WO2024098656A1 - 风电叶片端面铣削机 - Google Patents

风电叶片端面铣削机 Download PDF

Info

Publication number
WO2024098656A1
WO2024098656A1 PCT/CN2023/086796 CN2023086796W WO2024098656A1 WO 2024098656 A1 WO2024098656 A1 WO 2024098656A1 CN 2023086796 W CN2023086796 W CN 2023086796W WO 2024098656 A1 WO2024098656 A1 WO 2024098656A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
wind turbine
turbine blade
radial
axial
Prior art date
Application number
PCT/CN2023/086796
Other languages
English (en)
French (fr)
Inventor
李生庆
Original Assignee
苏州复玖机械科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州复玖机械科技有限公司 filed Critical 苏州复玖机械科技有限公司
Publication of WO2024098656A1 publication Critical patent/WO2024098656A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/16Working surfaces curved in two directions
    • B23C3/18Working surfaces curved in two directions for shaping screw-propellers, turbine blades, or impellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to the technical field of wind turbine blade processing, and specifically to a wind turbine blade end milling machine.
  • a wind turbine usually consists of a tower, wind turbine blades on the tower, a hub, a nacelle, a transmission system in the nacelle, a control system and a generator.
  • the wind turbine blades and the hub are generally connected as a whole through threads, so embedded parts, i.e. bolts, are set at the root end of the blade during the blade manufacturing process.
  • the root end of the blade i.e. the root end face of the blade (also called the root end face of the blade)
  • the root end face of the blade also called the root end face of the blade
  • the milling process is used to make its flatness meet the specified requirements.
  • the present invention provides a wind turbine blade end milling machine, which includes:
  • a support frame comprising a vertical frame for receiving a wind turbine blade therein;
  • a fixing and pressing device is installed on each corner of the vertical frame, and two fixing and pressing devices on each two opposite corners are arranged radially opposite to each other and are used to fix and press the wind turbine blade radially from the outside;
  • a three-axis linkage device comprising an X-axis beam assembly, a Z-axis moving mechanism, an X-axis moving mechanism and a Y-axis feeding mechanism, wherein the X-axis beam assembly is movably mounted on the left and right sides of the vertical frame via the Z-axis moving mechanism at its rear side, the X-axis moving mechanism is configured such that the X-axis is movably mounted on the front side of the X-axis beam assembly, and the Y-axis feeding mechanism is mounted on the top of the X-axis beam assembly via the X-axis moving mechanism;
  • a milling head whose Y-axis is movably mounted on the Y-axis feed mechanism and comprises a milling cutter head for rotary milling of studs on the root end surface of a wind turbine blade;
  • the motion controller is electrically connected to the fixing and pressing device, the three-axis linkage device and the milling head respectively, so as to realize the fixing and pressing of the wind turbine blades and the automatic milling of the studs.
  • the wind turbine blades can be clamped radially relative to each other from the outside of the wind turbine blades, making the fixed clamping easy to operate and making the production safe; due to the setting of the three-axis linkage device, the milling head can be driven by it to move and feed along the Y-axis, X-axis and Z-axis to complete the milling.
  • position sensors are provided on the Z-axis moving mechanism, the X-axis moving mechanism and the Y-axis feeding mechanism, and a ranging laser head is installed on the milling head for sensing the actual height difference of the stud relative to the root end face of the wind turbine blade, and the motion controller is configured to control the three-axis linkage device according to the actual height difference sensed by the ranging laser head, so that the Z-axis moving mechanism and the X-axis moving mechanism can move along the Z-axis direction and the X-axis direction respectively, thereby driving the Y-axis feeding mechanism and the milling head to move in a circular trajectory adapted to the distribution shape of the studs on the root end face of the wind turbine blade, and the Y-axis feeding mechanism moves along the Y-axis direction, thereby driving the milling head to feed along the Y-axis, and the milling cutter head rotates to mill the studs.
  • the motion controller can accurately control the movement position of the Z-axis moving mechanism, the X-axis moving mechanism and the Y-axis feeding mechanism in real time; through the setting of the ranging laser head, the motion controller can process information based on the actual drop of the stud relative to the root end face of the wind turbine blade measured by the ranging laser head, and control the three-axis linkage device and the milling head to move.
  • the circular trajectory movement formed by the three-axis linkage device driving the milling head to move along the Z-axis and the X-axis at the same time can make the milling head cover all the studs.
  • the three-axis linkage device drives the milling head to move along the Y-axis so that the milling head can feed toward the studs, and the rotation of the milling head can complete the milling of the studs.
  • the entire milling process is automated under the control of the motion controller.
  • the motion controller includes an information acquisition module electrically connected to the ranging laser head, a data processing module electrically connected to the information acquisition module, and a control module electrically connected to the data processing module, wherein the information acquisition module is configured to acquire actual drop, and the data processing module is configured to calculate the actual distance between the milling head and the stud and the number of circles along the circular trajectory required by the milling head according to the actual drop, so that the control module controls the three-axis linkage device and the milling head movement.
  • the laser sensor can transmit the actual drop on the stud to the information acquisition module, and the data processing module calculates the highest point of the stud and the actual distance between the highest point and the milling head, so that the control module guides the three-axis linkage device to move and guide the milling head to start milling from the highest point.
  • the X-axis beam assembly includes an X-axis beam, a left beam connecting seat and a right beam connecting seat installed on the left and right sides of the X-axis beam, and an X-axis slide rail installed on the top of the X-axis beam, wherein the left beam connecting seat and the right beam connecting seat are fixedly connected to the Z-axis moving mechanism at their rear sides.
  • the X-axis crossbeam assembly plays a role in supporting the X-axis moving mechanism, Y-axis feed mechanism and milling head, and at the same time plays a role in connecting them to the Z-axis moving mechanism.
  • the Z-axis moving mechanism includes a left connecting seat and a right connecting seat respectively fixedly connected to the left beam connecting seat and the right beam connecting seat, a Z-axis moving long shaft rotatably mounted on the left connecting seat and the right connecting seat at both ends, a Z-axis servo motor mounted on the right connecting seat and driving the Z-axis moving long shaft, a left Z-direction gear and a right Z-direction gear mounted on the inner sides of the left connecting seat and the right connecting seat on the Z-direction moving long shaft, a left Z-direction rack and a right Z-direction rack mounted on the left and right sides of the vertical frame respectively and suitable for respectively engaging with the left Z-direction gear and the right Z-direction gear, wherein a Z-axis encoder as a position sensor is installed on the Z-axis servo motor, and the left connecting seat and the right connecting seat are both provided with an X-direction open slide and a Y-direction open slide suitable for slidingly connecting the left and right and
  • the front side of the Z-axis moving mechanism is fixed on the rear side of the X-axis crossbeam assembly, and the rear side of the Z-axis moving mechanism is slidably connected to one of the left and right sides of the frame via the X-axis open slide and the Y-axis open slide on each connecting seat of the left connecting seat and the right connecting seat, and on the other hand, the left Z-axis gear and the right Z-axis gear driven by the Z-axis moving long shaft are respectively meshed with the left Z-axis rack and the right Z-axis rack provided on the left and right sides of the frame to realize Z-axis movement, thereby realizing the vertical up and down movement of the Z-axis moving mechanism along the frame.
  • the Z-axis servo motor is driven and connected to the Z-axis movable long axis via the Z-axis reducer, and the Z-axis reducer is installed on the outer side of the right connecting seat via the reducer connecting seat.
  • the Z-axis servo motor can drive the Z-axis moving long axis via the Z-axis reducer, and then the Z-axis moving long axis drives the left Z-axis gear and the right Z-axis gear thereon to rotate together, so that the Z-axis moving mechanism moves up and down along the left Z-axis rack and the right Z-axis rack fixed on the left and right sides of the frame, thereby driving the X-axis crossbeam assembly and the X-axis moving mechanism and Y-axis feed mechanism thereon to move up and down.
  • the X-axis moving mechanism includes an X-axis servo motor, an X-axis moving seat slidably connected to the X-axis slide rail, an X-axis gear rotatably mounted on the X-axis moving seat, and an X-axis rack fixedly mounted on the front side of the X-axis beam and meshing with the X-axis gear, wherein a front motor seat is disposed at the bottom of the X-axis moving seat, the X-axis servo motor is mounted on the front motor seat and drives the X-axis gear located at the rear side of the front motor seat, and an X-axis encoder as a position sensor is installed on the X-axis servo motor.
  • the X-axis servo motor can drive the X-axis gear to move along the X-axis rack, so that the entire X-axis moving seat drives the Y-axis feed mechanism to move along the X-axis direction.
  • the Y-axis feeding mechanism includes a Y-axis servo motor fixedly mounted on the front side of the X-axis moving seat, and a Y-axis moving seat slidably mounted on the X-axis moving seat, wherein the Y-axis servo motor drives the Y-axis moving seat, and the milling head is mounted on the Y-axis moving seat.
  • the Y-axis feeding mechanism can drive the milling head to feed along the Y-axis direction via the Y-axis moving seat.
  • the support frame also includes a horizontal frame for mounting the vertical frame thereon, the horizontal frame includes a lower fixed frame for being placed on the working platform and an upper movable frame slidably mounted on the lower fixed frame along the Y-axis, wherein the vertical frame is mounted on the upper movable frame.
  • the position of the vertical frame along the axis of the wind turbine blade can be adjusted by adjusting the position of the upper movable frame along the Y-axis when necessary.
  • the vertical frame includes a left column, a right column, an upper beam and a lower beam, wherein the Z-axis moving mechanism is movably installed on the left column and the right column along the Z-axis.
  • the left connecting seat and the right connecting seat on the Z-axis moving mechanism can be movably installed on the left column and the right column respectively along the Z-axis.
  • the above-mentioned wind turbine blade end milling machine also includes a motion balancing system for a three-axis linkage device, which includes a nitrogen tank, a pair of balancing cylinders, a pair of balancing chains, a pair of cylinder head moving sprockets, and two pairs of fixed angle sprockets, wherein each balancing cylinder is connected to the nitrogen tank gas circuit, each cylinder head moving sprocket is installed on the balancing cylinder head of the corresponding balancing cylinder, each pair of fixed angle sprockets is installed on the top of one side of the vertical frame, one end of each balancing chain is connected to the back of one side of the vertical frame, and the other end is connected to the top side of the Z-axis moving mechanism of the three-axis linkage device, and the balancing chain between the one end and the other end is meshed with the cylinder head moving sprocket and the pair of fixed angle sprockets in turn, so
  • the motion balancing system can apply an upward pulling force to the Z-axis moving mechanism through the balancing chain (the pulling force can balance the downward gravity and upward inertia of the Z-axis moving mechanism), so that the entire three-axis linkage device moves upward at a uniform speed driven by the Z-axis moving mechanism; and when the Z-axis moving mechanism of the three-axis linkage device needs to move downward along the frame driven by an external force, the motion balancing system can apply another upward pulling force to the Z-axis moving mechanism through the balancing chain (the pulling force can balance the downward gravity and downward inertia of the Z-axis moving mechanism), so that the entire three-axis linkage device moves downward at a uniform speed driven by the Z-axis
  • each balance chain is connected to a fixed support leg provided on the back of one side of the vertical frame; the other end of the balance chain is connected to the lifting ear on the top side of the Z-axis moving mechanism of the three-axis linkage device; each pair of fixed angle sprockets is slidably installed on the top of one side of the vertical frame via the upper angle of the balance cylinder.
  • the three sections of the balance chain along the Z-axis direction can be parallel to each other and perpendicular to a section of the balance chain on the top of the vertical frame.
  • the fixed pressing device includes a mounting base, a radial pressing mechanism installed on the mounting base and including a radial conformal pressure plate, and an axial positioning mechanism including an axial backing plate, wherein the radial conformal pressure plate is configured to be radially movable between a non-working position retracted radially outward and a working position extending radially inward to press the outer circumferential surface of the wind turbine blade, and the axial backing plate is configured to be rotatably converted between an axial release position that is disengaged from the axial positioning of the root end face of the wind turbine blade and an axial positioning position that axially presses against the root end face of the wind turbine blade.
  • the wind turbine blades can be axially positioned and radially clamped through the radial clamping mechanism and the axial positioning mechanism; the wind turbine blades can be clamped on the outside of the wind turbine blades through the radial movement conversion of the radial conformal pressure plate between the above two positions, which saves time, labor and is easy to observe.
  • the radial clamping mechanism is arranged so that its radial conformal pressure plate radially clamps the wind turbine blade from the outside of the wind turbine blade when the radial conformal pressure plate is in the working position
  • the axial positioning mechanism is arranged so that when the radial conformal pressure plate radially extends inward from its non-working position to its working position, the axial backing plate rotates from its axial positioning position to its axial release position.
  • the wind turbine blade can be axially positioned first through the axial positioning mechanism, and then the fixed clamping device starts working to make the radial conformal pressure plate enter its working position.
  • the mounting base includes a base body and mounting beams located on both sides of the base body, wherein the radial clamping mechanism and the axial positioning device are installed on the base body, and the mounting beams are configured to be installed on the corners of the vertical frame in an adjustable manner.
  • the installation position of the mounting beam on the corner of the vertical frame can be adjusted according to the diameter of the wind turbine blade.
  • waist-shaped assembly holes are provided on the mounting beam.
  • the setting of the waist-shaped assembly hole makes it easy to adjust the installation position of the mounting beam and has a simple structure.
  • the radial clamping mechanism also includes a clamping electric cylinder, which is drivably connected to a radial conformal pressure plate, wherein a pressure sensor is installed on the radial conformal pressure plate.
  • the radial conformal pressure plate can realize position conversion under the drive of the clamping electric cylinder, and through the setting of the pressure sensor, the clamping electric cylinder can be stopped according to the force with which the radial conformal pressure plate presses the outer circumferential surface of the wind turbine blade.
  • the radial flexible pressure plate includes a pressing arc plate and a buffer rubber pad attached to the pressing arc plate.
  • the radial conformal pressure plate and the outer circumference of the wind turbine blade are in flexible contact, avoiding damage to the outer circumference of the wind turbine blade and increasing the friction at the same time.
  • the size of the clamping arc plate is designed to match the size of the outer circumferential surface of the workpiece.
  • the axial positioning mechanism also includes a positioning servo motor, a positioning reducer and a positioning shaft, wherein the positioning servo motor is driven and connected to the positioning shaft via the positioning reducer, the positioning shaft is connected to the axial support plate, and a touch-type limit switch is arranged on the axial support plate.
  • the axial backing plate can be driven by the positioning servo motor and driven by the positioning shaft to realize rotation conversion between two positions.
  • FIG1 is a perspective schematic diagram of a wind turbine blade end face milling machine according to a specific embodiment of the present invention.
  • FIG2 is a three-dimensional exploded view of the wind turbine blade end milling machine shown in FIG1 ;
  • FIG3 is an enlarged schematic diagram of the three-axis linkage device (on which a milling head is installed) of the wind turbine blade end milling machine shown in FIG1 ;
  • FIG4 is a three-dimensional exploded view of the three-axis linkage device shown in FIG3 (on which a milling head is mounted);
  • FIG5 is another three-dimensional exploded view of the three-axis linkage device shown in FIG3 (on which the milling head is mounted);
  • FIG6 is an enlarged schematic diagram of a part D of the wind turbine blade end milling machine shown in FIG1 ;
  • FIG7 is a right side plan view of the wind turbine blade end milling machine shown in FIG1 ;
  • FIG8 is an enlarged schematic diagram of a part E of the wind turbine blade end face milling machine shown in FIG7 ;
  • FIG9 is an enlarged schematic diagram of the three-axis linkage device (on which a milling head is mounted) shown in FIG3 after the Z-axis moving mechanism and the X-axis crossbeam assembly are removed;
  • FIG10 is an exploded view of the three-dimensional structure shown in FIG9;
  • FIG. 11 is a perspective enlarged schematic diagram of the right side connecting seat of the Z-axis moving mechanism of the three-axis linkage device shown in FIG. 3 ;
  • FIG12 is an enlarged perspective view of the left side connecting seat of the Z-axis moving mechanism of the three-axis linkage device shown in FIG3 ;
  • FIG13 is a schematic diagram of the structural layout of the motion balance system of the wind turbine blade end milling machine shown in FIG1 in one state;
  • FIG14 is a schematic diagram of the structural layout of the motion balance system shown in FIG13 in another state
  • Fig. 15 is an enlarged view of the portion above the line F-F of the square frame face milling machine shown in Fig. 7;
  • FIG16 is an enlarged perspective schematic diagram of the fixing and clamping device shown in FIG2 , in which the axial backing plate is in an axial positioning position;
  • FIG17 is a three-dimensional exploded view of the fixing and clamping device shown in FIG16;
  • FIG18 is a three-dimensional view of the fixing and clamping device shown in FIG16 from another angle, in which the axial backing plate is in an axial release position;
  • FIG19 is a perspective view of the fixing and clamping device shown in FIG16 from another angle;
  • Fig. 20 is a cross-sectional view of the fixed pressing device shown in Fig. 19 along line A-A;
  • Fig. 21 is a cross-sectional view of the fixing and clamping device shown in Fig. 19 along line B-B;
  • FIG22 is a rear view of the wind turbine blade end milling machine shown in FIG1 , which clearly shows the layout of the fixed clamping device;
  • FIG23 is an enlarged cross-sectional view of the wind turbine blade end milling machine shown in FIG22 along the C-C line;
  • FIG. 24 is a schematic structural diagram of the wind turbine blade end milling machine shown in FIG. 22 in a working state.
  • the "X direction”, “Y direction” and “Z direction” referred to in this article refer to the directions along the X-axis, along the Y-axis and along the Z-axis respectively.
  • the X-axis direction refers to the extension direction of the X-beam, that is, the left-right direction
  • the Y-axis direction refers to the front-back direction
  • the Z-axis direction refers to the vertical up-down direction.
  • radially outward refers to the radial conformal pressure plate moving away from the wind turbine blade along the radial direction of the wind turbine blade as the workpiece
  • radially inward refers to the radial conformal pressure plate moving close to the wind turbine blade along the radial direction of the wind turbine blade.
  • a wind turbine blade end milling machine 100 includes a support frame 6, a fixed clamping device 8, a three-axis linkage device 200, a milling head 9, a motion controller, and a motion balance system 4 for the three-axis linkage device 200, wherein the support frame 6 includes a vertical square frame 101 for receiving a wind turbine blade 399 therein; the support frame 6 also includes a horizontal frame 60 for mounting the vertical square frame 101 thereon, the horizontal frame 60 includes a lower fixed frame 61 for being placed on a working platform (such as the ground) and an upper movable frame 62 slidably mounted on the lower fixed frame 61 along the Y-axis, wherein the vertical square frame 101 is mounted on the upper movable frame 62; the vertical square frame 101 includes a left column 102, a right column 104, a lower beam 107 and an upper beam 108.
  • a fixing and clamping device 8 is installed on each corner 103 of the vertical frame 101, and the two fixing and clamping devices 8 on every two opposite corners 103 are arranged radially opposite to each other, and are used to fix and clamp the wind turbine blade 300 radially from the outside (see Figure 24).
  • the three-axis linkage device 200 includes an X-axis beam assembly 1, a Z-axis moving mechanism 3, an X-axis moving mechanism 5 and a Y-axis feeding mechanism 7, wherein the X-axis beam assembly 1 is movably mounted on the left and right sides of the vertical frame 101 (i.e., the left column 102 and the right column 104) along the Z axis via the Z-axis moving mechanism 3 at its rear side, the X-axis moving mechanism 5 is configured to be movably mounted on the front side of the X-axis beam assembly 1 along the X axis, and the Y-axis feeding mechanism 7 is movably mounted on the left and right sides of the vertical frame 101 along the Z axis via the Z-axis moving mechanism 3.
  • the X-axis beam assembly 1 is movably mounted on the left and right sides of the vertical frame 101 (i.e., the left column 102 and the right column 104) along the Z axis via the Z-axis moving mechanism 3 at its rear
  • the X-axis moving mechanism 5 is installed on the top of the X-axis beam assembly 1; the milling head 9 is movably installed on the Y-axis feeding mechanism 7 along the Y-axis, and includes a milling cutter head 94 (see Figure 10) for rotationally milling the stud 301 (see Figure 24) on the root end face of the wind turbine blade 300; the motion controller is electrically connected to the motion balance system 4, the fixing and clamping device 8, the three-axis linkage device 200 and the milling head 9 respectively, so as to realize the fixing and clamping of the wind turbine blade 300 and the automated and precise milling of the stud 301.
  • the Z-axis moving mechanism 3, the X-axis moving mechanism 5 and the Y-axis feeding mechanism 7 are all provided with position sensors (not shown in the figure), and the milling head 9 is equipped with a ranging laser head 91 for sensing the actual height difference of the stud 301 relative to the root end face of the wind turbine blade 300, and the motion controller is configured to control the three-axis linkage device 200 according to the actual height difference sensed by the ranging laser head 91, so that the Z-axis moving mechanism 3 and the X-axis moving mechanism 5 can move along the Z-axis direction and the X-axis direction respectively, so as to drive the Y-axis feeding mechanism 7 and the milling head 9 to move in a circular trajectory adapted to the distribution shape (circular, see FIG24) of the stud 301 on the root end face of the wind turbine blade 300, and to move the Y-axis feeding mechanism 7 along the Y-axis direction
  • the motion controller includes an information acquisition module (not shown) electrically connected to the ranging laser head 91, a data processing module (not shown) electrically connected to the information acquisition module, and a control module (not shown) electrically connected to the data processing module, wherein the information acquisition module is configured to collect the above-mentioned actual drop, and the data processing module is configured to calculate the actual distance between the milling head 9 and the stud 301 and the number of circles that the milling head 9 needs to move along a circular trajectory according to the above-mentioned actual drop, so that the control module controls the movement of the three-axis linkage device 200 and the milling head 9.
  • the information acquisition module is configured to collect the above-mentioned actual drop
  • the data processing module is configured to calculate the actual distance between the milling head 9 and the stud 301 and the number of circles that the milling head 9 needs to move along a circular trajectory according to the above-mentioned actual drop, so that the control module controls the movement of the three-axis linkage device 200 and the
  • the X-axis beam assembly 1 includes an X-axis beam 10, a left beam connecting seat 11 and a right beam connecting seat 12 installed on the left and right sides of the X-axis beam 10, and an X-axis slide rail 15 installed on the top of the X-axis beam 10.
  • the Z-axis moving mechanism 3 is fixed on the rear side of the X-axis beam 10 of the X-axis beam assembly 1, and is configured to be movably connected to the left and right sides of the vertical frame 101 in a Z-axis manner (i.e., movably connected along the Z-axis direction), i.e., the left column 102 and the right column 104 of the vertical frame 101.
  • the Z-axis moving mechanism 3 includes a Z-axis servo motor 30, a left connecting seat 31 and a right connecting seat 32, a Z-axis moving long shaft 33, a left Z-axis gear 34 and a right Z-axis gear 35, a left Z-axis rack 36 and a right Z-axis rack 37.
  • the Z-axis servo motor 30 is mounted on the right connecting seat 32 and drives the connected Z-axis moving long shaft 33.
  • the left connecting seat 31 and the right connecting seat 32 are respectively fixedly connected to the left crossbeam connecting seat 11 and the right crossbeam connecting seat 12.
  • Both ends of the Z-axis moving long shaft 33 are rotatably mounted on the left connecting seat 31 and the right connecting seat 32, respectively.
  • the left Z-axis gear 34 and the right Z-axis gear 35 are respectively mounted on the Z-axis moving long shaft 33 on the inner sides of the left connecting seat 31 and the right connecting seat 32.
  • the left Z-direction rack 36 and the right Z-direction rack 37 are respectively mounted on the left column 102 and the right column 104 of the vertical frame 101, and are suitable for engaging with the left Z-direction gear 34 and the right Z-direction gear 35 respectively.
  • the left connecting seat 31 and the right connecting seat 32 are both provided with an X-direction open slide 38 and a Y-direction open slide 39.
  • the X-direction open slide 38 and the Y-direction open slide 39 thereon are respectively slidably connected to the first slide rail 184 and the second slide rail 194 on the right column 104 of the vertical frame 101.
  • the Z-axis servo motor 30 is driven to connect to the Z-direction movable long shaft 33 via the Z-axis reducer 330, and the Z-axis reducer 330 is installed on the outer side of the right connecting seat 32 via the reducer connecting seat 332.
  • the X-axis moving mechanism 5 is configured to be movably installed on the front side of the X-axis beam assembly 1 along the X-axis (i.e., movably installed along the X-axis direction), and includes an X-axis servo motor 50, an X-axis moving seat 55, an X-direction gear 57, and an X-direction rack 59.
  • the X-axis moving seat 55 is slidably connected to the X-direction slide rail 15; the X-direction gear 57 is rotatably installed on the X-axis moving seat 55; the X-direction rack 59 is fixedly installed on the front side of the X-axis beam 10 (as clearly shown in Figure 5), and is meshed with the X-direction gear 57.
  • a front motor seat 56 is provided at the bottom of the X-axis moving seat 55, and the X-axis servo motor 50 is installed on the front side of the front motor seat 56, and the X-direction gear 57 is located on the rear side of the front motor seat 56 and is driven and connected by the X-axis servo motor 50.
  • the Y-axis feed mechanism 7 is installed on the top of the X-axis beam assembly 1 via the X-axis moving mechanism 5, and is configured to support the milling head 9 movably along the Y-axis (i.e., movably along the Y-axis direction).
  • the Y-axis feed mechanism 7 includes a Y-axis servo motor 70 and a Y-axis moving seat 75, wherein the Y-axis servo motor 70 is fixedly installed on the front side of the X-axis moving seat 55 and drives the Y-axis moving seat 75, and the Y-axis moving seat 75 is slidably installed on the X-axis moving seat 55, so that it can move forward and backward along the Y-axis direction relative to the X-axis moving seat 55 under the drive of the Y-axis servo motor 70.
  • encoders are provided on the Z-axis servo motor 30, the X-axis servo motor 50 and the Y-axis servo motor 70. These encoders are electrically connected to the motion controller as position sensors, so that the motion controller can accurately control the movement of the three-axis linkage device 200 in the three directions of X-axis, Y-axis and Z-axis by controlling the start and stop of the Z-axis servo motor 30, the X-axis servo motor 50 and the Y-axis servo motor 70.
  • the milling head 9 is installed on the Y-axis moving base 75, and the milling head 9 includes a milling mounting support 92, a milling power box 90 installed on the milling mounting support 92, and the above-mentioned milling cutter head 94 driven by the milling power box 90.
  • a ranging laser head 91 is installed on the milling power box 90 and moves together with the milling head 9, so that the milled end face of the workpiece can be measured before and after processing.
  • the present invention sets a ranging laser head on the milling head, so that the motion controller can accurately calculate the required milling amount and number of milling circles (i.e., the number of circles of the circular trajectory mentioned above) of the stud.
  • the motion controller can accurately calculate the required milling amount and number of milling circles (i.e., the number of circles of the circular trajectory mentioned above) of the stud.
  • the motion controller controls the three-axis linkage device 200 to move, driving the distance measuring laser head 91 to move an arc (i.e., a circular trajectory) with the center of the circle of the root end face of the wind turbine blade as the center of the circle.
  • the distance measuring laser head 91 transmits the actual drop of the stud on the root end face of the wind turbine blade relative to the root end face to the information acquisition module of the motion controller, and the data processing module processes it to calculate the highest point of all the studs on the root end face of the wind turbine blade, thereby obtaining the actual distance between the absolute position of the highest point and the milling cutter head 94 of the milling head 9.
  • the control module of the motion controller guides the three-axis linkage device 200 to drive the milling head 9 to move in three axial directions, and at the same time, the milling cutter head 94 of the milling head 9 rotates to mill the stud from the highest point;
  • the data processing module automatically calculates how many turns (i.e., the predetermined number of turns) are needed to mill flat. In this case, once the milling head 9 completes the predetermined number of turns, the milling head 9 automatically stops milling (by controlling the milling power box 90 to stop by the motion controller) and automatically retreats to a safe distance (by controlling the three-axis linkage device 200 by the motion controller).
  • the motion controller can again drive the ranging laser head 91 to move an arc program with the center of the root end face of the wind turbine blade as the center, and obtain the actual height difference of the stud relative to the root end face again, thereby knowing the peak-to-valley value of the stud, that is, the plane processing accuracy, to verify whether the plane processing accuracy is qualified.
  • the present invention can measure and evaluate the studs 301 on the root end face of the wind turbine blade before milling and after milling through the ranging laser head 91, thereby ensuring the milling accuracy; at the same time, through three-axis linkage control, it will not require rotating electric stages for power supply like the traditional winding method, and the power line and signal line can be connected via the drag chain.
  • the advantage of this is that the signal is stable and free of interference, which also reflects the safety and reliability of the present invention.
  • a motion balance system 4 is adopted in this embodiment, which will be described in detail below.
  • the Z-axis servo motor 30 of the Z-axis moving mechanism 3 can also be set as a torque motor.
  • other balancing methods can also be adopted.
  • the motion balancing system 4 includes a nitrogen tank 41, a pair of balancing cylinders 43, a pair of balancing chains 45 (Figures 13 and 14 only show the balancing chain 45 corresponding to one balancing cylinder 43), a pair of cylinder head moving sprockets 47, and two pairs of fixed angle sprockets 49, wherein each balancing cylinder 43 is connected to the nitrogen tank 41 through an air path 413 (i.e., connected in a pressure-through manner), and each cylinder head moving sprocket 47 is installed on the balancing cylinder head 430 of the corresponding balancing cylinder 43.
  • Each pair of fixed angle sprockets 49 is installed on the top of one side of the vertical frame 101, one end 451 of each balance chain 45 is connected to the back of one side of the vertical frame 101, and the other end 452 is connected to the top side of the Z-axis moving mechanism 3 of the three-axis linkage device 200, and the balance chain 45 between the one end 451 and the other end 452 is meshed with the cylinder head moving sprocket 47 and a pair of fixed angle sprockets 49 in sequence, so that the three-axis linkage device 200 can move vertically up and down in a balanced manner on the vertical frame 101 by means of the Z-axis moving mechanism 3.
  • each balancing chain 45 is connected to a fixed support leg 105 provided on the back of one side of the vertical frame 101.
  • Figure 15 shows that one of the balancing chains 45 is installed on the right side of the vertical frame 101 (i.e., the right column 104) (the other balancing chain 45 is installed on the left side of the vertical frame 101, i.e., the left column 102, but it is not shown in the figure), and accordingly, the fixed support leg 105 in the figure is also installed on the right column 104.
  • the other end 452 of the balance chain 45 is connected to the ear 44 on the top side of the Z-axis moving mechanism 3 of the three-axis linkage device 200.
  • the ear 44 is arranged on the side connecting seat (marked with numbers 31 and 32 in Figure 6) of the Z-axis moving mechanism 3 of the three-axis linkage device 200.
  • Figures 6 and 8 only show the right side connecting seat 32 of the Z-axis moving mechanism 3.
  • each pair of fixed angle sprockets 49 is installed on the top of one side of the vertical frame 101 via the upper corner 46 of the balance cylinder.
  • the motion balance system 4 is configured to maintain balance during the vertical up and down movement of the Z-axis moving mechanism 3 of the three-axis linkage device 200, that is, to keep the Z-axis moving mechanism 3 in uniform motion during the vertical up and down movement, thereby ensuring the motion balance of the entire three-axis linkage device 200, so as to effectively ensure the normal milling action of the entire milling machine.
  • the tops of the left connecting seat 31 and the right connecting seat 32 of the Z-axis moving mechanism 3 of the three-axis linkage device 200 are provided with lifting ears 44, and the tops of the left column 102 and the right column 104 are provided with balancing cylinder upper corners 46.
  • the nitrogen tank 1 is placed on the horizontal frame 60 and is located on the side of the right column 104, and a pair of balancing cylinders 43 connected to the nitrogen tank 41 are arranged on the back side of the left column 102 and the right column 104, respectively, and the three-axis linkage device 200 is located on the front side of the vertical frame 101. It should be understood that since the three-axis linkage device 200 has a large mass and needs to move vertically up and down during operation, it is very easy to move down due to gravity, but it is more laborious to move up.
  • the motion balancing system 4 in the present embodiment solves this problem of the three-axis linkage device 200, so that the vertical up and down movement of the three-axis linkage device 200 is balanced and the vertical up and down movement is kept at a uniform speed.
  • FIG. 13 shows that the three-axis linkage device 200 is at the lower limit position (i.e., the low position)
  • FIG. 2 shows that the three-axis linkage device 200 is at the upper limit position (i.e., the high position)
  • the cylinder head moving sprocket 47 is correspondingly at its high position and low position, respectively.
  • a pair of balancing cylinders 43 and the left column 102 and the right column 104 of the vertical frame 101 are fixedly mounted on the upper movable frame 62 of the horizontal frame 60, so they can move along the Y-axis relative to the lower fixed frame 61 together with the upper movable frame 62.
  • the vertical movement amplitude of the three-axis linkage device 200 is twice the movement amplitude of the balancing cylinder head 430.
  • the vertical movement range of the three-axis linkage device 200 i.e., the distance between the upper limit position and the lower limit position
  • the three-axis linkage device 200 is not an innovation of the present invention, so its other specific structures will not be described in detail here.
  • the balance cylinder 43 is a standard part, and its own structure and working method are not the innovative part of the present invention, so it will not be described in detail here.
  • the balance cylinder 43 quickly adjusts the internal pressure by being connected to the gas path of the nitrogen tank 41, so that the tension applied by the balance cylinder 43 to the ears 44 of the left connecting seat 31 and the right connecting seat 32 of the Z-axis moving mechanism 3 by means of the balance chain 45 can balance the gravity and upward inertia of the three-axis linkage device 200, so that the entire three-axis linkage device 200 moves upward into its upper limit position (see FIG. 1) under the drive of the Z-axis servo motor 30 of its Z-axis moving mechanism 3;
  • the balance cylinder 43 quickly adjusts the internal pressure by being connected to the gas path of the nitrogen tank 41, so that the balance cylinder 43 can balance the gravity and downward inertia of the three-axis linkage device 200 by applying the tension on the ears 44 of the left connecting seat 31 and the right connecting seat 32 of the Z-axis moving mechanism 3 with the help of the balance chain 45.
  • the balance chain 45 moves downward with the Z-axis moving mechanism 3, and the entire three-axis linkage device 200 enters its lower limit position driven by the Z-axis servo motor 30 of its Z-axis moving mechanism 3 (see Figure 2).
  • the fixed clamping device 8 includes a mounting base 81, a radial clamping mechanism 83 and an axial positioning mechanism 85.
  • the mounting base 81 includes a base body 810 and mounting beams 812 located on both sides of the base body 810, wherein a radial clamping mechanism 83 and an axial positioning mechanism 85 are installed on the base body 810, and the mounting beam 812 is configured to be positionally adjustable on a corner 103 (see Figure 23) of a vertical frame 101.
  • a waist-shaped assembly hole 813 is provided on the mounting beam 812, so that the mounting beam 812 can be conveniently mounted on the corner 103 of the vertical frame 101 with adjustable positions using fastening bolts 105.
  • the radial clamping mechanism 83 includes a clamping electric cylinder 830 and a radial conformal pressure plate 832, wherein the clamping electric cylinder 830 is fixedly mounted on the base body 810 of the mounting base 81, and is drivably connected to the radial conformal pressure plate 832 (that is, the radial conformal pressure plate 832 is connected to the cylinder head 831 of the clamping electric cylinder 830, see Figure 21), so that the radial conformal pressure plate 832 can be radially movably converted between a non-working position retracted radially outward (see Figure 19) and a working position (see Figures 18 and 24) in which it is radially extended inward to clamp the outer circumferential surface of the wind turbine blade 300 (see Figure 24).
  • the axial positioning mechanism 85 includes a positioning servo motor 850, a positioning reducer 852, a positioning shaft 854 and an axial support plate 856, wherein a touch-type limit switch (not shown) is installed on the axial support plate 856, and the positioning servo motor 850 is installed on the base body 810 of the mounting base 81 via the clamping reducer 852, and can drive the connected positioning shaft 854, and the axial support plate 856 is fixed to the end of the positioning shaft 854, so that it can be driven by the positioning servo motor 850 via the positioning shaft 854 and can be rotatably converted between an axial release position (see Figure 18) that is disengaged from the axial positioning of the wind turbine blade 300 and an axial positioning position (see Figures 16, 19 and 24) that axially presses against the wind turbine blade 300.
  • a touch-type limit switch (not shown) is installed on the axial support plate 856
  • the positioning servo motor 850 is installed on the base body 810 of the mounting base 81 via
  • the base body 810 is provided with an axial hole 814 for the positioning shaft 854 to pass through, and one end of the positioning shaft 854 is connected to the compression reducer 853 , and the other end is connected to the axial backing plate 856 .
  • the fixed clamping devices are used in pairs, and the radial clamping mechanisms 83 of the paired fixed clamping devices are arranged radially opposite to each other, so that the radial conformal pressure plate 832 radially clamps the wind turbine blade 300 from the outside of the wind turbine blade 300 when it is in its working position; and the axial backing plate 856 of the axial positioning mechanism 85 is arranged so that when the radial conformal pressure plate 832 radially extends inward from its non-working position to its working position, that is, when it presses the wind turbine blade 300, the axial backing plate 856 can be rotated from its axial positioning position to its axial release position, thereby opening a milling path so that the milling head 9 can mill the wind turbine blade 300.
  • the radial conformal pressure plate 832 includes a clamping arc plate 831 and a buffer rubber pad 833 attached to the clamping arc plate 831, wherein a pressure sensor (not shown) is mounted on the buffer rubber pad 833 to sense whether the radial clamping mechanism 83 has clamped the wind turbine blade 300.
  • a pressure sensor (not shown) is mounted on the buffer rubber pad 833 to sense whether the radial clamping mechanism 83 has clamped the wind turbine blade 300.
  • the size designs of the clamping arc plate 831 and the buffer rubber pad 833 are compatible with the size of the outer circumference of the wind turbine blade 300.
  • the method of using a pressure sensor in the present embodiment can be replaced by a method of using a torque current sensor in another embodiment, which can sense the size of the torque current of the servo motor and control the start and stop of the clamping electric cylinder 830 accordingly.
  • the wind turbine blade 300 is hoisted to the workstation (via the hoisting point 109, see FIG. 1), and the vertical frame 101 is moved as a whole toward the tip of the wind turbine blade 300, until the axial backing plate 856 of the fixed clamping device 8 contacts the blade root stud 301 of the wind turbine blade 300, and after the touch-type limit switch on the axial backing plate 856 senses the contact of the blade root stud 301, the information is transmitted to the motion controller, and the motion controller controls the positioning servo motor 850 of the axial positioning mechanism 85 to stop;
  • the four fixed clamping devices 8 located at the four corners 103 of the vertical frame 101 are simultaneously actuated, and the radial conformal pressing plate 832 of each fixed clamping device 8 extends radially inward from the non-working position toward the wind turbine blade 300 to the working position.
  • the motion controller determines that the pressure sensed by the pressure sensor on the radial conformal pressing plate 832 reaches a predetermined threshold, the clamping electric cylinder 830 is controlled to stop moving.
  • the motion controller controls the positioning servo motor 850 on each fixed clamping device 8 to drive the positioning shaft 854 to rotate 90° with the axial support plate 856, and convert it from its axial positioning position to its axial release position, that is, the axial support plate 856 is retracted to a safe distance to clear the milling head working area.
  • the present invention presses the outer circumferential surface of the blade root of the wind turbine blade 300 from the outside, which is simple to operate, easy to observe, time-saving and labor-saving, and safe and reliable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wind Motors (AREA)
  • Machine Tool Units (AREA)

Abstract

一种风电叶片端面铣削机(100),包括具有竖直方框(101)的支撑框架(6)、装设于竖直方框(101)每个角部(103)用于从外部沿径向固定风电叶片(300)的固定压紧装置(8)、三轴联动装置(200)、铣削头(9)和运动控制器,固定压紧装置(8)能从风电叶片(300)的外部径向相对地夹紧风电叶片(300),使固定变得容易操作且生产变得安全,三轴联动装置(200)使得铣削头(9)能够在其带动下沿Y轴、X轴和Z轴移动进给来完成铣削。

Description

风电叶片端面铣削机
  
技术领域
 本发明涉及风电叶片加工技术领域,具体涉及一种风电叶片端面铣削机。
  
背景技术
 风力发电机通常由塔架、位于塔架上的风力发电机叶片、轮毂、机舱、机舱内的传动系统、控制系统和发电机等组成。风力发电机叶片和轮毂之间一般通过螺纹连接为一体,因而在叶片制作过程中就会在叶片根端设置预埋件即螺栓。在叶片和轮毂连接之前,叶片根端即叶片根部端面(也可称为叶根端面)需要保证一定的精度,即整个叶根端面和预埋件要达到统一的精度,一般通过铣削的加工处理方式来使其平面度达到规定要求。
 现有的风电叶片端面铣削机通常需要安装于在风电叶片的内部,在风电叶片的内部撑紧叶片然后进行铣削,但由于叶片根端直径较大,内部撑紧的固定方式不仅不安全可靠,还增加了叶片根端的端面定位难度和加工难度。
 为此,迫切需要设计了一款新的风电叶片端面铣削机。
  
发明内容
 为克服上述缺陷,本发明提供一种能够从风电叶片的外部固定夹紧并进行三个轴向上联动来自动完成铣削的风电叶片端面铣削机将是有利的。
 为此,本发明提供一种风电叶片端面铣削机,其包括:
支撑框架,其包括用于在其内接收风电叶片的竖直方框;
固定压紧装置,其装设于竖直方框的每个角部上,每两个相对的角部上的两个固定压紧装置径向相对布置用于从外部沿径向固定压紧风电叶片;
三轴联动装置,其包括X轴横梁组件、Z轴移动机构、X轴移动机构和Y轴进给机构,其中,X轴横梁组件在其后侧经由Z轴移动机构Z轴可移动地安装于竖直方框的左右两侧上,X轴移动机构设置成X轴可移动地安装于X轴横梁组件的前侧上,Y轴进给机构经由X轴移动机构安装于X轴横梁组件的顶部上;
铣削头,其Y轴可移动地安装于Y轴进给机构上并包括用于旋转铣削风电叶片叶根端面上螺柱的铣削刀头;
运动控制器,其与固定压紧装置、三轴联动装置和铣削头分别电连接从而能够实现对风电叶片的固定压紧和对螺柱的自动化铣削。
 在本发明中,由于竖直方框的四个角部上都设置有固定压紧装置,从而能够从风电叶片的外部径向相对地夹紧风电叶片,使得固定夹紧变得容易操作且使得生产变得安全;由于三轴联动装置的设置,使得铣削头能够在其带动下沿Y轴、X轴和Z轴移动进给来完成铣削。
 进一步,Z轴移动机构、X轴移动机构和Y轴进给机构上都设置有位置传感器,铣削头上装设有测距激光头用于感测螺柱相对于风电叶片叶根端面的实际落差,并且,运动控制器设置成能够根据测距激光头感测的实际落差控制三轴联动装置,从而使得Z轴移动机构和X轴移动机构能够分别沿Z轴方向和X轴方向移动从而带动Y轴进给机构及铣削头以与风电叶片叶根端面上螺柱的分布形状适配的圆形轨迹运动,并且使得Y轴进给机构沿Y轴方向移动从而带动铣削头沿Y轴进给,以及使得铣削刀头旋转铣削螺柱。
 通过位置传感器的设置,使得运动控制器能够实时精准掌控Z轴移动机构、X轴移动机构和Y轴进给机构的运动位置;通过测距激光头的设置,使得运动控制器能够根据测距激光头测得的螺柱相对于风电叶片叶根端面的实际落差进行信息处理、并控制三轴联动装置和铣削头进行动作,三轴联动装置带动铣削头沿Z轴和X轴同时移动而形成的圆形轨迹运动可以使得铣削头覆盖所有螺柱,三轴联动装置带动铣削头沿Y轴的移动可以使得铣削头朝向螺柱进刀,而铣削刀头的旋转可以完成对螺柱的铣削,整个铣削过程在运动控制器的控制下实现自动化。
 进一步,运动控制器包括与测距激光头电连接的信息采集模块、与信息采集模块电连接的数据处理模块、以及与数据处理模块电连接的操控模块,其中,信息采集模块设置成用于采集实际落差,数据处理模块设置成能够根据实际落差计算出铣削头与螺柱之间的实际距离以及铣削头所需要的沿圆形轨迹运动的圈数,从而由操控模块控制三轴联动装置和铣削头动作。
 通过上述结构设置,使得激光传感器能够将螺柱上的实际落差传输到信息采集模块,由数据处理模块计算出螺柱的最高点,以及该最高点和铣削头的实际距离,从而由操控模块引导三轴联动装置动作并引导铣削头从最高点开铣。
 再进一步,X轴横梁组件包括X轴横梁、安装于X轴横梁左右两侧上的左横梁连接座和右横梁连接座、以及装设于X轴横梁顶部上的X向滑轨,其中,左横梁连接座和右横梁连接座在其后侧与Z轴移动机构固定连接。
 通过上述结构设置,使得X轴横梁组件起到一个支撑X轴移动机构、Y轴进给机构和铣削头的作用,同时起到将它们连接到Z轴移动机构上的作用。
 还进一步,Z轴移动机构包括分别固定连接于左横梁连接座和右横梁连接座的左侧连接座和右侧连接座、两端分别可转动地安装于左侧连接座和右侧连接座上的Z向移动长轴、安装于右侧连接座上并驱动连接Z向移动长轴的Z轴伺服电机、分别在左侧连接座和右侧连接座的内侧安装于Z向移动长轴上的左Z向齿轮和右Z向齿轮、分别安装于竖直方框的左右两侧上并适于分别啮合左Z向齿轮和右Z向齿轮的左Z向齿条和右Z向齿条,其中,Z轴伺服电机上装设有作为位置传感器的Z轴编码器,左侧连接座和右侧连接座都设置有适于滑动连接竖直方框的左右两侧的X向开口滑座和Y向开口滑座。
 通过上述结构设置,使得Z轴移动机构前侧固定于X轴横梁组件的后侧上,Z轴移动机构后侧一方面经由左侧连接座和右侧连接座的每个连接座上的X向开口滑座和Y向开口滑座滑动连接至方框的左右两侧的其中一侧上,另一方面经由Z向移动长轴带动的左Z向齿轮和右Z向齿轮分别与方框左右两侧上设置的左Z向齿条和右Z向齿条相啮合来实现Z向移动,从而能够实现Z轴移动机构沿着方框的垂直上下移动。
 又进一步,Z轴伺服电机经由Z轴减速机驱动连接Z向移动长轴,Z轴减速机经由减速机连接座安装于右侧连接座的外侧上。
 通过上述结构设置,Z轴伺服电机能够经由Z轴减速机驱动Z向移动长轴,然后Z向移动长轴带动其上的左Z向齿轮和右Z向齿轮一起转动,从而Z轴移动机构沿着固定于方框的左右两侧上的左Z向齿条和右Z向齿条上下运动,从而带动X轴横梁组件以及其上的X轴移动机构和Y轴进给机构上下运动。
 更进一步,X轴移动机构包括X轴伺服电机、与X向滑轨滑动连接的X轴移动座、可转动地安装于X轴移动座上的X向齿轮、固定安装于X轴横梁的前侧上并与X向齿轮啮合的X向齿条,其中,X轴移动座的底部设置有前侧电机座,X轴伺服电机安装于该前侧电机座上并驱动连接位于前侧电机座后侧的X向齿轮,并且X轴伺服电机上装设有作为位置传感器的X轴编码器。
 通过上述结构设置,使得X轴伺服电机能够驱动X向齿轮沿着X向齿条移动,从而整个X轴移动座带动着Y轴进给机构沿着X轴方向移动。
 又进一步,Y轴进给机构包括固定安装于X轴移动座的前侧上的Y轴伺服电机、以及可滑动地安装于X轴移动座上的Y轴移动座,其中,Y轴伺服电机驱动连接Y轴移动座,并且,铣削头安装于Y轴移动座上。
 通过上述结构设置,使得Y轴进给机构能够经由Y轴移动座带动铣削头沿Y轴方向进给。
 另进一步,支撑框架还包括用于在其上安装竖直方框的水平框架,该水平框架包括用于安置于工作平台上的下部固定框架和沿Y轴可滑动地安装于下部固定框架上的上部活动框架,其中,竖直方框安装于该上部活动框架上。
 通过上述结构设置,使得可以在需要时通过调整上部活动框架沿Y轴上的位置,从而调整竖直方框沿风电叶片轴向上的位置。
 再进一步,竖直方框包括左侧立柱、右侧立柱、上横梁和下横梁,其中,Z轴移动机构沿Z轴可移动地安装于左侧立柱和右侧立柱上。
 通过上述结构设置,使得Z轴移动机构上的左侧连接座和右侧连接座能够分别沿Z轴可移动地安装于左侧立柱和右侧立柱上。
 进一步,上述风电叶片端面铣削机还包括用于三轴联动装置的运动平衡系统,该运动平衡系统包括氮气罐、一对平衡缸、一对平衡链条、一对缸头动链轮、两对固定转角链轮,其中,每个平衡缸都与氮气罐气路相连,每个缸头动链轮安装于相应平衡缸的平衡缸缸头上,每对固定转角链轮安装于竖直方框一侧的顶部上,每个平衡链条一端连接于竖直方框一侧的背部上、另一端连接于三轴联动装置的Z轴移动机构的顶部一侧上,并且,该一端和另一端之间的平衡链条依次啮接缸头动链轮和一对固定转角链轮,从而能够使得三轴联动装置凭借其Z轴移动机构在竖直方框上平衡地竖直上下运动。
 通过运动平衡系统的上述结构设置,使得当三轴联动装置的Z轴移动机构需要在外力(Z轴移动机构的Z轴伺服电机的驱动下)驱动下沿着竖直方框向上运动时,运动平衡系统能够通过平衡链条对Z轴移动机构施加向上的一个拉力(该拉力能够平衡掉Z轴移动机构向下的重力和向上的惯力),从而使得整个三轴联动装置在Z轴移动机构的带动下匀速向上运动;而当三轴联动装置的Z轴移动机构需要在外力驱动下沿着方框向下运动时,运动平衡系统能够通过平衡链条对Z轴移动机构施加向上的另一个拉力(该拉力能够平衡掉Z轴移动机构向下的重力和向下的惯力),从而使得整个三轴联动装置在Z轴移动机构的带动下匀速向下运动。
 再进一步,每个平衡链条的一端连接于竖直方框一侧的背部上设置的固定支脚上;平衡链条的另一端连接于三轴联动装置的Z轴移动机构的顶部一侧的吊耳上;每对固定转角链轮经由平衡缸上转角可滑动地安装于竖直方框一侧的顶部上。
 通过上述结构设置,使得平衡链条沿Z轴方向上的三段平衡链条能够相互平行,并和竖直方框顶部上的一段平衡链条垂直。
 进一步,固定压紧装置包括安装基座、装设于安装基座上的包括径向随形压板的径向压紧机构和包括轴向靠山板的轴向定位机构,其中,径向随形压板设置成能够在径向向外缩回的非工作位置和径向向内伸出以压紧风电叶片的外圆周面的工作位置之间可径向移动地转换,轴向靠山板设置成能够在脱离对风电叶片叶根端面的轴向定位的轴向释放位置和轴向上顶抵风电叶片叶根端面的轴向定位位置之间可转动地转换。
 通过径向压紧机构和轴向定位机构,能够将风电叶片进行轴向定位和径向压紧;通过径向随形压板在上述两个位置之间的径向移动转换,能够在风电叶片的外部将风电叶片夹紧,省时、省力、易观察。
 再进一步,径向压紧机构设置成其径向随形压板在工作位置时从风电叶片的外部径向夹紧风电叶片,轴向定位机构设置成当径向随形压板从其非工作位置径向向内伸出到其工作位置时,轴向靠山板从其轴向定位位置转动到其轴向释放位置。
 通过上述结构设置,使得风电叶片能够首先通过轴向定位机构进行轴向定位,然后固定压紧装置开始工作使得径向随形压板进入其工作位置。
 还进一步,安装基座包括基座本体和位于基座本体两侧的安装梁,其中,径向压紧机构和轴向定位装置安装于该基座本体上,该安装梁设置成位置可调整地安装于竖直方框的角部上。
 通过上述结构设置,使得安装梁可以根据风电叶片的直径调整在竖直方框的角部上的安装位置。
 更进一步,安装梁上设置有腰形装配孔。
 腰形装配孔的设置使得安装梁的安装位置调整变得容易实现,且结构简单。
 又进一步,径向压紧机构还包括压紧电缸,该压紧电缸可驱动地连接径向随形压板,其中,径向随形压板上装设有压力传感器。
 通过上述结构设置,使得径向随形压板能够在压紧电缸的驱动下实现位置转换,而且通过压力传感器的设置,使得能够根据径向随形压板压紧风电叶片外圆周面的力度来止停压紧电缸。
 又再进一步,径向随性压板包括压紧圆弧板和贴置于压紧圆弧板上的缓冲橡胶垫。
 通过缓冲橡胶垫的设置,使得径向随形压板和风电叶片外圆周面柔性接触,避免损伤风电叶片外圆周面,同时起到增大摩擦力的作用。
 又还进一步,压紧圆弧板的尺寸设计与工件的外圆周面的尺寸相适配。
 还再进一步,轴向定位机构还包括定位伺服电机、定位减速机和定位转轴,其中,定位伺服电机经由定位减速机驱动连接定位转轴,定位转轴连接轴向靠山板,并且,轴向靠山板上设置有触碰式限位开关。
 通过上述结构设置,使得当触碰式限位开关感测到风电叶片的端面(特别是风电叶片的叶根端面上的螺柱)时,轴向靠山板能够在定位伺服电机的驱动下经由定位转轴的带动实现两个位置上的转动转换。
 通过参考下面所描述的实施例,本发明的上述这些方面和其他方面将会得到更清晰地阐述。
  
附图说明
 本发明的结构以及进一步的目的和优点将通过下面结合附图的描述得到更好地理解,其中,相同的参考标记标识相同的元件:
图1是根据本发明的一个具体实施方式的风电叶片端面铣削机上的立体示意图;
图2是图1所示风电叶片端面铣削机的立体爆炸图;
图3是图1所示风电叶片端面铣削机的三轴联动装置(其上安装有铣削头)放大后的立体结构示意图;
图4是图3所示三轴联动装置(其上安装有铣削头)的一个立体爆炸图;
图5是图3所示三轴联动装置(其上安装有铣削头)的另一个立体爆炸图;
图6是图1所示风电叶片端面铣削机的局部D的放大示意图;
图7是图1所示风电叶片端面铣削机的右侧平面视图;
图8是图7所示风电叶片端面铣削机的局部E的放大示意图;
图9是图3所示三轴联动装置(其上安装有铣削头)在去除Z轴移动机构和X轴横梁组件之后的立体结构放大示意图;
图10是图9所示立体结构的爆炸图;
图11是图3所示三轴联动装置的Z轴移动机构的右侧连接座的立体放大示意图;
图12是图3所示三轴联动装置的Z轴移动机构的左侧连接座的立体放大示意图;
图13是图1所示风电叶片端面铣削机的运动平衡系统处于一种状态下的结构布局示意图;
图14是图13所示运动平衡系统处于另一种状态下的结构布局示意图;
图15是图7所示方框式端面铣削机沿F-F线以上部分的放大视图;
图16是图2所示固定压紧装置的立体放大示意图,该图中轴向靠山板处于轴向定位位置;
图17是图16所示固定压紧装置的立体爆炸图;
图18是图16所示固定压紧装置的另一角度立体图,该图中轴向靠山板处于轴向释放位置;
图19是图16所示固定压紧装置的再一角度立体图;
图20是图19所示固定压紧装置的沿A-A线的剖视图;
图21是图19所示固定压紧装置的沿B-B线的剖视图;
图22是图1所示的风电叶片端面铣削机的后视图,该图清楚示出了固定压紧装置的布局;
图23是图22所示风电叶片端面铣削机的沿C-C线的剖视放大图;
图24是图22所示风电叶片端面铣削机处于工作状态的结构示意图。
  
实施方式
 下面将结合附图来描述本发明的具体实施方式。
 首先,需要解释的是,本文中所称的“X向”、“Y向”和“Z向”分别指的是沿着X轴方向、沿着Y轴方向和沿着Z轴方向,X轴方向是指X横梁的延伸方向即左右方向,Y轴方向是指前后方向,Z轴方向是指竖直上下方向。另外,本文中所称的“径向向外”指的是径向随形压板沿作为工件的风电叶片的径向方向远离风电叶片,而“径向向内”指的是径向随形压板沿风电叶片的径向方向靠近风电叶片。
 如图1所示,并参考图2至图24,,根据本发明的一个具体实施方式的风电叶片端面铣削机100包括支撑框架6、固定压紧装置8、三轴联动装置200、铣削头9、运动控制器、以及三轴联动装置200用的运动平衡系统4,其中,支撑框架6包括用于在其内接收风电叶片399的竖直方框101;支撑框架6还包括用于在其上安装竖直方框101的水平框架60,该水平框架60包括用于安置于工作平台(例如地面)上的下部固定框架61和沿Y轴可滑动地安装于下部固定框架61上的上部活动框架62,其中,竖直方框101安装于该上部活动框架62上;竖直方框101包括左侧立柱102、右侧立柱104、下横梁107和上横梁108。
 如图1所示,并特别参考图16至图24,固定压紧装置8装设于竖直方框101的每个角部103上,每两个相对的角部103上的两个固定压紧装置8径向相对布置,用于从外部沿径向固定压紧风电叶片300(见图24)。
 如图1至图9所示,并参考图22和图24,三轴联动装置200包括X轴横梁组件1、Z轴移动机构3、X轴移动机构5和Y轴进给机构7,其中,X轴横梁组件1在其后侧经由Z轴移动机构3沿Z轴可移动地安装于竖直方框101的左右两侧(即左侧立柱102和右侧立柱104)上,X轴移动机构5设置成沿X轴可移动地安装于X轴横梁组件1的前侧上,Y轴进给机构7经由X轴移动机构5安装于X轴横梁组件1的顶部上;铣削头9沿Y轴可移动地安装于Y轴进给机构7上,并包括用于旋转铣削风电叶,300的叶根端面上螺柱301(见图24)的铣削刀头94(见图10);运动控制器与运动平衡系统4、固定压紧装置8、三轴联动装置200和铣削头9分别电连接,从而实现对风电叶片300的固定压紧和对螺柱301的自动化、精准铣削。
 参考图1和图24,需要说明的是,在本实施方式中,Z轴移动机构3、X轴移动机构5和Y轴进给机构7上都设置有位置传感器(图未示),铣削头9上装设有测距激光头91,用于感测所螺柱301相对于风电叶片300的叶根端面的实际落差,并且,运动控制器设置成能够根据测距激光头91感测的实际落差控制三轴联动装置200,从而使得Z轴移动机构3和X轴移动机构5能够分别沿Z轴方向和X轴方向移动,以带动Y轴进给机构7及铣削头9以与风电叶片300的叶根端面上螺柱301的分布形状(圆形,见图24)适配的圆形轨迹运动,并且使得Y轴进给机构7沿Y轴方向移动从而带动铣削头9沿Y轴进给,以及使得铣削刀头94旋转铣削螺柱301。需要说明的是,在本实施方式中,运动控制器、三轴联动装置200、铣削头9和测距激光头91构成风电叶片端面铣削机100的自动化对刀系统。
 另外需要说明的是,在本实施方式中,运动控制器包括与测距激光头91电连接的信息采集模块(图未示)、与信息采集模块电连接的数据处理模块(图未示)、以及与数据处理模块电连接的操控模块(图未示),其中,信息采集模块设置成用于采集上述实际落差,数据处理模块设置成能够根据上述实际落差计算出铣削头9与螺柱301之间的实际距离以及铣削头9所需要的沿圆形轨迹运动的圈数,从而由操控模块控制三轴联动装置200和铣削头9动作。
 如图2至图4所示,在本实施方式中,X轴横梁组件1包括X轴横梁10、安装于X轴横梁10左右两侧上的左横梁连接座11和右横梁连接座12、以及装设于X轴横梁10顶部上的X向滑轨15。
 如图2至图4所示,并参考图1、图5至图7,Z轴移动机构3固定于X轴横梁组件1的X轴横梁10的后侧上,并设置成Z轴可移动地(即沿着Z轴方向可移动地)连接在竖直方框101的左右两侧上,即竖直方框101的左立柱102和右立柱104上。
 如图1至图7以及图10和图11所示,在本实施方式中,Z轴移动机构3包括Z轴伺服电机30、左侧连接座31和右侧连接座32、Z向移动长轴33、左Z向齿轮34和右Z向齿轮35、左Z向齿条36和右Z向齿条37。Z轴伺服电机30安装于右侧连接座32上并驱动连接Z向移动长轴33。左侧连接座31和右侧连接座32分别固定连接至左横梁连接座11和右横梁连接座12上。Z向移动长轴33两端分别可转动地安装于左侧连接座31和右侧连接座32上。左Z向齿轮34和右Z向齿轮35分别在左侧连接座31和右侧连接座32的内侧安装于Z向移动长轴33上。左Z向齿条36和右Z向齿条37分别对应安装于竖直方框101的左立柱102和右立柱104上,并适于分别啮合左Z向齿轮34和右Z向齿轮35。
 如图5、图10和图11所示,左侧连接座31和右侧连接座32都设置有X向开口滑座38和Y向开口滑座39。如图5所示,以右侧连接座32为例,其上的X向开口滑座38和Y向开口滑座39分别滑动连接竖直方框101的右立柱104上的第一滑轨184和第二滑轨194。另外,如图5所示,并参考图2和图4,Z轴伺服电机30经由Z轴减速机330驱动连接Z向移动长轴33,Z轴减速机330经由减速机连接座332安装于右侧连接座32的外侧上。
 如图2至图4所示,并参考图8和图9,X轴移动机构5设置成X轴可移动地(即沿着X轴方向可移动地)安装于X轴横梁组件1的前侧上,并包括X轴伺服电机50、X轴移动座55、X向齿轮57和X向齿条59。其中,X轴移动座55与X向滑轨15滑动连接;X向齿轮57可转动地安装于X轴移动座55上;X向齿条59固定安装于X轴横梁10的前侧上(图5很清晰地示出了),并与X向齿轮57啮合。具体地,如图8和图9所示,在本实施方式中,X轴移动座55的底部设置有前侧电机座56,X轴伺服电机50安装于该前侧电机座56的前侧上,X向齿轮57位于前侧电机座56的后侧并由X轴伺服电机50驱动连接。
 再如图8和图9所示,Y轴进给机构7经由X轴移动机构5安装于X轴横梁组件1的顶部上、并设置成Y轴可移动地(即沿着Y轴方向可移动地)支撑铣削头9。具体地,在本实施方式中,Y轴进给机构7包括Y轴伺服电机70和Y轴移动座75,其中,Y轴伺服电机70固定安装于X轴移动座55的前侧上并驱动连接Y轴移动座75,同时Y轴移动座75可滑动地安装于X轴移动座55上,从而能够在Y轴伺服电机70的驱动下相对X轴移动座55沿Y轴方向前后移动。
 需要说明的是,在本实施方式中,Z轴伺服电机30、X轴伺服电机50和Y轴伺服电机70上都设置有编码器(图未示),这些编码器作为位置传感器与运动控制器电连接,从而使得运动控制器能够通过控制Z轴伺服电机30、X轴伺服电机50和Y轴伺服电机70的启停、来精准控制三轴联动装置200在X轴、Y轴、Z轴三个方向上的运动。
 另外,再如图8和图9所示,需要说明的是,铣削头9安装于该Y轴移动座75上,并且,铣削头9包括铣削安装支座92、安装于铣削安装支座92上的铣削动力箱90、以及由铣削动力箱90旋转驱动的上述铣削刀头94。在本实施方式中,测距激光头91安装在该铣削动力箱90上和铣削头9一同运动,从而能够对工件的被铣削端面进行加工前后的测量。
 本发明通过测距激光头在铣削头上的设置,使得运动控制器能够精准计算出螺柱所需要的铣削量以及铣削的圈数(即上述圆形轨迹的圈数),通过三轴联动的运动控制,可以不再像传统的绕圈方式需要旋转电极供电通电,而是动力线和信号线都可以走拖链实接,这样的好处是信号稳定无干扰,因而使得整个铣削机安全可靠。
 下面参考图1至图12简要介绍一下本实施方式的自动化测距、对刀、铣削的工作过程:
首先,运动控制器控制三轴联动装置200动作,带动测距激光头91以风电叶片根部端面的圆心为圆心走一圈圆弧(即圆形轨迹)程序,测距激光头91将风电叶片根部端面上的螺柱相对该根部端面的实际落差传输到运动控制器的信息采集模块,并由数据处理模块进行处理,计算出风电叶片根部端面上的所有螺柱的最高点,从而获得该最高点绝对位置和铣削头9的铣削刀头94之间的实际距离,运动控制器的操控模块据此引导三轴联动装置200带动铣削头9在三个轴向上运动,同时铣削头9的铣削刀头94旋转运转对螺柱从最高点开铣;
由于运动控制器的信息采集模块和数据处理模块都有关于上述实际落差的数据,经过数据处理模块自动计算已经得出需要铣削多少圈(即预定圈数)即可铣平,在这种情况下,铣削头9一旦完成预定圈数的铣削,其铣削头9则自动停止铣削(通过运动控制器控制铣削动力箱90停机)并自动退回到安全距离(通过运动控制器控制三轴联动装置200来实现);
当铣平后铣削头9退回到安全距离后,运动控制器能够再次带动测距激光头91以风电叶片根部端面的圆心为圆心走一圈圆弧程序,再次获得螺柱相对该根部端面的实际落差,从而获知螺柱峰谷值,也就是平面加工精度,以验证平面加工精度是否合格。
 本发明通过测距激光头91能够对没铣削前的风电叶片根部端面和铣削后的根部端面上的螺柱301进行测量和评估,保证了铣削精度;同时,通过三轴联动控制,将不像传统的绕圈方式需要旋转电级供电通电,动力线和信号线都可以走拖链实接,这样的好处是信号稳定无干扰,也就体现出本发明的安全可靠。
 另外,为了使三轴联动装置200在借助于Z轴移动机构3作竖直上下移动的运动过程中保持平衡,也可以说保持速度稳定(匀速),本实施方式中采取一种运动平衡系统4,下面将作具体介绍。但应当理解的是,使三轴联动装置200保持竖直上下运动平衡的方式不止这一种,还可以是将Z轴移动机构3的Z轴伺服电机30设置为扭矩电机,当然也可以采取其它的平衡方式。
 如图13至图15并结合图1、图6至图8所示,在本实施方式中,运动平衡系统4包括氮气罐41、一对平衡缸43、一对平衡链条45(图13和图14中仅示出了对应一个平衡缸43的平衡链条45)、一对缸头动链轮47、两对固定转角链轮49,其中,每个平衡缸43都与氮气罐41通过气路413相连(即以压力贯通的方式相连),每个缸头动链轮47安装于相应平衡缸43的平衡缸缸头430上,每对固定转角链轮49安装于竖直方框101一侧的顶部上,每个平衡链条45一端451连接于竖直方框101一侧的背部上、另一端452连接于三轴联动装置200的Z轴移动机构3的顶部一侧上,并且,该一端451和另一端452之间的平衡链条45依次啮接缸头动链轮47和一对固定转角链轮49,从而能够使得三轴联动装置200凭借Z轴移动机构3在竖直方框101上平衡地竖直上下运动。
 如图13和图14所示,在本实施方式中,每个平衡链条45的一端451连接于竖直方框101一侧的背部上设置的固定支脚105上。图15中更清楚地示出了这一点,只是图15中示出的是其中一个平衡链条45安装于竖直方框101的右侧(即右侧立柱104)上(另一个平衡链条45安装于竖直方框101的左侧即左侧立柱102上,但图中未示出),相应地,该图中的固定支脚105也是装设于右侧立柱104上的。
 如图1、图6、图7和图8所示,在本实施方式中,平衡链条45的另一端452连接于三轴联动装置200的Z轴移动机构3的顶部一侧的吊耳44上。具体地,在本实施方式中,吊耳44是设置在三轴联动装置200的Z轴移动机构3的侧连接座(在图6中以数字31和32标识)上。图6和图8仅示出了Z轴移动机构3的右侧连接座32。如图15所示,并参考图1和图7所示,在本实施方式中,每对固定转角链轮49经由平衡缸上转角46安装于竖直方框101一侧的顶部上。
 再如图1和图7所示,在本实施方式中,运动平衡系统4设置成用于使三轴联动装置200的Z轴移动机构3的竖直上下移动过程中保持平衡,即用于使Z轴移动机构3在竖直上下移动过程中保持匀速运动,从而保证整个三轴联动装置200的运动平衡,以有效保证整个铣削机的铣削动作的正常进行。如图1所示,并参考图6至图8以及图13至图15,在本实施方式中,三轴联动装置200的Z轴移动机构3的左侧连接座31和右侧连接座32的顶部上都设置有吊耳44,而左侧立柱102和右侧立柱104的顶部上都装设有平衡缸上转角46。
 需要说明的是,在本实施方式中,如图1所示并参考图6至图8以及图13至图15,氮气罐1安置于水平框架60上并位于右侧立柱104一侧,与氮气罐41气路连通的一对平衡缸43分别布置在左侧立柱102和右侧立柱104的背部一侧,而三轴联动装置200位于竖直方框101的前侧。应当理解的是,由于三轴联动装置200质量较大且在工作时需要竖直上下运动,下移时因地引力原因会很轻松,可上移时却比较费力,本实施方式中的运动平衡系统4正是解决三轴联动装置200的这一问题,使得三轴联动装置200的竖直上下运动得到平衡,并使得竖直上下运动都保持匀速。另外,需要说明的是,图13(仅示出了一个平衡链条及相关结构)示出了三轴联动装置200处于下限位置(即低位)上,图2(仅示出了一个平衡链条及相关结构)示出了三轴联动装置200处于上限位置(即高位)上,而缸头动链轮47相应地分别处于其高位和低位上。
 需要说明的是,一对平衡缸43和竖直方框101的左侧立柱102和右侧立柱104一样都是固定安装于水平框架60的上部活动框架62上,因而能够随上部活动框架62一起相对下部固定框架61沿Y轴移动。
 应当理解的是,由于本实施方式中缸头动链轮47和固定转角链轮49的设置,使得三轴联动装置200的竖直上下的运动幅度是平衡缸缸头430的运动幅度的两倍,例如当平衡缸缸头430行程为1.8米时,三轴联动装置200竖直上下的运动范围(即上限位置和下限位置之间的距离)为3.6米。
 另外,应当理解的是,三轴联动装置200并非本发明的创新,因此其其它具体结构在此不再展开说明。同时,平衡缸43属于标准件,其本身的结构和工作方式也并非本发明的创新部分,因此在这里也不作展开说明。
 下面结合图1、图6至图8以及图13至图15介绍一下本发明的运动平衡系统4的工作过程:
当三轴联动装置200在风电叶片端面铣削机100的运动控制器(图未示)的控制下凭借其Z轴移动机构3竖直向上运动(即上移)时,平衡缸43通过与氮气罐41的气路相连而迅速调整内部压力,从而使得平衡缸43借助于平衡链条45施加到Z轴移动机构3的左侧连接座31和右侧连接座32的吊耳44上的拉力能够平衡掉三轴联动装置200的重力和向上的惯力,使得整个三轴联动装置200在其Z轴移动机构3的Z轴伺服电机30的驱动下向上移动进入其上限位置(见图1);
当三轴联动装置200在运动控制器的控制下、借助于其Z轴移动机构3竖直向下运动(即下移)时,平衡缸43通过与氮气罐41的气路相连而迅速调整内部压力,从而使得平衡缸43借助于平衡链条45施加到Z轴移动机构3的左侧连接座31和右侧连接座32的的吊耳44上的拉力能够平衡掉三轴联动装置200的重力和向下的惯力,同时平衡链条45随着Z轴移动机构3向下移动,整个三轴联动装置200在其Z轴移动机构3的Z轴伺服电机30的驱动下进入其下限位置(见图2)。
 如图16至图21所示,在本实施方式中,固定压紧装置8包括安装基座81、径向压紧机构83和轴向定位机构85。
 如图17、图19至图21所示,并参考图22至图24,安装基座81包括基座本体810和位于基座本体810两侧的安装梁812,其中,径向压紧机构83和轴向定位机构85安装于该基座本体810上,该安装梁812设置成位置可调整地安装于竖直方框101的角部103(见图23)上。具体地,如图19所示,并参考图23,在本实施方式中,安装梁812上设置有腰形装配孔813,从而方便使用紧固螺栓105将安装梁812位置可调整地安装到竖直方框101的角部103上。
 再如图17、图19至图21所示,并参考图16和图18,径向压紧机构83包括压紧电缸830和径向随形压板832,其中,压紧电缸830固定安装于安装基座81的基座本体810上,并可驱动地连接径向随形压板832(即径向随形压板832连接在压紧电缸830的电缸头831,见图21)上,从而使得径向随形压板832能够在径向向外缩回的非工作位置(见图19)和径向向内伸出以压紧风电叶片300(见图24)外圆周面的工作位置(见图18、图24)之间可径向移动地转换。
 再如图16至图21所示,轴向定位机构85包括定位伺服电机850、定位减速机852、定位转轴854和轴向靠山板856,其中,轴向靠山板856上装设有触碰式限位开关(图未示),定位伺服电机850经由压紧减速机852安装于安装基座81的基座本体810上,并可驱动连接定位转轴854,轴向靠山板856固定于定位转轴854的末端上,从而能够在定位伺服电机850经由定位转轴854的驱动下、在脱离对风电叶片300的轴向定位的轴向释放位置(见图18)和轴向上顶抵风电叶片300的轴向定位位置(见图16、图19和图24)之间可转动地转换。需要说明的是,如图17所示,基座本体810上设置有用于定位转轴854贯穿的轴孔814,定位转轴854的一端连接压紧减速机853、另一端连接轴向靠山板856。
 在本实施方式中,参考图22和图24,固定压紧装置成对使用,成对的固定压紧装置的径向压紧机构83径向相对布置,从而使得径向随形压板832在其工作位置时从风电叶片300的外部径向夹紧风电叶片300;并且,轴向定位机构85的轴向靠山板856设置成在当径向随形压板832从其非工作位置径向向内伸出到其工作位置时,即压紧风电叶片300时,轴向靠山板856可以从其轴向定位位置转动到其轴向释放位置,从而让开铣削路径使得铣削头9能够对风电叶片300进行铣削。
 进一步,如图17和图19所示,在本实施方式中,径向随形压板832包括压紧圆弧板831和贴置于压紧圆弧板831上的缓冲橡胶垫833,其中,缓冲橡胶垫833上装设有压力传感器(图未示),以感测径向压紧机构83是否已经压紧风电叶片300。应当理解的是,压紧圆弧板831和缓冲橡胶垫833的尺寸设计都与风电叶片300的外圆周面的尺寸相适配。另外,对于本实施方式中采用压力传感器的方式,在另外的实施方式中可以替换为采用扭力电流传感器的方式,后者可以感测伺服电机的扭力电流的大小,据此控制压紧电缸830的启停。
 下面参考图16和图24简要介绍一下本发明中固定压紧装置8的工作过程:
首先,将风电叶片300(通过吊点109,见图1)吊运到工位上,并使竖直方框101整体向风电叶片300的叶尖方向移动,直到固定压紧装置8的轴向靠山板856接触到风电叶片300的叶根螺柱301,轴向靠山板856上触碰式限位开关感测到叶根螺柱301的接触后,将信息传递给运动控制器,由运动控制器控制轴向定位机构85的定位伺服电机850停止;
接着,位于竖直方框101四个角部103上的四个固定压紧装置8同时动作,每个固定压紧装置8的径向随形压板832从非工作位置朝着风电叶片300径向向内伸出进入工作位置,当运动控制器认为径向随形压板832上压力传感器感测到的压力达到预定阈值时,即控制压紧电缸830停止动作;
然后,运动控制器控制每个固定压紧装置8上的定位伺服电机850动作,驱动定位转轴854带着轴向靠山板856旋转90°,从其轴向定位位置转换到其轴向释放位置,即轴向靠山板856收回到安全距离,让出铣头工作区。
 相比于现有技术,本发明从风电叶片300的外部压紧其叶根外圆周面,操作简单、易于观察,省时省力、安全可靠。
本发明的技术内容及技术特点已揭示如上,然而可以理解,在本发明的创作思想下,本领域的技术人员可以对上述结构作各种变化和改进,包括这里单独披露的或要求保护的技术特征的组合,以及明显地包括这些特征的其它组合。这些变形和/或组合均落入本发明所涉及的技术领域内,并落入本发明权利要求的保护范围。

Claims (22)

  1.  一种风电叶片端面铣削机,其特征在于包括:
    支撑框架,其包括用于在其内接收风电叶片的竖直方框;
    固定压紧装置,其装设于竖直方框的每个角部上,每两个相对的角部上的两个固定压紧装置径向相对布置用于从外部沿径向固定压紧风电叶片;
    三轴联动装置,其包括X轴横梁组件、Z轴移动机构、X轴移动机构和Y轴进给机构,其中,X轴横梁组件在其后侧经由Z轴移动机构Z轴可移动地安装于竖直方框的左右两侧上,X轴移动机构设置成X轴可移动地安装于X轴横梁组件的前侧上,Y轴进给机构经由X轴移动机构安装于X轴横梁组件的顶部上;
    铣削头,其Y轴可移动地安装于Y轴进给机构上并包括用于旋转铣削风电叶片叶根端面上螺柱的铣削刀头;
    运动控制器,其与固定压紧装置、三轴联动装置和铣削头分别电连接从而能够实现对风电叶片的固定压紧和对螺柱的自动化铣削。
  2.  如权利要求1所述的风电叶片端面铣削机,其特征在于,所述Z轴移动机构、所述X轴移动机构和所述Y轴进给机构上都设置有位置传感器,所述铣削头上装设有测距激光头用于感测所述螺柱相对于所述风电叶片叶根端面的实际落差,并且,所述运动控制器设置成能够根据测距激光头感测的实际落差控制所述三轴联动装置,从而使得所述Z轴移动机构和所述X轴移动机构能够分别沿Z轴方向和X轴方向移动从而带动所述Y轴进给机构及所述铣削头以与所述风电叶片叶根端面上所述螺柱的分布形状适配的圆形轨迹运动,并且使得所述Y轴进给机构沿Y轴方向移动从而带动所述铣削头沿Y轴进给,以及使得所述铣削刀头旋转铣削所述螺柱。
  3.  如权利要求2所述的风电叶片端面铣削机,其特征在于,所述X轴横梁组件包括X轴横梁、安装于X轴横梁左右两侧上的左横梁连接座和右横梁连接座、以及装设于X轴横梁顶部上的X向滑轨,其中,左横梁连接座和右横梁连接座在其后侧与所述Z轴移动机构固定连接。
  4.  如权利要求3所述的风电叶片端面铣削机,其特征在于,所述Z轴移动机构包括分别固定连接于所述左横梁连接座和所述右横梁连接座的左侧连接座和右侧连接座、两端分别可转动地安装于左侧连接座和右侧连接座上的Z向移动长轴、安装于右侧连接座上并驱动连接Z向移动长轴的Z轴伺服电机、分别在左侧连接座和右侧连接座的内侧安装于Z向移动长轴上的左Z向齿轮和右Z向齿轮、分别安装于所述竖直方框的左右两侧上并适于分别啮合左Z向齿轮和右Z向齿轮的左Z向齿条和右Z向齿条,其中,Z轴伺服电机上装设有作为所述位置传感器的Z轴编码器,左侧连接座和右侧连接座都设置有适于滑动连接所述竖直方框的左右两侧的X向开口滑座和Y向开口滑座。
  5.  如权利要求4所述的风电叶片端面铣削机,其特征在于,所述X轴移动机构包括X轴伺服电机、与所述X向滑轨滑动连接的X轴移动座、可转动地安装于X轴移动座上的X向齿轮、固定安装于所述X轴横梁的前侧上并与X向齿轮啮合的X向齿条,其中,所述X轴移动座的底部设置有前侧电机座,X轴伺服电机安装于该前侧电机座上并驱动连接位于前侧电机座后侧的X向齿轮,并且X轴伺服电机上装设有作为所述位置传感器的X轴编码器。
  6.  如权利要求5所述的风电叶片端面铣削机,其特征在于,所述Y轴进给机构包括固定安装于所述X轴移动座的前侧上的Y轴伺服电机、以及可滑动地安装于所述X轴移动座上的Y轴移动座,其中,所述Y轴伺服电机驱动连接Y轴移动座,并且,所述铣削头安装于Y轴移动座上。
  7.  如权利要求1所述的风电叶片端面铣削机,其特征在于,所述支撑框架还包括用于在其上安装所述竖直方框的水平框架,该水平框架包括用于安置于工作平台上的下部固定框架和沿Y轴可滑动地安装于下部固定框架上的上部活动框架,其中,所述竖直方框安装于该上部活动框架上。
  8.  如权利要求7所述的风电叶片端面铣削机,其特征在于,所述竖直方框包括左侧立柱、右侧立柱、上横梁和下横梁,其中,所述Z轴移动机构沿Z轴可移动地安装于左侧立柱和右侧立柱上。
  9.  如权利要求1至8任一项所述的风电叶片端面铣削机,其特征在于,还包括用于所述三轴联动装置的运动平衡系统,该运动平衡系统包括氮气罐、一对平衡缸、一对平衡链条、一对缸头动链轮、两对固定转角链轮,其中,每个平衡缸都与氮气罐气路相连,每个缸头动链轮安装于相应平衡缸的平衡缸缸头上,每对固定转角链轮安装于所述竖直方框一侧的顶部上,每个平衡链条一端连接于所述竖直方框一侧的背部上、另一端连接于所述三轴联动装置的所述Z轴移动机构的顶部一侧上,并且,该一端和另一端之间的平衡链条依次啮接缸头动链轮和一对固定转角链轮,从而能够使得所述三轴联动装置凭借其所述Z轴移动机构在所述竖直方框上平衡地竖直上下运动。
  10.  如权利要求9所述的风电叶片端面铣削机,其特征在于, 所述每个平衡链条的所述一端连接于所述竖直方框一侧的所述背部上设置的固定支脚上;所述平衡链条的所述另一端连接于所述三轴联动装置的所述Z轴移动机构的所述顶部一侧的吊耳上;所述每对固定转角链轮经由平衡缸上转角可滑动地安装于所述竖直方框一侧的所述顶部上。
  11.  如权利要求1至8任一项所述的风电叶片端面铣削机,其特征在于,所述固定压紧装置包括安装基座、装设于安装基座上的包括径向随形压板的径向压紧机构和包括轴向靠山板的轴向定位机构,其中,径向随形压板设置成能够在径向向外缩回的非工作位置和径向向内伸出以压紧所述风电叶片的外圆周面的工作位置之间可径向移动地转换,轴向靠山板设置成能够在脱离对所述风电叶片叶根端面的轴向定位的轴向释放位置和轴向上顶抵所述风电叶片叶根端面的轴向定位位置之间可转动地转换。
  12.  如权利要求11所述的风电叶片端面铣削机,其特征在于,所述径向压紧机构设置成其所述径向随形压板在所述工作位置时从所述风电叶片的外部径向夹紧所述风电叶片,所述轴向定位机构设置成当所述径向随形压板从其所述非工作位置径向向内伸出到其所述工作位置时,所述轴向靠山板从其所述轴向定位位置转动到其所述轴向释放位置。
  13.  如权利要求12所述的风电叶片端面铣削机,其特征在于,所述安装基座包括基座本体和位于基座本体两侧的安装梁,其中,所述径向压紧机构和所述轴向定位装置安装于该基座本体上,该安装梁设置成位置可调整地安装于所述竖直方框的所述角部上。
  14.  如权利要求13所述的风电叶片端面铣削机,其特征在于,所述安装梁上设置有腰形装配孔。
  15.  如权利要求12所述的风电叶片端面铣削机,其特征在于,所述径向压紧机构还包括压紧电缸,该压紧电缸可驱动地连接所述径向随形压板,其中,所述径向随形压板上装设有压力传感器。
  16.  如权利要求15所述的风电叶片端面铣削机,其特征在于,所述径向随性压板包括压紧圆弧板和贴置于压紧圆弧板上的缓冲橡胶垫。
  17.  如权利要求12所述的风电叶片端面铣削机,其特征在于,所述轴向定位机构还包括定位伺服电机、定位减速机和定位转轴,其中,定位伺服电机经由定位减速机驱动连接定位转轴,定位转轴连接所述轴向靠山板,并且,所述轴向靠山板上设置有触碰式限位开关。
  18.  如权利要求9所述的风电叶片端面铣削机,其特征在于,所述固定压紧装置包括安装基座、装设于安装基座上的包括径向随形压板的径向压紧机构和包括轴向靠山板的轴向定位机构,其中,径向随形压板设置成能够在径向向外缩回的非工作位置和径向向内伸出以压紧所述风电叶片的外圆周面的工作位置之间可径向移动地转换,轴向靠山板设置成能够在脱离对所述风电叶片叶根端面的轴向定位的轴向释放位置和轴向上顶抵所述风电叶片叶根端面的轴向定位位置之间可转动地转换。
  19.  如权利要求18所述的风电叶片端面铣削机,其特征在于,所述径向压紧机构设置成其所述径向随形压板在所述工作位置时从所述风电叶片的外部径向夹紧所述风电叶片,所述轴向定位机构设置成当所述径向随形压板从其所述非工作位置径向向内伸出到其所述工作位置时,所述轴向靠山板从其所述轴向定位位置转动到其所述轴向释放位置。
  20.  如权利要求19所述的风电叶片端面铣削机,其特征在于,所述安装基座包括基座本体和位于基座本体两侧的安装梁,其中,所述径向压紧机构和所述轴向定位装置安装于该基座本体上,该安装梁上设置有腰形装配孔从而能够位置可调整地安装于所述竖直方框的所述角部上。
  21.  如权利要求19所述的风电叶片端面铣削机,其特征在于,所述径向压紧机构还包括压紧电缸,该压紧电缸可驱动地连接所述径向随形压板,其中,所述径向随形压板上装设有压力传感器,并且所述径向随性压板包括压紧圆弧板和贴置于压紧圆弧板上的缓冲橡胶垫。
  22.  如权利要求19所述的风电叶片端面铣削机,其特征在于,所述轴向定位机构还包括定位伺服电机、定位减速机和定位转轴,其中,定位伺服电机经由定位减速机驱动连接定位转轴,定位转轴连接所述轴向靠山板,并且,所述轴向靠山板上设置有触碰式限位开关。
PCT/CN2023/086796 2022-11-09 2023-04-07 风电叶片端面铣削机 WO2024098656A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211401550.5A CN116038000A (zh) 2022-11-09 2022-11-09 风电叶片端面铣削机
CN202211401550.5 2022-11-09

Publications (1)

Publication Number Publication Date
WO2024098656A1 true WO2024098656A1 (zh) 2024-05-16

Family

ID=86130872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086796 WO2024098656A1 (zh) 2022-11-09 2023-04-07 风电叶片端面铣削机

Country Status (2)

Country Link
CN (1) CN116038000A (zh)
WO (1) WO2024098656A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6371468B1 (en) * 1999-12-17 2002-04-16 United Technologies Research Center Universal workpiece holder
CN201537821U (zh) * 2009-10-15 2010-08-04 陕西汉江机床有限公司 螺纹加工机床工件定位夹持装置
WO2011104132A2 (de) * 2010-02-24 2011-09-01 Mag Europe Gmbh Bearbeitungsstation zur bearbeitung von rotorblättern für windkraftanlagen
CN104339191A (zh) * 2014-10-10 2015-02-11 荣成锻压机床有限公司 一种应用于卧式车床上的工件夹持装置
CN208773028U (zh) * 2018-08-14 2019-04-23 南通中能机械制造有限公司 一种圆柱柄风叶钻两顶针和铣装夹位的工装
CN218745083U (zh) * 2022-11-09 2023-03-28 苏州复玖机械科技有限公司 风电叶片端面铣削机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6371468B1 (en) * 1999-12-17 2002-04-16 United Technologies Research Center Universal workpiece holder
CN201537821U (zh) * 2009-10-15 2010-08-04 陕西汉江机床有限公司 螺纹加工机床工件定位夹持装置
WO2011104132A2 (de) * 2010-02-24 2011-09-01 Mag Europe Gmbh Bearbeitungsstation zur bearbeitung von rotorblättern für windkraftanlagen
CN104339191A (zh) * 2014-10-10 2015-02-11 荣成锻压机床有限公司 一种应用于卧式车床上的工件夹持装置
CN208773028U (zh) * 2018-08-14 2019-04-23 南通中能机械制造有限公司 一种圆柱柄风叶钻两顶针和铣装夹位的工装
CN218745083U (zh) * 2022-11-09 2023-03-28 苏州复玖机械科技有限公司 风电叶片端面铣削机

Also Published As

Publication number Publication date
CN116038000A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
CN105195958B (zh) 一种用于机器人焊接工作站的横担装夹工具及其使用方法
CN108512377B (zh) 一种三针并绕分块定子绕线机
CN107627319A (zh) 一种平行装夹的机器人夹具
CN110480196A (zh) 治具顶升定位机构、焊接压紧组件以及焊接装置
WO2024098656A1 (zh) 风电叶片端面铣削机
CN207515750U (zh) 一种多功能在线检测设备
CN218745083U (zh) 风电叶片端面铣削机
CN208929590U (zh) 一种带升降机构的变位机
CN213026056U (zh) 一种新型电子元器件封装设备
CN113187120A (zh) 一种适用于装配式建筑墙体的隔热装置
CN111185742B (zh) 一种车钩缓冲装置组装台及组装方法
CN210876970U (zh) 一种封头高效旋压机
CN101417362B (zh) 仿形平面焊接专用机及焊接方法
CN115435724A (zh) 一种多联齿位置度检测装置及方法
CN209830766U (zh) 一种滚筒加工固定装置
CN209614672U (zh) 一种pc养护窑立柱快速组对焊接装置
CN208004959U (zh) 一种用于夹焊检测设备的双点夹焊机构
CN201291343Y (zh) 仿形平面焊接专用机
CN205166296U (zh) 一种用于机器人焊接工作站的横担装夹工具
CN112248705A (zh) 一种玉石超声波雕刻机
CN116372979A (zh) 一种用于工件上下料的复合机器人
CN219104034U (zh) 新能源检测机
CN111299359A (zh) 大吨位长尺寸的滑台加载分离式校直机架布局结构
CN221313048U (zh) 航空发动机环形零件对正焊接装置
CN109514153A (zh) 一种pc养护窑立柱快速组对焊接装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887358

Country of ref document: EP

Kind code of ref document: A1