WO2024098441A1 - 一种超高速平面激光熔覆增材制造装置及加工方法 - Google Patents

一种超高速平面激光熔覆增材制造装置及加工方法 Download PDF

Info

Publication number
WO2024098441A1
WO2024098441A1 PCT/CN2022/131798 CN2022131798W WO2024098441A1 WO 2024098441 A1 WO2024098441 A1 WO 2024098441A1 CN 2022131798 W CN2022131798 W CN 2022131798W WO 2024098441 A1 WO2024098441 A1 WO 2024098441A1
Authority
WO
WIPO (PCT)
Prior art keywords
cladding
nozzle
cladding nozzle
speed
rotation
Prior art date
Application number
PCT/CN2022/131798
Other languages
English (en)
French (fr)
Inventor
张新洲
陈兰
杨志伟
陆霖凯
于关玺
孙亚成
李世明
任旭东
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2024098441A1 publication Critical patent/WO2024098441A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/70Recycling
    • B22F10/73Recycling of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/17Auxiliary heating means to heat the build chamber or platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • B22F12/37Rotatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to the field of laser additive manufacturing, and in particular to an ultra-high-speed planar laser cladding additive manufacturing device and a processing method.
  • Ultra-high-speed laser cladding is a surface manufacturing technology based on laser heat source. Its special melting form is different from traditional laser cladding technology. On the one hand, ultra-high-speed laser cladding improves the laser energy density.
  • the spot diameter of traditional laser cladding is about 2-4mm, while the spot diameter of ultra-high-speed laser cladding is less than or equal to 1mm. Under the same laser energy input conditions, the laser energy density in the small spot area is higher.
  • the laser energy density of traditional laser cladding is about 70-150W/ cm2 , while the laser energy density of ultra-high-speed laser cladding can reach up to 3kW/ cm2 .
  • the unmelted powder is directly fed into the molten pool, while ultra-high-speed laser cladding adjusts the convergence position of the laser, powder and molten pool so that the powder convergence point is higher than the upper surface of the molten pool.
  • the process adjustment greatly improves the deposition rate of ultra-high-speed laser cladding compared with traditional laser cladding.
  • ultra-high-speed laser cladding technology is still in the stage of promotion and application.
  • the basic research in the preparation process is still incomplete, and there is still a lot of work to be done in terms of molding accuracy and defect control.
  • the present invention provides an ultra-high-speed planar laser cladding additive manufacturing device and a processing method, which can realize ultra-high-speed laser cladding additive manufacturing on a plane and can achieve laser cladding at the same linear speed.
  • the present invention achieves the above technical objectives through the following technical means.
  • An ultra-high-speed planar laser cladding additive manufacturing device comprising a laser generator, a moving platform, an ultrasonic vibration platform, a main shaft, a rotation and optical path propagation mechanism and a cladding nozzle;
  • the laser generator is used to generate a laser beam
  • a substrate is placed on the ultrasonic vibration platform, and the substrate is rotated by rotating the ultrasonic vibration platform; the ultrasonic vibration platform is installed on the base through a mobile platform;
  • the main shaft is movably installed above the substrate; a rotation and optical path propagation mechanism is installed on the main shaft, and the cladding nozzle is installed on the rotation and optical path propagation mechanism through a radial moving device, and the cladding nozzle is rotated by the rotation and optical path propagation mechanism; the laser beam passes through the main shaft and the rotation and optical path propagation mechanism in sequence and then enters the cladding nozzle; the rotation direction of the cladding nozzle is opposite to the rotation direction of the substrate.
  • the rotation and light path propagation mechanism includes a disc-shaped fixed platform, a sub-stepping motor and a reflector;
  • the disc-shaped fixed platform is supported on the main shaft, the auxiliary stepper motor is installed on the disc-shaped fixed platform, and the auxiliary stepper motor is connected to the main shaft through a gear pair; the bottom of the disc-shaped fixed platform can be radially moved to install the cladding nozzle, and at least one reflector is provided in the rotation and optical path propagation mechanism, which is used to make the laser beam pass through the inside of the main shaft and the disc-shaped fixed platform in turn and then enter the cladding nozzle.
  • the spindle is a hollow shaft
  • a first reflector is fixed inside the spindle
  • a first linear motor slide rail is installed at the bottom of the disc-shaped fixed platform
  • the cladding nozzle is installed on the first linear motor slide rail through the first linear motor slider
  • a second reflector is installed on the first linear motor slide rail through a fixed bracket, and the second reflector extends into the spindle
  • a third reflector is installed on the disc-shaped fixed platform, the laser beam is emitted into the spindle, enters the rotating second reflector through the first reflector, and then enters the cladding nozzle through the third reflector installed on the disc-shaped fixed platform and the fourth reflector installed on the first linear motor slide rail.
  • a tapered roller bearing is installed at the stepped shaft of the main shaft, and the tapered roller bearing supports a disc-shaped fixed platform; the axial movement of the tapered roller bearing is limited by a sleeve on the main shaft; a second gear is installed on the main shaft, and a first gear is installed on the auxiliary stepper motor, and the auxiliary stepper motor rotates around the main shaft through the engagement of the first gear and the second gear.
  • the cladding nozzle is provided with a powder feeding system and a recovery system
  • the powder feeding system includes a first air pump and a first powder bin
  • the first powder bin is connected with the cladding nozzle through the first air pump, and is used to transport powder into the cladding nozzle
  • the recovery system includes a second air pump and a second powder bin
  • the second powder bin is connected with the cladding nozzle through the second air pump, and is used to recover excess powder in the cladding nozzle.
  • it also includes a laser rangefinder, an infrared camera, a high-speed camera and a control system;
  • the infrared camera is used to obtain the temperature of the molten pool; the high-speed camera is used to obtain the width of the molten pool; the laser rangefinder is used to determine the thickness of the cladding layer; the control system is used to obtain and process information from the laser rangefinder, the infrared camera and the high-speed camera; the control system controls the rotation direction and movement direction of the cladding nozzle; the control system controls the rotation direction of the additive workpiece.
  • control system determines whether the powder is sufficiently melted according to the temperature of the molten pool and the width of the cladding layer; when the powder is not sufficiently melted, the control system controls the rotation speed of the substrate and the vibration frequency of the ultrasonic vibration platform.
  • the height of the cladding nozzle is adjusted to align the cladding nozzle with the substrate; the control system controls the radial movement of the cladding nozzle to move the cladding nozzle to the outer edge of the circular workpiece to be added; the control system controls the auxiliary stepping motor to rotate the cladding nozzle; the control system controls the direction of rotation of the substrate to be opposite to the direction of rotation of the cladding nozzle;
  • the powder is fed into the cladding nozzle by a first air pump and sprayed onto the surface of the substrate by the cladding nozzle;
  • the control system controls the laser generator to generate a laser beam, which is focused on the surface of the substrate through the cladding nozzle to melt the powder sprayed onto the surface of the substrate; the control system controls the ultrasonic vibration platform to vibrate the substrate;
  • the control system controls the cladding nozzle to move radially one step toward the center of the circular workpiece to be added; the control system controls the rotation speed of the cladding nozzle to increase so that the linear speed of the cladding nozzle at the current step is the same as the linear speed at the outer edge of the circular workpiece to be added; when the cladding nozzle moves to the center of the circular workpiece to be added, a layer of cladding processing is completed;
  • the control system controls the lifting height of the cladding nozzle to repeat the cladding process of one layer.
  • the infrared camera acquires the temperature of the molten pool; the high-speed camera acquires the width of the molten pool; the laser rangefinder determines the thickness of the cladding layer;
  • the control system controls the rotation direction and movement direction of the cladding nozzle according to the information obtained and processed by the laser rangefinder, the infrared camera and the high-speed camera.
  • the ultra-high-speed planar laser cladding additive manufacturing device of the present invention can realize the forward rotation of the cladding nozzle and the reverse rotation of the substrate, thereby improving the additive efficiency while realizing ultra-high-speed laser cladding.
  • the forward and reverse rotation speed values of the nozzle and the substrate are adjusted in real time to ensure that the cladding speed remains unchanged during the processing, which has obvious advantages in manufacturing disc-type workpieces.
  • the ultra-high-speed planar laser cladding additive manufacturing device described in the present invention uses an ultrasonic vibration platform to flatten the powder, which greatly improves the uniformity of the powder, so that the produced parts have better component uniformity.
  • the ultra-high-speed planar laser cladding additive manufacturing device described in the present invention enables the cladding nozzle to move radially under the drive of the linear motor, which can achieve laser cladding at the same linear speed and ensure that the cladding linear speed remains unchanged during the processing, which has obvious advantages in additive disk-type parts.
  • the ultra-high-speed planar laser cladding additive manufacturing device described in the present invention is provided with a powder feeding system and a recovery system on the cladding nozzle, which can recover the invalid processing powder during the acceleration and reduction process of the cladding nozzle driven by the linear motor, reduce waste and improve powder utilization.
  • the ultra-high-speed planar laser cladding additive manufacturing device described in the present invention uses a laser rangefinder to control the thickness of the cladding layer in real time and dynamically control the height of the cladding nozzle, so that the thickness of the cladding layer is uniform and the additive process proceeds smoothly, thereby improving the comprehensive performance of the output parts.
  • the ultra-high-speed planar laser cladding additive manufacturing device described in the present invention uses an infrared camera to capture the temperature of the molten pool, and a high-speed camera to capture the width of the molten pool and feed it back to the control system to determine whether the powder is fully melted, and then dynamically controls the speed of the main stepper motor to achieve a suitable laser energy density, effectively reducing the generation of pores and cracks and improving the comprehensive performance of the workpiece.
  • the ultra-high-speed planar laser cladding additive manufacturing device described in the present invention can perform both single-layer laser cladding and multi-layer laser cladding additive manufacturing, which makes up for the technical gap that high-speed laser cladding technology cannot be applied to flat plates, and can further expand the existing ultra-high-speed laser cladding two-dimensional additive technology to ultra-high-speed laser deposition three-dimensional additive technology.
  • FIG1 is a schematic diagram of the ultra-high-speed planar laser cladding additive manufacturing device described in the present invention.
  • FIG. 2 is a schematic diagram of the rotation and light path propagation mechanism of the present invention.
  • FIG3 is a schematic diagram of the cladding nozzle of the present invention being aimed at a substrate.
  • FIG. 4 is a diagram showing a state where the cladding nozzle of the present invention moves to the outer edge of a disc-shaped workpiece to be added.
  • FIG. 5 is a schematic diagram showing the connection between the second linear motor and the third linear motor according to the present invention.
  • FIG. 6 is a top view of the ultrasonic vibration platform of the present invention.
  • FIG. 7 is a diagram showing the cladding trajectory of powder formed on the laser-melted surface of a disk-type additive workpiece according to the present invention.
  • 1-ultrasonic vibration platform 2-disk-type additive workpiece; 3-substrate; 4-cladding nozzle; 5-first linear motor slider; 6-first hose; 7-control system; 8-first air pump; 9-first powder bin; 10-rotation and optical path propagation mechanism; 11-beam expander; 12-laser generator; 13-laser beam; 14-first electric slide; 15-first electric slide; 16-second electric slide; 17-third electric slide; 18-base; 19-moving platform; 20-main stepper motor; 21-infrared camera; 22-fourth electric slide; 23-high-speed camera; 24-laser rangefinder; 25-first linear motor slide; 26-second hose; 27-second Air pump; 28-second powder bin; 29-spindle; 30-second linear motor slider; 31-second linear motor slide rail; 32-third linear motor slider one; 33-second electric slider; 34-third linear motor slide rail; 35-third linear motor slider two; 36-signal line; 41-fifth reflector; 101-disc-shaped fixed platform;
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “multiple” is two or more, unless otherwise clearly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be an indirect connection through an intermediate medium, or it can be the internal communication of two components.
  • installed can be a fixed connection, a detachable connection, or an integral connection
  • it can be a mechanical connection or an electrical connection
  • it can be a direct connection, or it can be an indirect connection through an intermediate medium, or it can be the internal communication of two components.
  • the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • the ultra-high-speed planar laser cladding additive manufacturing device of the present invention comprises a laser generator 12 , a moving platform 19 , an ultrasonic vibration platform 1 , a spindle 29 , a rotation and optical path propagation mechanism 10 , and a cladding nozzle 4 ;
  • the laser generator 12 is used to generate a laser beam 13 ; after the laser beam 13 enters the beam expander 11 , it outputs a parallel beam that passes through multiple reflectors and enters the cladding nozzle 4 , and is focused onto the substrate 3 through a lens in the cladding nozzle 4 .
  • a substrate 3 is placed on the ultrasonic vibration platform 1, and the substrate 3 rotates by rotating the ultrasonic vibration platform 1; the ultrasonic vibration platform 1 is located on a mobile platform 19, and the mobile platform 19 is connected to a base 18 via a second electric slide rail 16 and a third electric slide rail 17, and the mobile platform 19 can move along the second electric slide rail 16 and the third electric slide rail 17, as shown in FIG6 .
  • the spindle 29 is movably mounted above the substrate 3; the spindle 29 is fixed on the second linear motor slider 30, the second linear motor slider 30 is located on the second linear motor rail 31, and the spindle 29 can move on the second linear motor rail 31 through the second linear motor slider 30; the second linear motor rail 31 is mounted on the third linear motor rail 34 through the third linear motor slider 1 32 and the third linear motor slider 2 35, so the second linear motor rail 31 can move on the third linear motor rail 34 through the third linear motor slider 1 32 and the third linear motor slider 2 35, as shown in FIG5 .
  • the two ends of the third linear motor rail 34 are moved up and down by the first electric slider 15 and the second electric slider 33, so as to realize the height control of the cladding nozzle 4.
  • the main shaft 29 is equipped with a rotating and optical path transmission mechanism 10, and the cladding nozzle 4 is installed on the rotating and optical path transmission mechanism 10 through a radial moving device, and the cladding nozzle 4 is rotated by the rotating and optical path transmission mechanism 10; the laser beam 13 passes through the main shaft 29 and the rotating and optical path transmission mechanism 10 in sequence and then enters the cladding nozzle 4; the rotation direction of the cladding nozzle 4 is opposite to the rotation direction of the substrate 3. Due to the forward rotation of the cladding nozzle and the reverse rotation of the substrate, ultra-high-speed laser cladding is achieved while improving the additive efficiency; the radial movement of the cladding nozzle 4 can achieve laser cladding at the same linear speed,
  • the rotation and optical path propagation mechanism 10 comprises a disc-shaped fixed platform 101, a sub-stepping motor 102 and a reflector; the disc-shaped fixed platform 101 is supported on the main shaft 29, the sub-stepping motor 102 is mounted on the disc-shaped fixed platform 101, and the sub-stepping motor 102 is connected to the main shaft 29 through a gear pair; the bottom of the disc-shaped fixed platform 101 can be radially movable to install the cladding nozzle 4, the bottom of the disc-shaped fixed platform 101 is installed with a first linear motor slide rail 25 arranged radially, and the first linear motor slide rail 25 is connected to the cladding nozzle 4 through a first linear motor slider 5, so that the cladding nozzle 4 moves radially.
  • At least one reflector is provided in the rotation and optical path propagation mechanism 10, which is used to allow the laser beam 13 to pass through the inside of the main shaft 29 and the disc-shaped fixed platform 101 in sequence and then be injected into the cladding nozzle 4.
  • the spindle 29 is a hollow shaft, and a first reflector 291 is fixed inside the spindle 29.
  • a second reflector 103 is installed on the first linear motor slide 25 through a fixed bracket 252, and the second reflector 103 extends into the spindle 29.
  • a third reflector 107 is installed on the disc-shaped fixed platform 101. The laser beam 13 is emitted into the spindle 29, and is emitted into the rotating second reflector 103 through the first reflector 291, and then is emitted into the cladding nozzle 4 through the third reflector 107 installed on the disc-shaped fixed platform 101 and the fourth reflector 251 installed on the first linear motor slide 25.
  • a tapered roller bearing 109 is installed at the stepped shaft of the main shaft 29, and the tapered roller bearing 109 supports the disc-shaped fixed platform 101; the main shaft 29 is limited by a sleeve 108 to limit the axial movement of the tapered roller bearing 109; the main shaft 29 is installed with a second gear 106 through a key 105, and the second gear 106 is axially positioned by the sleeve 108, and the main shaft 29 is installed with a nut 292 and a gasket 293 for locking the second gear 106.
  • the auxiliary stepping motor 102 is installed with a first gear 104, and the first gear 104 is meshed with the second gear 106, so that the auxiliary stepping motor 102 rotates around the main shaft 29, so that the disc-shaped fixed platform 101 also rotates around the main shaft 29, so that the cladding nozzle 4 performs a circular motion.
  • the cladding nozzle 4 is provided with a powder feeding system and a recovery system, wherein the powder feeding system comprises a first air pump 8 and a first powder bin 9, wherein the first powder bin 9 is connected with the first air pump 8 and the cladding nozzle 4 in sequence through a first hose 6, and is used for conveying powder into the cladding nozzle 4; the recovery system comprises a second air pump 27 and a second powder bin 28, and a powder absorption port is provided on the right side of the cladding nozzle 4, and the second powder bin 28 is connected with the second air pump 27 and the powder absorption port in sequence through a second hose 26, and is used for recovering excess powder in the cladding nozzle 4.
  • the powder feeding system comprises a first air pump 8 and a first powder bin 9, wherein the first powder bin 9 is connected with the first air pump 8 and the cladding nozzle 4 in sequence through a first hose 6, and is used for conveying powder into the cladding nozzle 4;
  • the recovery system comprises a second air pump 27 and a
  • the control system 7 determines whether the powder is sufficiently melted according to the temperature of the molten pool and the width of the cladding layer; when the powder is not sufficiently melted, the control system 7 controls the rotation speed of the substrate 3 and the vibration frequency of the ultrasonic vibration platform 1.
  • the processing method of the ultra-high-speed planar laser cladding additive manufacturing device of the present invention for adding a disc-shaped workpiece comprises the following steps:
  • the first air pump 18 starts to operate, and the powder is sprayed from the first powder bin 9 to the surface of the substrate 3 through the cladding nozzle 4;
  • the laser generator 12 outputs laser light through the cladding nozzle 4 and focuses it to the surface of the substrate 3 to melt the powder sprayed to the surface of the substrate 3;
  • the ultrasonic vibration platform 1 starts to vibrate, so that the powder sprayed to the surface of the substrate 3 can be completely melted to reduce the generation of pores;
  • the infrared camera 21 captures the temperature of the molten pool
  • the high-speed camera 23 captures the width of the molten pool and feeds it back to the control system 7 to determine whether the powder is fully melted, and then dynamically controls the speed of the main stepper motor 20 to achieve a suitable laser energy density; dynamically controls the vibration frequency of the ultrasonic vibration platform 1 so that the powder can be fully melted;
  • the laser rangefinder 24 measures the distance D2 to the cladding layer, calculates the thickness D2-D1 of the cladding layer, determines whether the thickness of the cladding layer meets the expected requirements, and then dynamically controls the powder feeding rate to ensure uniform thickness of the cladding layer;
  • the cladding nozzle 4 moves one step in the radial direction of the center of the circular workpiece to be added under the drive of the first linear motor slider 5; the speed of the auxiliary stepper motor 102 increases, the linear speed of the cladding nozzle 4 is kept unchanged, and the uniformity and stability of the additive processing are maintained.
  • the processing of one layer is completed, as shown in FIG. 7 .
  • the laser stops outputting and the first air pump 8 stops feeding powder.
  • the first electric slider 15 and the second electric slider 33 are controlled to increase the height of a cladding layer thickness of the cladding nozzle 4, after which the laser is output and the first air pump 8 starts to continue feeding powder.
  • the main stepper motor 20 rotates one circle, the cladding nozzle 4 moves one step in the radial direction of the center of the circular workpiece to be added under the drive of the first linear motor slider 5, and the speed of the auxiliary stepper motor 102 increases, keeping the linear speed of the cladding nozzle 4 unchanged, and maintaining the uniformity and stability of the additive processing.
  • the laser power of the laser generator 1 is 3800 W; the scanning speed is 80 m/min; the spot diameter is 1 mm; the overlap rate is 50%; and the cladding layer thickness is 500 ⁇ m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种超高速平面激光熔覆增材制造装置,包括激光发生器(12)、移动平台(19)、超声振动平台(1)、主轴(29)、转动及光路传播机构(10)和熔覆喷嘴(4);激光发生器(12)用于产生激光光束(13);超声振动平台(1)上放置基板(3),通过超声振动平台(1)旋转使基板(3)转动;超声振动平台(1)通过移动平台(19)安装在底座(18)上;主轴(29)可移动安装在基板(3)上方;主轴(29)上安装转动及光路传播机构(10),熔覆喷嘴(4)通过径向移动装置安装在转动及光路传播机构(10)上,通过转动及光路传播机构(10)使熔覆喷嘴(4)转动;激光光束(13)依次通过主轴(29)和转动及光路传播机构(10)后进入熔覆喷嘴(4);熔覆喷嘴(4)转动方向与基板(3)转动方向相反。该装置可在平面上实现超高速激光熔覆增材制造,并且能够实现相同线速度的激光熔覆。

Description

一种超高速平面激光熔覆增材制造装置及加工方法 技术领域
本发明涉及激光增材制造领域,尤其涉及一种超高速平面激光熔覆增材制造装置及加工方法。
背景技术
超高速激光熔覆是基于激光热源的一种表面制造技术,其特殊的熔凝形式有别于传统激光熔覆技术。一方面,超高速激光熔覆提高了激光能量密度。传统激光熔覆光斑直径约为2-4mm,而超高速激光熔覆光斑直径小于等于1mm,在相同激光能量输入条件下,小光斑区域内激光能量密度更高。传统激光熔覆的激光能量密度约为70-150W/cm 2,而超高速激光熔覆的激光能量密度最高可达3kW/cm 2。另一方面,在传统激光熔覆过程中,未熔化的粉体被直接送入熔池,而超高速激光熔覆调整了激光、粉体和熔池的汇聚位置,使粉体汇聚处高于熔池上表面,工艺调整使超高速激光熔覆的沉积速率较传统激光熔覆得到了极大的提升。
目前超高速激光熔覆加工对象多为轴类和盘类零部件。通过工件的旋转来获得超高的熔覆速度。而该项技术在平面上熔覆的速度较低,这需要解决如何实现熔覆头与工件的高速平面运动。激光熔覆速度是影响成型质量的一个重要参数,在不同线速度下激光熔覆的质量会有所不同,因此,如何实现等速激光熔覆也是目前需要解决的一个问题。因此,同时超高速激光熔覆技术目前仍处在推广应用阶段,制备过程中的基础性研究尚不完善,在成型精度和缺陷控制方面仍有许多工作需要完成。
发明内容
针对现有技术中存在的不足,本发明提供了一种超高速平面激光熔覆增材制造装置及加工方法,可以在平面上实现超高速激光熔覆增材制造,并且能够实现相同线速度的激光熔覆。
本发明是通过以下技术手段实现上述技术目的的。
一种超高速平面激光熔覆增材制造装置,包括激光发生器、移动平台、超声振动平台、主轴、转动及光路传播机构和熔覆喷嘴;
所述激光发生器用于产生激光光束;
所述超声振动平台上放置基板,通过超声振动平台旋转使基板转动;所述超声振动平台通过移动平台安装在底座上;
所述主轴可移动安装在基板上方;所述主轴上安装转动及光路传播机构,所述熔覆喷嘴通过径向移动装置安装在转动及光路传播机构上,通过转动及光路传播机构使熔覆喷嘴转动; 所述激光光束依次通过主轴和转动及光路传播机构后进入熔覆喷嘴;所述熔覆喷嘴转动方向与基板转动方向相反。
进一步,所述转动及光路传播机构包括圆盘状固定平台、副步进电机和反光镜;
所述圆盘状固定平台支撑在主轴上,所述副步进电机安装在圆盘状固定平台上,所述副步进电机通过齿轮副与主轴传动连接;所述圆盘状固定平台底部可径向移动安装熔覆喷嘴,所述转动及光路传播机构内至少设有一个反光镜,用于使激光光束依次穿过主轴内部和圆盘状固定平台后射入熔覆喷嘴内。
进一步,所述主轴为空心轴,所述主轴内固定第一反光镜,所述圆盘状固定平台底部安装第一直线电机滑轨,所述熔覆喷嘴通过第一直线电机滑块安装在第一直线电机滑轨上;所述第一直线电机滑轨上通过固定支架安装第二反光镜,所述第二反光镜伸入主轴内;所述圆盘状固定平台上安装第三反光镜,所述激光光束射入主轴内,通过第一反光镜射入旋转的第二反光镜,再通过圆盘状固定平台上安装的第三反光镜和第一直线电机滑轨上安装的第四反光镜射入熔覆喷嘴内。
进一步,所述主轴的阶梯轴处安装圆锥滚子轴承,所述圆锥滚子轴承支撑圆盘状固定平台;所述主轴上通过套筒限制圆锥滚子轴承的轴向移动;所述主轴上安装第二齿轮,所述副步进电机上安装第一齿轮,通过第一齿轮与第二齿轮啮合,使副步进电机绕着主轴转动。
进一步,所述熔覆喷嘴上设有送粉系统和回收系统,所述送粉系统包括第一气泵和第一粉末仓,所述第一粉末仓通过第一气泵与熔覆喷嘴连通,用于给熔覆喷嘴内输送粉末;所述回收系统包括第二气泵和第二粉末仓,所述第二粉末仓通过第二气泵与熔覆喷嘴连通,用于回收熔覆喷嘴内多余的粉末。
进一步,还包括激光测距仪、红外摄像机、高速摄像机和控制系统;
所述红外摄像机用于获取熔池的温度;所述高速摄像机用于获取熔池的宽度;所述激光测距仪用于确定熔覆层厚度;所述控制系统用于获取处理激光测距仪、红外摄像机和高速摄像机的信息;所述控制系统控制熔覆喷嘴的转动方向和移动方向;所述控制系统控制增材工件的转动方向。
进一步,所述控制系统根据熔池的温度和熔覆层宽度,判断粉末熔化是否充分;当粉末熔化未充分时,所述控制系统控制基板的转动速度和超声振动平台的振动频率。
进一步,包括如下步骤:
预热基板;
调整熔覆喷嘴高度,使熔覆喷嘴对准基板;所述控制系统控制熔覆喷嘴径向移动,使熔覆喷嘴移动到待增材圆类工件的外边缘处;所述控制系统控制副步进电机,使熔覆喷嘴旋转; 所述控制系统控制基板旋转的方向与熔覆喷嘴旋转的方向相反;
通过第一气泵向熔覆喷嘴内送粉,通过熔覆喷嘴喷射至基板表面;
所述控制系统控制激光发生器产生激光光束,通过熔覆喷嘴聚焦到基板表面,熔化喷至基体表面的粉末;所述控制系统控制超声振动平台使基板产生振动;
每当基板转动一周后,所述控制系统控制熔覆喷嘴向待增材圆类工件的圆心径向移动一个步长;所述控制系统控制熔覆喷嘴的旋转速度提高,使熔覆喷嘴在当前步长下的线速度与在待增材圆类工件外边缘处的线速度相同;当熔覆喷嘴运动至待增材圆类工件的圆心时,完成一层的熔覆加工;
所述控制系统控制熔覆喷嘴提升高度,重复一层的熔覆加工。
进一步,所述红外摄像机获取熔池的温度;所述高速摄像机获取熔池的宽度;所述激光测距仪确定熔覆层厚度;
所述控制系统根据获取处理激光测距仪、红外摄像机和高速摄像机的信息控制熔覆喷嘴的转动方向和移动方向。
本发明的有益效果在于:
1.本发明所述的超高速平面激光熔覆增材制造装置,相对于传统的激光熔覆增材制造,该装置可以实现熔覆喷嘴正向转动和基板的反向转动,在实现超高速激光熔覆的同时,提高增材效率;根据加工零件半径的变化,实时调整喷嘴和基板正反转的速度值,保证在加工过程中熔覆速度保持不变,在制造圆盘类型工件有明显优势。
2.本发明所述的超高速平面激光熔覆增材制造装置,采用超声振动平台铺平粉末,大大提高粉末的均匀性,使得产出的零件拥有更优良的构件均匀性。
3.本发明所述的超高速平面激光熔覆增材制造装置,使得熔覆喷嘴在直线电机的带动下径向移动,能够实现相同线速度的激光熔覆,并且保证在加工过程中熔覆线速度保持不变,在增材盘类零件上有明显优势。
4.本发明所述的超高速平面激光熔覆增材制造装置,所述熔覆喷嘴上设有送粉系统和回收系统,可以回收熔覆喷嘴在直线电机带动下的加速和减少过程的无效加工粉末,减少浪费,提高粉末利用率。
5.本发明所述的超高速平面激光熔覆增材制造装置,通过激光测距仪,实时控制熔覆层厚度和动态控制熔覆喷嘴的高度,使得熔覆层的厚度均匀和增材过程的顺利进行,提高产出零件的综合性能。
6.本发明所述的超高速平面激光熔覆增材制造装置,通过红外摄像机拍摄熔池的温度,高速摄像机拍摄熔池的宽度并将其反馈给控制系统,以此判断粉末熔化是否充分,紧接着动 态控制主步进电机转速以达到一个合适的激光能量密度,有效减少孔隙、裂纹的产生,提高工件的综合性能。
7.本发明所述的超高速平面激光熔覆增材制造装置,既可以进行单层激光熔覆,也可以进行多层激光熔覆增材制造,弥补了高速激光熔覆技术不能在平板应用的技术空缺,进而可以将现有超高速激光熔覆二维增材技术拓展至超高速激光沉积三维增材技术。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,显而易见地还可以根据这些附图获得其他的附图。
图1为本发明所述的超高速平面激光熔覆增材制造装置示意图。
图2为本发明所述的转动及光路传播机构示意图。
图3为本发明所述的熔覆喷嘴正准基板示意图。
图4为本发明所述的熔覆喷嘴移动到待增材圆盘形工件外边缘处状态图。
图5为本发明所述的第二直线电机和第三直线电机连接示意图。
图6是本发明所述的超声振动平台俯视图。
图7是本发明所述的盘类增材工件激光熔化表面的粉末形成熔覆轨迹图。
图中:
1-超声振动平台;2-盘类增材工件;3-基板;4-熔覆喷嘴;5-第一直线电机滑块;6-第一软管;7-控制系统;8-第一气泵;9-第一粉末仓;10-转动及光路传播机构;11-扩束镜;12-激光发生器;13-激光光束;14-第一电动滑轨;15-第一电动滑块;16-第二电动滑轨;17-第三电动滑轨;18-底座;19-移动平台;20-主步进电机;21-红外摄像机;22-第四电动滑轨;23-高速摄像机;24-激光测距仪;25-第一直线电机滑轨;26-第二软管;27-第二气泵;28-第二粉末仓;29-主轴;30-第二直线电机滑块;31-第二直线电机滑轨;32-第三直线电机滑块一;33-第二电动滑块;34-第三直线电机滑轨;35-第三直线电机滑快二;36-信号线;41-第五反光镜;101-圆盘状固定平台;102-副步进电机;103-第二反光镜;104-第一齿轮;105-键;106-第二齿轮;107-第三反光镜;108-套筒;109-圆锥滚子轴承;251-第四反光镜;252-固定支架;291-第一反光镜;292-螺母;293-垫片。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于 此。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“轴向”、“径向”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
如图1所示,本发明所述的超高速平面激光熔覆增材制造装置,包括激光发生器12、移动平台19、超声振动平台1、主轴29、转动及光路传播机构10和熔覆喷嘴4;
所述激光发生器12用于产生激光光束13;激光光束13射入扩束镜11后输出平行光束经过多个反光镜进入熔覆喷嘴4,并通过熔覆喷嘴4内的透镜聚焦到基板3上。
所述超声振动平台1上放置基板3,通过超声振动平台1旋转使基板3转动;所述超声振动平台1位于移动平台19上,所述移动平台19通过第二电动滑轨16和第三电动滑轨17与底座18连接,所述移动平台19可沿第二电动滑轨16和第三电动滑轨17移动,如图6所示。
图1中所述主轴29可移动安装在基板3上方;主轴29固定在第二直线电机滑块30上,第二直线电机滑块30位于第二直线电机滑轨31上,主轴29通过第二直线电机滑块30可在第二直线电机滑轨31上移动;所述第二直线电机滑轨31通过第三直线电机滑块一32和第三直线电机滑块二35安装在第三直线电机滑轨34上,所所述第二直线电机滑轨31可通过第三直线电机滑块一32和第三直线电机滑块二35在第三直线电机滑轨34移动,如图5所示。所述第三直线电机滑轨34两端通过第一电动滑块15和第二电动滑块33实现上下移动,用于实 现控制熔覆喷嘴4的高度。
所述主轴29上安装转动及光路传播机构10,所述熔覆喷嘴4通过径向移动装置安装在转动及光路传播机构10上,通过转动及光路传播机构10使熔覆喷嘴4转动;所述激光光束13依次通过主轴29和转动及光路传播机构10后进入熔覆喷嘴4;所述熔覆喷嘴4转动方向与基板3转动方向相反。由于熔覆喷嘴正向转动和基板的反向转动,实现超高速激光熔覆的同时,提高增材效率;所述熔覆喷嘴4的径向移动可以实现熔覆喷嘴4以相同线速度的进行激光熔覆,
如图2所示,所述转动及光路传播机构10包括圆盘状固定平台101、副步进电机102和反光镜;所述圆盘状固定平台101支撑在主轴29上,所述副步进电机102安装在圆盘状固定平台101上,所述副步进电机102通过齿轮副与主轴29传动连接;所述圆盘状固定平台101底部可径向移动安装熔覆喷嘴4,所述圆盘状固定平台101底部安装沿径向布置的第一直线电机滑轨25,第一直线电机滑轨25通过第一直线电机滑块5与熔覆喷嘴4连接,使熔覆喷嘴4径向移动。所述转动及光路传播机构10内至少设有一个反光镜,用于使激光光束13依次穿过主轴29内部和圆盘状固定平台101后射入熔覆喷嘴4内。
所述主轴29为空心轴,所述主轴29内固定第一反光镜291,所述第一直线电机滑轨25上通过固定支架252安装第二反光镜103,所述第二反光镜103伸入主轴29内;所述圆盘状固定平台101上安装第三反光镜107,所述激光光束13射入主轴29内,通过第一反光镜291射入旋转的第二反光镜103,再通过圆盘状固定平台101上安装的第三反光镜107和第一直线电机滑轨25上安装的第四反光镜251射入熔覆喷嘴4内。
所述主轴29的阶梯轴处安装圆锥滚子轴承109,所述圆锥滚子轴承109支撑圆盘状固定平台101;所述主轴29上通过套筒108限制圆锥滚子轴承109的轴向移动;所述主轴29上通过键105安装第二齿轮106,第二齿轮106通过套筒108进行轴向定位,所述主轴29安装螺母292和垫片293,用于锁紧第二齿轮106。所述副步进电机102上安装第一齿轮104,通过第一齿轮104与第二齿轮106啮合,使副步进电机102绕着主轴29转动,这样圆盘状固定平台101也绕主轴29转动,从而使熔覆喷嘴4做圆周运动。
所述熔覆喷嘴4上设有送粉系统和回收系统,所述送粉系统包括第一气泵8和第一粉末仓9,所述第一粉末仓9通过第一软管6依次与第一气泵8和熔覆喷嘴4连通,用于给熔覆喷嘴4内输送粉末;所述回收系统包括第二气泵27和第二粉末仓28,熔覆喷嘴4右侧有粉末吸收口,所述第二粉末仓28通过第二软管26依次与第二气泵27和粉末吸收口连通,用于回收熔覆喷嘴4内多余的粉末。
还包括激光测距仪24、红外摄像机21、高速摄像机23和控制系统7;所述红外摄像机 21用于获取熔池的温度;所述高速摄像机23用于获取熔池的宽度;所述激光测距仪24用于确定熔覆层厚度;所述控制系统7用于获取处理激光测距仪24、红外摄像机21和高速摄像机23的信息;所述控制系统7控制熔覆喷嘴4的转动方向和移动方向;所述控制系统7控制增材工件2的转动方向。
所述控制系统7根据熔池的温度和熔覆层宽度,判断粉末熔化是否充分;当粉末熔化未充分时,所述控制系统7控制基板3的转动速度和超声振动平台1的振动频率。
实施例1
下面以Inconel625合金为例,增材圆盘形工件,本发明所述的超高速平面激光熔覆增材制造装置的加工方法,包含以下步骤:
A.将基板3打磨、清洗和吹干,并对其进行预热300℃;
B.将基板3固定在超声振动平台1上,将熔覆喷嘴4移动到如图1所示的位置,熔覆喷嘴4正对基板中心;
C.控制第一电动滑块15和第二电动滑块33使第三直线电机滑轨下降,使得基板3与熔覆喷嘴4之间有一个合适的距离H,如图3所示,激光测距仪24测量其到基板3的距离D1;
D.通过第一直线电机滑块5将熔覆喷嘴4移动到预增材圆盘工件的外边缘处,如图4所示。
E.开启主步进电机20和副步进电机102,使得基板3和熔覆喷嘴4做圆周运动,并且两个保持反向转动,使得增材速度更快。第一气泵18开始运作,将粉末从第一粉末仓9通过熔覆喷嘴4喷射至基板3表面;激光发生器12输出激光通过熔覆喷嘴4聚焦到基体3表面,熔化喷至基体3表面的粉末;超声振动平台1开始振动,使喷至基体3表面的粉末得以完全熔化,减少孔隙的产生;
F.红外摄像机21拍摄熔池的温度,高速摄像机23拍摄熔池的宽度并将其反馈给控制系统7,以此判断粉末熔化是否充分,紧接着动态控制主步进电机20转速以达到一个合适的激光能量密度;动态控制超声振动平台1振动频率,使得粉末可以被充分熔化;
G.激光测距仪24测定到熔覆层的距离D2,计算出熔覆层厚度D2-D1,判断熔覆层厚度是否达到预期要求,紧接着动态控制送粉率,保证熔覆层厚度均匀;
H.每当主步进电机20转动一周后即基板3旋转一周后,熔覆喷嘴4在第一直线电机滑块5的带动下向待增材圆类工件圆心的径向移动一个步长;副步进电机102转速提高,保持熔覆喷嘴4的线速度不变,保持增材加工的均匀性和稳定性。当熔覆喷嘴4运动到待增材圆类工件圆心时,完成一层的加工,如图7所示。
I.当一层熔覆层完成后,激光暂停输出,第一气泵8暂停送粉。通过控制第一电动滑块15和第二电动滑块33来提高熔覆喷嘴4的一个熔覆层厚度的高度,在这之后激光输出,第 一气泵8开始继续送粉。继续每当主步进电机20转动一周后,进而熔覆喷嘴4在第一直线电机滑块5的带动下向待增材圆类工件圆心的径向移动一个步长,副步进电机102转速增加,保持熔覆喷嘴4的线速度不变,保持增材加工的均匀性和稳定性。
J.重复步骤D、E、F、G、H、I直至圆盘形工件的完成。
在增材圆盘形工件过程中,激光发生器1的激光功率3800W;扫描速度80m/min;光斑直径1mm;搭接率50%;熔覆层厚度500μm。
应当理解,虽然本说明书是按照各个实施例描述的,但并非每个实施例仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施例的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施例或变更均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种超高速平面激光熔覆增材制造装置,其特征在于,包括激光发生器(12)、移动平台(19)、超声振动平台(1)、主轴(29)、转动及光路传播机构(10)和熔覆喷嘴(4);
    所述激光发生器(12)用于产生激光光束(13);
    所述超声振动平台(1)上放置基板(3),通过超声振动平台(1)旋转使基板(3)转动;所述超声振动平台(1)通过移动平台(19)安装在底座(18)上;
    所述主轴(29)可移动安装在基板(3)上方;所述主轴(29)上安装转动及光路传播机构(10),所述熔覆喷嘴(4)通过径向移动装置安装在转动及光路传播机构(10)上,通过转动及光路传播机构(10)使熔覆喷嘴(4)转动;所述激光光束(13)依次通过主轴(29)和转动及光路传播机构(10)后进入熔覆喷嘴(4);所述熔覆喷嘴(4)转动方向与基板(3)转动方向相反。
  2. 根据权利要求1所述的超高速平面激光熔覆增材制造装置,其特征在于,所述转动及光路传播机构(10)包括圆盘状固定平台(101)、副步进电机(102)和反光镜;
    所述圆盘状固定平台(101)支撑在主轴(29)上,所述副步进电机(102)安装在圆盘状固定平台(101)上,所述副步进电机(102)通过齿轮副与主轴(29)传动连接;所述圆盘状固定平台(101)底部可径向移动安装熔覆喷嘴(4),所述转动及光路传播机构(10)内至少设有一个反光镜,用于使激光光束(13)依次穿过主轴(29)内部和圆盘状固定平台(101)后射入熔覆喷嘴(4)内。
  3. 根据权利要求2所述的超高速平面激光熔覆增材制造装置,其特征在于,所述主轴(29)为空心轴,所述主轴(29)内固定第一反光镜(291),所述圆盘状固定平台(101)底部安装第一直线电机滑轨(25),所述熔覆喷嘴(4)通过第一直线电机滑块(5)安装在第一直线电机滑轨(25)上;所述第一直线电机滑轨(25)上通过固定支架(252)安装第二反光镜(103),所述第二反光镜(103)伸入主轴(29)内;所述圆盘状固定平台(101)上安装第三反光镜(107),所述激光光束(13)射入主轴(29)内,通过第一反光镜(291)射入旋转的第二反光镜(103),再通过圆盘状固定平台(101)上安装的第三反光镜(107)和第一直线电机滑轨(25)上安装的第四反光镜(251)射入熔覆喷嘴(4)内。
  4. 根据权利要求2所述的超高速平面激光熔覆增材制造装置,其特征在于,所述主轴(29)的阶梯轴处安装圆锥滚子轴承(109),所述圆锥滚子轴承(109)支撑圆盘状固定平台(101);所述主轴(29)上通过套筒(108)限制圆锥滚子轴承(109)的轴向移动;所述主轴(29)上安装第二齿轮(106),所述副步进电机(102)上安装第一齿轮(104),通过第一齿轮(104)与第二齿轮(106)啮合,使副步进电机(102)绕着主轴(29)转动。
  5. 根据权利要求1所述的超高速平面激光熔覆增材制造装置,其特征在于,所述熔覆喷 嘴(4)上设有送粉系统和回收系统,所述送粉系统包括第一气泵(8)和第一粉末仓(9),所述第一粉末仓(9)通过第一气泵(8)与熔覆喷嘴(4)连通,用于给熔覆喷嘴(4)内输送粉末;所述回收系统包括第二气泵(27)和第二粉末仓(28),所述第二粉末仓(28)通过第二气泵(27)与熔覆喷嘴(4)连通,用于回收熔覆喷嘴(4)内多余的粉末。
  6. 根据权利要求1所述的超高速平面激光熔覆增材制造装置,其特征在于,还包括激光测距仪(24)、红外摄像机(21)、高速摄像机(23)和控制系统(7);
    所述红外摄像机(21)用于获取熔池的温度;所述高速摄像机(23)用于获取熔池的宽度;所述激光测距仪(24)用于确定熔覆层厚度;所述控制系统(7)用于获取处理激光测距仪(24)、红外摄像机(21)和高速摄像机(23)的信息;所述控制系统(7)控制熔覆喷嘴(4)的转动方向和移动方向;所述控制系统(7)控制增材工件(2)的转动方向。
  7. 根据权利要求6所述的超高速平面激光熔覆增材制造装置,其特征在于,所述控制系统(7)根据熔池的温度和熔覆层宽度,判断粉末熔化是否充分;当粉末熔化未充分时,所述控制系统(7)控制基板(3)的转动速度和超声振动平台(1)的振动频率。
  8. 一种根据权利要求1-7任一项所述的超高速平面激光熔覆增材制造装置的加工方法,其特征在于,包括如下步骤:
    预热基板(3);
    调整熔覆喷嘴(4)高度,使熔覆喷嘴(4)对准基板(3);所述控制系统(7)控制熔覆喷嘴(4)径向移动,使熔覆喷嘴(4)移动到待增材圆类工件的外边缘处;所述控制系统(7)控制副步进电机(102),使熔覆喷嘴(4)旋转;所述控制系统(7)控制基板(3)旋转的方向与熔覆喷嘴(4)旋转的方向相反;
    通过第一气泵(8)向熔覆喷嘴(4)内送粉,通过熔覆喷嘴(4)喷射至基板(3)表面;
    所述控制系统(7)控制激光发生器(12)产生激光光束(13),通过熔覆喷嘴(4)聚焦到基板(3)表面,熔化喷至基体(3)表面的粉末;所述控制系统(7)控制超声振动平台(1)使基板(3)产生振动;
    每当基板(3)转动一周后,所述控制系统(7)控制熔覆喷嘴(4)向待增材圆类工件的圆心径向移动一个步长;所述控制系统(7)控制熔覆喷嘴(4)的旋转速度提高,使熔覆喷嘴(4)在当前步长下的线速度与在待增材圆类工件外边缘处的线速度相同;当熔覆喷嘴(4)运动至待增材圆类工件的圆心时,完成一层的熔覆加工;
    所述控制系统(7)控制熔覆喷嘴(4)提升高度,重复一层的熔覆加工。
  9. 根据权利要求8所述的超高速平面激光熔覆增材制造装置的加工方法,其特征在于,
    所述红外摄像机(21)获取熔池的温度;所述高速摄像机(23)获取熔池的宽度;所述 激光测距仪(24)确定熔覆层厚度;
    所述控制系统(7)根据获取处理激光测距仪(24)、红外摄像机(21)和高速摄像机(23)的信息控制熔覆喷嘴(4)的转动方向和移动方向。
PCT/CN2022/131798 2022-11-09 2022-11-15 一种超高速平面激光熔覆增材制造装置及加工方法 WO2024098441A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211397618.7A CN115625352B (zh) 2022-11-09 2022-11-09 一种超高速平面激光熔覆增材制造装置及加工方法
CN202211397618.7 2022-11-09

Publications (1)

Publication Number Publication Date
WO2024098441A1 true WO2024098441A1 (zh) 2024-05-16

Family

ID=84908518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131798 WO2024098441A1 (zh) 2022-11-09 2022-11-15 一种超高速平面激光熔覆增材制造装置及加工方法

Country Status (2)

Country Link
CN (1) CN115625352B (zh)
WO (1) WO2024098441A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180050421A1 (en) * 2016-08-18 2018-02-22 Caterpillar Inc. Hybrid Laser Cladding System
CN207391549U (zh) * 2017-10-19 2018-05-22 山东豪迈机械科技股份有限公司 一种激光熔覆机床及其熔覆的轮胎模具
CN111334789A (zh) * 2020-02-02 2020-06-26 江苏大学 一种用于超高速激光熔覆盘类零件端面的方法
CN111850541A (zh) * 2020-06-17 2020-10-30 江苏大学 一种超高速激光熔覆增材制造的装置和方法
WO2020259719A1 (zh) * 2019-06-25 2020-12-30 江苏大学 一种超声振动辅助铺平粉末的激光增材加工装置及方法
CN114182255A (zh) * 2021-12-08 2022-03-15 南通星舟光电科技有限公司 一种双激光头的水平环面熔覆方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180050421A1 (en) * 2016-08-18 2018-02-22 Caterpillar Inc. Hybrid Laser Cladding System
CN207391549U (zh) * 2017-10-19 2018-05-22 山东豪迈机械科技股份有限公司 一种激光熔覆机床及其熔覆的轮胎模具
WO2020259719A1 (zh) * 2019-06-25 2020-12-30 江苏大学 一种超声振动辅助铺平粉末的激光增材加工装置及方法
CN111334789A (zh) * 2020-02-02 2020-06-26 江苏大学 一种用于超高速激光熔覆盘类零件端面的方法
CN111850541A (zh) * 2020-06-17 2020-10-30 江苏大学 一种超高速激光熔覆增材制造的装置和方法
CN114182255A (zh) * 2021-12-08 2022-03-15 南通星舟光电科技有限公司 一种双激光头的水平环面熔覆方法

Also Published As

Publication number Publication date
CN115625352A (zh) 2023-01-20
CN115625352B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
WO2021253522A1 (zh) 一种超高速激光熔覆增材制造的装置和方法
CN107199251B (zh) 一种激光清洗装置
WO2020259719A1 (zh) 一种超声振动辅助铺平粉末的激光增材加工装置及方法
CN206241474U (zh) 一种激光加工装置
CN1146027C (zh) 光学系统及其装置和使用该光学系统制造半导体装置的方法
CN108453261B (zh) 一种具有预热和缓冷功能的激光增材制造的装置
CN111590190B (zh) 一种用于大尺寸非晶合金的超声摩擦焊接成型方法
CN102825382B (zh) 激光加工装置
JPWO2010101060A1 (ja) ワークの薄膜加工方法及び薄膜加工装置
CN201783761U (zh) 双激光头划片装置
JP5926592B2 (ja) パターニング用レーザ加工装置
JP3096943B2 (ja) ダイヤモンドのレーザ研磨方法および装置ならびにそれを利用したダイヤモンド製品
WO2022241967A1 (zh) 一种用于铝合金的双光束激光抛光设备及抛光方法
WO2024098441A1 (zh) 一种超高速平面激光熔覆增材制造装置及加工方法
CN1529648A (zh) 脆性材料基板的划线装置
US11565349B2 (en) Composite device for high-precision laser additive/subtractive manufacturing
CN109365814B (zh) 一种单振镜大幅面增材制造激光成形设备及成形方法
CN109454337A (zh) 激光加工装置
CN103358022A (zh) 一种涡轮增压器壳体的激光焊接方法
JP2010188358A (ja) 太陽電池パネルのレーザ除去加工装置
CN102649194B (zh) 一种光学盲点的激光加工方法及激光加工装置
WO2022142296A1 (zh) 用于透明脆性材料的斜向切割补偿方法及系统
CN210098969U (zh) 一种slm大功率零件成形装置
JP2004335863A (ja) 集積型薄膜太陽電池のレーザ加工方法
TWI756029B (zh) 雷射快速鑽孔裝置