WO2020259719A1 - 一种超声振动辅助铺平粉末的激光增材加工装置及方法 - Google Patents

一种超声振动辅助铺平粉末的激光增材加工装置及方法 Download PDF

Info

Publication number
WO2020259719A1
WO2020259719A1 PCT/CN2020/110211 CN2020110211W WO2020259719A1 WO 2020259719 A1 WO2020259719 A1 WO 2020259719A1 CN 2020110211 W CN2020110211 W CN 2020110211W WO 2020259719 A1 WO2020259719 A1 WO 2020259719A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
ultrasonic vibration
laser
platform
assisted
Prior art date
Application number
PCT/CN2020/110211
Other languages
English (en)
French (fr)
Inventor
任旭东
陈兰
孙禺州
张新洲
童照鹏
谷朋飞
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2020259719A1 publication Critical patent/WO2020259719A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention belongs to the field of laser additive manufacturing, and in particular relates to a laser additive processing device and method for assisting ultrasonic vibration to level powder.
  • Laser additive manufacturing technology is extended to the entire three-dimensional solid part through multi-layer cladding based on the "discrete + accumulation" idea of rapid prototyping technology, realizing rapid moldless forming of metal parts with complex structures, and has been widely used in aerospace Field, used to manufacture complex components that are difficult to produce by traditional methods.
  • the laser additive processing process due to the uneven powder, the sintering and bonding between the powders during the printing process, and the splashing of the molten pool during the melting process, the laser additive processing parts have cracks, Intrinsic defects such as spheroidization and porosity.
  • a laser additive processing device and method for ultrasonic vibration to assist in leveling powder is proposed.
  • the ultrasonic vibration device, three-dimensional profile scanner, Infrared cameras and high-speed cameras can perform real-time detection of the laser additive process and dynamically adjust the process parameters to achieve the purpose of preparing high-performance uniform metal components.
  • the purpose of the present invention is to solve the problem of internal defects such as cracks, spheroidization, pores, etc. in the current laser additive manufacturing process, resulting in uneven structure and performance of the processed parts, and invented an ultrasonic vibration
  • a laser additive processing method that assists in the leveling of powders, and corresponding devices are also provided.
  • the device includes a laser additive manufacturing system, an ultrasonic vibration device and a control system.
  • the device uses an ultrasonic vibration platform to pave the powder, which greatly improves the uniformity of powder distribution, so that the produced parts have better component uniformity; by controlling the time of vibrating powder spreading, the flatness of the powder can be accurately controlled and can be adapted to many Changing customer needs; At the same time, there is an ultrasonic vibration device under the substrate, which can make the powder evenly melted, and at the same time enable the gas in the molten powder to quickly escape the molten pool, reduce pores, and improve the overall performance of the produced parts; laser generator , Electric pump, lifting platform, XY mobile platform, ultrasonic vibration platform, three-dimensional profile scanner, infrared camera and high-speed camera and control system form a closed-loop feedback control system, which dynamically controls processing parameters, fully melts the powder, and reduces pores, cracks, The generation of defects such as unmelted powder improves the overall performance of the produced parts; during the processing, if the surface of the upper layer has defects such as pores, when the next layer is spread, the powder will fill these to
  • the technical scheme adopted by the present invention is: a laser additive processing device for ultrasonic vibration to assist powder leveling, which is characterized in that it includes a laser generator (1), a beam expander (2), and is used to expand the incident laser light into parallel Laser beam (3).
  • the parallel laser beam (3) passes through the reflector (18) and is focused on the powder (12) through the lens (17).
  • the reflector (18) and the lens (17) are fixed on the XY moving platform (19) and can move in the horizontal plane to deflect the parallel laser beam (3) to melt the powder (12) at different positions.
  • the powder pool (10) is fixed on the ultrasonic vibration platform (9) and can be ultrasonically vibrated accordingly.
  • the base body (13) is fixed on the lifting platform (11) and can move up and down in the vertical direction.
  • the lifting platform (11) is fixed at the bottom of the powder pool (10).
  • the powder (12) is transported from the powder bin (5) to the powder pool (10) through an electric pump (4) and a hose (8).
  • the high-speed camera (16) is connected to and controlled by the control system (7) through the signal line (6).
  • the present invention also provides a laser additive processing method of ultrasonic vibration assisted paving powder, which is characterized in that it comprises the following steps:
  • the S3 ultrasonic vibration platform (9) continues to vibrate, and the three-dimensional profile scanner (14) scans the profile of the upper surface of the powder (12) and obtains the absolute height H2; controls the lifting platform (11) to move up and down, and records the height of the lifting H (upper positive and lower negative), so that H2-(H1+H) is equal to the preset layer thickness; at the same time, the flatness of the powder is obtained from the top surface of the powder (12) when it reaches the preset requirements After that, go to the next step;
  • S4 parallel laser beam (3) starts to melt the powder (12) according to the preset scanning path, until the processing of one layer is completed; during this period, the ultrasonic vibration platform (9) keeps vibrating;
  • the S5 infrared camera (15) captures the temperature of the molten pool, and the high-speed camera (16) captures the width of the molten pool and feeds it back to the control system (7) to determine whether the powder (12) is sufficiently melted and dynamically control the scanning speed; Control the vibration frequency of the ultrasonic vibration platform (9) so that the powder can be fully melted;
  • the ultrasonic vibration platform (9) stops vibrating; the three-dimensional profile scanner (14) scans the top surface topography of the part and transmits it to the control system (7); the control system calculates according to the top surface topography For defective areas, modify the processing parameters of the next layer to increase the laser energy in these areas;
  • S7 obtains the absolute height H1' according to the top surface morphology, and adds and spreads powder in a similar way to S3, and adjusts the height of the lifting platform;
  • S8 repeat steps S4, S5, S6, S7 until the additive manufacturing process is completed;
  • the three-dimensional profile scanner (14) has technical parameters: X-axis and Y-axis accuracy of 5 ⁇ m, and Z-axis accuracy of 1 ⁇ m.
  • the technical parameters of the ultrasonic vibration platform (9) in the S4 are: the ultrasonic vibration frequency is 20 kHz, and the vibration amplitude is less than 20 ⁇ m.
  • the infrared camera has technical parameters as follows: infrared temperature measurement range is 800-4000°C, measurement accuracy is ⁇ 1 ⁇ reading, repeat measurement accuracy is ⁇ 0.5 ⁇ reading, and detection response time is 20ms .
  • the technical parameters of the high-speed camera (16) in the S5 are: a shooting speed of up to 40,000 frames per second, and a dynamic range of up to 120 dB.
  • the laser generator (1) is a fiber laser generator, wavelength: 1080nm, rated output power: 1000W, focal length: 280mm, power adjustable range: 5-100%; fiber output interface: QCS; focal spot light intensity distribution : Flat top; Laser working mode: CW; Output power stability: ⁇ 3%; Laser dedicated cloud service remote diagnosis system.
  • the laser power of the laser generator is 50W-1000W
  • the spot diameter is 2-5mm
  • the scanning speed is 100-1500mm/s
  • the overlap The rate is 20-70%.
  • the whole process is carried out in an argon atmosphere, and the coaxial shielding gas pressure rate is 5L/min.
  • the traditional laser selective melting equipment uses a scraper to level the powder, resulting in a big difference between the movement direction of the scraper and the powder distribution perpendicular to the movement direction of the scraper.
  • this equipment uses an ultrasonic vibration platform to pave the powder, which greatly improves the uniformity of powder distribution, so that the produced parts have better component uniformity.
  • the powder flatness can be precisely controlled, which can adapt to changing customer needs.
  • the device is equipped with an ultrasonic vibration device under the substrate, which can make the powder uniformly melted, and at the same time make the gas in the molten powder quickly escape the molten pool, reduce pores, and improve the overall performance of the produced parts.
  • the laser generator, electric pump, lifting platform, XY mobile platform, ultrasonic vibration platform, three-dimensional profile scanner, infrared camera, high-speed camera and control system of this device constitute a closed-loop feedback control system to dynamically control processing parameters. Fully melt the powder, reduce the generation of pores, cracks, unmelted powder and other defects, and improve the overall performance of the produced parts.
  • the powder will fill these defects to a certain extent through the ultrasonic vibration platform, and the laser power in these areas will be increased by the control system. Repair defects and improve the overall performance of output parts.
  • Figure 1 is a schematic diagram of the device of the present invention
  • Figure 2-7 is the process of laser additive manufacturing of the device of the present invention.
  • Figure 1 is a schematic diagram of the device of the present invention.
  • a laser additive processing device with ultrasonic vibration assisted paving powder is characterized in that it includes a laser generator (1) and a beam expander (2) for expanding the incident laser into a parallel laser beam (3).
  • the parallel laser beam (3) passes through the reflector (18) and is focused on the powder (12) through the lens (17).
  • the reflector (18) and lens (17) are fixed on the XY moving platform (19), which can move in the horizontal plane to deflect the parallel laser beam (3) to melt the powder (12) at different positions.
  • the powder pool (10) is fixed on the ultrasonic vibration platform (9) and can be ultrasonically vibrated accordingly.
  • the base body (13) is fixed on the lifting platform (11) and can move up and down in the vertical direction.
  • the lifting platform (11) is fixed at the bottom of the powder pool (10).
  • the powder (12) is transported from the powder bin (5) to the powder pool (10) through an electric pump (4) and a hose (8).
  • the high-speed camera (16) is connected to and controlled by the control system (7) through a signal line (6).
  • the present invention includes the following steps:
  • C ultrasonic vibration platform (9) continues to vibrate, and the three-dimensional profile scanner (14) scans the profile of the upper surface of the powder (12) and obtains the absolute height H2; controls the lifting platform (11) to move up and down, and records the height of the lifting H (upper positive and lower negative), so that H2-(H1+H) is equal to the preset layer thickness; at the same time, the flatness of the powder is obtained from the top surface of the powder (12) when it reaches the preset requirements Then, go to the next step, as shown in Figure 3;
  • D parallel laser beam (3) starts to melt the powder (12) according to the preset scanning path, until one layer is processed; during this period, the ultrasonic vibration platform (9) keeps vibrating, as shown in Figure 4;
  • E infrared camera photographs the temperature of the molten pool
  • high-speed camera (16) photographs the width of the molten pool and feeds it back to the control system (7) to judge whether the powder (12) is sufficiently melted, and dynamically control the scanning speed; Control the vibration frequency of the ultrasonic vibration platform (9) so that the powder can be fully melted;
  • the ultrasonic vibration platform (9) stops vibrating; the three-dimensional topography scanner (14) scans the top surface topography of the part and transmits it to the control system (7); the control system calculates according to the top surface topography For defective areas, modify the processing parameters of the next layer to increase the laser energy in these areas;
  • G obtains the absolute height H1' according to the top surface morphology, and adds and spreads powder in a similar way to C, and adjusts the height of the lifting platform, as shown in Figure 5 to Figure 6;
  • the laser power of the laser generator is 800W
  • the spot diameter is 2mm
  • the scanning speed is 1500mm/s
  • the overlap rate is 50%.

Abstract

一种超声振动辅助铺平粉末的激光增材加工装置,包括激光发生器(1),扩束镜(2),用来将入射激光扩展成平行激光束(3),平行激光束(3)经过反光镜(18),并通过透镜(17)聚焦到粉末(12)上,反光镜(18)和透镜(17)固定在XY移动平台(19)上,可以在水平面内移动,以此偏转平行激光束(3)熔化不同位置的粉末(12),粉末池(10)固定在超声振动平台(9)上,可以随之进行超声振动,基体(13)固定在升降平台(11)上可以随之在铅垂方向上下移动,升降平台(11)固定在粉末池(10)底部。粉末(12)通过电泵(4)和软管(8)从粉末仓(5)输送到粉末池(10)中。还公开了一种超声振动辅助铺平粉末的激光增材加工装置的加工方法。

Description

一种超声振动辅助铺平粉末的激光增材加工装置及方法 技术领域
本发明属于激光增材制造领域,尤其涉及一种超声振动辅助铺平粉末的激光增材加工装置及方法。
背景技术
激光增材制造技术在快速成形技术“离散+堆积”思想的基础上通过多层熔覆扩展到整个三维实体零件,实现了具有复杂结构金属零件的快速无模成形,已被广泛应用于航空航天领域,用来制造难以通过传统方法生产的复杂构件。然而,在激光增材加工过程中,因粉末不均匀、打印过程中粉末之间出现烧结、粘结等现象、在熔化过程中出现熔池飞溅等因素,导致激光增材加工的零件具有裂纹、球化、孔隙等内在缺陷。虽然很多学者通过优化激光工艺参数,可以提高成形零件的均匀性,但是增材加工的成本急剧增加,同时对技术人员的经验要求较高。因此,亟需开发一种用于减少激光增材加工零件内部缺陷的装置和方法。针对上述在激光增材制造过程中存在的问题,提出一种超声振动辅助铺平粉末的激光增材加工装置及方法,同时在激光增材过程中,开启超声振动装置、三维形貌扫描仪、红外摄像机和高速摄像机,对激光增材过程进行实时检测,动态调整工艺参数,从而达到制备高性能的均匀性金属构件目的。
发明内容
本发明的目的是针对目前的在激光增材制造过程中,零件会产生如裂纹、球化、孔隙等内在缺陷,从而导致加工出的零件组织和性能不均匀的问题,发明了一种超声振动辅助铺平粉末的激光增材加工方法,同时还提供了相应的装置。该装置包括激光增材制造系统、超声振动装置和控制系统。该装置采用超声振动平台铺平粉末,大大提高粉末分布的均匀性,使得产出的零件拥有更优良的构件均匀性;通过控制振动铺粉的时间,对于粉末平整度可以精确控制,可以适应多变的客户 需求;同时在基体下设有超声振动装置,其可以使粉末被均匀熔化,同时使熔融粉末中的气体可以快速逃离熔池,减少孔隙,提高产出零件的综合性能;激光发生器、电泵、升降平台、XY移动平台、超声振动平台、三维形貌扫描仪、红外摄像机和高速摄像机与控制系统组成一个闭环反馈控制系统,动态控制加工参数,充分熔化粉末,减少孔隙、裂纹、未熔融粉末等缺陷的生成,提高产出零件的综合性能;在加工过程中,若上一层的表面有孔隙等缺陷,在下一层铺粉时,通过超声振动平台,粉末会一定程度填补这些缺陷,并通过控制系统加大这些区域的激光功率来修复缺陷,提高产出零件的综合性能。
本发明采取的技术方案为:一种超声振动辅助铺平粉末的激光增材加工装置,其特征在于:包括激光发生器(1),扩束镜(2),用来将入射激光扩展成平行激光束(3)。平行激光束(3)经过反光镜(18),并通过透镜(17)聚焦到粉末(12)上。反光镜(18)和透镜(17)固定在XY移动平台(19)上,可以在水平面内移动,以此偏转平行激光束(3)熔化不同位置的粉末(12)。粉末池(10)固定在超声振动平台(9)上,可以随之进行超声振动。基体(13)固定在升降平台(11)上可以随之在铅垂方向上下移动。升降平台(11)固定在粉末池(10)底部。粉末(12)通过电泵(4)和软管(8)从粉末仓(5)输送到粉末池(10)中。
进一步的,所述激光发生器(1)、电泵(4)、升降平台(11)、超声振动平台(9)、XY移动平台(19)、三维形貌扫描仪(14)、红外摄像机(15)、高速摄像机(16)通过信号线(6)与控制系统(7)相连,并由其控制。
本发明还提供了一种超声振动辅助铺平粉末的激光增材加工方法,其特征在于包含以下步骤:
S1将基体(13)打磨、清洗和吹干,并对其进行预热;三维形貌扫描仪(14)扫描基体(13)上表面的形貌,并得出绝对高度H1;
S2将基体(13)固定至升降平台(11)上,控制电泵(4)将粉末输送至粉末池(10)中,同时,超声振动平台(9)开始振动,直至粉末(12)没过基体(13);
S3超声振动平台(9)继续振动,三维形貌扫描仪(14)扫描粉末(12)上表面的形貌,并得出绝对高度H2;控制升降平台(11)上下移动,并记录升降的高度H(上正下负),使得H2-(H1+H)等于预先设置的层厚;同时,通过粉末(12)上表面的形貌得出粉末的平整度,当其达到预先设定的要求后,进入下一步;
S4平行激光束(3)按照预先设定的扫描路径开始融化粉末(12),直至一层加工完成;在此期间,超声振动平台(9)保持振动;
S5红外摄像机(15)拍摄熔池的温度,高速摄像机(16)拍摄熔池的宽度并将其反馈给控制系统(7),以此判断粉末(12)熔化是否充分,动态控制扫描速度;动态控制超声振动平台(9)振动频率,使得粉末可以被充分熔化;
S6完成一层的加工后,超声振动平台(9)停止振动;三维形貌扫描仪(14)扫描零件上表面形貌,并传输给控制系统(7);控制系统根据上表面形貌计算出有缺陷的区域,修改下一层加工时的加工参数,加大这些区域的激光能量;
S7根据上表面形貌得出绝对高度H1’,并通过与S3类似的方式添加并铺平粉末,且调整升降平台的高度;
S8重复步骤S4,S5,S6,S7直至增材制造加工完成;
进一步的,所述S1中,三维形貌扫描仪(14),其技术参数为:X轴、Y轴精度5μm,Z轴精度1μm。
进一步的,所述S4中,超声振动平台(9),其技术参数为:超声振动频率为20kHz,振动幅度小于20μm。
进一步的,所述S5中,红外摄像机(15),其技术参数为:红外测温范围为800~4000℃,测量精度为±1‰读数,重复测量精度为±0.5‰读数,探测响应时间20ms。
进一步的,所述S5中,高速摄像机(16),其技术参数为:拍摄速度最高可达每秒40000帧,动态范围可达120dB。
进一步的,激光发生器(1)为光纤激光发生器,波长:1080nm,额定输出功率:1000W,焦距:280mm,功率可调范围:5~100%;光纤输出接口:QCS;焦斑光强分布:平顶;激光工作模式:CW;输出功率稳定性:<3%;激光器专用云服务远程诊断系统。
进一步的,所述S4,S5,S6,S7和S8在增材加工过程中,激光发生器的激光功率为50W-1000W,光斑直径为2~5mm,扫描速度为100~1500mm/s,搭接率为20-70%,为避免材料被氧化,整个过程在氩气氛围中进行,同轴保护气压力速率为5L/min。
本发明的有益效果:
1.传统的激光选区熔化设备采用刮板来铺平粉末,导致刮板移动方向与垂直于刮板移动方向的粉末分布有较大差异性。相比于传统的选择性激光熔化设备,本设备采用超声振动平台铺平粉末,大大提高粉末分布的均匀性,使得产出的零件拥有更优良的构件均匀性。
2.通过控制振动铺粉的时间,对于粉末平整度可以精确控制,可以适应多变的客户需求。
3.本装置在基体下设有超声振动装置,其可以使粉末被均匀熔化,同时使熔融粉末中的气体可以快速逃离熔池,减少孔隙,提高产出零件的综合性能。
4.本装置所述激光发生器、电泵、升降平台、XY移动平台、超声振动平台、三维形貌扫描仪、红外摄像机和高速摄像机与控制系统组成一个闭环反馈控制系统,动态控制加工参数,充分熔化粉末,减少孔隙、裂纹、未熔融粉末等缺陷的生成,提高产出零件的综合性能。
5.在加工过程中,若上一层的表面有孔隙等缺陷,在下一层铺粉时,通过超声振动平台,粉末会一定程度填补这些缺陷,并通过控制系统加大这些区域的激光功率来修复缺陷,提高产出零件的综合性能。
附图说明
图1是本发明装置的示意图
图2-图7是本发明装置激光增材制造的过程
图中:1.激光发生器,2.扩束镜,3.平行激光束,4.电泵,5.粉末仓,6.信号线,7.控制系统,8.软管,9.超声振动平台,10.粉末池,11.升降平台,12.粉末,13.基体,14.三维形貌扫描仪,15.红外摄像机,16.高速摄像机,17.透镜,18.反光镜,19.XY移动平台。
具体实施方式
下面结合附图及具体实施事例对本发明进一步说明。图1为本发明装置示意图。
如图1所示,一种超声振动辅助铺平粉末的激光增材加工装置,其特征在于:包括激光发生器(1),扩束镜(2),用来将入射激光扩展成平行激光束(3)。平行激光束(3)经过反光镜(18),并通过透镜(17)聚焦到粉末(12)上。反光镜(18)和透镜(17)固定在XY移动平台(19)上,可以在水平面内移动,以此偏转平行激光束(3)熔化 不同位置的粉末(12)。粉末池(10)固定在超声振动平台(9)上,可以随之进行超声振动。基体(13)固定在升降平台(11)上可以随之在铅垂方向上下移动。升降平台(11)固定在粉末池(10)底部。粉末(12)通过电泵(4)和软管(8)从粉末仓(5)输送到粉末池(10)中。
所述激光发生器(1)、电泵(4)、升降平台(11)、超声振动平台(9)、XY移动平台(19)、三维形貌扫描仪(14)、红外摄像机(15)、高速摄像机(16)通过信号线(6)与控制系统(7)相连,并由其控制。
下面以Inconel625合金为例,本发明包含以下步骤:
A将基体(13)打磨、清洗和吹干,并对其进行预热;三维形貌扫描仪(14)扫描基体(13)上表面的形貌,并得出绝对高度H1;
B将基体(13)固定至升降平台(11)上,控制电泵(4)将粉末输送至粉末池(10)中,同时,超声振动平台(9)开始振动,直至粉末(12)没过基体(13),如图2;
C超声振动平台(9)继续振动,三维形貌扫描仪(14)扫描粉末(12)上表面的形貌,并得出绝对高度H2;控制升降平台(11)上下移动,并记录升降的高度H(上正下负),使得H2-(H1+H)等于预先设置的层厚;同时,通过粉末(12)上表面的形貌得出粉末的平整度,当其达到预先设定的要求后,进入下一步,如图3;
D平行激光束(3)按照预先设定的扫描路径开始融化粉末(12),直至一层加工完成;在此期间,超声振动平台(9)保持振动,如图4;
E红外摄像机(15)拍摄熔池的温度,高速摄像机(16)拍摄熔池的宽度并将其反馈给控制系统(7),以此判断粉末(12)熔化是否充分,动态控制扫描速度;动态控制超声振动平台(9)振动频率,使得粉末可以被充分熔化;
F完成一层的加工后,超声振动平台(9)停止振动;三维形貌扫描仪(14)扫描零件上表面形貌,并传输给控制系统(7);控制系统根据上表面形貌计算出有缺陷的区域,修改下一层加工时的加工参数,加大这些区域的激光能量;
G根据上表面形貌得出绝对高度H1’,并通过与C类似的方式添加并铺平粉末,且调整升降平台的高度,如图5-图6;
H重复步骤D,E,F,G直至增材制造加工完成,如图7-图8;
在增材加工过程中,激光发生器的激光功率为800W,光斑直径为2mm,扫描速度为1500mm/s,搭接率为50%。

Claims (9)

  1. 一种超声振动辅助铺平粉末的激光增材加工装置,其特征在于:包括激光发生器(1),扩束镜(2),用来将入射激光扩展成平行激光束(3)。平行激光束(3)经过反光镜(18),并通过透镜(17)聚焦到粉末(12)上。反光镜(18)和透镜(17)固定在XY移动平台(19)上,可以在水平面内移动,以此偏转平行激光束(3)熔化不同位置的粉末(12)。粉末池(10)固定在超声振动平台(9)上,可以随之进行超声振动。基体(13)固定在升降平台(11)上可以随之在铅垂方向上下移动。升降平台(11)固定在粉末池(10)底部。粉末(12)通过电泵(4)和软管(8)从粉末仓(5)输送到粉末池(10)中。
  2. 一种超声振动辅助铺平粉末的激光增材加工装置,其特征在于:所述激光发生器(1)、电泵(4)、升降平台(11)、超声振动平台(9)、XY移动平台(19)、三维形貌扫描仪(14)、红外摄像机(15)、高速摄像机(16)通过信号线(6)与控制系统(7)相连,并由其控制。
  3. 根据权利要求1所述的一种超声振动辅助铺平粉末的激光增材加工方法,包含以下步骤:
    S1将基体(13)打磨、清洗和吹干,并对其进行预热;三维形貌扫描仪(14)扫描基体(13)上表面的形貌,并得出绝对高度H1;
    S2将基体(13)固定至升降平台(11)上,控制电泵(4)将粉末输送至粉末池(10)中,同时,超声振动平台(9)开始振动,直至粉末(12)没过基体(13);
    S3超声振动平台(9)继续振动,三维形貌扫描仪(14)扫描粉末(12)上表面的形貌,并得出绝对高度H2;控制升降平台(11)上下移动,并记录升降的高度H(上正下负),使得H2-(H1+H)等于预先设置的层厚;同时,通过粉末(12)上表面的形貌得出粉末的平整度,当其达到预先设定的要求后,进入下一步;
    S4平行激光束(3)按照预先设定的扫描路径开始融化粉末(12),直至一层加工完成;在此期间,超声振动平台(9)保持振动;
    S5红外摄像机(15)拍摄熔池的温度,高速摄像机(16)拍摄熔池的宽度并将其反馈给控制系统(7),以此判断粉末(12)熔化是否充分,动态控制扫描速度;动态控制超声振动平台(9)振动频率,使得粉末可以被充分熔化;
    S6完成一层的加工后,超声振动平台(9)停止振动;三维形貌扫描仪(14)扫 描零件上表面形貌,并传输给控制系统(7);控制系统根据上表面形貌计算出有缺陷的区域,修改下一层加工时的加工参数,加大这些区域的激光能量;
    S7根据上表面形貌得出绝对高度H1’,并通过与S3类似的方式添加并铺平粉末,且调整升降平台的高度;
    S8重复步骤S4,S5,S6,S7直至增材制造加工完成;
  4. 根据权利要求3所述的一种超声振动辅助铺平粉末的激光增材加工方法,其特征在于:所述S1中,三维形貌扫描仪(14),其技术参数为:X轴、Y轴精度5μm,Z轴精度1μm。
  5. 根据权利要求3所述的一种超声振动辅助铺平粉末的激光增材加工方法,其特征在于:所述S4中,超声振动平台(9),其技术参数为:超声振动频率为20kHz,振动幅度小于20μm。
  6. 根据权利要求4所述的一种超声振动辅助铺平粉末的激光增材加工方法,其特征在于:所述S5中,红外摄像机(15),其技术参数为:红外测温范围为800~4000℃,测量精度为±1‰读数,重复测量精度为±0.5‰读数,探测响应时间20ms。
  7. 根据权利要求4所述一种超声振动辅助铺平粉末的激光增材加工方法,其特征在于:所述S5中,高速摄像机(16),其技术参数为:拍摄速度最高可达每秒40000帧,动态范围可达120dB。
  8. 根据权利要求4所述的一种超声振动辅助铺平粉末的激光增材加工方法,其特征在于:激光发生器(1)为光纤激光发生器,波长:1080nm,额定输出功率:1000W,焦距:280mm,功率可调范围:5~100%;光纤输出接口:QCS;焦斑光强分布:平顶;激光工作模式:CW;输出功率稳定性:<3%;激光器专用云服务远程诊断系统。
  9. 根据权利要求4所述的一种超声振动辅助铺平粉末的激光增材加工方法,其特征在于:所述S4,S5,S6,S7和S8在增材加工过程中,激光发生器的激光功率为50W-1000W,光斑直径为2~5mm,扫描速度为100~1500mm/s,搭接率为20-70%,为避免材料被氧化,整个过程在氩气氛围中进行,同轴保护气压力速率为5L/min。
PCT/CN2020/110211 2019-06-25 2020-08-20 一种超声振动辅助铺平粉末的激光增材加工装置及方法 WO2020259719A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910552203.4 2019-06-25
CN201910552203.4A CN110241414A (zh) 2019-06-25 2019-06-25 一种提高构件均匀性的激光增材制造装置及方法

Publications (1)

Publication Number Publication Date
WO2020259719A1 true WO2020259719A1 (zh) 2020-12-30

Family

ID=67889184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110211 WO2020259719A1 (zh) 2019-06-25 2020-08-20 一种超声振动辅助铺平粉末的激光增材加工装置及方法

Country Status (2)

Country Link
CN (1) CN110241414A (zh)
WO (1) WO2020259719A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113183465A (zh) * 2021-04-29 2021-07-30 杭州喜马拉雅信息科技有限公司 一种3d打印机的光路结构及3d打印机
CN113510363A (zh) * 2021-07-28 2021-10-19 广东工业大学 一种微型元件基板的加工方法及使用其的加工设备
CN114535604A (zh) * 2022-02-11 2022-05-27 中国航空制造技术研究院 一种电子束选区熔化增材制造成形方法及装置
CN114632945A (zh) * 2022-03-18 2022-06-17 南华大学 激光金属直接成形工艺的形貌误差补偿方法
CN114799182A (zh) * 2021-11-30 2022-07-29 温州职业技术学院 一种梯度功能复合材料超声辅助激光微熔覆方法及装置
CN115635101A (zh) * 2022-12-01 2023-01-24 北京清研智束科技有限公司 增材制造装置及其控制方法
CN116883400A (zh) * 2023-09-07 2023-10-13 山东大学 一种激光选区熔化过程中的铺粉孔隙率预测方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110241414A (zh) * 2019-06-25 2019-09-17 江苏大学 一种提高构件均匀性的激光增材制造装置及方法
CN113249720B (zh) * 2021-06-08 2022-06-07 华侨大学 一种激光熔覆涂层设备及方法
CN115216766B (zh) * 2022-08-01 2023-11-17 乐清市明实车辆配件有限公司 一种铁路货车侧门局部防腐合金层熔覆装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120181255A1 (en) * 2011-01-13 2012-07-19 Bruck Gerald J Flux enhanced high energy density welding
CN104043831A (zh) * 2014-06-13 2014-09-17 首都航天机械公司 一种钛合金薄壁蜂窝结构的制备方法
US20160228990A1 (en) * 2015-02-05 2016-08-11 Siemens Energy, Inc. Powder deposition process utilizing vibratory mechanical energy
US20170259503A1 (en) * 2016-03-09 2017-09-14 Xerox Corporation Method and apparatus for forming an image onto an object using selective laser sintering
CN110241414A (zh) * 2019-06-25 2019-09-17 江苏大学 一种提高构件均匀性的激光增材制造装置及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100034647A1 (en) * 2006-12-07 2010-02-11 General Electric Company Processes for the formation of positive features on shroud components, and related articles
EP2495056A1 (en) * 2011-03-01 2012-09-05 Siemens Aktiengesellschaft Laser build up method using vibration and apparatus
CN202323028U (zh) * 2011-10-31 2012-07-11 昆明理工大学 一种抑制激光熔覆层裂纹的振动装置
JP6122666B2 (ja) * 2013-03-07 2017-04-26 東京エレクトロン株式会社 ホッパー及び溶射装置
CN205710917U (zh) * 2016-04-21 2016-11-23 黄山学院 激光熔覆层粉末铺设装置
CN108660451A (zh) * 2017-03-31 2018-10-16 山东理工大学 数控超声机械镀设备
CN109164111A (zh) * 2018-09-28 2019-01-08 东南大学 基于共享振镜slm在线激光缺陷检测装备及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120181255A1 (en) * 2011-01-13 2012-07-19 Bruck Gerald J Flux enhanced high energy density welding
CN104043831A (zh) * 2014-06-13 2014-09-17 首都航天机械公司 一种钛合金薄壁蜂窝结构的制备方法
US20160228990A1 (en) * 2015-02-05 2016-08-11 Siemens Energy, Inc. Powder deposition process utilizing vibratory mechanical energy
US20170259503A1 (en) * 2016-03-09 2017-09-14 Xerox Corporation Method and apparatus for forming an image onto an object using selective laser sintering
CN110241414A (zh) * 2019-06-25 2019-09-17 江苏大学 一种提高构件均匀性的激光增材制造装置及方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113183465A (zh) * 2021-04-29 2021-07-30 杭州喜马拉雅信息科技有限公司 一种3d打印机的光路结构及3d打印机
CN113510363A (zh) * 2021-07-28 2021-10-19 广东工业大学 一种微型元件基板的加工方法及使用其的加工设备
CN114799182A (zh) * 2021-11-30 2022-07-29 温州职业技术学院 一种梯度功能复合材料超声辅助激光微熔覆方法及装置
CN114799182B (zh) * 2021-11-30 2024-01-23 温州职业技术学院 一种梯度功能复合材料超声辅助激光微熔覆方法及装置
CN114535604A (zh) * 2022-02-11 2022-05-27 中国航空制造技术研究院 一种电子束选区熔化增材制造成形方法及装置
CN114535604B (zh) * 2022-02-11 2023-12-01 中国航空制造技术研究院 一种电子束选区熔化增材制造成形方法及装置
CN114632945A (zh) * 2022-03-18 2022-06-17 南华大学 激光金属直接成形工艺的形貌误差补偿方法
CN115635101A (zh) * 2022-12-01 2023-01-24 北京清研智束科技有限公司 增材制造装置及其控制方法
CN116883400A (zh) * 2023-09-07 2023-10-13 山东大学 一种激光选区熔化过程中的铺粉孔隙率预测方法及系统
CN116883400B (zh) * 2023-09-07 2023-11-21 山东大学 一种激光选区熔化过程中的铺粉孔隙率预测方法及系统

Also Published As

Publication number Publication date
CN110241414A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
WO2020259719A1 (zh) 一种超声振动辅助铺平粉末的激光增材加工装置及方法
WO2021253522A1 (zh) 一种超高速激光熔覆增材制造的装置和方法
US20210060646A1 (en) Method for forming precise porous metal structure by selective laser melting
JP6961926B2 (ja) 付加製造プロセスのための音響モニタリング方法
CN106498387B (zh) 基于液晶调制预热加工缓冷功率的激光熔覆装置
US9272369B2 (en) Method for automated superalloy laser cladding with 3D imaging weld path control
US9289854B2 (en) Automated superalloy laser cladding with 3D imaging weld path control
CN104972124B (zh) 基于飞秒激光复合技术的实时监控快速成型设备和方法
KR20170042599A (ko) 광빔을 사용하는 적층 제조를 위한 방법 및 시스템
KR20130039955A (ko) 용접용 레이저 장치
CN111215765B (zh) 一种紫外激光加工精密感光孔的加工方法及激光设备
CN105252145A (zh) 一种金属薄板叠加制造复杂形状零件的方法和设备
JP2019077935A (ja) 三次元造形装置、および三次元造形物の製造方法
CN206204424U (zh) 一种基于偏振补偿器调制预热加工缓冷功率的激光熔覆设备
CN107162395A (zh) 一种双层或多层垂直封装玻璃的方法
JP2016093825A (ja) レーザ溶接装置、及びレーザ溶接方法
WO2022241967A1 (zh) 一种用于铝合金的双光束激光抛光设备及抛光方法
CN113560580A (zh) 一种金属零件激光修复方法及装置
CN205324994U (zh) 一种金属薄板叠加制造复杂形状零件的设备
CN115338517B (zh) 一种基于机器视觉控制的超声振动辅助电弧增材制造装置及方法
KR100976035B1 (ko) 레이저 절단장치
US20210001428A1 (en) Irradiation device, metal shaping device, metal shaping system, irradiation method, and method for manufacturing metal shaped object
CN110216286A (zh) 一种离心力辅助铺平粉末的激光熔覆装置与方法
CN115446455A (zh) 一种基于功率随动控制的拐角激光焊接方法
JP6768459B2 (ja) 三次元積層造形方法、および三次元積層造形装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20833564

Country of ref document: EP

Kind code of ref document: A1