WO2022241967A1 - 一种用于铝合金的双光束激光抛光设备及抛光方法 - Google Patents

一种用于铝合金的双光束激光抛光设备及抛光方法 Download PDF

Info

Publication number
WO2022241967A1
WO2022241967A1 PCT/CN2021/114734 CN2021114734W WO2022241967A1 WO 2022241967 A1 WO2022241967 A1 WO 2022241967A1 CN 2021114734 W CN2021114734 W CN 2021114734W WO 2022241967 A1 WO2022241967 A1 WO 2022241967A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibrating mirror
dimensional vibrating
laser
dimensional
aluminum alloy
Prior art date
Application number
PCT/CN2021/114734
Other languages
English (en)
French (fr)
Inventor
肖海兵
黎万烙
Original Assignee
深圳信息职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳信息职业技术学院 filed Critical 深圳信息职业技术学院
Priority to US18/262,366 priority Critical patent/US11890698B1/en
Publication of WO2022241967A1 publication Critical patent/WO2022241967A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/3568Modifying rugosity
    • B23K26/3576Diminishing rugosity, e.g. grinding; Polishing; Smoothing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0673Dividing the beam into multiple beams, e.g. multifocusing into independently operating sub-beams, e.g. beam multiplexing to provide laser beams for several stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof

Definitions

  • the present application relates to the technical field of surface treatment, in particular to a double-beam laser polishing equipment and polishing method for aluminum alloys.
  • Aluminum alloy is an alloy material formed by adding a certain amount of other alloying elements with aluminum as the base material. It is a kind of light metal material. Due to the lighter weight and higher strength of aluminum alloy, its strength is close to that of high-alloy steel. As a structural material, it is widely used in aerospace, aviation, transportation, construction, electrical machinery, light and daily necessities.
  • One of the purposes of the embodiments of the present application is to provide a dual-beam laser polishing equipment for aluminum alloys, aiming to solve the problem of how to modify the surface of aluminum products when polishing the surface of aluminum alloys or aluminum products, thereby Maintain the surface finish of aluminum products, avoid the formation of oxide films, and improve the use experience of aluminum products.
  • a double-beam laser polishing equipment for aluminum alloys including: a frame, a rotary worktable and an optical path system arranged on the frame, and the rotary table is used to carry workpieces;
  • the optical system includes: a first fiber laser, a second fiber laser, a first three-dimensional vibrating mirror, and a second three-dimensional vibrating mirror; the first three-dimensional vibrating mirror is connected to the first fiber laser through an optical fiber, and the first three-dimensional vibrating mirror is connected to the first fiber laser through an optical fiber.
  • Two three-dimensional vibrating mirrors are connected to the second fiber laser through optical fibers; the first three-dimensional vibrating mirror and the second three-dimensional vibrating mirror are arranged side by side in the horizontal direction above the rotary table; wherein, the first three-dimensional vibrating mirror is arranged side by side above the rotary table;
  • a fiber laser and the second fiber laser can emit laser beams with different powers and have different laser scanning paths.
  • a first beam scaler is provided in the first 3D galvanometer
  • a second beam scaler is provided in the second 3D galvanometer
  • the first beam scaler converts the laser beam
  • the resulting diameter of the spot is larger than the diameter of the spot converted by the second beam zoomer after converting the laser light speed.
  • the laser polishing equipment further includes a gas circuit system arranged on the frame, the gas circuit system includes: a gas storage tank and an inert gas sealed cabin, the gas storage tank and the inert gas The air-tight chambers are connected through gas pipes, and the inert gas airtight chambers are arranged on the rotary worktable; the air circuit system is used to provide inert gas for the workpiece surface.
  • the laser polishing equipment further includes a focus adjustment mechanism arranged on the frame, the first three-dimensional galvanometer and the second three-dimensional galvanometer are arranged on the focus adjustment mechanism, the The focal length adjusting mechanism can drive the first 3D vibrating mirror and the second 3D vibrating mirror to approach or move away from the rotary table, so as to adjust the focal length of the laser beam focusing on the workpiece.
  • the focus adjustment mechanism includes a column and a driving member arranged on the column, the column is fixedly connected to the frame, and the driving member is movably arranged on the column and can move along the The height direction of the column moves.
  • the laser polishing equipment further includes a controller, the controller is arranged on the frame, and the controller is respectively connected with the first fiber laser, the second fiber laser, the The first three-dimensional vibrating mirror, the second three-dimensional vibrating mirror and the rotary table are electrically connected, and the controller is used to control the scanning path of the first three-dimensional vibrating mirror according to the received first polishing path, and to control the scanning path of the first three-dimensional vibrating mirror according to the received The second polishing path to control the scanning path of the second 3D vibrating mirror.
  • the laser polishing equipment further includes a display, the display is arranged on one side of the frame, and the display is connected to the first fiber laser, the second fiber laser, and the first fiber laser respectively.
  • a three-dimensional vibrating mirror, the second three-dimensional vibrating mirror and the rotary table are electrically connected.
  • an energy field generator is provided on the rotary table, and the energy field generator can load an energy field on the workpiece to be polished.
  • the second aspect provides a double-beam laser polishing method for aluminum alloys, which is used in the laser polishing equipment for aluminum alloys provided in any possible design mode of the first aspect of the present application.
  • Methods include:
  • the controller obtains the processing scanning trajectory, and plans the first three-dimensional vibrating mirror and the analog signal of the tilt sensor, the position sensor and the electronic pressure regulating valve combined with the first three-dimensional vibrating mirror and the second three-dimensional vibrating mirror. the scanning path of the second 3D vibrating mirror;
  • the controller sends control signals to the first three-dimensional vibrating mirror and the second three-dimensional vibrating mirror to control the first three-dimensional vibrating mirror and the second three-dimensional vibrating mirror to emit the laser light speed, and respectively
  • the scanning path of the first three-dimensional vibrating mirror and the second three-dimensional vibrating mirror scans and polishes the workpiece.
  • the scanning paths of the first 3D vibrating mirror and the second 3D vibrating mirror are different.
  • the diameter of the light spot formed by the first 3D galvanometer is larger than the diameter of the light spot formed by the second 3D galvanometer.
  • the beneficial effect of the dual-beam laser polishing equipment for aluminum alloys is that by setting two first fiber lasers and second fiber lasers that can emit different powers on the frame, the first fiber laser
  • the first three-dimensional vibrating mirror is connected through an optical fiber
  • the second fiber laser is connected to the second three-dimensional vibrating mirror through an optical fiber
  • the scanning paths of the first three-dimensional vibrating mirror and the second three-dimensional vibrating mirror are set to be different;
  • the laser can roughly polish the surface of aluminum alloy products through the first three-dimensional vibrating mirror
  • the laser emitted by the second fiber laser can fine-polish the surface of aluminum alloy products through the second three-dimensional vibrating mirror, so as to quickly realize the "melting peak filling valley" ", can reduce the secondary roughness produced by the first fiber laser polishing, through the interaction of different power lasers and aluminum product materials, the grain size and structure of the surface of aluminum products or aluminum alloy workpieces can be changed, so that aluminum products
  • the surface of the workpiece is modified to form a passivation layer on the
  • Fig. 1 is a schematic diagram of the overall structure of a double-beam laser polishing equipment for aluminum alloy provided in the first aspect embodiment of the present application;
  • Fig. 2 is a front view of the double-beam laser polishing equipment for aluminum alloy provided in the embodiment of the first aspect of the present application;
  • Fig. 3 is a right view of the double-beam laser polishing equipment for aluminum alloy provided in the embodiment of the first aspect of the present application;
  • FIG. 4 is a schematic diagram of the internal structure of the first three-dimensional vibrating mirror
  • Fig. 5 is a scanning path diagram of the first three-dimensional vibrating mirror and the second three-dimensional vibrating mirror
  • Fig. 6 is a partial enlarged view of place A in Fig. 5;
  • Fig. 7 is a specific scanning path diagram of the first three-dimensional vibrating mirror and the second three-dimensional vibrating mirror;
  • Fig. 8 is a flow chart of the realization of the double-beam laser polishing method for aluminum alloy provided by the embodiment of the second aspect of the present application.
  • Fig. 1 is a schematic diagram of the overall structure of the double-beam laser polishing equipment for aluminum alloy provided in the embodiment of the first aspect of the present application
  • Fig. 2 is The front view of the double-beam laser polishing equipment for aluminum alloy provided in the embodiment of the first aspect of the present application
  • Fig. 3 is a right view of the double-beam laser polishing equipment for aluminum alloy provided in the embodiment of the first aspect of the present application.
  • This embodiment provides a double-beam laser polishing equipment for aluminum alloy, including: a frame 10, a rotary table 20 and an optical path system 30 arranged on the frame 10, and the rotary table 20 is used to carry workpieces.
  • the rack 10 may be made of aluminum alloy, stainless steel or other alloy or metal materials.
  • the material of the rotary table 20 may be the same as that of the frame 10 .
  • the material of the rotary table 20 may also be different from that of the frame 10 , for example, the rotary table 20 is made of granite, marble or ceramic materials.
  • the rotary table 20 may be rotatably connected with the frame 10 , for example, the rotary table 20 and the frame 10 are rotatably connected through a rotating shaft and a bearing.
  • a driving device may be provided on the frame 10, for example, a synchronous motor, a servo motor or a stepping motor to drive the rotary table.
  • a fixture such as a three-grip chuck or a four-grip chuck, may be provided on the rotary table 20 to clamp the workpiece.
  • the clamp may also be an electrically controlled permanent magnet chuck.
  • the optical system 30 includes: a first fiber laser 31, a second fiber laser 32, a first three-dimensional vibrating mirror 33 and a second three-dimensional vibrating mirror 34; the first three-dimensional vibrating mirror 33 is connected to the first fiber laser 31 through an optical fiber, and the second The three-dimensional vibrating mirror 34 is connected to the second fiber laser 32 through an optical fiber; the first three-dimensional vibrating mirror 33 and the second three-dimensional vibrating mirror 34 are arranged side by side above the rotary table 20 along the horizontal direction; wherein, the first fiber laser 31 and the second The two fiber lasers 32 can emit laser beams with different powers and have different laser scanning paths.
  • the first fiber laser 31 is a continuous fiber laser that can generate continuous laser light with a power of 300-1000 W (watts)
  • the second fiber laser 32 is a pulsed laser that can generate a power of 40 -60W pulsed laser.
  • the first three-dimensional vibrating mirror 33 can convert the continuous laser light generated by the first fiber laser 31 into a flat-top spot, so that the laser has a uniform energy distribution on the entire spot area of the flat-top spot, and its diameter is relatively large.
  • the energy density, irradiation time and area of action of the laser achieve a certain preheating effect, so that the surface temperature of the aluminum alloy product or aluminum product is slightly lower than the melting point temperature, achieving the effect of preheating and rough polishing.
  • the second three-dimensional vibrating mirror 34 can convert the pulsed laser light provided by the second fiber laser 32 into a flat-top spot whose spot diameter is smaller than that of the first three-dimensional vibrating mirror 33, so that concentrated pulse peak energy can be obtained, High laser energy obtained in a small local area can quickly melt the microscopic surface peaks of special-shaped curved surfaces, so that the molten material can be quickly filled into the valleys, that is, "melting peaks and valleys", thereby reducing the surface roughness of the workpiece.
  • the scanning paths of the first three-dimensional vibrating mirror 33 and the second three-dimensional vibrating mirror 34 are set to be different, so that the pulsed laser can more effectively reduce the secondary roughness produced by the continuous laser.
  • the interaction between the laser and the surface of the workpiece can modify the surface of the aluminum product workpiece to form a passivation layer on the surface of the aluminum product, which can avoid the oxidation of the aluminum product surface to form an oxide film, and effectively improve the surface of the aluminum product or aluminum alloy product.
  • the smoothness improves the user experience effect.
  • first fiber lasers 31 and second fiber lasers 32 that can emit different powers are arranged on the rack 10, the first fiber laser 31 is connected to the first three-dimensional vibrating mirror 33 through an optical fiber, and the second fiber laser 32 is connected to the second three-dimensional vibrating mirror 34 through an optical fiber, and the scanning paths of the first three-dimensional vibrating mirror 33 and the second three-dimensional vibrating mirror 34 are set to be different; like this, the laser light emitted by the first fiber laser 31 can pass through the first three-dimensional vibrating mirror 33. Roughly polish the surface of the aluminum alloy product.
  • the laser light emitted by the second fiber laser 32 can be used to finely polish the surface of the aluminum alloy product through the second three-dimensional vibrating mirror 34, so as to quickly realize "melting peak and valley filling", which can reduce the second
  • the secondary roughness produced by the polishing of a fiber laser 31 can change the grain size and structure of the surface of the aluminum product or aluminum alloy workpiece through the interaction of different power lasers and the aluminum product material, thereby improving the surface of the aluminum product workpiece Modification can form a passivation layer on the surface of aluminum products; compared with the existing technology, it can avoid the formation of oxide film on the surface of aluminum products, which can effectively control the cracks of aluminum alloy laser polishing; improve the surface of aluminum products or aluminum alloy products smoothness and surface mechanical properties.
  • FIG. 4 is a schematic diagram of the internal structure of the first 3D vibrating mirror.
  • the first three-dimensional vibrating mirror 33 is provided with a first beam scaler 331
  • the second three-dimensional vibrating mirror 34 is provided with a second beam scaler.
  • the spot diameter after the first beam scaler 331 converts the laser beam is larger than that of the second beam scaler.
  • the present application only uses the internal structure of the first 3D vibrating mirror 33 as an example for illustration. It can be understood that the internal structure of the second 3D vibrating mirror 34 may be the same as that of the first 3D vibrating mirror 33 .
  • a light speed zoomer (DOE Tuner, DOE) 331 may be provided in the first 3D galvanometer 33 to convert the Gaussian laser light, and form a top-hat spot after passing through a Z-axis moving lens and a focusing lens.
  • DOE converter can also be set in the second 3D vibrating mirror 34 to convert Gaussian laser light. It can be understood that the diameter of the top-hat spot converted by the DOE converter in the second 3D galvanometer 34 is smaller than the diameter of the flat-hat spot converted by the DOE converter in the first 3D galvanometer 33 .
  • concentrated pulse peak energy can be obtained, and higher laser energy can be obtained in a small local area, which can quickly melt the microscopic surface peaks of special-shaped curved surfaces, so that the molten material can be quickly filled into the troughs, that is, "melting peaks and valleys" , so that the surface roughness of the workpiece can be reduced.
  • the double-beam laser polishing equipment for aluminum alloys also includes an air circuit system 40 arranged on the frame 10.
  • the air circuit system 40 includes: The gas tank 41 and the inert gas sealed cabin 42, the gas storage tank 41 and the inert gas sealed cabin 42 are connected through the gas pipeline, and the inert gas sealed cabin 42 is arranged on the rotary table 20; the gas circuit system 40 is used to provide inertness for the surface of the workpiece. gas.
  • the gas storage tank 41 may be a pressurized gas storage tank, and inert gases such as nitrogen, helium, xenon or argon may be stored in the gas storage tank 41 .
  • the workpiece can be placed in the inert gas sealed cabin 42, and the inert gas is passed into the inert gas sealed cabin 42, so that the polishing process is carried out under the inert gas atmosphere, which can effectively prevent the surface of the workpiece from being damaged during the polishing process. Oxidation occurs, which can effectively improve the surface finish of aluminum alloy workpieces.
  • the gas storage tank 41 can be fixed on the frame 10 through connecting parts such as bolts, screws or screws.
  • the inert gas sealed cabin 42 can also be fixed on the rotary table 20 and rotate together with the rotary table 20 .
  • the double-beam laser polishing equipment for aluminum alloy provided in the embodiment of the present application further includes a focus adjustment mechanism 50 arranged on the frame 10, a first three-dimensional vibrating mirror 33 and The second three-dimensional vibrating mirror 34 is arranged on the focal length adjustment mechanism 50, and the focal length adjustment mechanism 50 can drive the first three-dimensional vibrating mirror 33 and the second three-dimensional vibrating mirror 34 to approach or move away from the rotary table 20, so as to adjust the laser light speed to focus on the workpiece. focal length.
  • the focus adjustment mechanism 50 includes a column 51 and a driver 52 arranged on the column 51, the column 51 is fixedly connected to the frame 10, and the driver 52 is movably arranged on the column 51 and can move along the height direction of the column 51 .
  • the upright column 51 may be fixed on the frame 10 through the aforementioned connecting components such as screws, bolts or screw rods. In some possible manners, the column 51 may also be welded to the frame 10 by welding.
  • the driving member 52 may be a sliding cylinder, a linear cylinder, or a piston cylinder.
  • the sliding cylinder can slide on the column, and drives the first three-dimensional vibrating mirror 33 and the second three-dimensional vibrating mirror 34 arranged on the slider of the sliding cylinder to move together.
  • the driving mode of the linear cylinder and the piston cylinder may be the same as or similar to that of the slide cylinder, which will not be repeated in this embodiment of the present application.
  • the appropriate polishing focal length can be adjusted for workpieces of different sizes, which can improve the application of laser polishing equipment scope.
  • the double-beam laser polishing equipment for aluminum alloy provided in the embodiment of the present application further includes a controller 60, which is arranged on the frame 10, and the controller 60 is connected with The first fiber laser 31, the second fiber laser 32, the first three-dimensional vibrating mirror 33, the second three-dimensional vibrating mirror 34 are electrically connected to the rotary table 20, and the controller 60 is used to control the first polishing path according to the received first polishing path.
  • the scanning path of the three-dimensional vibrating mirror 33, and the scanning path of the second three-dimensional vibrating mirror 34 is controlled according to the received second polishing path.
  • the controller 60 may be a central processing unit (central processing unit, CPU), a micro control unit (Microcontroller Unit, MCU) or Field-programmable gate array (Field-programmable gate array, FPGA), etc.
  • CPU central processing unit
  • MCU microcontroller Unit
  • FPGA Field-programmable gate array
  • the controller 60 may also be a host computer or a computer equipped with the aforementioned CPU, MCU, or FPGA.
  • the laser polishing equipment also includes a display 70, the display 70 is arranged on one side of the frame 10, and the display 70 is connected to the first fiber laser 31, the second fiber laser 32, and the first three-dimensional vibrating mirror respectively. 33.
  • the second three-dimensional vibrating mirror 34 is electrically connected to the rotary table 20 .
  • the display can be a liquid crystal display, a liquid crystal display or other display screens, and the display screen can be used to display information such as polishing parameters or current control parameters of the laser polishing equipment, so that workers can better control and control the laser polishing equipment. operate.
  • an energy field generator 21 is further provided on the rotary table 20, and the energy field generator 21 can load an energy field on the workpiece to be polished.
  • the energy field generator 21 may be an electromagnetic field generator, an ultrasonic generator, or a composite generator of an electromagnetic field generator and an ultrasonic generator.
  • the electromagnetic field generator can emit an electromagnetic field, and the electromagnetic field acts on the molten metal, which can make the molten metal flow on the surface of the workpiece, and can accelerate the polishing efficiency of the workpiece; in addition, the ultrasonic generator can generate ultrasonic vibrations on the surface of the workpiece, making the surface of the workpiece A micro-explosion occurs in the liquid metal in the molten state, and the air and air gaps in the liquid metal are discharged, which can make the metal more compact after cooling and solidification, making the surface of the workpiece stronger.
  • Fig. 5 is a scanning path diagram of the first three-dimensional vibrating mirror and the second three-dimensional vibrating mirror
  • Fig. 6 is a partial enlarged view of A in Fig. 5
  • Fig. 7 is the first A specific scanning path diagram of a three-dimensional vibrating mirror and a second three-dimensional vibrating mirror.
  • the workpiece can be installed on the rotary table 20 first, and then the scanning path diagrams of the first three-dimensional vibrating mirror 33 and the second three-dimensional vibrating mirror 34 shown in FIG. 7 are obtained through the controller 60 .
  • the surface path of the first three-dimensional vibrating mirror 33 is set as a conventional "zigzag” or "Z"-shaped path S as shown in Figure 5, and the pulsed laser (that is, the second three-dimensional vibrating mirror 34) is used as a sub-mirror surface Or mirror polishing tools, the path can have a variety of choices, such as conventional "Zigzag” or "Z” shape, or square wave path, helical wave path, etc.
  • the first three-dimensional vibrating mirror 33 is a "Z" or "Z"-shaped path S1
  • the second three-dimensional vibrating mirror 34 is a square-wave path S2 as an example for illustration.
  • the pulsed laser spot can quickly melt and polish the surface of the workpiece with the help of the waste heat of the continuous laser, which can effectively improve the polishing effect and efficiency.
  • the pulsed laser can also polish the secondary roughness caused by the continuous laser, which improves the polishing effect.
  • FIG. 8 is a flow chart for realizing the double-beam laser polishing method for aluminum alloy provided in the embodiment of the second aspect of the present application.
  • This embodiment provides a double-beam laser polishing method for aluminum alloys, which is used in the laser polishing equipment for aluminum alloys provided in any optional embodiment of the first aspect embodiment of the present application. The method includes The following steps:
  • Step 801 installing the workpiece on the rotary table 20;
  • step 802 the controller 60 obtains the processing scanning trajectory, and plans the first three-dimensional vibrating mirror 33 and the second three-dimensional vibrating mirror 33 and the second three-dimensional vibrating mirror 34 in combination with the analog signals of the inclination sensor, the position sensor and the electronic pressure regulating valve.
  • the scanning path of the two-dimensional vibrating mirror 34 is not limited to the processing scanning trajectory.
  • the communication between the controller 60 and the first 3D vibrating mirror 33 and the second 3D vibrating mirror 34 may be performed through the RS232 protocol.
  • Step 803 the controller 60 sends a control signal to the first three-dimensional vibrating mirror 33 and the second three-dimensional vibrating mirror 34, so as to control the first three-dimensional vibrating mirror 33 and the second three-dimensional vibrating mirror 34 to emit laser light speed, and respectively according to the first three-dimensional vibrating mirror
  • the scanning paths of the vibrating mirror 33 and the second three-dimensional vibrating mirror 34 scan the polishing workpiece.
  • the scanning paths of the first 3D vibrating mirror 33 and the second 3D vibrating mirror 34 are different, and the diameter of the light spot formed by the first 3D vibrating mirror 33 is larger than the diameter of the light spot formed by the second 3D vibrating mirror 34 .

Abstract

一种用于铝合金的双光束激光抛光设备及抛光方法,包括:机架(10)、旋转工作台(20)和光路系统(30);光路系统(30)包括:第一光纤激光器(31)、第二光纤激光器(32)、第一三维振镜(33)和第二三维振镜(34);第一三维振镜(33)与第一光纤激光器(31)、第二三维振镜(34)与第二光纤激光器(32)分别通过光纤相连接;第一三维振镜(33)和第二三维振镜(34)沿水平方向并排设置于旋转工作台(20)的上方。第一光纤激光器(31)和所述第二光纤激光器(32)可发出不同功率的激光光束,并具有不同的激光扫描路径。还包括一种用于铝合金的双光束激光抛光方法。抛光设备及抛光方法可有效控制铝合金激光抛光裂纹;提高了铝合金制品表面的光洁度和表面力学性能。

Description

一种用于铝合金的双光束激光抛光设备及抛光方法
本申请要求于2021年05月18日在中国专利局提交的、申请号为202110539588.8、发明名称为“一种用于铝合金的双光束激光抛光设备及抛光方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及表面处理技术领域,尤其涉及一种用于铝合金的双光束激光抛光设备及抛光方法。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。
铝合金是一种以金属铝为基材,并添加一定量的其他合金化元素形成的合金材料,属于轻金属材料的一种。由于铝合金具有较轻的重量和较高的强度,其强度接近高合金钢,作为结构材料在航天、航空、交通运输、建筑、电机、轻化和日用品中有着广泛的应用。
但是,铝合金等铝制品在加工好并放置一段时间后,铝制品的表面与氧气接触会发生氧化,形成一层黑色的致密氧化物薄膜,导致铝制品表面光洁度变低,影响铝制品的使用体验和美观。
技术问题
本申请实施例的目的之一在于:提供一种用于铝合金的双光束激光抛光设备,旨在解决在对铝合金或者铝制品表面进行抛光时,如何对铝制品的表面进行改性,从而保持铝制品的表面光洁度,避免形成氧化物薄膜,提高铝制品的使用体验的问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种用于铝合金的双光束激光抛光设备,包括:机架、设于所述机架上的旋转工作台和光路系统,所述旋转工作台用于承载工件;
所述光路系统包括:第一光纤激光器、第二光纤激光器、第一三维振镜和第二三维振镜;所述第一三维振镜与所述第一光纤激光器通过光纤相连接,所述第二三维振镜与所述第二光纤激光器通过光纤相连接;所述第一三维振镜和所述第二三维振镜沿水平方向并排设置于所述旋转工作台的上方;其中,所述第一光纤激光器和所述第二光纤激光器可发出不同功率的激光光束,并具有不同的激光扫描路径。
在一个实施例中,所述第一三维振镜内设有第一光束缩放器,所述第二三维振镜内设有第二光束缩放器,所述第一光束缩放器转换所述激光光束后的光斑直径大于所述第二光束缩放器转换所述激光光速后的光斑直径。
在一个实施例中,所述激光抛光设备还包括设于所述机架上的气路系统,所述气路系统包括:储气罐和惰性气体密封舱,所述储气罐与所述惰性气体密封舱通过输气管相连通,所述惰性气体密封舱设于所述旋转工作台上;所述气路系统用于为工件表面提供惰性气体。
在一个实施例中,所述激光抛光设备还包括设于所述机架上的焦距调节机构,所述第一三维振镜和所述第二三维振镜设于所述焦距调节机构上,所述焦距调解机构可带动所述第一三维振镜和所述第二三维振镜靠近或远离所述旋转工作台,以调整所述激光光速聚焦到所述工件上的焦距。
在一个实施例中,所述焦距调节机构包括立柱和设于所述立柱上的驱动件,所述立柱与所述机架固接,所述驱动件活动设于所述立柱上,并可沿所述立柱的高度方向运动。
在一个实施例中,所述激光抛光设备还包括控制器,所述控制器设于所述机架上,所述控制器分别与所述第一光纤激光器、所述第二光纤激光器、所述第一三维振镜、所述第二三维振镜和所述旋转工作台电信号连接,所述控制器用于根据接收到的第一抛光路径控制所述第一三维振镜的扫描路径,以及根据接收到的第二抛光路径控制所述第二三维振镜的扫描路径。
在一个实施例中,所述激光抛光设备还包括显示器,所述显示器设于所述机架的一侧,所述显示器分别与所述第一光纤激光器、所述第二光纤激光器、所述第一三维振镜、所述第二三维振镜和所述旋转工作台电信号连接。
在一个实施例中,所述旋转工作台上设有能场发生器,所述能场发生器可为所述待抛光工件加载能场。
第二个方面,提供了一种用于铝合金的双光束激光抛光方法,用于本申请第一个方面任一可能的设计方式中所提供的用于铝合金的激光抛光设备中,所述方法包括:
将工件安装至所述旋转工作台上;
控制器获取加工扫描轨迹,并结合所述第一三维振镜和所述第二三维振镜发送的倾角传感器、位置传感器和电子调压阀的模拟信号规划所述第一三维振镜和所述第二三维振镜的扫描路径;
控制器发送控制信号给至所述第一三维振镜和所述第二三维振镜,以控制所述第一三维振镜和所述第二三维振镜发出所述激光光速,并分别根据所述第一三维振镜和所述第二三维振镜的扫描路径扫描抛光所述工件。
在一个实施例中,所述第一三维振镜和所述第二三维振镜的所述扫描路径不同。
在一个实施例中,所述第一三维振镜形成的所述光斑的直径大于所述第二三维振镜形成的所述光斑的直径。
有益效果
本申请实施例提供的一种用于铝合金的双光束激光抛光设备的有益效果在于:通过在机架上设置两个可发出不同功率的第一光纤激光器和第二光纤激光器,第一光纤激光器通过光纤连接第一三维振镜,第二光纤激光器通过光纤连接第二三维振镜,并且将第一三维振镜和第二三维振镜的扫描路径设为不同;这样,第一光纤激光器发出的激光可通过第一三维振镜对铝合金制品的表面进行粗抛光,第二光纤激光器发出的激光可通过第二三维振镜对铝合金制品的表面进行精抛光,从而快速实现“熔峰填谷”,能够降低第一光纤激光器抛光产生的次生粗糙度,通过不同功率的激光与铝制品材料的相互作用,可改变铝制品或者铝合金工件表面的晶粒度和进行结构,从而对铝制品工件的表面进行改性,能够在铝制品表面形成钝化层;相比于现有技术,能够避免铝制品表面氧化形成氧化物薄膜,可有效控制铝合金激光抛光裂纹;提高了铝制品或者铝合金制品表面的光洁度和表面力学性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请第一个方面实施例提供的用于铝合金的双光束激光抛光设备的整体结构示意图;
图2是本申请第一个方面实施例提供的用于铝合金的双光束激光抛光设备主视图;
图3是本申请第一个方面实施例提供的用于铝合金的双光束激光抛光设备的右视图;
图4是第一三维振镜的内部结构示意图;
图5是第一三维振镜和第二三维振镜的扫描路径图;
图6是图5中A处的局部放大图;
图7是第一三维振镜和第二三维振镜的具体扫描路径图;
图8是本申请第二个方面实施例提供的用于铝合金的双光束激光抛光方法的实现流程图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
根据本申请第一个方面实施例,参照图1-图3所示,图1是本申请第一个方面实施例提供的用于铝合金的双光束激光抛光设备的整体结构示意图,图2是本申请第一个方面实施例提供的用于铝合金的双光束激光抛光设备主视图,图3是本申请第一个方面实施例提供的用于铝合金的双光束激光抛光设备的右视图。本实施例提供了一种用于铝合金的双光束激光抛光设备,包括:机架10、设于机架10上的旋转工作台20和光路系统30,旋转工作台20用于承载工件。
可选地,本申请实施例中,机架10可以是铝合金、不锈钢或者其他合金或金属材料制成。
其中,旋转工作台20的材质可以与机架10相同。在一些可能的示例中,旋转工作台20的材质也可以与机架10不同,例如在用花岗岩、大理石或者陶瓷材料来制作旋转工作台20。
可以理解的是,本申请实施例中,旋转工作台20可以与机架10转动连接,例如通过旋转轴和轴承转动连接旋转工作台20和机架10。
本领域技术人员容易得知的是,为了驱动旋转工作台20转动。本申请实施例中,可以在机架10上设置驱动装置,例如设置同步电机、伺服电机或者步进电机等对旋转工作台进行驱动。
可以理解的是,在旋转工作台20上可以设置夹具,例如三抓夹头或者四抓夹头,对工件进行夹紧。在一些可能的示例中,夹具也可以是电控永磁吸盘。
光路系统30包括:第一光纤激光器31、第二光纤激光器32、第一三维振镜33和第二三维振镜34;第一三维振镜33与第一光纤激光器31通过光纤相连接,第二三维振镜34与第二光纤激光器32通过光纤相连接;第一三维振镜33和第二三维振镜34沿水平方向并排设置于旋转工作台20的上方;其中,第一光纤激光器31和第二光纤激光器32可发出不同功率的激光光束,并具有不同的激光扫描路径。
可选地,本申请实施例中,第一光纤激光器31为连续光纤激光器,其可产生功率为300-1000W(瓦特)的连续激光,第二光纤激光器32为脉冲激光器,其可产生功率为40-60W的脉冲激光。
其中,第一三维振镜33可将第一光纤激光器31产生的连续激光转换为平顶光斑,使得激光在平顶光斑的整个光斑面积上具有均匀的能量分布,其直径较大,能够通过控制激光的能量密度、辐照时间和作用面积,达到一定的预热效果,使得铝合金制品或者铝制品的材料表面温度略低于熔点温度,达到预热和粗抛的效果。
相应的,第二三维振静34可将第二光纤激光器32提供的脉冲激光转化为平顶光斑,其光斑直径小于第一三维振镜33转化的光斑直径,从而可以得到集中的脉冲峰值能量,在较小的局部区域得到较高的激光能量,能够快速融化异形曲面的微观表面波峰,使熔融的材料快速填充至波谷内,即“熔峰填谷”,从而能够降低工件的表面粗糙度。
另外,本申请实施例中,将第一三维振镜33和第二三维振镜34的扫描路径设置为不同,这样,脉冲激光能够更有效的降低连续激光产生的次生粗糙度,通过不同功率的激光与工件表面的相互作用,对铝制品工件的表面进行改性,能够在铝制品表面形成钝化层,能够避免铝制品表面氧化形成氧化物薄膜,有效提高了铝制品或者铝合金制品表面的光洁度,提高了用户使用体验效果。
本申请实施例,通过在机架10上设置两个可发出不同功率的第一光纤激光器31和第二光纤激光器32,第一光纤激光器31通过光纤连接第一三维振镜33,第二光纤激光器32通过光纤连接第二三维振镜34,并且将第一三维振镜33和第二三维振镜34的扫描路径设为不同;这样,第一光纤激光器31发出的激光可通过第一三维振镜33对铝合金制品的表面进行粗抛光,第二光纤激光器32发出的激光可通过第二三维振镜34对铝合金制品的表面进行精抛光,从而快速实现“熔峰填谷”,能够降低第一光纤激光器31抛光产生的次生粗糙度,通过不同功率的激光与铝制品材料的相互作用,可改变铝制品或者铝合金工件表面的晶粒度和进行结构,从而对铝制品工件的表面进行改性,能够在铝制品表面形成钝化层;相比于现有技术,能够避免铝制品表面氧化形成氧化物薄膜,可有效控制铝合金激光抛光裂纹;提高了铝制品或者铝合金制品表面的光洁度和表面力学性能。
可选的,参照图4所示,图4是第一三维振镜的内部结构示意图。第一三维振镜33内设有第一光束缩放器331,第二三维振镜34内设有第二光束缩放器,第一光束缩放器331转换激光光束后的光斑直径大于第二光束缩放器转换激光光速后的光斑直径。
需要说明的是,本申请仅以第一三维振镜33的内部结构作为示例进行说明,可以理解,第二三维振镜34的内部结构与第一三维振镜33的内部结构可以相同。
在第一三维振镜33内可以设有光速缩放器(DOE Tuner,DOE)331对高斯激光进行转换后,经过Z轴移动镜片和聚焦镜片后可形成平顶光斑。同样的,在第二三维振镜34内也可以设置DOE转换器,对高斯激光进行转换。可以理解的是,在第二三维振镜34内的DOE转换器转换后的平顶光斑的直径小于第一三维振镜33内的DOE转换器转换后的平顶光斑的直径。
这样,可以得到集中的脉冲峰值能量,在较小的局部区域得到较高的激光能量,能够快速融化异形曲面的微观表面波峰,使熔融的材料快速填充至波谷内,即“熔峰填谷”,从而能够降低工件的表面粗糙度。
可选的,参照图1和图2所示,本申请实施例中,用于铝合金的双光束激光抛光设备还包括设于机架10上的气路系统40,气路系统40包括:储气罐41和惰性气体密封舱42,储气罐41与惰性气体密封舱42通过输气管相连通,惰性气体密封舱42设于旋转工作台20上;气路系统40用于为工件表面提供惰性气体。
可选地,本申请实施例中,储气罐41可以是加压储气罐,储气罐41中可以储存有氮气、氦气、氙气或者氩气等惰性气体。
在具体使用时,可将工件放置在惰性气体密封舱42内,对惰性气体密封舱42内通入惰性气体,这样使得抛光过程在惰性气体氛围下进行,能够有效避免在抛光过程中,工件表面被氧化的情况发生,能够有效提高铝合金工件的表面光洁度。
其中,储气罐41可以通过螺栓、螺钉或者螺杆等连接部件固定在机架10上,同样的,惰性气体密封舱42也可以固定在旋转工作台20上,并随旋转工作台20一起转动。
可选的,参照图1和图2所示,本申请实施例提供的用于铝合金的双光束激光抛光设备还包括设于机架10上的焦距调节机构50,第一三维振镜33和第二三维振镜34设于焦距调节机构50上,焦距调解机构50可带动第一三维振镜33和第二三维振镜34靠近或远离旋转工作台20,以调整激光光速聚焦到工件上的焦距。
可选地,焦距调节机构50包括立柱51和设于立柱51上的驱动件52,立柱51与机架10固接,驱动件52活动设于立柱51上,并可沿立柱51的高度方向运动。
其中,立柱51可以是通过前述的螺钉、螺栓或者螺杆等连接部件固定在机架10上。在一些可能的方式中,立柱51也可以是通过焊接的方式焊接在机架10上。
驱动件52具体可以是滑动气缸、直线气缸或者活塞缸等。其中,滑动气缸可在立柱上滑动,并带动设置在滑动气缸的滑块上的第一三维振镜33和第二三维振镜34一起移动。可以理解的是,直线气缸和活塞缸的驱动方式可以与滑动气缸相同或者类似,本申请实施例中不在赘述。
通过设置焦距调节机构50带动第一三维振镜33和第二三维振镜34靠近或者远离旋转工作台20,这样,针对不同尺寸的工件,可以调节适当的抛光焦距,能够提高激光抛光设备的适用范围。
可选的,参照图1和图2所示,本申请实施例提供的用于铝合金的双光束激光抛光设备还包括控制器60,控制器60设于机架10上,控制器60分别与第一光纤激光器31、第二光纤激光器32、第一三维振镜33、第二三维振镜34和旋转工作台20电信号连接,控制器60用于根据接收到的第一抛光路径控制第一三维振镜33的扫描路径,以及根据接收到的第二抛光路径控制第二三维振镜34的扫描路径。
可选地,本申请实施例中,控制器60可以是中央处理器(central processing unit,CPU)、微控制单元(Microcontroller Unit,MCU)或者现场可编程门阵列(Field-programmable gate array,FPGA)等。
当然,在一些可能的示例中,控制器60也可以是设有上述CPU、MCU或者FPGA等的电脑主机或者计算机等设备。
可选的,参照图1所示,激光抛光设备还包括显示器70,显示器70设于机架10的一侧,显示器70分别与第一光纤激光器31、第二光纤激光器32、第一三维振镜33、第二三维振镜34和旋转工作台20电信号连接。
其中,显示器可以是液晶显示器、液晶显示屏或者其他显示屏,显示屏可以用来显示激光抛光设备的抛光参数或当前控制参数等信息,以便于工人你能够更好的对激光抛光设备进行控制和操作。
可选的,参照图1所示,本申请实施例中,在旋转工作台20上还设有能场发生器21,能场发生器21可为待抛光工件加载能场。
可选地,本申请实施例中,能场发生器21可以是电磁场发生器、超声波发生器或者电磁场发生器和超声波发生器的复合发生器。
可选地,电磁场发生器可发出电磁场,电磁场作用在熔融金属上,可以使得熔融金属在工件表面流动,能够加快工件的抛光效率;另外,超声波发生器可在工件表面产生超声震荡,使得工件表面处于熔融状态的液态金属内产生微型爆炸,将液态金属内的空气和气隙排出,能够是的金属冷却凝固后更加紧密,使得工件表面的强度更高。
在具体使用时,参照图5-图7所示,图5是第一三维振镜和第二三维振镜的扫描路径图,图6是图5中A处的局部放大图,图7是第一三维振镜和第二三维振镜的具体扫描路径图。可先将工件安装到旋转工作台20上,然后,通过控制器60获取图7中示出的第一三维振镜33和第二三维振镜34的扫描路径图。例如,将第一三维振镜33的臊面路径设为如图5中示出的常规的“之”字形或者“Z”字形路径S,脉冲激光(即第二三维振镜34)作为亚镜面或者镜面抛光工具,其路径可以具有多样化的选择,例如常规的“之”或“Z”字形,或者方波路径、螺旋波路径等。本申请图6和图7中,以第一三维振镜33为“之”或“Z”字形路径S1,第二三维振镜34为方波路径S2为例进行说明。从图7中可以看出,“之”或“Z”字形路径与方波路径耦合后,脉冲激光光斑可借助连续激光的余热对工件表面进行快速的融化抛光,能够有效提高抛光效果和效率,另外,脉冲激光还能够对连续激光造成的次生粗糙度进行抛光处理,提高了抛光效果。
根据本申请第二个方面的实施例,参照图8所示,图8是本申请第二个方面实施例提供的用于铝合金的双光束激光抛光方法的实现流程图。本实施例提供了一种用于铝合金的双光束激光抛光方法,用于本申请第一个方面实施例任一可选实施方式所提供的用于铝合金的激光抛光设备中,该方法包括以下步骤:
步骤801,将工件安装至旋转工作台20上;
步骤802,控制器60获取加工扫描轨迹,并结合第一三维振镜33和第二三维振镜34发送的倾角传感器、位置传感器和电子调压阀的模拟信号规划第一三维振镜33和第二三维振镜34的扫描路径。
可选地,本申请实施例中,控制器60与第一三维振镜33和第二三维振镜34之间可以通过RS232协议进行通讯。
步骤803,控制器60发送控制信号给至第一三维振镜33和第二三维振镜34,以控制第一三维振镜33和第二三维振镜34发出激光光速,并分别根据第一三维振镜33和第二三维振镜34的扫描路径扫描抛光工件。
其中,第一三维振镜33和第二三维振镜34的扫描路径不同,且第一三维振镜33形成的光斑的直径大于第二三维振镜34形成的光斑的直径。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (11)

  1. 一种用于铝合金的双光束激光抛光设备,其特征在于,包括:机架(10)、设于所述机架(10)上的旋转工作台(20)和光路系统(30),所述旋转工作台(20)用于承载工件;
    所述光路系统(30)包括:第一光纤激光器(31)、第二光纤激光器(32)、第一三维振镜(33)和第二三维振镜(34);所述第一三维振镜(33)与所述第一光纤激光器(31)通过光纤相连接,所述第二三维振镜(34)与所述第二光纤激光器(32)通过光纤相连接;所述第一三维振镜(33)和所述第二三维振镜(34)沿水平方向并排设置于所述旋转工作台(20)的上方;其中,所述第一光纤激光器(31)和所述第二光纤激光器(32)可发出不同功率的激光光束,并具有不同的激光扫描路径。
  2. 根据权利要求1所述的用于铝合金的双光束激光抛光设备,其特征在于,所述第一三维振镜(33)内设有第一光束缩放器(331),所述第二三维振镜(34)内设有第二光束缩放器,所述第一光束缩放器(331)转换所述激光光束后的光斑直径大于所述第二光束缩放器转换所述激光光速后的光斑直径。
  3. 根据权利要求1所述的用于铝合金的双光束激光抛光设备,其特征在于,所述激光抛光设备还包括设于所述机架(10)上的气路系统(40),所述气路系统(40)包括:储气罐(41)和惰性气体密封舱(42),所述储气罐(41)与所述惰性气体密封舱(42)通过输气管相连通,所述惰性气体密封舱(42)设于所述旋转工作台(20)上;所述气路系统(40)用于为工件表面提供惰性气体。
  4. 根据权利要求1所述的用于铝合金的双光束激光抛光设备,其特征在于,所述激光抛光设备还包括设于所述机架(10)上的焦距调节机构(50),所述第一三维振镜(33)和所述第二三维振镜(34)设于所述焦距调节机构(50)上,所述焦距调解机构(50)可带动所述第一三维振镜(33)和所述第二三维振镜(34)靠近或远离所述旋转工作台(20),以调整所述激光光速聚焦到所述工件上的焦距。
  5. 根据权利要求4所述的用于铝合金的双光束激光抛光设备,其特征在于,所述焦距调节机构(50)包括立柱(51)和设于所述立柱(51)上的驱动件(52),所述立柱(51)与所述机架(10)固接,所述驱动件(52)活动设于所述立柱(51)上,并可沿所述立柱(51)的高度方向运动。
  6. 根据权利要求1-5任一项所述的用于铝合金的双光束激光抛光设备,其特征在于,所述激光抛光设备还包括控制器(60),所述控制器(60)设于所述机架(10)上,所述控制器(60)分别与所述第一光纤激光器(31)、所述第二光纤激光器(32)、所述第一三维振镜(33)、所述第二三维振镜(34)和所述旋转工作台(20)电信号连接,所述控制器(60)用于根据接收到的第一抛光路径控制所述第一三维振镜(33)的扫描路径,以及根据接收到的第二抛光路径控制所述第二三维振镜(34)的扫描路径。
  7. 根据权利要求6所述的用于铝合金的双光束激光抛光设备,其特征在于,所述激光抛光设备还包括显示器(70),所述显示器(70)设于所述机架(10)的一侧,所述显示器(70)分别与所述第一光纤激光器(31)、所述第二光纤激光器(32)、所述第一三维振镜(33)、所述第二三维振镜(34)和所述旋转工作台(20)电信号连接。
  8. 根据权利要求1-5任一项所述的用于铝合金的双光束激光抛光设备,其特征在于,所述旋转工作台(20)上设有能场发生器(21),所述能场发生器(21)可为所述工件加载能场。
  9. 一种用于铝合金的双光束激光抛光方法,用于权利要求1-8任一项所述的用于铝合金的激光抛光设备中,其特征在于,所述方法包括:
    将工件安装至所述旋转工作台(20)上;
    控制器(60)获取加工扫描轨迹,并结合所述第一三维振镜(33)和所述第二三维振镜(34)发送的倾角传感器、位置传感器和电子调压阀的模拟信号规划所述第一三维振镜(33)和所述第二三维振镜(34)的扫描路径;
    控制器(60)发送控制信号给至所述第一三维振镜(33)和所述第二三维振镜(34),以控制所述第一三维振镜(33)和所述第二三维振镜(34)发出所述激光光速,并分别根据所述第一三维振镜(33)和所述第二三维振镜(34)的扫描路径扫描抛光所述工件。
  10. 根据权利要求9所述的用于铝合金的双光束激光抛光方法,其特征在于,所述第一三维振镜(33)和所述第二三维振镜(34)的所述扫描路径不同。
  11. 根据权利要求9所述的用于铝合金的双光束激光抛光方法,其特征在于,所述第一三维振镜(33)形成的光斑的直径大于所述第二三维振镜(34)形成的光斑的直径。
PCT/CN2021/114734 2021-05-18 2021-08-26 一种用于铝合金的双光束激光抛光设备及抛光方法 WO2022241967A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/262,366 US11890698B1 (en) 2021-05-18 2021-08-26 Double-beam laser polishing device and polishing method for aluminum alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110539588.8 2021-05-18
CN202110539588.8A CN113290319B (zh) 2021-05-18 2021-05-18 一种用于铝合金的双光束激光抛光设备及抛光方法

Publications (1)

Publication Number Publication Date
WO2022241967A1 true WO2022241967A1 (zh) 2022-11-24

Family

ID=77322615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114734 WO2022241967A1 (zh) 2021-05-18 2021-08-26 一种用于铝合金的双光束激光抛光设备及抛光方法

Country Status (3)

Country Link
US (1) US11890698B1 (zh)
CN (1) CN113290319B (zh)
WO (1) WO2022241967A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116329769A (zh) * 2023-05-29 2023-06-27 上海凯来仪器有限公司 一种激光剥蚀激光电离装置、方法及质谱仪

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113290319B (zh) * 2021-05-18 2023-03-07 深圳信息职业技术学院 一种用于铝合金的双光束激光抛光设备及抛光方法
CN113732510A (zh) * 2021-08-26 2021-12-03 深圳信息职业技术学院 一种双激光抛光系统及复合激光抛光方法
CN113798664B (zh) * 2021-10-12 2022-06-14 山东大学 一种用于不粘锅内表面处理的加工装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017143789A1 (zh) * 2016-02-23 2017-08-31 中国科学院重庆绿色智能技术研究院 一种激光增减材复合制造的方法与装置
CN108817674A (zh) * 2018-06-26 2018-11-16 深圳信息职业技术学院 一种双光束五轴数控激光抛光方法
CN109676257A (zh) * 2019-01-23 2019-04-26 深圳信息职业技术学院 一种三维曲面激光抛光方法和装备
CN110899961A (zh) * 2019-11-22 2020-03-24 武汉数字化设计与制造创新中心有限公司 一种配置双激光器的激光三维精密柔性化加工平台
CN112756791A (zh) * 2021-01-12 2021-05-07 深圳信息职业技术学院 一种激光抛光装置和激光抛光方法
CN113290319A (zh) * 2021-05-18 2021-08-24 深圳信息职业技术学院 一种用于铝合金的双光束激光抛光设备及抛光方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5146948B2 (ja) * 2007-05-09 2013-02-20 独立行政法人産業技術総合研究所 金属表面加工方法
US9764427B2 (en) * 2014-02-28 2017-09-19 Ipg Photonics Corporation Multi-laser system and method for cutting and post-cut processing hard dielectric materials
CN107225328A (zh) * 2017-04-14 2017-10-03 北京航空航天大学 一种针对金属表面的单步脉冲激光抛光方法
WO2018227382A1 (en) * 2017-06-13 2018-12-20 GM Global Technology Operations LLC Method for laser welding metal workpieces using a combination of weld paths
CN111266740A (zh) * 2020-02-24 2020-06-12 深圳信息职业技术学院 构件内壁超快激光清洗、精细抛光设备及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017143789A1 (zh) * 2016-02-23 2017-08-31 中国科学院重庆绿色智能技术研究院 一种激光增减材复合制造的方法与装置
CN108817674A (zh) * 2018-06-26 2018-11-16 深圳信息职业技术学院 一种双光束五轴数控激光抛光方法
CN109676257A (zh) * 2019-01-23 2019-04-26 深圳信息职业技术学院 一种三维曲面激光抛光方法和装备
CN110899961A (zh) * 2019-11-22 2020-03-24 武汉数字化设计与制造创新中心有限公司 一种配置双激光器的激光三维精密柔性化加工平台
CN112756791A (zh) * 2021-01-12 2021-05-07 深圳信息职业技术学院 一种激光抛光装置和激光抛光方法
CN113290319A (zh) * 2021-05-18 2021-08-24 深圳信息职业技术学院 一种用于铝合金的双光束激光抛光设备及抛光方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116329769A (zh) * 2023-05-29 2023-06-27 上海凯来仪器有限公司 一种激光剥蚀激光电离装置、方法及质谱仪
CN116329769B (zh) * 2023-05-29 2023-08-04 上海凯来仪器有限公司 一种激光剥蚀激光电离装置、方法及质谱仪

Also Published As

Publication number Publication date
US20240033854A1 (en) 2024-02-01
CN113290319B (zh) 2023-03-07
CN113290319A (zh) 2021-08-24
US11890698B1 (en) 2024-02-06

Similar Documents

Publication Publication Date Title
WO2022241967A1 (zh) 一种用于铝合金的双光束激光抛光设备及抛光方法
JP5364856B1 (ja) 加工装置、加工方法
JP6071641B2 (ja) 加工装置、加工方法
US9314972B2 (en) Apparatus for additive layer manufacturing of an article
WO2020259719A1 (zh) 一种超声振动辅助铺平粉末的激光增材加工装置及方法
CN114160813A (zh) 可见光激光增材制造
WO2022022067A1 (zh) 一种光束入射角可控的激光加工装置及激光加工方法
CN112518109B (zh) 应用于异种金属复合热源焊接的高频激光脉冲方法
CN111266740A (zh) 构件内壁超快激光清洗、精细抛光设备及控制方法
Tu et al. Fatigue crack fusion in thin-sheet aluminum alloys AA7075-T6 using low-speed fiber laser welding
CN101658979A (zh) 激光双面同步加工系统及加工方法
CN211276517U (zh) 一种高反射材料蓝绿激光微熔化成型装置
JP2005329436A (ja) レーザ加工方法
JP6071640B2 (ja) 加工装置、加工方法
CN201529849U (zh) 激光双面同步加工系统
JPH07236987A (ja) レーザ切断方法及びその装置
CN108067749A (zh) 一种用于非晶薄带的激光切割方法及系统
LU504263B1 (en) Double-beam laser polishing device and polishing method for aluminum alloy
CN113732510A (zh) 一种双激光抛光系统及复合激光抛光方法
CN111730214A (zh) 一种激光切割钻石材料的专用装置
CN110977171B (zh) 一种改善焊缝成形的真空激光-电弧复合焊接方法及装置
CN2744447Y (zh) 一种金属零件选区激光熔化快速成型装置
CN104625437A (zh) 一种用于激光钻切异形孔精密加工的扫描机构
CN114535609A (zh) 一种利用超高频振动激光束调控金属粉末熔凝过程的方法
CN113305423A (zh) 三维振镜焊接头装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940416

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18262366

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE