实施例中,所述正极活性材料核芯包括镍钴铝酸锂LibNixCoyAlzO2,其中0.9≤b≤1.1,0.3≤x≤1,0≤y≤0.4,0≤z≤0.1,且x+y+z=1。
一些实施例中,所述含锂磷酸盐和氟化物的摩尔比为0.05:1~50:1,例如为0.05:1、0.1:1、0.5:1、1:1、5:1、10:1、20:1、30:1、40:1、50:1,或0.05:1至50:1之间的任意值。 一些实施例中,含锂磷酸盐和氟化物的摩尔比为0.5:1至5:1。
一些实施例中,所述含锂磷酸盐选自Li3PO4和LiPO3中的至少一种,所述氟化物选自LiF、ZrF4、TiF4和MgF2中的至少一种。
在本申请的一些具体实施方式中,所述包覆层包括LiF与Li3PO4
在本申请的一些具体实施方式中,所述包覆层包括LiF与LiPO3
在本申请的一些具体实施方式中,所述包覆层包括ZrF4与Li3PO4
在本申请的一些具体实施方式中,所述包覆层包括ZrF4与LiPO3
在本申请的一些具体实施方式中,所述包覆层包括TiF4与Li3PO4
在本申请的一些具体实施方式中,所述包覆层包括TiF4与LiPO3
本申请还提供了一种电池正极材料的制备方法,包括以下步骤:
A)将氟化物和含锂磷酸盐进行纳米化复合,得到纳米复合物;
B)将所述纳米复合物与正极活性材料核芯颗粒进行球磨后进行热处理,得到电池正极材料。
本申请首先将氟化物和含锂磷酸盐进行纳米化复合,得到纳米复合物。
一些实施例中,所述纳米化复合的方法为球磨,所述球磨的转速为50~1500转/分钟,例如为50、100、300、500、800、1000、1200、1500,或50~1500转/分钟之间的任意值,时间为0.5~50小时,例如为0.5、1、5、10、15、20、25、30、35、40、45、50,或0.5~50小时之间的任意值。
接着,将所述纳米复合物与正极活性材料核芯颗粒进行球磨后进行热处理,得到电池正极材料。
一些实施例中,电池正极材料中纳米复合物与正极活性材料核芯的摩尔比为0.001:1~0.1:1,例如为0.001:1、0.003:1、0.005:1、0.008:1、0.01:1、0.03:1、0.05:1、0.08:1、0.1:1,或0.001:1~0.1:1之间的任意值。
一些实施例中,步骤B)中的球磨的转速为50~1500转/分钟,例如为50、100、300、500、800、1000、1200、1500,或50~1500转/分钟之间的任意值;
一些实施例中,所述热处理的方法为:以1~15℃/min的升温速率升温至150~600℃,保温0.5~15小时,然后以0.5~15℃/min的降温速率降温;所述热处理的气氛为含氧气氛,例如氧气或空气。
在本申请中,所述升温速率可以为1、2、5、8、10、12、15,或1~15℃/min之间的任意值。升温至150、200、250、300、350、400、450、500、550、600,或150~600℃之间的任意值。所述保温时间可以为1~7小时。所述降温速率可以为0.5、1、2、5、8、10、 12、15,或0.5~15℃/min之间的任意值。
本申请选用含锂磷酸盐和氟化物为共包覆层,先对两种包覆原料进行纳米化复合,然后将纳米复合物与待包覆正极活性材料核芯颗粒进行球磨机械融合,在机械化学作用下,含锂磷酸盐、氟化物和正极活性材料核芯颗粒之间的结合力得到增加,并且在热处理之后进一步强化,该包覆层能有效稳定正极表面结构,抑制界面副反应。包覆层材料在球磨过程中会形成晶体表面缺陷,即使在热处理后这些缺陷依然存在,可作为锂离子传输的快速通道,可显著改善氟化物离子传导率低的问题,有效降低包覆型正极材料的界面阻抗,提高其倍率性能。
本申请还提供了一种锂离子电池,包括上述电池正极材料。
一些实施例中,本申请旨在提供一种电池正极材料的包覆及制备方法,其效果原理分析如下:
1.含锂磷酸盐的离子传导率较高,包覆后可降低界面阻抗;同时对电解液惰性,可减少副反应。
2.LiF是电解液分解的产物之一,LiFP6→LiF↓+PF5↑(1);PF5+H2O→POF3↑+2HF↑(2),LiF的存在可抑制反应(1)正向进行,从而减少反应(2)中HF的生成量。HF对正极材料有腐蚀作用,可导致金属离子溶出,加速正极材料降解。
3.粒径较大或微米级的LiF离子传导率较差,通过纳米化后可提升离子传导率;将纳米复合物与待包覆正极活性材料核芯颗粒进行球磨机械融合,在机械化学作用下,含锂磷酸盐、氟化物和正极活性材料核芯颗粒之间的结合力得到增加,并且在热处理之后进一步强化,该包覆层能有效稳定正极表面结构,抑制界面副反应。包覆层材料在球磨过程中会形成晶体表面缺陷,即使在热处理后这些缺陷依然存在,可作为锂离子传输的快速通道,可显著改善氟化物离子传导率低的问题,有效降低包覆型正极材料的界面阻抗,提高其倍率性能。
为了进一步理解本申请,下面结合实施例对本申请提供的电池正极材料及其制备方法以及应用进行说明,本申请的保护范围不受以下实施例的限制。
实施例1
取259.4g LiF和1157.9g Li3PO4(质量比1:4.46;摩尔比1:1)加入到高能球磨机中,以500rpm/min转速球磨混合15小时,得到纳米级包覆原料A。取100g包覆原料A与10000g LiNi0.6Co0.2Mn0.2O2正极活性材料核芯颗粒加入到高能球磨机中,以300rpm/min转速球磨混合5小时,得到复合物A。将复合物A在氧气气氛下以5℃/min升温速率加热至500℃,恒温6小时,以3℃/min降温速率降温至200℃以下,之后自然冷却至室温,经过破碎后, 过325目筛网,得产物1。
按质量百分比,将90%的产物1、5%的聚偏二氟乙烯(PVDF)和5%的导电石墨混合,用N-甲基吡咯烷酮(NMP)分散,将此浆料涂布于铝箔上,于120℃真空干燥12小时,制成正极。以锂片作为对电极,电解液为1M LiPF6溶于组成为EC/DEC/EMC=1/1/1(v/v/v)的溶剂中,组装成2032扣式电池,进行充放电性能测试。
实施例2
取259.4g LiF和1157.9g Li3PO4(质量比1:4.46;摩尔比1:1)加入到高能球磨机中,以500rpm/min转速球磨混合15小时,得到纳米级包覆原料B。取100g包覆原料B与10000g LiNi0.6Co0.2Mn0.2O2正极活性材料核芯颗粒加入到高能球磨机中,以300rpm/min转速球磨混合2小时,得到复合物B。将复合物B在氧气气氛下以5℃/min升温速率加热至500℃,恒温6小时,以3℃/min降温速率降温至200℃以下,之后自然冷却至室温,经过破碎后,过325目筛网,产物2。
按质量百分比,将90%的产物2、5%的PVDF和5%的导电石墨混合,用NMP分散,将此浆料涂布于铝箔上,于120℃真空干燥12小时,制成正极。以锂片作为对电极,电解液为1M LiPF6溶于组成为EC/DEC/EMC=1/1/1(v/v/v)的溶剂中,组装成2032扣式电池,进行充放电性能测试。
实施例3
取259.4g LiF和1157.9g Li3PO4(质量比1:4.46;摩尔比1:1)加入到高能球磨机中,以300rpm/min转速球磨混合3小时,得到纳米级包覆原料C。取100g包覆原料C与10000g LiNi0.6Co0.2Mn0.2O2正极活性材料核芯颗粒加入到高能球磨机中,以300rpm/min转速球磨混合5小时,得到复合物C。将复合物C在氧气气氛下以5℃/min升温速率加热至500℃,恒温6小时,以3℃/min降温速率降温至200℃以下,之后自然冷却至室温,经过破碎后,过325目筛网,产物3。
按质量百分比,将90%的产物3、5%的PVDF和5%的导电石墨混合,用NMP分散,将此浆料涂布于铝箔上,于120℃真空干燥12小时,制成正极。以锂片作为对电极,电解液为1M LiPF6溶于组成为EC/DEC/EMC=1/1/1(v/v/v)的溶剂中,组装成2032扣式电池,进行充放电性能测试。
实施例4
取1672.2g ZrF4和1157.9g Li3PO4(质量比1:0.69;摩尔比1:1)加入到高能球磨机中,以500rpm/min转速球磨混合15小时,得到纳米级包覆原料D。取100g包覆原料D与10000g LiNi0.6Co0.2Mn0.2O2正极活性材料核芯颗粒加入到高能球磨机中,以300rpm/min转速球磨 混合5小时,得到复合物D。将复合物D在氧气气氛下以5℃/min升温速率加热至500℃,恒温6小时,以3℃/min降温速率降温至200℃以下,之后自然冷却至室温,经过破碎后,过325目筛网,得产物4。
按质量百分比,将90%的产物4、5%的PVDF和5%的导电石墨混合,用NMP分散,将此浆料涂布于铝箔上,于120℃真空干燥12小时,制成正极。以锂片作为对电极,电解液为1M LiPF6溶于组成为EC/DEC/EMC=1/1/1(v/v/v)的溶剂中,组装成2032扣式电池,进行充放电性能测试。
实施例5
取259.4g LiF和859.1g LiPO3(质量比1:3.31;摩尔比1:1)加入到高能球磨机中,以500rpm/min转速球磨混合15小时,得到纳米级包覆原料E。取100g包覆原料E与10000g LiNi0.6Co0.2Mn0.2O2正极活性材料核芯颗粒加入到高能球磨机中,以300rpm/min转速球磨混合5小时,得到复合物E。将复合物E在氧气气氛下以5℃/min升温速率加热至500℃,恒温6小时,以3℃/min降温速率降温至200℃以下,之后自然冷却至室温,经过破碎后,过325目筛网,得产物5。
按质量百分比,将90%的产物5、5%的PVDF和5%的导电石墨混合,用NMP分散,将此浆料涂布于铝箔上,于120℃真空干燥12小时,制成正极。以锂片作为对电极,电解液为1M LiPF6溶于组成为EC/DEC/EMC=1/1/1(v/v/v)的溶剂中,组装成2032扣式电池,进行充放电性能测试。
对比例1
取25.94g纳米LiF、115.79g纳米Li3PO4和14173g LiNi0.6Co0.2Mn0.2O2(质量比1:4.46:546.37;摩尔比1:1:146)加入到V型干混机中,混合3小时,得到复合物F。将复合物F在氧气气氛下以5℃/min升温速率加热至500℃,恒温6小时,以3℃/min降温速率降温至200℃以下,之后自然冷却至室温,经过破碎后,过325目筛网,产物6。
按质量百分比,将90%的产物6、5%的PVDF和5%的导电石墨混合,用NMP分散,将此浆料涂布于铝箔上,于120℃真空干燥12小时,制成正极。以锂片作为对电极,电解液为1M LiPF6溶于组成为EC/DEC/EMC=1/1/1(v/v/v)的溶剂中,组装成2032扣式电池,进行充放电性能测试。
对比例2
取37.04g NH4F、149.09g(NH4)3PO4和14713g LiNi0.6Co0.2Mn0.2O2(质量比1:4.03:397.22;摩尔比1:1:146)加入到20L去离子水中,搅拌均匀,得到悬浮液A。取275.8gLiNO3加入到2L去离子水中,以33.33ml/min的速度滴加到持续搅拌的悬浮液A中,滴加完成后过滤, 得到复合物E,将复合物E于120℃真空干燥5小时。将复合物E在氧气气氛下以5℃/min升温速率加热至500℃,恒温6小时,以3℃/min降温速率降温至200℃以下,之后自然冷却至室温,经过破碎后,过325目筛网,得产物7。
按质量百分比,将90%的产物7、5%的PVDF和5%的导电石墨混合,用NMP分散,将此浆料涂布于铝箔上,于120℃真空干燥12小时,制成正极。以锂片作为对电极,电解液为1M LiPF6溶于组成为EC/DEC/EMC=1/1/1(v/v/v)的溶剂中,组装成2032扣式电池,进行充放电性能测试。
对比例3
取109.92g LiPO2F2和10992g LiNi0.6Co0.2Mn0.2O2(质量比1:100;摩尔比1:113)加入到V型干混机中,混合3小时,得到复合物G。将复合物G在氧气气氛下以5℃/min升温速率加热至500℃,恒温6小时,以3℃/min降温速率降温至200℃以下,之后自然冷却至室温,经过破碎后,过325目筛网,产物8。
按质量百分比,将90%的产物8、5%的PVDF和5%的导电石墨混合,用NMP分散,将此浆料涂布于铝箔上,于120℃真空干燥12小时,制成正极。以锂片作为对电极,电解液为1M LiPF6溶于组成为EC/DEC/EMC=1/1/1(v/v/v)的溶剂中,组装成2032扣式电池,进行充放电性能测试。
对比例4
取259.4g LiF和25940g LiNi0.6Co0.2Mn0.2O2(质量比1:100;摩尔比1:26.7)加入到V型干混机中,混合3小时,得到复合物H。将复合物H在氧气气氛下以5℃/min升温速率加热至500℃,恒温6小时,以3℃/min降温速率降温至200℃以下,之后自然冷却至室温,经过破碎后,过325目筛网,产物9。
按质量百分比,将90%的产物9、5%的PVDF和5%的导电石墨混合,用NMP分散,将此浆料涂布于铝箔上,于120℃真空干燥12小时,制成正极。以锂片作为对电极,电解液为1M LiPF6溶于组成为EC/DEC/EMC=1/1/1(v/v/v)的溶剂中,组装成2032扣式电池,进行充放电性能测试。
对比例5
按质量百分比,将90%的LiNi0.6Co0.2Mn0.2O2、5%的PVDF和5%的导电石墨混合,用NMP分散,将此浆料涂布于铝箔上,于120℃真空干燥12小时,制成正极。以锂片作为对电极,电解液为1M LiPF6溶于组成为EC/DEC/EMC=1/1/1(v/v/v)的溶剂中,组装成2032扣式电池,进行充放电性能测试。
测试方法及结果
1、元素分析测试方法:将实施例1~5、对比例1~5组装的电池充电至4.5V后,拆开取出正极极片,用碳酸二甲酯溶剂洗去极片表面的残余电解液,将极片转移至含有1000ppm的3ml电解液中,密封后于45℃存储14天。之后将存储用的电解液过滤之后,进行元素分析测试。
测试结果:氟化物和含锂磷酸盐复合包覆可抑制HF的产生,减少正极金属元素溶出,结果如表1。
表1
2、倍率测试方法:用恒电流充放电测试仪测试,测试条件为25℃,2.8-4.5V vs Li+/Li,首次循环以0.1C充电/0.1C放电的倍率测试,之后的50次循环以1C充电/1C放电的倍率测试。
测试结果:氟化物和含锂磷酸盐复合包覆可提高电化学稳定性。
表2

3、锂离子扩散系数测试方法:测试条件为25℃,2.8-4.5V vs Li+/Li,0.1C充电15分钟,静置2小时,直至4.5V,0.1C放电15分钟,静置2小时,直至2.8V。
测试结果:两相混合后显著提高包覆层离子传导率,提高电极片的锂离子扩散系数。
表3
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (11)

  1. 一种电池正极材料,其特征在于,包括正极活性材料核芯以及包覆于所述正极活性材料核芯表面的包覆层,所述包覆层包括氟化物和含锂磷酸盐。
  2. 根据权利要求1所述的电池正极材料,其特征在于,所述含锂磷酸盐和氟化物的摩尔比为0.05:1~50:1,优选为0.5:1至5:1。
  3. 根据权利要求1或2所述的电池正极材料,其特征在于,所述含锂磷酸盐选自Li3PO4和LiPO3中的至少一种,所述氟化物选自LiF、ZrF4、TiF4和MgF2中的至少一种。
  4. 根据权利要求1~3中任一项所述的电池正极材料,其特征在于,所述包覆层包括LiF与Li3PO4、LiF与LiPO3、ZrF4与Li3PO4、ZrF4与LiPO3、TiF4与Li3PO4或TiF4与LiPO3
  5. 根据权利要求1~4中任一项所述的电池正极材料,其特征在于,所述正极活性材料核芯包括镍钴锰酸锂LiaNixCoyMnzO2,其中0.9≤a≤1.1,0.3≤x≤1,0≤y≤0.4,0≤z≤0.4,且x+y+z=1;
    或者,所述正极活性材料核芯包括镍钴铝酸锂LibNixCoyAlzO2,其中0.9≤b≤1.1,0.3≤x≤1,0≤y≤0.4,0≤z≤0.1,且x+y+z=1。
  6. 根据权利要求1~5中任一项所述的电池正极材料,其特征在于,所述包覆层中的氟化物和含锂磷酸盐以纳米复合物形式存在。
  7. 一种如权利要求1~6任意一项所述的电池正极材料的制备方法,其特征在于,包括以下步骤:
    A)将氟化物和含锂磷酸盐进行纳米化复合,得到纳米复合物;
    B)将所述纳米复合物与正极活性材料核芯进行球磨后进行热处理,得到电池正极材料。
  8. 根据权利要求7所述的制备方法,其特征在于,所述纳米化复合的方法为球磨,所述球磨的转速为50~1500转/分钟,时间为0.5~50小时。
  9. 根据权利要求7或8所述的制备方法,其特征在于,所述纳米复合物与正极活性材料核芯的摩尔比为0.001:1~0.1:1。
  10. 根据权利要求7~9中任一项所述的制备方法,其特征在于,步骤B)中球磨的转速为50~1500转/分钟;
    所述热处理的方法为:以1~15℃/min的升温速率升温至150~600℃,保温0.5~15小时,然后以0.5~15℃/min的降温速率降温;所述热处理的气氛为含氧气氛。
  11. 一种锂离子电池,其特征在于,包括权利要求1~6任意一项所述的电池正极材料。
PCT/CN2023/116094 2022-11-11 2023-08-31 电池正极材料及其制备方法以及应用 WO2024098904A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211412387.2A CN115602820A (zh) 2022-11-11 2022-11-11 一种电池正极材料及其制备方法以及应用
CN202211412387.2 2022-11-11

Publications (1)

Publication Number Publication Date
WO2024098904A1 true WO2024098904A1 (zh) 2024-05-16

Family

ID=84853108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116094 WO2024098904A1 (zh) 2022-11-11 2023-08-31 电池正极材料及其制备方法以及应用

Country Status (2)

Country Link
CN (1) CN115602820A (zh)
WO (1) WO2024098904A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115602820A (zh) * 2022-11-11 2023-01-13 天津巴莫科技有限责任公司(Cn) 一种电池正极材料及其制备方法以及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107492636A (zh) * 2017-07-10 2017-12-19 河南大学 一种锂离子电池复合正极材料的制备方法
CN108933241A (zh) * 2018-07-09 2018-12-04 武汉艾特米克超能新材料科技有限公司 一种双层包覆的正极材料及其制备方法、正极片和锂电池
CN112018378A (zh) * 2020-05-26 2020-12-01 宜宾锂宝新材料有限公司 一种减小高电压三元正极材料金属溶出的包覆改性方法
CN112310354A (zh) * 2019-07-29 2021-02-02 北京卫蓝新能源科技有限公司 一种锂电池复合正极材料及其制备方法
CN112531149A (zh) * 2020-12-08 2021-03-19 珠海冠宇电池股份有限公司 正极活性物质及正极片及锂离子电池
CN113764628A (zh) * 2020-06-01 2021-12-07 蜂巢能源科技有限公司 一种双层包覆四元正极材料及其制备方法
CN114784246A (zh) * 2022-04-25 2022-07-22 北京卫蓝新能源科技有限公司 一种正极材料、其制备方法及应用
CN115602820A (zh) * 2022-11-11 2023-01-13 天津巴莫科技有限责任公司(Cn) 一种电池正极材料及其制备方法以及应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107492636A (zh) * 2017-07-10 2017-12-19 河南大学 一种锂离子电池复合正极材料的制备方法
CN108933241A (zh) * 2018-07-09 2018-12-04 武汉艾特米克超能新材料科技有限公司 一种双层包覆的正极材料及其制备方法、正极片和锂电池
CN112310354A (zh) * 2019-07-29 2021-02-02 北京卫蓝新能源科技有限公司 一种锂电池复合正极材料及其制备方法
CN112018378A (zh) * 2020-05-26 2020-12-01 宜宾锂宝新材料有限公司 一种减小高电压三元正极材料金属溶出的包覆改性方法
CN113764628A (zh) * 2020-06-01 2021-12-07 蜂巢能源科技有限公司 一种双层包覆四元正极材料及其制备方法
CN112531149A (zh) * 2020-12-08 2021-03-19 珠海冠宇电池股份有限公司 正极活性物质及正极片及锂离子电池
CN114784246A (zh) * 2022-04-25 2022-07-22 北京卫蓝新能源科技有限公司 一种正极材料、其制备方法及应用
CN115602820A (zh) * 2022-11-11 2023-01-13 天津巴莫科技有限责任公司(Cn) 一种电池正极材料及其制备方法以及应用

Also Published As

Publication number Publication date
CN115602820A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
CN109830651B (zh) 一种双层包覆改性的三元正极高镍材料及其制备方法
US20210367233A1 (en) Ternary positive electrode material and preparation method therefor, and lithium-ion battery
CN101855755B (zh) 非水电解液二次电池用Li-Ni类复合氧化物颗粒粉末及其制造方法,和非水电解质二次电池
CN105576233B (zh) 一种镍基三元正极材料及其制备方法
CN110504432B (zh) 镍钴锰酸锂复合材料及其制备方法、锂电池正极及其制备方法、锂电池和供电装置
WO2022011939A1 (zh) 无钴正极材料及其制备方法以及锂离子电池正极和锂电池
WO2011155523A1 (ja) リチウム複合化合物粒子粉末及びその製造方法、並びに非水電解質二次電池
CN110649252A (zh) 锂电池三元材料LiNi0.8Co0.1Mn0.1O2表面包覆Li2ZrO3的方法
CN109873140B (zh) 一种锂离子电池石墨烯复合三元正极材料及其制备方法
CN105552360A (zh) 一种改性的镍钴锰酸锂正极材料及其制备方法
CN111422925A (zh) 高镍三元正极材料及其制备方法、锂离子电池和电动汽车
WO2016202162A1 (zh) 一种锂离子负极材料Li4Ti5O12/C的合成方法
CN111564606A (zh) 一种锂离子电池用包覆型多元正极材料、其制备方法及用途
EP4317080A1 (en) Composite material and preparation method therefor and lithium-ion battery positive electrode material
TWI667837B (zh) 一種富鋰氧化物正極材料及其製備方法以及一種鋰離子電池
WO2023160450A1 (zh) 一种具有热安全性的高镍锂离子电池正极材料及其制备方法
WO2024098904A1 (zh) 电池正极材料及其制备方法以及应用
CN113571679A (zh) 一种尖晶石氧化物包覆富锂锰基正极材料
KR20230038262A (ko) 양극재 및 그의 제조 방법, 복합 양극재, 및 전지
Zong et al. Flux preparation of LiNi0. 6Co0. 2Mn0. 2O2 micron‐sized crystals as cathode materials for highly reversible lithium storage
JP2001243949A (ja) リチウム二次電池正極活物質用リチウム遷移金属複合酸化物、その製造方法およびそれを用いたリチウム二次電池
Ding et al. Morphology-controllable synthesis and excellent electrochemical performance of Ni-rich layered NCM622 as cathode materials for lithium-ion batteries via glycerin-assisted solvothermal method
TWI550938B (zh) 鋰離子電池正極材料及其製備方法
CN113871589A (zh) 一种熔盐辅助钛酸锂包覆的富锂锰基正极材料及其制备方法
WO2023226209A1 (zh) 一种超高镍三元正极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887599

Country of ref document: EP

Kind code of ref document: A1