WO2017143789A1 - 一种激光增减材复合制造的方法与装置 - Google Patents

一种激光增减材复合制造的方法与装置 Download PDF

Info

Publication number
WO2017143789A1
WO2017143789A1 PCT/CN2016/102056 CN2016102056W WO2017143789A1 WO 2017143789 A1 WO2017143789 A1 WO 2017143789A1 CN 2016102056 W CN2016102056 W CN 2016102056W WO 2017143789 A1 WO2017143789 A1 WO 2017143789A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
powder
forming
scanning
mirror
Prior art date
Application number
PCT/CN2016/102056
Other languages
English (en)
French (fr)
Inventor
段宣明
范树迁
曹洪忠
王国玉
Original Assignee
中国科学院重庆绿色智能技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院重庆绿色智能技术研究院 filed Critical 中国科学院重庆绿色智能技术研究院
Publication of WO2017143789A1 publication Critical patent/WO2017143789A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention belongs to the technical field of 3D printing, and particularly relates to a method for composite manufacturing of laser increasing and reducing materials, and to a composite manufacturing device for laser increasing or decreasing materials.
  • pulsed laser reduction is an important processing technology.
  • Short pulse lasers especially ultrashort pulse lasers, have short pulse duration and high peak power.
  • the process of interacting with materials is a nonlinear cold process. Micron or nanometer precision can be achieved by using short pulse and ultrashort pulse laser to remove materials for material reduction.
  • one of the objects of the present invention is to provide a method for composite manufacturing of laser augmentation materials; and to fabricate contours of formed structures by pulse laser reduction in the process of layer-by-layer additive manufacturing by selective laser rapid prototyping; The edge is subjected to material reduction treatment; the second object of the present invention is to provide a laser augmentation and material composite manufacturing device, and the device and method are expected to solve the current problem of direct forming of high-precision parts.
  • the present invention provides the following technical solutions:
  • a method for composite manufacturing of laser augmentation material comprising the following steps:
  • the selective laser rapid prototyping comprises selective laser melting forming and selective laser sintering forming.
  • the laser having a wavelength range of 200 nm to 10.6 ⁇ m for laser rapid prototyping is selected, and the pulse width of the pulse laser for laser reduction is 500 ns to 1 fs.
  • the powder is one or a plurality of mixed powder materials of a metal powder material, a plastic powder powder, a ceramic powder material, a coated sand powder material, and a polymer powder material, and the powder material has a size of 10 nm. ⁇ 500 ⁇ m.
  • the laser light-reduced material is used to scan the contour edge of the formed structure along the planned path, and the surface roughness can be removed and the multilayer laser structure can be rapidly formed by the selective laser, and the laser can be used to fabricate the laser along the planned path to scan the formed structure.
  • the contour edge removes the surface roughness of the formed multilayer structure by repeating steps 3) and 4) between steps 4) and 5 to form a multilayer structure at least once, and then performing the step 5) using a laser-derived pulse
  • the laser scans the contoured edge of the formed structure along the planned path to remove the rough surface of the formed multilayer structure; finally repeat steps 3), 4) and 5) or repeat steps 3) and 4) at least once and repeat step 5 ) until the final 3D solid part is obtained.
  • Step 5) Scanning the contour edge of the formed structure along the planned path by using the pulsed laser manufactured by the laser subtractive material, and removing the rough surface portion includes: scanning the inner and outer edges of the contour of the formed structure along the planned path by using the pulsed laser manufactured by laser subtracting material to remove the contour The rough portion of the inner and outer surfaces; and the pulsed laser made by laser reduction material scans the inner edge of the contour of the formed structure and the outer edge of the complex portion along the planned path to remove the rough portion of the inner surface of the contour and the outer surface of the complex portion.
  • the invention relates to a device for manufacturing a composite of laser augmentation and reduction materials, comprising: a laser light source system, a laser focus scanning system, a forming chamber, a powder paving system, an atmosphere control system and a software control system; wherein the laser light source system and the laser focus scanning The system, the forming chamber and the powder paving system are connected in turn, the atmosphere control system is connected to the powder paving system, and the software control system is respectively associated with the laser light source system, the laser focusing scanning system, the forming chamber, the powder paving system and the atmosphere control system.
  • the laser source system includes a laser I1 that provides selective laser rapid prototyping and provides laser-assisted material manufacturing pulses Laser laser II2.
  • the laser light provided by the laser I1 ranges from 200 nm to 10.6 ⁇ m
  • the pulse width of the pulsed laser provided by the laser II2 is 500 ns to 1 fs.
  • the laser focus scanning system is respectively composed of a beam expander mirror I3, a dynamic focus mirror I5, a mirror 7 located on the optical path of the laser I1, a beam expander mirror II4 and a dynamic focus mirror II6 located on the optical path of the laser II2, and the two optical paths are shared.
  • the dichroic mirror 8 and the scanning galvanometer 9 are formed;
  • the forming chamber is environmentally isolated and provided with a powder collector 14;
  • the powder paving system is composed of the powder feeder 10, the scraper 11, the forming substrate 12 and the lifting assembly 13
  • the atmosphere control system consists of a vacuum pump 15 and a shielding gas circulation assembly 16.
  • the laser focus scanning system is respectively composed of a beam expander mirror I3 and a mirror 7 located on the optical path of the laser I1, a beam expander mirror II4 located on the optical path of the laser II2, and a two-way shared by the two optical paths.
  • the color mirror 8 is composed of a scanning galvanometer 9 and a focus field lens 18 connected to the dichroic mirror.
  • the invention has the beneficial effects of the invention, a method and a device for manufacturing a laser augmentation material composite, and the preparation method uses the pulse laser material reduction manufacturing to reduce the surface of the formed structure, thereby improving the forming precision; Compared with the composite manufacturing of the reduced material, the laser is added and reduced, which has better compatibility and simpler control.
  • 1 is a flow chart of a method for manufacturing a composite of laser augmentation and reduction materials.
  • FIG. 2 is a schematic structural view of a laser-increasing and reducing material composite manufacturing apparatus.
  • FIG. 3 is a second schematic structural view of a laser-increasing and reducing material composite manufacturing apparatus.
  • a method for composite manufacturing of laser augmentation material the specific process is shown in Figure 1, as shown in Figure 1, the method comprises the following steps:
  • the selective laser rapid prototyping comprises selective laser melting forming and selective laser sintering forming.
  • the laser having a wavelength range of 200 nm to 10.6 ⁇ m for laser rapid prototyping of the selective laser is used, and the pulse width of the pulse laser for laser reduction is 500 ns to 1 fs.
  • the powder is one or a plurality of mixed powder materials of a metal powder material, a plastic powder powder, a ceramic powder material, a coated sand powder material, and a polymer powder material, and the powder material has a size of 10 nm. ⁇ 500 ⁇ m.
  • the laser light-reduced material is used to scan the contour edge of the formed structure along the planned path, and the surface roughness can be removed and the multilayer laser structure can be rapidly formed by the selective laser, and the laser can be used to fabricate the laser along the planned path to scan the formed structure.
  • the contour edge removes the surface roughness of the formed multilayer structure by repeating steps 3) and 4) between steps 4) and 5 to form a multilayer structure at least once, and then performing the step 5) using a laser-derived pulse
  • the laser scans the contoured edge of the formed structure along the planned path to remove the rough surface of the formed multilayer structure; finally repeat steps 3), 4) and 5) or repeat steps 3) and 4) and repeat step 5) until The final 3D solid part.
  • Step 5) Scanning the contour edge of the formed structure along the planned path by using the pulsed laser manufactured by the laser subtractive material, and removing the rough surface portion includes: scanning the inner and outer edges of the contour of the formed structure along the planned path by using the pulsed laser manufactured by laser subtracting material to remove the contour The rough portion of the inner and outer surfaces; and the pulsed laser made by laser reduction material scans the inner edge of the contour of the formed structure and the outer edge of the complex portion along the planned path to remove the rough portion of the inner surface of the contour and the outer surface of the complex portion.
  • the device includes: a laser light source system, a laser focus scanning system, a forming chamber, a powder paving system, an atmosphere control system, and a software control system.
  • the laser light source system is sequentially connected with the laser focus scanning system, the forming chamber and the powder paving system, the atmosphere control system is connected to the powder paving system, and the software control system 17 is respectively connected with the laser light source system, the laser focusing scanning system, and the forming cavity.
  • the chamber, the powder paving system and the atmosphere control system are connected, wherein the laser light source system comprises a laser I1 for providing selective laser rapid prototyping and a laser II2 for providing pulsed laser for laser reduction, and the laser focusing scanning system is respectively expanded by the optical path of the laser I1.
  • the laser light source system comprises a laser I1 for providing selective laser rapid prototyping and a laser II2 for providing pulsed laser for laser reduction
  • the laser focusing scanning system is respectively expanded by the optical path of the laser I1.
  • the forming chamber can be Environmental isolation is provided, and a powder collector 14 is provided;
  • the powder paving system is provided by the powder feeder 10 , the scraper 11, the forming substrate 12 and the lifting assembly 13;
  • the atmosphere control system is composed of a vacuum pump 15 and a shielding gas circulation assembly 16;
  • the laser I1 provides laser light having a wavelength ranging from 200 nm to 10.6 ⁇ m, and the laser beam provided by the laser II2 has a pulse width of 500 ns to 1 fs.
  • the device includes: a laser light source system, a laser focus scanning system, a forming chamber, a powder paving system, and an atmosphere control.
  • the laser light source system is sequentially connected with the laser focus scanning system, the forming chamber and the powder paving system, the atmosphere control system is connected to the powder paving system, and the software control system 17 is respectively combined with the laser light source system and the laser focusing system
  • the scanning system, the forming chamber, the powder paving system and the atmosphere control system are connected, wherein the laser light source system comprises a laser I1 for providing selective laser rapid prototyping and a laser II2 for providing pulsed laser for laser reduction; the laser focusing scanning system is respectively located at the laser a beam expander I3 and a mirror 7 on the I1 optical path, a beam expander II4 on the optical path of the laser II2, a dichroic mirror 8 shared by the two paths, a scanning galvanometer 9 and a focus field lens 18; the forming chamber can be Achieving environmental isolation and provided with a powder collector 14; the powder paving system consists of a powder feeder 10, a scraper 11, The substrate 12 and the lifting assembly 13 are composed; the atmosphere control system
  • the selected titanium alloy powder is a nearly spherical powder having a particle diameter of 30-50 ⁇ m. .
  • the geometric model of the titanium alloy structure for forming is designed, the scanning path of the laser for rapid prototyping of the laser is planned, the scanning path of the pulse laser manufactured by the laser subtracting material is planned, and then the forming chamber is evacuated by the atmosphere control system.
  • the protective gas argon gas is charged, and the atmosphere is controlled during the forming process; the titanium alloy powder is fed by the powder feeder 10, and a titanium alloy having a thickness of 50-70 ⁇ m is laid on the forming substrate by the doctor blade 11 of the powder paving system.
  • the coated titanium alloy powder is scanned and formed into a single layer structure.
  • the laser beam emitted by the laser I1 has a wavelength of 1070 nm, a power of 100-400 W, and a laser focused spot size of 50 ⁇ m; and is produced by using a laser II2 for material reduction manufacturing.
  • the laser beam focused on the shaped substrate scans the formed single layer junction along the planned path.
  • the inner edge of the contour is removed, and the rough surface of the inner surface of the contour is removed.
  • the laser beam emitted by the laser II2 has a wavelength of 515 nm, a power of 20-100 W, a pulse width of 100 ns-1 ps, and a laser focused spot size of 20 ⁇ m; the forming substrate is formed by the lifting assembly 13 12 Lower one layer, and then use the scraper 11 of the powder paving system to lay a layer of titanium alloy powder with a thickness of 50-70 ⁇ m on the forming substrate, and use the laser beam emitted by the laser I1 to realize the forming of the powder structure and the laser II2
  • the emitted laser beam achieves the roughness of the inner surface of the formed single-layer structure Partial removal and repeated addition and subtraction of the composite manufacturing process until the final three-dimensional solid part is obtained, the excess titanium alloy powder being collected by the powder collector 14 during the preparation.
  • the Al 2 O 3 ceramic powder selected is a nearly spherical powder having a particle diameter of 30 to 60 ⁇ m.
  • the laser beam emitted by the laser I1 has a wavelength of 1030 nm, the power is 100-400 W, and the laser focused spot size is 50 ⁇ m; the formed substrate is lowered by one layer.
  • the beam wavelength is 1030 nm, the power is 40
  • a layer of Al 2 O 3 ceramic powder having a thickness of 50-70 ⁇ m is coated, and a laser beam emitted from the laser I1 is used to form a powder structure and a laser beam emitted from the laser II2 is used to remove a rough portion of the inner surface of the formed single-layer structure. And repeating the composite manufacturing process of the addition and subtraction until the final three-dimensional solid part is obtained, and the excess Al 2 O 3 ceramic powder is collected by the powder collector 14 during the preparation process. set.

Abstract

一种激光增减材复合制造的方法与装置,具体方法包括建立实体零件的几何模型,规划选区激光快速成形的激光的扫描路径,规划激光减材制造的激光的扫描路径;对成形腔室进行抽真空并充入保护气体;利用粉末摊铺系统并在成形区域铺覆一层粉末;利用选区激光快速成形的激光扫描铺覆的待成形材料,进行结构成形;利用激光减材制造的脉冲激光沿规划路径扫描成形结构的轮廓边缘,去除表面粗糙部分;重复粉末摊铺、选区激光快速成形和激光减材制造直至获得最终的三维实体零件;利用该装置和方法制造增减材,提高了成形精度,并且增减材都是使用激光,具有更好兼容性,控制方面更为简单。

Description

一种激光增减材复合制造的方法与装置 技术领域
本发明属于3D打印技术领域,具体涉及一种激光增减材复合制造的方法,还涉及激光增减材复合制造装置。
背景技术
高精度柔性制造是制造业追求的目标,为此,增材制造(或称3D打印)技术的研究和产业发展成为当今的一个热点。就功能性3D打印结构零件的成形精度而言,选区激光快速成形技术特别是选区激光熔化成形(Selective laser melting,SLM)技术的成形精度能够使3D打印技术能够达到的最高水平。然而,受制于粉末的尺度、激光聚焦光斑尺寸、以及成形过程快速冷凝导致热变形等的影响,选区激光快速成形的结构零件的尺寸精度和表面粗糙度都无法达到目前减材制造的精度水平。
为充分利用增材制造和减材制造的优点,将增材制造技术与减材制造技术相结合的增减材复合制造已经引起人们的重视。目前发展的增减材复合制造技术主要是以激光近净成形(LENS)或选区激光成形熔化(SLM)与数控加工(CNC)结合,已经开发出相关的装置并取得较成功的应用。但是,由于CNC属于机械加工技术,与LENS和SLM等技术在兼容性存在问题,使得增减材复合制造控制和加工任务规划、易用性等方面都存在较难克服的困难。此外,由于CNC加工本身依靠有形刀具,其在对于狭小空间内的加工仍然受到限制。
在激光加工领域,脉冲激光减材制造是一类重要加工技术。短脉冲激光,特别是超短脉冲激光具有脉冲持续时间短、峰值功率高等特征,其与材料相互作用的过程是一个非线性的冷加工过程。利用短脉冲、超短脉冲激光去除材料进行减材制造,可以实现微米甚至纳米精度。
发明内容
有鉴于此,本发明的目的之一在于提供一种激光增减材复合制造的方法;在利用选区激光快速成形进行逐层增材制造的过程中利用脉冲激光减材制造对已成形结构的轮廓边缘进行减材处理;本发明的目的之二在于提供激光增减材复合制造装置,结合该装置和方法有望破解目前高精度零件直接成形的制约难题。
为实现上述发明目的,本发明提供如下技术方案:
一种激光增减材复合制造的方法,该方法包括以下步骤:
1)建立实体零件的几何模型,规划选区激光快速成形的激光的扫描路径,规划激光减材制造的脉冲激光的扫描路径;
2)对成形腔室进行抽真空并充入保护气体;
3)利用粉末摊铺系统并在成形区域铺覆一层粉末;
4)利用选区激光快速成形的激光扫描铺覆的待成形材料,进行结构成形;
5)利用激光减材制造的脉冲激光沿规划路径扫描成形结构的轮廓边缘,去除表面粗糙部分;
6)将成形基板降低一层粉末厚度,再重复步骤3)、4)和5)直至获得最终的三维实体零件。
本发明中,所述的选区激光快速成形包括选区激光熔化成形和选区激光烧结成形。
本发明中,用于选区激光快速成形的激光波长范围为200nm~10.6μm的激光,用于激光减材制造的脉冲激光的脉冲宽度为500ns~1fs。
本发明步骤3)中,所述粉末为金属粉末材料、塑料粉末粉末、陶瓷粉末材料、覆膜砂粉末材料、聚合物粉末材料中的一种或几种混合粉末材料,粉末材料的尺度为10nm~500μm。
本发明中,利用激光减材制造的激光沿规划路径扫描成形结构的轮廓边缘,去除表面粗糙部分可以和利用选区激光快速成形进行多层结构后再利用激光减材制造激光沿规划路径扫描成形结构的轮廓边缘,去除已成形多层结构的表面粗糙部分,即在步骤4)和5之间重复步骤3)和4)至少一次形成多层结构,然后进行步骤5)利用激光减材制造的脉冲激光沿规划路径扫描成形结构的轮廓边缘,去除已成形多层结构的表面粗糙部分;最后再重复步骤3)、4)和5)或先重复步骤3)和4)至少一次后再重复步骤5)直至获得最终的三维实体零件。
本发明步骤5)利用激光减材制造的脉冲激光沿规划路径扫描成形结构的轮廓边缘,去除表面粗糙部分包括:利用激光减材制造的脉冲激光沿规划路径扫描成形结构的轮廓内外边缘,去除轮廓内外表面的粗糙部分;和利用激光减材制造的脉冲激光沿规划路径扫描成形结构的轮廓内边缘及复杂部位外边缘,去除轮廓内表面及复杂部位外表面的粗糙部分。
一种激光增减材复合制造的装置,该装置包括:包括激光光源系统、激光聚焦扫描系统、成形腔室、粉末摊铺系统、气氛控制系统和软件控制系统;其中激光光源系统与激光聚焦扫描系统、成形腔室和粉末摊铺系统依次连接,气氛控制系统连接于粉末摊铺系统上,软件控制系统分别与激光光源系统、激光聚焦扫描系统、成形腔室、粉末摊铺系统和气氛控制系统连接,其中激光光源系统包括提供选区激光快速成形的激光器Ⅰ1和提供激光减材制造脉冲 激光的激光器Ⅱ2。本发明中激光器Ⅰ1提供的激光波长范围为200nm~10.6μm的激光,激光器Ⅱ2提供的脉冲激光的脉冲宽度为500ns~1fs。
本发明中,激光聚焦扫描系统分别由位于激光器Ⅰ1光路上的扩束镜Ⅰ3、动态聚焦镜Ⅰ5、反射镜7,位于激光器Ⅱ2光路上的扩束镜Ⅱ4、动态聚焦镜Ⅱ6,两条光路共享的二向色镜8以及扫描振镜9组成;成形腔室可实现环境隔绝,并设置有粉末收集器14;粉末摊铺系统由送粉器10、刮刀11、成形基板12和升降组件13组成;气氛控制系统由真空泵15和保护气体循环组件16组成。
或激光增减材复合制造的装置中,激光聚焦扫描系统分别由位于激光器Ⅰ1光路上的扩束镜Ⅰ3和反射镜7,位于激光器Ⅱ2光路上的扩束镜Ⅱ4,两条光路共享的二向色镜8,与二向色镜连接的扫描振镜9和聚焦场镜18组成。
本发明的有益效果在于:本发明一种激光增减材复合制造的方法和装置,制备方法利用脉冲激光减材制造对已成形结构进行轮廓表面进行减材处理,提高了成形精度;与其它增减材复合制造相比,增减材都是使用激光,具有更好兼容性,控制方面更为简单。
本发明的其它优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图:
图1为一种激光增减材复合制造方法的流程图。
图2为激光增减材复合制造装置的结构示意图之一。
图3为激光增减材复合制造装置的结构示意图之二。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。
一种激光增减材复合制造的方法,具体流程见图1,如图1所述,该方法包括以下步骤:
1)建立实体零件的几何模型,规划选区激光快速成形的激光的扫描路径,规划激光减材制造的脉冲激光的扫描路径;
2)对成形腔室进行抽真空并充入保护气体;
3)利用粉末摊铺系统并在成形区域铺覆一层粉末;
4)利用选区激光快速成形的激光扫描铺覆的待成形材料,进行结构成形;
5)利用激光减材制造的脉冲激光沿规划路径扫描成形结构的轮廓边缘,去除表面粗糙部分;
6)将成形基板降低一层粉末厚度,再重复步骤3)、4)和5)直至获得最终的三维实体零件。
本发明中,所述的选区激光快速成形包括选区激光熔化成形和选区激光烧结成形。
本发明中,用于选区激光快速成形的激光波长范围为200nm~10.6μm的激光,用于激光减材制造的脉冲激光的脉冲宽度为500ns~1fs。
本发明步骤3)中,所述粉末为金属粉末材料、塑料粉末粉末、陶瓷粉末材料、覆膜砂粉末材料、聚合物粉末材料中的一种或几种混合粉末材料,粉末材料的尺度为10nm~500μm。
本发明中,利用激光减材制造的激光沿规划路径扫描成形结构的轮廓边缘,去除表面粗糙部分可以和利用选区激光快速成形进行多层结构后再利用激光减材制造激光沿规划路径扫描成形结构的轮廓边缘,去除已成形多层结构的表面粗糙部分,即在步骤4)和5之间重复步骤3)和4)至少一次形成多层结构,然后进行步骤5)利用激光减材制造的脉冲激光沿规划路径扫描成形结构的轮廓边缘,去除已成形多层结构的表面粗糙部分;最后再重复步骤3)、4)和5)或先重复步骤3)和4)再重复步骤5)直至获得最终的三维实体零件。
本发明步骤5)利用激光减材制造的脉冲激光沿规划路径扫描成形结构的轮廓边缘,去除表面粗糙部分包括:利用激光减材制造的脉冲激光沿规划路径扫描成形结构的轮廓内外边缘,去除轮廓内外表面的粗糙部分;和利用激光减材制造的脉冲激光沿规划路径扫描成形结构的轮廓内边缘及复杂部位外边缘,去除轮廓内表面及复杂部位外表面的粗糙部分。
图2为激光增减材复合制造的装置结构示意图,如图2所示,该装置包括:包括激光光源系统、激光聚焦扫描系统、成形腔室、粉末摊铺系统、气氛控制系统和软件控制系统;其中激光光源系统与激光聚焦扫描系统、成形腔室和粉末摊铺系统依次连接,气氛控制系统连接于粉末摊铺系统上,软件控制系统17分别与激光光源系统、激光聚焦扫描系统、成形腔室、粉末摊铺系统和气氛控制系统连接,其中激光光源系统包括提供选区激光快速成形的激光器Ⅰ1和提供激光减材制造脉冲激光的激光器Ⅱ2,激光聚焦扫描系统分别由位于激光器Ⅰ1光路上的扩束镜Ⅰ3、动态聚焦镜Ⅰ5、反射镜7,位于激光器Ⅱ2光路上的扩束镜Ⅱ4、动态聚焦镜Ⅱ6,两条光路共享的二向色镜8以及扫描振镜9组成;成形腔室可实现环境隔绝,并设置有粉末收集器14;粉末摊铺系统由送粉器10、刮刀11、成形基板12和升降组件13组成; 气氛控制系统由真空泵15和保护气体循环组件16组成;激光器Ⅰ1提供的激光波长范围为200nm~10.6μm的激光,激光器Ⅱ2提供的脉冲激光的脉冲宽度为500ns~1fs。
图3为激光增减材复合制造的装置结构示意图,如图3所示,如图所示,该装置包括:包括激光光源系统、激光聚焦扫描系统、成形腔室、粉末摊铺系统、气氛控制系统和软件控制系统;其中激光光源系统与激光聚焦扫描系统、成形腔室和粉末摊铺系统依次连接,气氛控制系统连接于粉末摊铺系统上,软件控制系统17分别与激光光源系统、激光聚焦扫描系统、成形腔室、粉末摊铺系统和气氛控制系统连接,其中激光光源系统包括提供选区激光快速成形的激光器Ⅰ1和提供激光减材制造脉冲激光的激光器Ⅱ2;激光聚焦扫描系统分别由位于激光器Ⅰ1光路上的扩束镜Ⅰ3和反射镜7,位于激光器Ⅱ2光路上的扩束镜Ⅱ4、两条光路共享的二向色镜8以及扫描振镜9和聚焦场镜18组成;成形腔室可实现环境隔绝并设置有粉末收集器14;粉末摊铺系统由送粉器10、刮刀11、成形基板12和升降组件13组成;气氛控制系统由真空泵15和保护气体循环组件16组成;激光器Ⅰ1提供的激光波长范围为200nm~10.6μm的激光,激光器Ⅱ2提供的脉冲激光的脉冲宽度为500ns~1fs。
实施例1
以下结合图1和图2,以钛合金的基于选区激光快速成形的激光增减材复合制造为例对本发明进行详细的说明,选用的钛合金粉末为粒径在30-50μm的近球形的粉末。
首先,设计用于成形的钛合金结构的几何模型,规划选区激光快速成形的激光的扫描路径,规划激光减材制造的脉冲激光的扫描路径;然后利用气氛控制系统对成形腔室进行抽真空并充入保护气体氩气,并在成形过程中控制气氛;利用送粉器10送入钛合金粉末,利用粉末摊铺系统的刮刀11在成形基板上铺覆一层厚度为50-70μm的钛合金粉末;利用用于选区激光快速成形的激光器Ⅰ1发出的并经扩束器Ⅰ3、动态聚焦Ⅰ5、反射镜7、二向色镜8和扫描振镜9后聚焦在成形基板的激光束沿规划路径扫描铺覆的钛合金粉末,进行单层结构成形,激光器Ⅰ1发出的激光束波长为1070nm,功率为100-400W,激光聚焦光斑尺寸为50μm;利用用于减材制造的激光器Ⅱ2发出的并经扩束器Ⅱ4、动态聚焦Ⅱ6、二向色镜8和扫描振镜9后聚焦在成形基板的激光束沿规划路径扫描已成形单层结构的轮廓内边缘,去除轮廓内表面粗糙部分,激光器Ⅱ2发出的激光束波长为515nm,功率为20-100W,脉冲宽度为100ns-1ps,激光聚焦光斑尺寸为20μm;利用升降组件13将成形基板12降低一层,再次利用粉末摊铺系统的刮刀11在成形基板上铺覆一层厚度为50-70μm的钛合金粉末,并利用激光器Ⅰ1发出的激光束实现铺覆粉末结构的成形和激光器Ⅱ2发出的激光束实现成形单层结构内表面的粗糙 部分去除,并重复增减材复合制造过程,直至获得最终的三维实体零件,制备过程中多余的钛合金粉末由粉末收集器14收集。
实施例2
以下结合图1和图3,以Al2O3陶瓷的多波长激光选区快速成形为例对本发明进行详细的说明。选用的Al2O3陶瓷粉末为粒径在30-60μm的近球形的粉末。
首先,设计用于成形的陶瓷结构的几何模型,规划选区激光快速成形的激光的扫描路径,规划激光减材制造的脉冲激光的扫描路径;然后,对利用气氛控制系统对成形腔室进行抽真空并控制成形腔内的真空度;利用送粉器10送入Al2O3陶瓷粉末,利用粉末摊铺系统的刮刀11在成形基板上铺覆一层厚度为50-70μm的Al2O3陶瓷粉末;利用用于选区激光快速成形的激光器Ⅰ1发出的并依次经扩束器Ⅰ3、反射镜7、二向色镜8、扫描振镜9和聚焦场镜18后聚焦在成形基板的激光束沿规划路径扫描铺覆的Al2O3陶瓷粉末,进行单层结构成形,激光器Ⅰ1发出的激光束波长为1030nm,功率为100-400W,激光聚焦光斑尺寸为50μm;将成形基板降低一层,铺覆一层粉末,再次利用用于选区激光快速成形的激光器Ⅰ1发出的并依次经扩束器Ⅰ3、反射镜7、二向色镜8、扫描振镜9和聚焦场镜18后聚焦在成形基板的激光束沿规划路径扫描铺覆的Al2O3陶瓷粉末,进行下一层单层结构成形;利用用于减材制造的激光器Ⅱ2发出的并依次经扩束器Ⅱ4、二向色镜8、扫描振镜9和聚焦场镜18后聚焦在成形基板的激光束沿规划路径扫描已成形两层结构的轮廓内外边缘,去除轮廓内外表面粗糙部分,激光器Ⅱ2发出的激光束波长为1030nm,功率为40-100W,脉冲宽度为100ns-100fs,激光聚焦光斑尺寸为20μm;利用升降组件13将成形基板12降低一层,再次利用粉末摊铺系统的刮刀在成形基板上铺覆一层厚度为50-70μm的Al2O3陶瓷粉末,并利用激光器Ⅰ1发出的激光束实现铺覆粉末结构的成形和激光器Ⅱ2发出的激光束实现成形单层结构内表面的粗糙部分去除,并重复增减材复合制造过程,直至获得最终的三维实体零件,制备过程中多余的Al2O3陶瓷粉末由粉末收集器14收集。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (10)

  1. 一种激光增减材复合制造的方法,其特征在于,包括以下步骤:
    1)建立实体零件的几何模型,规划选区激光快速成形的激光的扫描路径,规划激光减材制造的脉冲激光的扫描路径;
    2)对成形腔室进行抽真空并充入保护气体;
    3)利用粉末摊铺系统并在成形区域铺覆一层粉末;
    4)利用选区激光快速成形的激光扫描铺覆的待成形材料,进行结构成形;
    5)利用激光减材制造的脉冲激光沿规划路径扫描成形结构的轮廓边缘,去除表面粗糙部分;
    6)将成形基板降低一层粉末厚度,再重复步骤3)、4)和5)直至获得最终的三维实体零件。
  2. 根据权利要求1所述一种激光增减材复合制造的方法,其特征在于:所述的选区激光快速成形包括选区激光熔化成形和选区激光烧结成形。
  3. 根据权利要求1所述一种激光增减材复合制造的方法,其特征在于:所述选区激光快速成形的激光波长范围为200nm~10.6μm的激光,用于激光减材制造的脉冲激光的脉冲宽度为500ns~1fs。
  4. 根据权利要求1所述一种激光增减材复合制造的方法,其特征在于:所述粉末的尺度为10nm~500μm。
  5. 根据权利要求4所述一种激光增减材复合制造的方法,其特征在于:所述粉末为金属粉末材料、塑料粉末粉末、陶瓷粉末材料、覆膜砂粉末材料、聚合物粉末材料中的一种或几种混合粉末材料。
  6. 根据权利要求1~5任一项所述一种激光增减材复合制造的方法,其特征在于:步骤4)和5之间重复步骤3)和4)至少一次形成多层结构,然后进行步骤5)利用激光减材制造的脉冲激光沿规划路径扫描成形结构的轮廓边缘,去除已成形多层结构的表面粗糙部分;最后再重复步骤3)、4)和5)或先重复步骤3)和4)至少一次后再重复步骤5)直至获得最终的三维实体零件。
  7. 权利要求1~6任一项所述方法使用的装置,其特征在于:包括激光光源系统、激光聚焦扫描系统、成形腔室、粉末摊铺系统、气氛控制系统和软件控制系统;所述激光光源系统与激光聚焦扫描系统、成形腔室和粉末摊铺系统依次连接,所述气氛控制系统与粉末摊铺系统连接,所述软件控制系统分别与激光光源系统、激光聚焦扫描系统、成形腔室、粉末摊铺系统和气氛控制系统连接;
    所述激光光源系统包括提供选区激光快速成形的激光器Ⅰ和提供激光减材制造脉冲激光的激光器Ⅱ。
  8. 根据权利要求7所述的装置,其特征在于:所述激光聚焦扫描系统分别由位于激光器Ⅰ光路上的扩束镜Ⅰ、动态聚焦镜Ⅰ、反射镜,位于激光器Ⅱ光路上的扩束镜Ⅱ、动态聚焦镜Ⅱ,两条光路共享的二向色镜以及扫描振镜组成;所述成形腔室置有粉末收集器;所述粉末摊铺系统由送粉器、刮刀、成形基板和升降组件组成;气氛控制系统由真空泵和保护气体循环组件组成。
  9. 根据权利要求8所述的装置,其特征在于:激光聚焦扫描系统分别由位于激光器Ⅰ光路上的扩束镜Ⅰ和反射镜,位于激光器Ⅱ光路上的扩束镜Ⅱ,两条光路共享的二向色镜,与二向色镜连接的扫描振镜和聚焦场镜组成。
  10. 根据权利要求7~9任一项所述的装置,其特征在于:所述激光器Ⅰ提供的激光波长范围为200nm~10.6μm的激光;所述激光器Ⅱ提供的脉冲激光的脉冲宽度为500ns~1fs。
PCT/CN2016/102056 2016-02-23 2016-10-13 一种激光增减材复合制造的方法与装置 WO2017143789A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610098664.5 2016-02-23
CN201610098664.5A CN105538728A (zh) 2016-02-23 2016-02-23 一种激光增减材复合制造的方法与装置

Publications (1)

Publication Number Publication Date
WO2017143789A1 true WO2017143789A1 (zh) 2017-08-31

Family

ID=55818487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102056 WO2017143789A1 (zh) 2016-02-23 2016-10-13 一种激光增减材复合制造的方法与装置

Country Status (2)

Country Link
CN (1) CN105538728A (zh)
WO (1) WO2017143789A1 (zh)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109550956A (zh) * 2018-12-28 2019-04-02 江苏永年激光成形技术有限公司 适用于中小型3d打印的激光熔化设备
CN109570506A (zh) * 2018-12-28 2019-04-05 江苏永年激光成形技术有限公司 适用于大型3d打印的激光熔化设备
CN109604598A (zh) * 2019-01-09 2019-04-12 深圳光韵达光电科技股份有限公司 一种增减材复合加工设备
CN109648200A (zh) * 2019-02-18 2019-04-19 英诺激光科技股份有限公司 激光焊接系统及焊接方法
CN110205478A (zh) * 2019-07-11 2019-09-06 西安天瑞达光电技术股份有限公司 一种扫描式激光冲击强化装置
CN110523988A (zh) * 2019-09-29 2019-12-03 华南理工大学 一种四激光四振镜激光选区熔化增减材成型装置与方法
CN110523989A (zh) * 2019-09-29 2019-12-03 华南理工大学 一种四激光四振镜激光选区熔化成型装置及方法
CN110560689A (zh) * 2019-09-29 2019-12-13 西安增材制造国家研究院有限公司 一种连续循环铺粉结构及增材制造成形设备
CN110773738A (zh) * 2019-11-26 2020-02-11 南京理工大学 基于多边形几何特征识别的激光扫描路径分区域规划方法
CN110901063A (zh) * 2019-12-18 2020-03-24 杭州德迪智能科技有限公司 一种靶向诱导与定向能复合三维成形装置及方法
CN110918994A (zh) * 2019-12-26 2020-03-27 西安铂力特增材技术股份有限公司 一种slm双光斑成形系统
CN111992712A (zh) * 2020-07-07 2020-11-27 上海工程技术大学 一种基于激光技术进行复合制造的装置
CN112548569A (zh) * 2020-12-02 2021-03-26 南京航空航天大学 一种飞行器蒙皮-桁条结构复合增材减材制造系统与方法
US20220009033A1 (en) * 2020-07-07 2022-01-13 Shanghai University Of Engineering Science Composite device for high-precision laser additive/subtractive manufacturing
CN113967737A (zh) * 2020-07-23 2022-01-25 中国科学院沈阳自动化研究所 一种铺粉式激光增减材加工方法
CN114012111A (zh) * 2021-11-25 2022-02-08 华南理工大学 一种蓝光红外双波长同轴复合激光增材制造装置与方法
CN114160970A (zh) * 2021-12-01 2022-03-11 上海航天设备制造总厂有限公司 一种3d打印成型与检测共用振镜一体化装置
CN114160809A (zh) * 2021-11-09 2022-03-11 南京晨光集团有限责任公司 一种高功率大层厚选区激光熔化成形方法
CN114523125A (zh) * 2022-03-01 2022-05-24 中国钢研科技集团有限公司 一种slm原位合金化制备合金块体的方法
CN114559059A (zh) * 2022-03-10 2022-05-31 西安赛隆金属材料有限责任公司 粉床电子束增材制造设备及方法
CN114789255A (zh) * 2022-03-29 2022-07-26 哈尔滨工程大学 一种金属空心球复合材料构件增减材复合制造装置
CN114799220A (zh) * 2022-04-22 2022-07-29 上海航天设备制造总厂有限公司 承力防隔热梯度材料与结构增材制造方法及系统
US11407170B2 (en) 2019-12-20 2022-08-09 General Electric Company System and methods for contour stitching in additive manufacturing systems
CN115090898A (zh) * 2022-07-07 2022-09-23 河北科技大学 金属零部件增材制造方法及装置
CN115106545A (zh) * 2022-06-23 2022-09-27 华南理工大学 一种同轴耦合的多激光增减材复合成形装置与方法
CN115213429A (zh) * 2021-03-30 2022-10-21 广东汉邦激光科技有限公司 管状支架的三维成型设备和成型方法
WO2022241967A1 (zh) * 2021-05-18 2022-11-24 深圳信息职业技术学院 一种用于铝合金的双光束激光抛光设备及抛光方法
CN115502411A (zh) * 2022-09-26 2022-12-23 沈阳飞机工业(集团)有限公司 燃油导管的整体化精准制造方法
EP3984745A4 (en) * 2019-06-17 2023-07-12 Guangdong Hanbang 3D Tech Co., Ltd. 3D LASER FORMING DEVICE AND METHOD
WO2024012610A1 (zh) * 2023-02-20 2024-01-18 广东省科学院新材料研究所 一种激光增材制造用系统及增材制造方法

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105538728A (zh) * 2016-02-23 2016-05-04 中国科学院重庆绿色智能技术研究院 一种激光增减材复合制造的方法与装置
CN106002277B (zh) * 2016-05-25 2018-02-23 华中科技大学 一种电弧增材与铣削复合加工方法及其产品
CN106216862B (zh) * 2016-07-20 2018-10-16 华中科技大学 一种基于电弧增材和高能束流减材的复合制造方法及装置
CN107661982A (zh) * 2016-07-29 2018-02-06 上海微电子装备(集团)股份有限公司 金属3d打印系统及打印方法
CN106141439B (zh) * 2016-08-13 2017-12-08 中北大学 消除激光熔化成形制品残余应力的激光冲击装置
CN106449423B (zh) * 2016-09-18 2018-12-14 南京航空航天大学 基于选区激光烧结技术制备具有导电通道的结构件的方法
CN106756989B (zh) * 2016-11-22 2021-02-02 昆明七零五所科技发展有限责任公司 一种零件的激光复合制造技术
CN106735216B (zh) * 2016-12-30 2018-11-02 华中科技大学 一种金属零件的增减材复合制造装备及方法
CN106513996B (zh) * 2016-12-30 2019-02-15 中国科学院宁波材料技术与工程研究所 全激光复合增材制造方法和装置
CN106670463B (zh) * 2017-01-13 2020-08-04 山东建筑大学 一种固相增材与激光扫掠复合增材制造技术
CN106825567B (zh) 2017-01-22 2018-12-11 清华大学 电子束选区熔化与电子束切割复合的增材制造方法
CN107127583A (zh) * 2017-05-17 2017-09-05 大连理工大学 将超声切削应用于送粉式增减材复合制造中的设备及加工方法
CN107052340A (zh) * 2017-05-17 2017-08-18 大连理工大学 将超声切削应用于铺粉式增减材复合制造中的设备及加工方法
CN107243633A (zh) * 2017-05-26 2017-10-13 苏州菲镭泰克激光技术有限公司 激光增减材复合制造装置及方法
CN107336440A (zh) * 2017-08-09 2017-11-10 英诺激光科技股份有限公司 一种具有矫形功能的激光3d打印方法及其系统
CN107570707A (zh) * 2017-10-27 2018-01-12 广东汉邦激光科技有限公司 等离子增材与激光切削的3d打印设备
CN109967878A (zh) * 2017-12-27 2019-07-05 中国科学院宁波材料技术与工程研究所 激光裂纹修复系统和激光裂纹修复方法
CN108015281A (zh) * 2017-12-29 2018-05-11 广东汉邦激光科技有限公司 3d打印装置及其打印方法
CN108015280A (zh) * 2017-12-29 2018-05-11 广东汉邦激光科技有限公司 口腔器件的3d打印装置及打印方法
CN108176856A (zh) * 2017-12-29 2018-06-19 广东汉邦激光科技有限公司 硬质合金零件的3d打印装置及打印方法
CN107999755A (zh) * 2017-12-29 2018-05-08 广东汉邦激光科技有限公司 模具的3d打印装置及打印方法
CN108161006B (zh) * 2017-12-29 2021-04-06 广东汉邦激光科技有限公司 3d打印方法、打印装置及应用该3d打印方法的微反应器
CN108213424A (zh) * 2017-12-29 2018-06-29 广东汉邦激光科技有限公司 生物植入体的3d打印装置及打印方法
CN109202077B (zh) * 2018-08-30 2021-06-01 广州瑞通增材科技有限公司 一种3d打印方法
CN109047762A (zh) * 2018-08-31 2018-12-21 江苏大学 一种激光选区熔化与激光切割复合的增材制造方法
CN108907196A (zh) * 2018-09-03 2018-11-30 江苏典悦三维科技有限公司 激光增减材复合制造装置及方法
CN109571017A (zh) * 2018-11-30 2019-04-05 宁波匠心快速成型技术有限公司 一种高精度增减材3d打印方法以及装置
CN109513927A (zh) * 2018-12-26 2019-03-26 西安铂力特增材技术股份有限公司 一种slm大功率零件成形装置及成形方法
CN112139506A (zh) * 2019-06-28 2020-12-29 广东汉邦激光科技有限公司 复合工件成型装置及复合工件成型方法
CN112296354A (zh) * 2019-07-31 2021-02-02 广东汉邦激光科技有限公司 复杂内腔或精密薄壁零件的制备方法及三维成型装置
CN110369725A (zh) * 2019-08-02 2019-10-25 上海工程技术大学 基于激光增减材复合制造精细工件的近净成形方法及装置
CN110508813A (zh) * 2019-09-19 2019-11-29 深圳大指科技有限公司 一种提高激光选区熔化制品尺寸精度的方法
CN110548876B (zh) * 2019-10-14 2022-01-25 中国科学院重庆绿色智能技术研究院 一种铺粉式再制造装置及方法
CN112893869A (zh) * 2019-12-04 2021-06-04 广东汉邦激光科技有限公司 精细内腔结构和高径深孔产品加工方法
CN111151751B (zh) * 2020-01-02 2022-03-22 汕头大学 一种三激光束智能增减材复合制造系统
CN111390167A (zh) * 2020-03-09 2020-07-10 中国科学院重庆绿色智能技术研究院 激光增材与激光微纳加工一体化装置与方法
CN111590885B (zh) * 2020-06-16 2022-06-24 哈尔滨自由智造科技开发有限公司 一种桌面级3d打印设备
CN111957968A (zh) * 2020-09-03 2020-11-20 西安交通大学 一种复合增减材加工成形装置及方法
CN112264618B (zh) * 2020-09-30 2022-05-03 中国科学院重庆绿色智能技术研究院 原位激光冲击强化复合增材制造系统及方法、打印件
CN112210775B (zh) * 2020-10-09 2022-12-02 中国科学院微电子研究所 一种零件涂层制备装置及零件涂层制备方法、终端装置
CN112338209A (zh) * 2020-10-30 2021-02-09 广东工业大学 一种激光增减材复合五轴机械加工成型设备及加工方法
CN113341903A (zh) * 2021-06-28 2021-09-03 国家工业信息安全发展研究中心 一种智能制造安全测试床
CN113681149A (zh) * 2021-09-18 2021-11-23 北京航空航天大学 一种闭式整体复杂内流道一体化增材光整装置
CN114425625A (zh) * 2022-01-14 2022-05-03 中国人民解放军军事科学院国防科技创新研究院 脉冲激光增材减材制造系统及方法
CN114713848B (zh) * 2022-06-10 2022-09-23 西安赛隆增材技术股份有限公司 一种提升增材制造零件表面质量的方法及增材制造设备
CN116117356B (zh) * 2023-04-17 2023-08-18 江苏大学 磁控材料悬停辅助激光减增材成型异形孔的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014137890A1 (en) * 2013-03-05 2014-09-12 United Technologies Corporation Build platforms for additive manufacturing
WO2015062784A1 (de) * 2013-10-29 2015-05-07 Siemens Aktiengesellschaft Verfahren zur herstellung eines bauteils sowie optische bestrahlungsvorrichtung
CN104625061A (zh) * 2015-02-13 2015-05-20 济南爱华达新材料有限公司 一种新型综合性数控3d打印设备及使用方法
CN105538728A (zh) * 2016-02-23 2016-05-04 中国科学院重庆绿色智能技术研究院 一种激光增减材复合制造的方法与装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10124408B2 (en) * 2012-11-01 2018-11-13 General Electric Company Additive manufacturing method and apparatus
CN105014070A (zh) * 2014-04-25 2015-11-04 中国科学院福建物质结构研究所 选择性激光烧结3d打印方法
CN104889395B (zh) * 2015-06-25 2017-01-18 武汉大学 基于纳秒‑皮秒‑飞秒激光技术的金属制品3d打印方法及系统
CN105149583B (zh) * 2015-09-22 2017-10-31 重庆塞拉雷利科技有限公司 铝材的激光选区熔化成形方法及其系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014137890A1 (en) * 2013-03-05 2014-09-12 United Technologies Corporation Build platforms for additive manufacturing
WO2015062784A1 (de) * 2013-10-29 2015-05-07 Siemens Aktiengesellschaft Verfahren zur herstellung eines bauteils sowie optische bestrahlungsvorrichtung
CN104625061A (zh) * 2015-02-13 2015-05-20 济南爱华达新材料有限公司 一种新型综合性数控3d打印设备及使用方法
CN105538728A (zh) * 2016-02-23 2016-05-04 中国科学院重庆绿色智能技术研究院 一种激光增减材复合制造的方法与装置

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109550956A (zh) * 2018-12-28 2019-04-02 江苏永年激光成形技术有限公司 适用于中小型3d打印的激光熔化设备
CN109570506A (zh) * 2018-12-28 2019-04-05 江苏永年激光成形技术有限公司 适用于大型3d打印的激光熔化设备
CN109570506B (zh) * 2018-12-28 2024-01-30 江苏永年激光成形技术有限公司 适用于大型3d打印的激光熔化设备
CN109550956B (zh) * 2018-12-28 2024-01-26 江苏永年激光成形技术有限公司 适用于中小型3d打印的激光熔化设备
CN109604598A (zh) * 2019-01-09 2019-04-12 深圳光韵达光电科技股份有限公司 一种增减材复合加工设备
CN109648200A (zh) * 2019-02-18 2019-04-19 英诺激光科技股份有限公司 激光焊接系统及焊接方法
EP3984745A4 (en) * 2019-06-17 2023-07-12 Guangdong Hanbang 3D Tech Co., Ltd. 3D LASER FORMING DEVICE AND METHOD
CN110205478A (zh) * 2019-07-11 2019-09-06 西安天瑞达光电技术股份有限公司 一种扫描式激光冲击强化装置
CN110205478B (zh) * 2019-07-11 2024-03-26 西安天瑞达光电技术股份有限公司 一种扫描式激光冲击强化装置
CN110523988A (zh) * 2019-09-29 2019-12-03 华南理工大学 一种四激光四振镜激光选区熔化增减材成型装置与方法
CN110523989A (zh) * 2019-09-29 2019-12-03 华南理工大学 一种四激光四振镜激光选区熔化成型装置及方法
CN110560689A (zh) * 2019-09-29 2019-12-13 西安增材制造国家研究院有限公司 一种连续循环铺粉结构及增材制造成形设备
CN110773738A (zh) * 2019-11-26 2020-02-11 南京理工大学 基于多边形几何特征识别的激光扫描路径分区域规划方法
CN110773738B (zh) * 2019-11-26 2020-11-03 南京理工大学 基于多边形几何特征识别的激光扫描路径分区域规划方法
CN110901063A (zh) * 2019-12-18 2020-03-24 杭州德迪智能科技有限公司 一种靶向诱导与定向能复合三维成形装置及方法
US11407170B2 (en) 2019-12-20 2022-08-09 General Electric Company System and methods for contour stitching in additive manufacturing systems
CN110918994A (zh) * 2019-12-26 2020-03-27 西安铂力特增材技术股份有限公司 一种slm双光斑成形系统
CN111992712A (zh) * 2020-07-07 2020-11-27 上海工程技术大学 一种基于激光技术进行复合制造的装置
US11565349B2 (en) * 2020-07-07 2023-01-31 Shanghai University Of Engineering Science Composite device for high-precision laser additive/subtractive manufacturing
US20220009033A1 (en) * 2020-07-07 2022-01-13 Shanghai University Of Engineering Science Composite device for high-precision laser additive/subtractive manufacturing
CN113967737A (zh) * 2020-07-23 2022-01-25 中国科学院沈阳自动化研究所 一种铺粉式激光增减材加工方法
CN112548569B (zh) * 2020-12-02 2023-07-07 南京航空航天大学 一种飞行器蒙皮-桁条结构复合增材减材制造系统与方法
CN112548569A (zh) * 2020-12-02 2021-03-26 南京航空航天大学 一种飞行器蒙皮-桁条结构复合增材减材制造系统与方法
CN115213429A (zh) * 2021-03-30 2022-10-21 广东汉邦激光科技有限公司 管状支架的三维成型设备和成型方法
CN115213429B (zh) * 2021-03-30 2024-04-16 广东汉邦激光科技有限公司 管状支架的三维成型设备和成型方法
WO2022241967A1 (zh) * 2021-05-18 2022-11-24 深圳信息职业技术学院 一种用于铝合金的双光束激光抛光设备及抛光方法
US11890698B1 (en) 2021-05-18 2024-02-06 Shenzhen Institute Of Information Technology Double-beam laser polishing device and polishing method for aluminum alloy
CN114160809A (zh) * 2021-11-09 2022-03-11 南京晨光集团有限责任公司 一种高功率大层厚选区激光熔化成形方法
CN114012111A (zh) * 2021-11-25 2022-02-08 华南理工大学 一种蓝光红外双波长同轴复合激光增材制造装置与方法
CN114160970A (zh) * 2021-12-01 2022-03-11 上海航天设备制造总厂有限公司 一种3d打印成型与检测共用振镜一体化装置
CN114160970B (zh) * 2021-12-01 2023-11-24 上海航天设备制造总厂有限公司 一种3d打印成型与检测共用振镜一体化装置
CN114523125A (zh) * 2022-03-01 2022-05-24 中国钢研科技集团有限公司 一种slm原位合金化制备合金块体的方法
CN114523125B (zh) * 2022-03-01 2023-11-07 中国钢研科技集团有限公司 一种slm原位合金化制备合金块体的方法
CN114559059A (zh) * 2022-03-10 2022-05-31 西安赛隆金属材料有限责任公司 粉床电子束增材制造设备及方法
CN114559059B (zh) * 2022-03-10 2023-09-12 西安赛隆金属材料有限责任公司 粉床电子束增材制造设备及方法
CN114789255B (zh) * 2022-03-29 2024-03-26 哈尔滨工程大学 一种金属空心球复合材料构件增减材复合制造装置
CN114789255A (zh) * 2022-03-29 2022-07-26 哈尔滨工程大学 一种金属空心球复合材料构件增减材复合制造装置
CN114799220A (zh) * 2022-04-22 2022-07-29 上海航天设备制造总厂有限公司 承力防隔热梯度材料与结构增材制造方法及系统
CN114799220B (zh) * 2022-04-22 2023-11-21 上海航天设备制造总厂有限公司 承力防隔热梯度材料与结构增材制造方法及系统
CN115106545B (zh) * 2022-06-23 2023-12-22 华南理工大学 一种同轴耦合的多激光增减材复合成形装置与方法
CN115106545A (zh) * 2022-06-23 2022-09-27 华南理工大学 一种同轴耦合的多激光增减材复合成形装置与方法
CN115090898A (zh) * 2022-07-07 2022-09-23 河北科技大学 金属零部件增材制造方法及装置
CN115502411B (zh) * 2022-09-26 2023-09-26 沈阳飞机工业(集团)有限公司 燃油导管的整体化精准制造方法
CN115502411A (zh) * 2022-09-26 2022-12-23 沈阳飞机工业(集团)有限公司 燃油导管的整体化精准制造方法
WO2024012610A1 (zh) * 2023-02-20 2024-01-18 广东省科学院新材料研究所 一种激光增材制造用系统及增材制造方法

Also Published As

Publication number Publication date
CN105538728A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
WO2017143789A1 (zh) 一种激光增减材复合制造的方法与装置
US20170157850A1 (en) Multi-wavelength laser rapid prototyping system and method
Worts et al. Surface structure modification of additively manufactured titanium components via femtosecond laser micromachining
WO2019140965A1 (zh) 一种集成双类型激光提高slm成型件表面质量的装置与方法
US10399146B2 (en) Contour scanning for additive manufacturing process
Mingareev et al. Femtosecond laser post-processing of metal parts produced by laser additive manufacturing
CN213196184U (zh) 一种双光源复合激光加工装置
US20130164457A1 (en) Method of manufacturing patterned x-ray optical elements
CN105935769A (zh) 一种用于3d打印成形件的激光熔覆刻蚀制备方法
CN109175732A (zh) 异型孔加工方法及异型孔
CN111992879A (zh) 一种基于激光冲击强化和激光增减材进行复合制造的装置
CN108580896A (zh) 一种双光束高表面质量的快速增材制造设备
CN109967878A (zh) 激光裂纹修复系统和激光裂纹修复方法
Schwarz et al. Fabrication of cylindrical lenses by combining ultrashort pulsed laser and CO2 laser
CN111438443B (zh) 一种通过激光多次扫描烧蚀在工件表面加工可控微沟槽的方法
US20170341175A1 (en) Method and device for additively manufacturing at least a portion of a component
Pfeiffer et al. Microstructuring of fused silica using femtosecond laser pulses of various wavelengths
CN111390167A (zh) 激光增材与激光微纳加工一体化装置与方法
Zheng et al. An adaptive direct slicing method based on tilted voxel of two-photon polymerization
US9517506B2 (en) Laser assisted casting of cooling hole and related system
CN111992712A (zh) 一种基于激光技术进行复合制造的装置
Liu et al. A smooth toolpath generation method for laser metal deposition
CN205324994U (zh) 一种金属薄板叠加制造复杂形状零件的设备
CN111992877A (zh) 一种高精度激光增减材的复合制造装置
US9636745B2 (en) Laser assisted casting of surface texture and related system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891237

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891237

Country of ref document: EP

Kind code of ref document: A1