WO2022022067A1 - 一种光束入射角可控的激光加工装置及激光加工方法 - Google Patents

一种光束入射角可控的激光加工装置及激光加工方法 Download PDF

Info

Publication number
WO2022022067A1
WO2022022067A1 PCT/CN2021/098782 CN2021098782W WO2022022067A1 WO 2022022067 A1 WO2022022067 A1 WO 2022022067A1 CN 2021098782 W CN2021098782 W CN 2021098782W WO 2022022067 A1 WO2022022067 A1 WO 2022022067A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflecting mirror
laser
laser processing
processing device
mirror surface
Prior art date
Application number
PCT/CN2021/098782
Other languages
English (en)
French (fr)
Inventor
张文武
张天润
章鹏
Original Assignee
中国科学院宁波材料技术与工程研究所
宁波大艾激光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所, 宁波大艾激光科技有限公司 filed Critical 中国科学院宁波材料技术与工程研究所
Publication of WO2022022067A1 publication Critical patent/WO2022022067A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • B23K26/0821Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head using multifaceted mirrors, e.g. polygonal mirror
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses

Definitions

  • the invention relates to the technical field of laser processing, in particular to a laser processing device and a laser processing method with a controllable beam incident angle.
  • Laser processing is a processing method that combines a laser beam with a workpiece to achieve various purposes, such as drilling, cutting, scribing, welding, heat treatment, etc.
  • the laser beam forms a certain angle with the surface of the workpiece during processing.
  • laser drilling generally needs to focus the parallel laser beam. Through the relative movement of the laser and the material, the interaction between the laser pulse and the material is used for processing. When the laser is drilling, the laser beam forms a certain angle with the surface of the workpiece.
  • a method is to use mechanical motion to realize the inclination of the workpiece, but this method requires a relatively cumbersome coaxial centering operation, and is mainly suitable for small parts, such as the ultrafast laser disclosed in CN109434288A. Taper hole punching device and punching process.
  • Another method is to use multiple wedge-shaped optical components to generate a predetermined inclination angle and radius, and then drive the rotation of the optical components by a motor to realize hole processing with controllable inclination angle within a certain range, such as US2009045176A1, CN102218605A, CN104400222A and so on.
  • this type of technology is that it can achieve high roundness and predetermined taper processing through the rotation of the wedge-shaped module, but the disadvantage is that this type of device is generally expensive due to the combination of precise movements of multiple motors, and the hole diameter that can be directly machined It is small, generally less than 2 mm, and the inclination angle that can be controlled is generally within 15°.
  • this type of device is mainly suitable for round hole processing, and complex shapes require very complex external mechanical movements to assist in realization, or limited realization through very complex multi-motor control.
  • the invention provides a laser processing device, which has simple structure and low cost, and can realize laser processing with controllable incident angle of laser on the workpiece surface by using the device.
  • a laser processing device with a controllable beam incident angle comprising a laser generating unit, and is characterized in that: further comprising a hollow unit;
  • the laser generating unit emits a light beam with a focal length F, the central axis of the light beam is in the axial direction E, and the light beam is incident on the surface of the workpiece after passing through the hollow unit;
  • the hollow unit is provided with a first reflecting mirror and a second reflecting mirror, the light beam emitted by the laser generating unit is irradiated on the first reflecting mirror surface, reflected by the first reflecting mirror surface and then illuminated on the second reflecting mirror surface, and then illuminated after being reflected by the second reflecting mirror surface on the workpiece surface;
  • the included angle th1 between the axial direction E and the first reflecting mirror surface is the inclination angle of the first reflecting mirror surface, that is, the angle rotated when the axial direction E rotates counterclockwise to coincide with the first reflecting mirror surface for the first time is th1;
  • the angle th2 between the axial direction E and the second reflecting mirror surface is the inclination angle of the second reflecting mirror surface, that is, the angle rotated when the axial direction E rotates counterclockwise to coincide with the second reflecting mirror surface for the first time is th2;
  • the angle th3 between the central axis of the beam and the axial direction E is the beam incident angle
  • the angle between the beam irradiated on the second mirror surface and the second mirror surface is th4.
  • the beam incident angle can be adjusted to achieve a specified laser processing inclination angle, for example, the beam incident angle th3 can be greater than 0°, greater than 5°, greater than 15°, greater than 30° °, greater than 45° or greater than 60°, etc., in particular, large inclination angle processing, such as greater than 30°, greater than 45° or greater than 60°, etc., can be realized.
  • the included angles th1 and th2 can both be maintained at large values through adjustment, which is beneficial to the control of system errors, because the laser spot will not be too deviated from the central axis, for example, 15° ⁇ th1 ⁇ 60°, 30° ⁇ th2 ⁇ 70°, preferably, 30° ⁇ th4 ⁇ 80°.
  • the inclination angle th1 of the first mirror surface is greater than or equal to 15°, and the required laser processing incident angle is obtained by adjusting the inclination angle th2 of the second reflection mirror surface.
  • the inclination angle th1 of the first reflecting mirror is greater than or equal to 45°, and the required incident angle of laser processing can be obtained by adjusting the inclination angle th2 of the second reflecting mirror.
  • the beam incident angle refers to the incident angle of the laser beam to the workpiece, that is, the laser processing incident angle.
  • the distance of the light beam from the laser generating unit to the center of the reflection point of the first reflecting mirror surface is L1
  • the distance that the light beam propagates between the first reflecting mirror surface and the second reflecting mirror surface is L2
  • the light beam is from the second reflecting mirror surface to the convergence point.
  • the distance between the hollow unit and the laser generating unit is adjustable, so that L1 can be adjusted.
  • the hollow unit is connected with the displacement unit, and can be moved by the displacement unit, thereby adjusting L1.
  • the distance between the first reflecting mirror and the second reflecting mirror is adjustable.
  • the distance between the workpiece and the laser generating unit is adjustable, so that the positional relationship between the position of the convergence point and the workpiece after the light beam is reflected from the second reflecting mirror surface can be adjusted.
  • the position of the convergence point is above the workpiece, it is positive taper processing, and when the position of the convergence point is below the workpiece, it is negative taper processing.
  • the hollow unit further includes a displacement sensor, which can detect the distance between the laser generating unit and the workpiece, and detect one or several distances among L1, L2, and L3.
  • a displacement sensor which can detect the distance between the laser generating unit and the workpiece, and detect one or several distances among L1, L2, and L3.
  • the first reflecting mirror and the second reflecting mirror can be made into an integrated structure, which can be conveniently arranged in the hollow unit without excessive adjustment.
  • the structures of the first reflector and the second reflector can be made into a modular integrated device, whose parameters such as inclination angle and spacing form a sequence, which can be easily replaced during use.
  • th3 is obtained by adjusting L2 and th2 to be 1°, 2°, 3°, 5°, 15°, 22.5°, 30°, 40°, 45°, 60°, 75°
  • a series of device combinations under discrete values such as °.
  • the laser includes pulsed laser and continuous laser, and the wavelength includes but not limited to DUV, UV, VIS, NIR, IR and the like.
  • the first reflecting mirror and the second reflecting mirror have the function of reflecting light, and can be prism reflecting mirrors and ordinary circular reflecting mirrors.
  • the laser generating unit includes a functional device for generating laser light and a functional device for laser focusing, and may also include a functional device for optical modulation.
  • the optically modulated functional devices include, but are not limited to, beam expander and speckle control optical devices.
  • the functional devices for laser focusing include, but are not limited to, various scanning galvanometers and various fixed focusing optical systems, such as spherical convex lenses, combined lenses, cylindrical lenses, and the like.
  • the laser processing unit can also be equipped with a pneumatic interface and a bottom nozzle. After the gas passes through the bottom nozzle, an airflow is formed, which is used to blow away the spatter generated during the laser processing and reduce the temperature of the laser processing area.
  • the hollow unit rotates around the axis E.
  • the first mirror and the second mirror are in a relatively fixed state and participate in the rotational movement together, so as to realize rotary laser processing, such as laser drilling, laser milling, Laser polishing, laser cutting, laser welding, etc.
  • rotary laser processing such as laser drilling, laser milling, Laser polishing, laser cutting, laser welding, etc.
  • positive taper processing or negative taper processing is formed to realize the processing of circular holes, rings or cylinders with controllable tapers.
  • the distance between the central axis of the beam and the rotation axis is the machining radius R, and the machining taper can be controlled by controlling the beam incident angle th3. Since the laser incident angle th3 is controllable in a large range in the present invention, the machining taper is large. range control.
  • the rotation method of the hollow unit is not limited, and rotation driven by a motor, rotation driven by compressed gas, and rotation driven by a transmission belt can be used.
  • the rotation of the hollow unit includes continuous rotation and fixed-point rotation.
  • Fixed-point rotation means that the hollow unit rotates to a specified angle and then stops rotating. The laser processing task is performed at this angle, and then it can continue to rotate. This mode is convenient to cooperate with the scanning galvanometer.
  • a dynamic balance block is set in the hollow unit.
  • the whole formed by the two mirrors and the dynamic balance block form a dynamic balance with the rotating shaft.
  • the processing radius R can be adjusted by adjusting L1.
  • This control method is especially suitable for high-precision micro-hole processing. For example, small taper compensation is used to achieve zero-taper hole processing.
  • the beam incident angle th3 is generally in the range of 1° ⁇ th3 ⁇ 10°, preferably 2° ⁇ th3 ⁇ 7°, and most preferably 3° ⁇ th3 ⁇ 5°.
  • the radius of the micro-hole is less than 0.25 mm, especially less than 0.1 mm, the conventional scanning galvanometer drilling or table moving drilling is faced with challenges in precision control.
  • the focal position Z of the laser changes very little relative to the laser unit, and such focus drift can be ignored during processing, which facilitates precise control of the processing radius by adjusting L1 without frequently compensating the focus position. Therefore, compared with the prior art, the present invention has outstanding advantages in the radius control of the circular hole.
  • the laser generating unit and/or the first reflecting mirror surface is translated along the axis E to change the distance L1
  • the radius of the circle drawn at the laser focus can be changed.
  • the translation is a reciprocating motion within a certain range, it can be It realizes continuous scanning processing of circular or full circle, so it can be used to process micro-holes or micro-rings, or non-penetrating micro-cylinders or micro-cones with controllable taper.
  • the scanning galvanometer is preferably a focusing device.
  • the scanning galvanometer uses an F-theta field lens, which can make the beam in a large range approximately parallel to the central axis, and the light off the central axis can maintain approximately focus in a small range.
  • the incident light can be continuously deviated from the central axis, such as linear reciprocating scanning or other trajectory scanning, combined with the rotating hollow unit, and the final composite laser scanning trajectory is a helix.
  • the laser processing device of the present invention combined with the scanning galvanometer can realize controllable taper processing of local complex shapes.
  • the specific processing method is as follows: when the hollow unit is rotated, the fixed-point tilt mode is combined with the scanning of the scanning galvanometer, that is, the hollow unit is rotated to a certain position to be stationary, the beam incident angle is adjusted to a certain value, and the scanning galvanometer scans, so as to have the ability to scan at the specified position. The ability to machine complex patterns at a specified inclination angle.
  • the present invention only uses two reflecting mirror surfaces and utilizes the differential effect to realize the laser processing of the specified beam incident angle. Compared with the prior art, the present invention has the following beneficial effects:
  • the device of the present invention has a simple structure, and the incident angle of the beam can be controlled by controlling the difference between the inclination angles of the two reflecting mirror surfaces.
  • the incident beam of more than 45° subtly solves the technical problem that it is difficult to generate an incident inclination angle of more than 15° in the existing laser processing;
  • the present invention can take into account the needs of large-angle incidence on the first reflecting mirror surface and the second reflecting mirror surface, as well as the needs of large-angle beam incidence, that is, when the light beam is incident on the first reflecting mirror surface, the angle between the first reflecting mirror surface and the first reflecting mirror surface is large, and the light beam is incident.
  • the included angle with the second reflective mirror surface is relatively large, and the incident angle of the light beam is relatively large, thereby ensuring that the laser spot does not deviate too much from the central axis.
  • the present invention can realize laser rotation processing, such as laser drilling, laser milling, laser polishing, laser cutting, laser welding, etc., and by adjusting the beam incident angle th3, the taper controllable laser rotation processing can be realized
  • positive taper processing or negative taper processing can be formed by adjusting the positional relationship between the position of the beam converging point and the workpiece, so that the processing of circular holes, rings, cylinders or cones with controllable taper can be realized.
  • the processing radius R can be regulated by adjusting L1.
  • the precise control of the laser processing radius can be achieved by adjusting L1, and the scanning processing of micro-holes, micro-rings, micro-cylinders or cones can be realized.
  • the ratio is greater than 20:1. Therefore, the present invention solves the technical problem that the radius of the circular hole is difficult to precisely control when processing small-diameter circular holes in the prior art through a simple control method.
  • the functional device of laser focusing is preferably a scanning galvanometer, and when the hollow unit rotates, a fixed-point tilt mode is used to combine with the scanning galvanometer, that is, the hollow unit rotates to a certain position and is stationary, and by adjusting the first reflecting mirror and The difference value of the second mirror is incident at a certain beam incident angle, and the scanning galvanometer scans, which can realize controllable taper processing of local complex shapes.
  • the optical scheme of the present invention is obviously different from the scanning galvanometer in that the first reflecting mirror and the second reflecting mirror are mainly rotated to realize the laser processing of the predetermined inclination angle. Once the angle and position are adjusted, the two reflecting mirrors are in opposite positions The fixed states participate in the rotational motion together, rather than having the mirrors perform separate high-speed, high-frequency motions like a scanning galvanometer.
  • FIG. 1 is a schematic structural diagram of a dual-reflection surface laser device in the present invention.
  • FIG. 2 is a schematic diagram of the movement of the laser processing device of the present invention combined with the scanning galvanometer.
  • FIG. 3 is a schematic structural diagram of the laser processing apparatus in Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of a complex shape processed by a laser processing device combined with a scanning galvanometer in Embodiment 3 of the present invention.
  • FIG. 5 is a schematic diagram of an integrated structure of the first reflecting mirror and the second reflecting mirror in Embodiment 4 of the present invention.
  • Laser 1 optical modulator 2 , focusing device 3 , hollow unit 5 , first mirror 6A, second mirror 6B, displacement unit 7 , workpiece 8 , control unit 9 .
  • the laser processing apparatus includes a laser generating unit and a hollow unit 5 .
  • the laser generating unit includes a laser 1 , an optical modulator 2 and a focusing device 3 .
  • the beam emitted by the laser 1 is coupled into the focusing unit 3 through the optical modulator 2, and after focusing, a beam with a focal length F is emitted, the central axis of the beam is in the axial direction E, and the beam is incident on the surface of the workpiece 8 after passing through the hollow unit.
  • the hollow unit 5 is provided with a first reflecting mirror 6A and a second reflecting mirror 6B.
  • the light beam emitted by the laser generating unit is irradiated on the first reflecting mirror surface, and after being reflected by the first reflecting mirror surface, it is illuminated on the second reflecting mirror surface, and after being reflected by the second reflecting mirror surface Irradiate on the surface of the workpiece 8 .
  • the angle th1 between the axial direction E and the first reflecting mirror surface is the inclination angle of the first reflecting mirror surface, that is, the rotation angle when the axial direction E rotates counterclockwise to coincide with the first reflecting mirror surface for the first time is th1 .
  • the included angle th2 between the axial direction E and the second reflecting mirror surface is the inclination angle of the second reflecting mirror surface, that is, the rotation angle when the axial direction E rotates counterclockwise to coincide with the second reflecting mirror surface for the first time is th2.
  • the angle th3 between the central axis of the beam and the axial direction E is the beam incident angle, and the angle between the beam irradiated on the second reflecting mirror surface and the second reflecting mirror surface is th4.
  • the distance of the light beam from the laser generating unit to the center of the reflection point of the first reflecting mirror is L1
  • the distance that the light beam travels between the first reflecting mirror and the second reflecting mirror is L2
  • the distance of the light beam from the second reflecting mirror to the converging point is L3
  • F L1+L2+L3
  • the hollow unit is connected to the displacement unit 7, and the displacement unit can be displaced in the axial direction E, thereby adjusting the distance L1.
  • the entire device is regulated by the control unit 9 .
  • the light beam After the light beam is reflected from the second reflecting mirror, it converges.
  • the position of the convergence point When the position of the convergence point is above the workpiece, it is a positive taper processing, and when the position of the convergence point is below the workpiece, it is a negative taper processing.
  • the hollow unit rotates around the axis E.
  • the first reflecting mirror and the second reflecting mirror are in a relatively fixed state and participate in the rotating motion together, so as to realize rotary laser processing, such as laser drilling.
  • positive taper processing is formed when the position of the beam converging point is above the workpiece, and negative taper processing is formed when it is below the workpiece.
  • the processing taper can be controlled by controlling the beam incident angle th3, which is related to the difference between the inclination angle th1 of the first mirror surface and the inclination angle th2 of the second mirror surface, so by controlling the difference between the inclination angle th1 of the first mirror surface and the inclination angle th2 of the second mirror surface , the beam incident angle th3 can be controlled.
  • the difference is used to adjust the inclination of the second reflecting mirror to 44.5°;
  • the difference is used to adjust the inclination angle of the second reflecting mirror to 15°.
  • Table 1 Optical system with a focal length of 300 mm and a light incident angle of 1-60 degrees
  • the processing radius R can be adjusted by adjusting L1.
  • Table 2 taking the inverse taper compensation drilling with the beam incident angle of 5° as an example, set the distance L2 that the beam propagates between the first reflecting mirror surface and the second reflecting mirror surface to be 18mm, and when the value of L1 is 75.473- When changing between 72.605mm, the negative taper radius R3 varies between 0-0.25mm.
  • the reverse taper drilling radius is 0mm; when the L1 value is 75.358mm, the reverse taper drilling radius is 0.01mm; when the L1 value is 72.605mm, the hole radius of the reverse taper is 0.25mm, see Table 2 for details.
  • the ratio of the change of L1 to the change of the radius of the circular hole is 1/sin (2 ⁇ th1-2 ⁇ th2), that is, the change of L1 is about 11 times of 0.25mm. .
  • the control accuracy of the circular hole radius can reach the order of 1 micron, that is, the ultra-high circular hole radius control can be achieved through the 10 micron precision electric or manual displacement stage. precision.
  • the focus position Z of the laser only changes by 0.011 mm, and such focus drift can be ignored during processing.
  • Table 2 Optical system with a focal length of 300 mm and a light incident angle of 1-60 degrees
  • the distance L1 from the laser generating unit to the center of the reflection point of the first reflecting mirror surface changes, so that the radius of the circle drawn at the laser focus can be changed.
  • the translation is a certain range of reciprocating motion, it can realize the continuous scanning of the controllable taper of the ring or the whole circle, which can be used to process micro holes or micro rings, or non-penetrating micro cylinders/cones.
  • the structure of the laser processing device is basically the same as that in Embodiment 1, except that the focusing device is a long focal length lens, and the focal length of the beam after focusing is 1000 mm; the hollow rotating head is mounted on an electric translation stage, and the hollow unit Connected with the displacement unit, the displacement unit is an electric translation stage, the hollow unit can be displaced in the axial E direction on the electric translation stage, and the displacement stroke is +/- 200 mm, thereby adjusting L1.
  • the difference is used to adjust the inclination angle of the second mirror surface to 43.5°;
  • the difference is used to adjust the inclination angle of the second reflecting mirror to 30°.
  • Table 3 Optical system with a focal length of 1000 mm and a light incident angle of 1-60 degrees
  • the processing radius R can be adjusted by adjusting L1.
  • Table 4 taking the inverse cone drilling with the incident angle of 3° as an example, set the distance L2 of the light beam to propagate between the first reflecting mirror surface and the second reflecting mirror surface to be 40mm, when the value of L1 changes from 195.707 to 190.930 When changing between mm, the negative taper radius R3 varies between 0-0.25mm.
  • the reverse taper drilling radius is 0mm; when the L1 value is 195.516mm, the reverse taper drilling radius is 0.01 mm; when the L1 value is 190.930mm, the reverse taper drilling radius is 0.25mm; that is, when the radius of the circular hole processed by the laser at the end changes from 0 to 0.25mm, the input motion of the L1 axis is about 19 times that of 0.25mm. That is to say, when the movement accuracy of L1 is controlled to the order of 10 microns, the control accuracy of the circular hole radius can reach the order of 1 micron, that is, ultra-high control precision of the circular hole radius can be achieved.
  • the translation stage is driven, and the rotating head is driven to move, so as to realize laser processing with a predetermined angle of inclination and a predetermined diameter.
  • the appropriate L1 zero-radius position will be obtained mainly by adjusting the angle (th2) and offset position (R20) of the second mirror surface, and then changing L1 to realize the scan of the predetermined diameter at the inclination angle.
  • the structure of the laser processing apparatus is basically the same as that of Embodiment 2, the difference is that the focusing device is a scanning galvanometer.
  • the focusing device is a scanning galvanometer.
  • the fixed-point tilt mode is used, that is, the hollow unit rotates to a certain position, and by adjusting the difference between the first mirror and the second mirror, the incident angle of the beam is incident at a certain angle.
  • the scanning galvanometer the local complex shape can be realized. Controlled taper machining.
  • the structure of the laser processing apparatus is basically the same as that of the second embodiment.
  • the first reflecting mirror and the second reflecting mirror are made into an integrated structure, which can be conveniently arranged in the hollow unit without excessive adjustment.
  • th3 is obtained by adjusting L2 and th2.
  • th3 is a device with 15°, 45°, and 60°.

Abstract

一种光束入射角可控的激光加工装置及激光加工方法,包括激光发生单元,中空单元(5),激光发生单元发出焦距为F、方向为轴向E的光束,光束经过中空单元(5)后入射在工件(8)表面;中空单元(5)设置第一反射镜(6A)、第二反射镜(6B),激光发生单元发出的光束照射在第一反射镜面,经第一反射镜面反射后照射在第二反射镜面,经第二反射镜面反射后照射在工件(8)表面;通过调节第一反射镜面倾角和/或第二反射镜面倾角能够调控光束入射角,从而可实现任意光束入射角的激光加工,尤其能够得到大角度光束入射,并且当中空单元(5)旋转时可得到可控锥度的激光旋转加工。

Description

一种光束入射角可控的激光加工装置及激光加工方法 技术领域
本发明涉及激光加工技术领域,尤其涉及一种光束入射角可控的激光加工装置及激光加工方法。
背景技术
激光加工是将激光束与工件相结合实现多种目的的加工方法,如打孔、切割、划片、焊接、热处理等。
在很多场合需要实现工件的倾角加工,即,加工时激光束与工件表面形成一定夹角。例如,激光打孔一般需要对平行激光束进行聚焦,通过激光与材料的相对移动,利用激光脉冲与材料的相互作用进行加工,当激光打孔时激光束与工件表面形成一定夹角则能够得到具有一定锥度的孔,目前可控锥度(正锥、零锥或者负锥)、大深径比(大于5:1,尤其是大于20:1)的微小孔(直径小于0.5毫米,尤其是直径小于0.2毫米)的加工面临一系列困难,原因是激光能量垂直辐照会自然形成一定的正锥度,激光能量在倾斜面上散开,丧失持续加工能力,最终限制激光孔加工的深径比。另外,可利用激光与工件表面夹角的变化实现复杂形状的加工。
目前,为了实现工件的倾角加工,一种方法是利用机械运动实现工件的倾角加工,但是这种方法需要相对繁琐的同轴对中操作,并且主要适用于小型零件,例如CN109434288A公开的超快激光锥孔打孔装置及打孔工艺。另一种方法是使用多个楔形光学组件产生预定倾角和半径,然后通过电机驱动光学组件的旋转,实现一定范围内倾角可控的孔加工,例如US2009045176A1,CN102218605A,CN104400222A等。这类技术的优点是可以通过楔形模块的旋转实现高圆度和预定锥度的加工,但缺点是,由于需要多个电机精密运动的组合,使得这类装置普遍偏贵,能够直接加工的孔直径偏小,一般小于2毫米,并且能够控制的倾角一般在15°以内。另外,这类装置主要适合圆形孔加工,复杂形状需要非常复杂的外部机械运动来辅助实现,或者通过非常复杂的多电机控制来有限实现。
发明内容
本发明提供一种激光加工装置,具有结构简单,成本低,利用该装置能够实现激光在工件表面的入射角可控的激光加工。
本发明提供的技术方案为:一种光束入射角可控的激光加工装置,包括激光发生单元,其特征是:还包括中空单元;
激光发生单元发出焦距为F的光束,该光束的中心轴方向为轴向E,该光束经过中空单元后入射在工件表面;
所述中空单元设置第一反射镜与第二反射镜,激光发生单元发出的光束照射在第一反射镜面,经第一反射镜面反射后照射在第二反射镜面,经第二反射镜面反射后照射在工件表面;
轴向E与第一反射镜面的夹角th1为第一反射镜面倾角,即,轴向E逆时针旋转至第一次与第一反射镜面重合时所旋转的角度为th1;
轴向E与第二反射镜面的夹角th2为第二反射镜面倾角,即,轴向E逆时针旋转至第一次与第二反射镜面重合时所旋转的角度为th2;
光束照射在工件表面时光束的中心轴与轴向E的夹角th3为光束入射角,照射在第二反射镜面的光束与第二反射镜面的夹角为th4。
如图1所示,根据几何计算,th4=2×th1-th2,th3=2×(th1-th2),即,光束入射角等于第一反射镜面倾角与第二反射镜面倾角差分值的两倍;因此,通过调节第一反射镜面倾角和/或第二反射镜面倾角能够调控光束入射角,实现指定激光加工倾角,例如光束入射角th3可大于0°,大于5°,大于15°、大于30°、大于45°或者大于60°等,尤其是可实现大倾角加工,例如大于30°、大于45°或者大于60°等。
另外,本发明中,通过调节能够使夹角th1与th2均保持较大数值,这对系统误差控制是有利的,因为这样激光光斑不会过于偏离中心轴,例如15°≤th1≤60°、30°≤th2≤70°,作为优选,30°≤th4≤80°。
作为一种优选方式,第一反射镜面倾角th1大于或者等于15°,通过调节第二反射镜面倾角th2得到所需激光加工入射角。
作为另一种优选方式,第一反射镜面倾角th1大于或者等于45°,通过调节第二反射镜面倾角th2得到所需激光加工入射角。
所述光束入射角是指激光光束至工件的入射角,即,激光加工入射角。
所述光束自激光发生单元发出至第一反射镜面的反射点中心的距离为L1,光束在第一反射镜面与第二反射镜面之间传播的距离为L2,光束自第二反射镜面至汇聚点的距离为L3,并且F>L1+L2,F=L1+L2+L3。
作为优选,所述中空单元与激光发生单元之间的距离可调,从而可以调节L1。作为一种实现方式,所述中空单元与位移单元连接,可通过位移单元进行移动,从而调节L1。
作为优选,第一反射镜与第二反射镜之间间距可调。
作为优选,工件与激光发生单元之间的距离可调,从而可调节光束自第二反射镜面反射后汇聚点位置与工件的位置关系。当汇聚点的位置处于工件上方时为正锥度加工,当汇聚点的位置处于工件下方时为负锥度加工。
作为优选,所述中空单元还包括位移传感器,可探测激光发生单元与工件之间的距离,以及L1、L2、L3中的一种或者几种距离的探测。
本发明中,第一反射镜和第二反射镜可以做成一体化结构,方便地设置在中空单元,不需要过多的调节。作为优选,第一反射镜与第二反射镜结构可以做成模块化的一体器件,其倾角、间距等参数形成序列,使用时可以方便地替换。例如,在F、L1、th1一定时、通过调节L2以及th2得到th3为1°、2°、3°、5°、15°、22.5°、30°、40°、45°、60°、75°等离散值下的系列器件组合。
本发明中,激光包括脉冲激光和连续激光,波长包括但不限于DUV、UV、VIS、NIR、IR等。
本发明中,第一反射镜和第二反射镜具有光线反射功能,可以是棱镜反射镜及普通圆形反射镜等。
本发明中,激光发生单元包括产生激光的功能器件和激光聚焦的功能器件,还可以包括光学调制的功能器件。
所述光学调制的功能器件包括但不限于扩束及散斑控制光学器件。
所述激光聚焦的功能器件包括但不限于各类扫描振镜和各类固定式聚焦光学系统,如球凸透镜、组合透镜、柱透镜等。
本发明中,激光加工单元还可以配备气动接口和底部喷嘴,气体通过底部喷嘴后形成气流,用于吹走激光加工过程中产生的飞溅物,同时降低激光加工区温度。
作为优选,所述中空单元绕轴向E旋转,旋转过程中第一反射镜与第二反射镜处于相对固定的状态一起参与旋转运动,从而实现旋转激光加工,例如实现激光打孔、激光铣削、激光抛光、激光切割、激光焊接等。当进行激光打孔时,光束汇聚点的位置处于工件上方或者下方时,形成正锥度加工或负锥度加工,实现可控锥度的圆孔、圆环或者圆柱的加工。照射在工件上时光束的中心轴偏离旋转轴的距离即为加工半径R,通过控制光束入射角th3即可进行加工锥度控制,由于本发明中激光入射角th3大范围可控,因此加工锥度大范围控制。
所述中空单元的旋转方法不限,可采用电机驱动的旋转,压缩气体带动的旋转,以及传动带驱动的旋转。
所述中空单元的旋转包括连续旋转和定点旋转。定点旋转是指中空单元旋转至指定角度后停止旋转,在该角度进行激光加工任务,然后可继续旋转,该模式便于与扫描振镜进行配合。
本发明中,当第一反射镜与第二反射镜处于相对固定的状态绕轴向E旋转时,考虑到旋转动平衡,在中空单元中设置动平衡块,当旋转时第一反射镜与第二反射镜构成的整体与该动平衡块以旋转轴形成动平衡。
当F、L2,以及th3一定时,可以通过调节L1实现加工半径R的调控。该 调控方法尤其适用于高精度微孔加工,例如使用较小锥度补偿实现零锥度孔加工,光束入射角th3范围一般为1°≤th3≤10°,优选2°≤th3≤7°,最优选3°≤th3≤5°。进行高精度微孔加工时,往往需要精确控制孔径在一定公差范围内。当所述微孔的半径小于0.25毫米,尤其是小于0.1毫米时,常规的扫描振镜打孔或工作台移动打孔在精度控制方面均面临挑战,而使用该调控方法时,当L1发生较大变化,圆孔半径可以发生较小变化,通过推算可知:L1变化与圆孔半径变化之比=1/sin(th3)。因此,可以通过大范围移动L1,实现圆孔半径的小范围精确控制,如此,当L1的移动精度控制在10微米量级时,圆孔半径的控制精度可达到1微米量级,从而可以方便地通过常规精度的位移装置移动L1,实现更高精度的圆孔半径控制。
另外,当L1发生上述变化时,激光的焦点位置Z相对激光单元变化很小,加工时可以忽略不记这样的焦点漂移,便于通过调节L1实现加工半径的精确控制,而不用频繁补偿焦点位置。因此,与现有技术相比,本发明在圆孔的半径控制方面具有突出优势。
根据上述原理,当沿着轴向E平移激光发生单元和/或第一反射镜面,使距离L1发生变化,可以实现激光焦点处画圆半径的变化,当平移为一定范围的往复运动时,可以实现圆环或整圆的连续扫描加工,因此可用于可控锥度地加工微孔或微型环,或非穿透性微圆柱或微圆锥。
本发明优选扫描振镜为聚焦器件。扫描振镜使用F-theta场透镜,可以使大范围内的光束都近似平行于中心轴,偏离中心轴的光线在小范围内可以维持近似的聚焦性。在扫描振镜作用下,入射光线可以从中心轴连续偏离,如直线往复扫描或其它轨迹扫描,与旋转的中空单元结合,最终的复合激光扫描轨迹为螺旋线。当振镜扫描轨迹为圆形时,则出现公转与自转的复合叠加,如图2所示,这对实现小孔加工中更高的激光扫描线速度是很有帮助的,因为绝对线速度的提高可以帮助将激光能量更好地扩展开,从而降低激光加工的热累积效应。另一方面,可以使用较低的电机转速,实现类似传统旋转类光学调制的较高线速度,这利于提高电机系统的长期可靠性。
进一步地,本发明的激光加工装置结合扫描振镜可实现局部复杂形状的可控锥度加工。具体加工方法为:中空单元旋转时使用定点倾斜模式与扫描振镜扫描相结合,即,中空单元旋转至一定位置静止,调节光束入射角为一定值,扫描振镜进行扫描,从而具备在指定位置以指定倾角加工复杂图案的能力。
本发明仅用两个反射镜面,利用差分效应即可实现指定光束入射角的激光加工,与现有技术相比,具有如下有益效果:
(1)本发明装置结构简单,通过控制两个反射镜面倾角差值,即可控制光 束入射角,控制算法简单易行,可实现大范围倾角激光加工,尤其是可实现大角度光束入射,例如45°以上的光束入射,巧妙地解决了现有激光加工中很难产生15°以上入射倾角的技术问题;
并且,本发明可以兼顾大角度入射到第一反射镜面与第二反射镜面,以及大倾角光束入射的需求,即光束入射到第一反射镜面时与第一反射镜面的夹角较大,光束入射到第二反射镜面时与第二反射镜面的夹角较大,以及所述光束入射角较大,从而保证激光光斑不会过于偏离中心轴。
(2)结合中空单元旋转,本发明可实现激光旋转加工,例如激光打孔、激光铣削、激光抛光、激光切割、激光焊接等,并且通过调节光束入射角th3可实现锥度可控的激光旋转加工;另外,通过调节光束汇聚点位置与工件的位置关系可形成正锥度加工或负锥度加工,从而可实现可控锥度的圆孔、圆环、圆柱或者圆锥的加工。
当F、L2,以及th3一定时,通过调节L1可实现加工半径R的调控。尤其是当光束入射角较小时,通过调节L1可实现激光加工半径的精确调控,实现微孔、微型环、微圆柱或为圆锥的扫描加工,其深径比能够大于5:1,尤其是能够大于20:1,因此本发明通过简单控制方法解决了现有技术中小直径圆孔加工时圆孔半径难以精确控制的技术难题。
(3)本发明中,激光聚焦的功能器件优选扫描振镜,并且当中空单元旋转时使用定点倾斜模式与扫描振镜结合,即,中空单元旋转至一定位置静止,通过调节第一反射镜与第二反射镜差值以一定光束入射角入射,扫描振镜进行扫描,可以实现局部复杂形状的可控锥度加工。
(4)本发明的光学方案与扫描振镜明显不同的是,第一反射镜与第二反射镜主要为了实现预定倾角激光加工而旋转,一旦调整好角度和位置后,两个反射镜处于相对固定的状态一起参与旋转运动,而并非像扫描振镜那样让反射镜片进行单独的高速、高频运动。
附图说明
图1是本发明中双反射面激光装置结构示意图。
图2是本发明的激光加工装置结合扫描振镜的运动示意图。
图3是本发明实施例1中的激光加工装置结构示意图。
图4是本发明实施例3中激光加工装置结合扫描振镜加工复杂形状示意图。
图5是本发明实施例4中第一反射镜和第二反射镜做成一体化结构示意图。
激光器1、光学调制器2、聚焦器件3、中空单元5、第一反射镜6A、第二反射镜6B、位移单元7、工件8、控制单元9。
具体实施方式
下面结合实施例与附图对本发明作进一步详细描述,需要指出的是,以下所 述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
实施例1:
激光加工装置如图3所示,包括激光发生单元与中空单元5,激光发生单元包括激光器1、光学调制器2以及聚焦器件3。激光器1发出的光束通过光学调制器2耦合进聚焦单元3,经聚焦后发出焦距为F的光束,该光束的中心轴方向为轴向E,该光束经过中空单元后入射在工件8表面。
中空单元5设置第一反射镜6A与第二反射镜6B,激光发生单元发出的光束照射在第一反射镜面,经第一反射镜面反射后照射在第二反射镜面,经第二反射镜面反射后照射在工件8表面。
如图2所示,轴向E与第一反射镜面的夹角th1为第一反射镜面倾角,即,轴向E逆时针旋转至第一次与第一反射镜面重合时所旋转的角度为th1。
轴向E与第二反射镜面的夹角th2为第二反射镜面倾角,即,轴向E逆时针旋转至第一次与第二反射镜面重合时所旋转的角度为th2。
光束照射在工件8表面时光束的中心轴与轴向E的夹角th3为光束入射角,照射在第二反射镜面的光束与第二反射镜面的夹角为th4。
根据几何计算,th4=2×th1-th2,th3=2×(th1-th2),即,光束入射角等于第一反射镜面倾角与第二反射镜面倾角的差分值的两倍。因此,通过调节第一反射镜面倾角和/或第二反射镜面倾角能够调控光束入射角,可实现指定激光加工倾角。
光束自激光发生单元发出至第一反射镜面的反射点中心的距离为L1,光束在第一反射镜面与第二反射镜面之间传播的距离为L2,光束自第二反射镜面至汇聚点的距离为L3,并且F>L1+L2,F=L1+L2+L3。
本实施例中,中空单元与位移单元7连接,可在位移单元进行轴向E方向的位移,从而调节距离L1。
本实施例中,整个装置通过控制单元9进行调控。
光束自第二反射镜面反射后汇聚,当汇聚点的位置处于工件上方时为正锥度加工,当汇聚点的位置处于工件下方时为负锥度加工。
本实施例中,中空单元绕轴向E旋转,旋转过程中第一反射镜与第二反射镜处于相对固定的状态一起参与旋转运动,从而实现旋转激光加工,例如实现激光打孔等。在这种情况下,当光束汇聚点的位置处于工件上方时形成正锥度加工,处于工件下方时形成负锥度加工。
通过控制光束入射角th3可进行加工锥度控制,th3与第一反射镜面倾角th1与第二反射镜面倾角th2的差分有关,因此通过控制第一反射镜面倾角th1与第二反射镜面倾角th2的差值,即可控制光束入射角th3,例如表1显示了当焦距F=300毫米时该激光加工装置的各参数,例如:
当第一反射镜面倾角为45°时,为了实现光束入射角度为1°的反锥加工, 使用差分,调节第二反射镜面倾角为44.5°即可;
当第一反射镜面倾角为45°时,为了实现入射角度为60°的反锥度加工,使用差分,调节第二反射镜面倾角为15°即可。
表1:焦距为300毫米,光入射角度为1-60度时的光学系统
Figure PCTCN2021098782-appb-000001
当F、L2,以及th3一定时,可以通过调节L1实现加工半径R的调控。尤其是当高精度微孔加工时,选择较小th3,通过调节L1可实现加工半径R的高精度调控。如表2所示,以光束入射角度为5°的反锥度补偿打孔为例,设定光束在第一反射镜面与第二反射镜面之间传播的距离L2为18mm,当L1值在75.473-72.605mm之间变化时,负锥半径R3在0-0.25mm之间变化,例如,当L1值为75.473mm时反锥打孔半径为0mm;当L1值为75.358mm时反锥打孔半径为0.01mm;当L1值为72.605mm时反锥打孔半径为0.25mm,具体请见表2。当末端激光加工的圆孔半径从0变化为0.25mm时,L1变化与圆孔半径变化之比为1/sin(2×th1-2×th2),即L1的变化为0.25mm的11倍左右。也就是说,将L1的移动精度控制在10微米量级时,圆孔半径的控制精度可达到1微米量级,即可以通过10微米精度电动或手动位移台,实现超高的圆孔半径控制精度。
另外,上述L1变化时,激光的焦点位置Z只变化了0.011毫米,加工时可以忽略不记这样的焦点漂移。
表2:焦距为300毫米,光入射角度为1-60度时的光学系统
Figure PCTCN2021098782-appb-000002
因此,当沿着轴向E平移激光发生单元和/或第一反射镜面,使激光发生单元至第一反射镜面的反射点中心的距离L1发生变化,可以实现激光焦点处画圆半径的变化,当平移为一定范围的往复运动时,可以实现圆环或整个圆的可控锥度连续扫描,用于加工微孔或微型环,或非穿透性微小圆柱/圆锥。
实施例2:
本实施例中,激光加工装置结构与实施例1基本相同,所不同的是:聚焦器件是一个长焦距透镜,经聚焦后光束焦距为1000mm;中空旋转头装在一个电动平移台上,中空单元与位移单元连接,位移单元为电动平移台,中空单元可在电动平移台进行轴向E方向的位移,位移行程为+/-200毫米,从而调节L1。
表3显示了当焦距F=1000毫米时该激光加工装置的各参数,例如:
当第一反射镜面倾角为45°时,为了实现入射角度为3°的反锥加工,使用差分,调节第二反射镜面倾角为43.5°即可;
当第一反射镜面倾角为45°时,为了实现入射角度为30°的反锥度加工,使用差分,调节第二反射镜面倾角为30°即可。
表3:焦距为1000毫米,光入射角度为1-60度时的光学系统
Figure PCTCN2021098782-appb-000003
当F、L2,以及th3一定时,可以通过调节L1实现加工半径R的调控。尤其是当高精度微孔加工时,选择较小th3,通过调节L1可实现加工半径R的高精度调控。如表4所示,以入射角度为3°的反锥打孔为例,设定光束在第一反射镜面与第二反射镜面之间传播的距离L2为40mm,当L1值在195.707变化到190.930mm之间变化时,负锥半径R3在0-0.25mm之间变化,例如,当L1值为195.707mm时反锥打孔半径为0mm;当L1值为195.516mm时反锥打孔半径为0.01mm;当L1值为190.930mm时反锥打孔半径为0.25mm……即,当末端激光加工的圆孔半径从0变化为0.25mm时,L1轴输入运动为0.25mm的19倍左右。也就是说,将L1的移动精度控制在10微米量级时,圆孔半径的控制精度可达到1微米量级,即实现超高的圆孔半径控制精度。
表4:焦距F=1000mm时该激光加工装置的各参数:
Figure PCTCN2021098782-appb-000004
另外,上述L1变化时,激光总体的焦点位置Z只变化了0.007毫米,加工时可以忽略不记这样的焦点漂移。
实际加工时,根据表中所示算法,驱动平移台,带动旋转头移动,以实现预定倾斜角度预定直径的激光加工。需要变化锥度时,将主要通过调整第二镜面的角度(th2)和偏离位置(R20)来获得合适的L1零半径位置,然后再变化L1,实现该倾角下预定直径的扫描。
实施例3:
本实施例中,激光加工装置结构与实施例2基本相同,所不同的是:聚焦器件是扫描振镜。当中空单元旋转时使用定点倾斜模式,即,中空单元旋转至一定位置,通过调节第一反射镜与第二反射镜差值以一定光束入射角入射,结合扫描振镜,可以实现局部复杂形状的可控锥度加工。
例如,如图4所示,中空单元分别旋转至系统θ=0°、90°、180°、270°时静止定位,调整光束入射角th3为所需加工倾角,振镜系统进行扫描,从而得到图4所示的在θ=0°、90°、180°、270°处具有一定锥度的形状。
实施例4:
本实施例中,激光加工装置结构与实施例2基本相同。
本实施例中,第一反射镜和第二反射镜做成一体化结构,可方便地设置在中空单元,不需要过多的调节。例如,在F、L1、th1一定时、通过调节L2以及th2得到th3,如图5所示,是th3为15°、45°及60°的器件。
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充或类似方式替代等,均应包含在本发明的保护范围之内。

Claims (38)

  1. 一种光束入射角可控的激光加工装置,包括激光发生单元,其特征是:还包括中空单元;
    激光发生单元发出焦距为F的光束,该光束的中心轴方向为轴向E,该光束经过中空单元后入射在工件表面;
    所述中空单元设置第一反射镜与第二反射镜,激光发生单元发出的光束照射在第一反射镜面,经第一反射镜面反射后照射在第二反射镜面,经第二反射镜面反射后照射在工件表面;
    轴向E与第一反射镜面的夹角th1为第一反射镜面倾角,即,轴向E逆时针旋转至第一次与第一反射镜面重合时所旋转的角度为th1;
    轴向E与第二反射镜面的夹角th2为第二反射镜面倾角,即,轴向E逆时针旋转至第一次与第二反射镜面重合时所旋转的角度为th2;
    光束照射在工件表面时光束的中心轴与轴向E的夹角th3为光束入射角,照射在第二反射镜面的光束与第二反射镜面的夹角为th4;
    所述光束自激光发生单元发出至第一反射镜面的反射点中心的距离为L1,光束在第一反射镜面与第二反射镜面之间传播的距离为L2,光束自第二反射镜面至汇聚点的距离为L3,并且F>L1+L2,F=L1+L2+L3;
    通过调节第一反射镜面倾角和/或第二反射镜面倾角调控光束至工件的入射角。
  2. 如权利要求1所述的激光加工装置,其特征是:光束入射角大于0°。
  3. 如权利要求2所述的激光加工装置,其特征是:光束入射角大于5°。
  4. 如权利要求3所述的激光加工装置,其特征是:光束入射角大于15°。
  5. 如权利要求4所述的激光加工装置,其特征是:光束入射角大于30°。
  6. 如权利要求5所述的激光加工装置,其特征是:光束入射角大于45°。
  7. 如权利要求6所述的激光加工装置,其特征是:光束入射角大于60°。
  8. 如权利要求1所述的激光加工装置,其特征是:15°≤th1≤60°、30°≤th2≤70°。
  9. 如权利要求8所述的激光加工装置,其特征是:30°≤th4≤80°。
  10. 如权利要求1所述的激光加工装置,其特征是:第一反射镜面倾角大于或者等于15°,通过调节第二反射镜面倾角得到所需激光加工入射角。
  11. 如权利要求1所述的激光加工装置,其特征是:第一反射镜面倾角大于或者等于45°,通过调节第二反射镜面倾角得到所需激光加工入射角。
  12. 如权利要求1所述的激光加工装置,其特征是:所述中空单元与激光发生单元之间的距离可调,用于调节L1。
  13. 如权利要求1所述的激光加工装置,其特征是:第一反射镜与第二反射镜之间间距可调。
  14. 如权利要求1所述的激光加工装置,其特征是:工件与激光发生单元之间的距离可调。
  15. 如权利要求1所述的激光加工装置,其特征是:所述中空单元与位移单元连接,可在位移单元进行位移。
  16. 如权利要求1所述的激光加工装置,其特征是:所述中空单元还包括位移传感器,用于探测L1、L2、L3,以及激光发生单元与工件之间的距离中的一种或者几种距离。
  17. 如权利要求1所述的激光加工装置,其特征是:所述中空单元绕轴向E旋转,旋转过程中第一反射镜与第二反射镜处于相对固定的状态一起参与旋转运动。
  18. 如权利要求17所述的激光加工装置,其特征是:所述激光加工包括激光打孔、激光铣削、激光抛光、激光切割、激光焊接中的一种。
  19. 如权利要求1所述的激光加工装置,其特征是:第一反射镜和第二反射镜为一体化结构,形成反射镜结构单元。
  20. 如权利要求17所述的激光加工装置,其特征是:所述中空单元的旋转采用电机驱动的旋转、压缩气体驱动的旋转,或者传动带驱动的旋转。
  21. 如权利要求17所述的激光加工装置,其特征是:在中空单元中设置动平衡块,当旋转时第一反射镜与第二反射镜构成的整体与该动平衡块以旋转轴形成动平衡。
  22. 如权利要求1所述的激光加工装置,其特征是:激光包括脉冲激光和连续激光。
  23. 如权利要求1所述的激光加工装置,其特征是:激光波长包括DUV、UV、VIS、NIR、IR中的一种。
  24. 如权利要求1所述的激光加工装置,其特征是:所述第一反射镜是棱镜反射镜或者普通圆形反射镜;
    所述第二反射镜是棱镜反射镜或者普通圆形反射镜。
  25. 如权利要求1所述的激光加工装置,其特征是:激光发生单元包括产生激光的功能器件和激光聚焦的功能器件。
  26. 如权利要求25所述的激光加工装置,其特征是:激光发生单元还包括光学调制的功能器件。
  27. 如权利要求25所述的激光加工装置,其特征是:所述激光聚焦的功能器件包括扫描振镜和固定式聚焦光学系统。
  28. 如权利要求27所述的激光加工装置,其特征是:固定式聚焦光学系统包括球凸透镜、组合透镜、柱透镜中的一种或者几种。
  29. 如权利要求26所述的激光加工装置,其特征是:所述光学调制的功能器件包括扩束控制光学器件及散斑控制光学器件。
  30. 如权利要求26所述的激光加工装置,其特征是:激光加工单元设置气动接口和底部喷嘴,气体通过底部喷嘴后形成气流。
  31. 一种可控锥度的圆孔、圆环或者圆柱的激光加工方法,其特征是:利用权利要求17所述的激光加工装置进行激光打孔,光束汇聚点Z的位置处于工件上方时形成正锥度加工,光束汇聚点Z的位置处于工件下方时形成负锥度加工,实现可控锥度的圆孔、圆环或者圆柱的加工;
    照射在工件上时光束的中心轴偏离旋转轴的距离为加工半径R;
    通过控制光束入射角th3控制加工锥度。
  32. 一种加工半径可调控的激光加工方法,其特征是:利用权利要求17所述的激光加工装置进行激光打孔,光束汇聚点Z的位置处于工件上方时形成正锥度加工,光束汇聚点Z的位置处于工件下方时形成负锥度加工;
    照射在工件上时光束的中心轴偏离旋转轴的距离为加工半径R;
    当F、L2,以及th3一定时,通过调节L1调控加工半径R。
  33. 一种高精度微孔的激光加工方法,其特征是:利用权利要求17所述的激光加工装置进行激光打孔,光束汇聚点Z的位置处于工件上方时形成正锥度加工,光束汇聚点Z的位置处于工件下方时形成负锥度加工;
    照射在工件上时光束的中心轴偏离旋转轴的距离为加工半径R;
    当F、L2,以及th3一定时,通过调节L1调控加工半径R;
    1°≤th3≤10°,所述微孔的半径小于0.25毫米。
  34. 如权利要求33所述的激光加工方法,其特征是:2°≤th3≤7°。
  35. 如权利要求34所述的激光加工方法,其特征是:3°≤th3≤5°。
  36. 如权利要求33所述的激光加工方法,其特征是:所述微孔的半径小于0.1毫米。
  37. 如权利要求33所述的激光加工方法,其特征是:L1的移动精度控制在10微米量级时,圆孔半径的控制精度达到1微米量级。
  38. 一种复杂形状的可控锥度加工方法,其特征是:利用权利要求17所述的激光加工装置进行激光加工;
    中空单元旋转至一定位置静止,调整光束入射角为一定值,扫描振镜进行扫描。
PCT/CN2021/098782 2020-07-30 2021-06-08 一种光束入射角可控的激光加工装置及激光加工方法 WO2022022067A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010754864.8 2020-07-30
CN202010754864.8A CN111872548A (zh) 2020-07-30 2020-07-30 一种光束入射角可控的激光加工装置及激光加工方法

Publications (1)

Publication Number Publication Date
WO2022022067A1 true WO2022022067A1 (zh) 2022-02-03

Family

ID=73204297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098782 WO2022022067A1 (zh) 2020-07-30 2021-06-08 一种光束入射角可控的激光加工装置及激光加工方法

Country Status (2)

Country Link
CN (1) CN111872548A (zh)
WO (1) WO2022022067A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114749811A (zh) * 2022-03-29 2022-07-15 华中科技大学 一种基于激光双光束旋切的碳纤维复合材料孔加工系统及方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111872548A (zh) * 2020-07-30 2020-11-03 中国科学院宁波材料技术与工程研究所 一种光束入射角可控的激光加工装置及激光加工方法
CN113253471B (zh) * 2021-07-12 2022-04-29 清华大学 旋转式三维光激发装置
CN114393301B (zh) * 2022-01-19 2024-01-26 湘潭大学 一种基于双mems制测仪的实时偏转激光焊接方法
CN114769875A (zh) * 2022-04-25 2022-07-22 中国航空制造技术研究院 一种激光旋转扫描同轴熔丝熔粉装置及沉积方法
CN114833472A (zh) * 2022-05-26 2022-08-02 苏州思萃声光微纳技术研究所有限公司 用于航空发动机火焰筒的无锥度冷却气膜孔激光加工方法
CN114905168B (zh) * 2022-05-31 2023-05-26 中国科学院西安光学精密机械研究所 一种大深径比微孔的加工系统及加工方法
CN116586789A (zh) * 2023-07-13 2023-08-15 盛合晶微半导体(江阴)有限公司 激光开孔方法及半导体器件的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822974A (en) * 1988-02-18 1989-04-18 United Technologies Corporation Laser hold drilling system with lens and two wedge prisms including axial displacement of at least one prism
US6362454B1 (en) * 1999-10-01 2002-03-26 Matsushita Electric Industrial Co., Ltd. Method for drilling circular holes with a laser beam
US6444948B1 (en) * 1997-10-15 2002-09-03 Daimlerchrysler Ag Fine and micro-machining process for workpieces by means of laser beams
JP2003117008A (ja) * 2001-10-12 2003-04-22 Ya Man Ltd レーザを用いたトリートメン卜装置及びレーザを用いたトリートメン卜方法
CN109702330A (zh) * 2019-02-01 2019-05-03 西北核技术研究所 一种激光入射角调节装置
CN111872548A (zh) * 2020-07-30 2020-11-03 中国科学院宁波材料技术与工程研究所 一种光束入射角可控的激光加工装置及激光加工方法
CN213318327U (zh) * 2020-07-30 2021-06-01 中国科学院宁波材料技术与工程研究所 一种光束入射角可控的激光加工装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822974A (en) * 1988-02-18 1989-04-18 United Technologies Corporation Laser hold drilling system with lens and two wedge prisms including axial displacement of at least one prism
US6444948B1 (en) * 1997-10-15 2002-09-03 Daimlerchrysler Ag Fine and micro-machining process for workpieces by means of laser beams
US6362454B1 (en) * 1999-10-01 2002-03-26 Matsushita Electric Industrial Co., Ltd. Method for drilling circular holes with a laser beam
JP2003117008A (ja) * 2001-10-12 2003-04-22 Ya Man Ltd レーザを用いたトリートメン卜装置及びレーザを用いたトリートメン卜方法
CN109702330A (zh) * 2019-02-01 2019-05-03 西北核技术研究所 一种激光入射角调节装置
CN111872548A (zh) * 2020-07-30 2020-11-03 中国科学院宁波材料技术与工程研究所 一种光束入射角可控的激光加工装置及激光加工方法
CN213318327U (zh) * 2020-07-30 2021-06-01 中国科学院宁波材料技术与工程研究所 一种光束入射角可控的激光加工装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114749811A (zh) * 2022-03-29 2022-07-15 华中科技大学 一种基于激光双光束旋切的碳纤维复合材料孔加工系统及方法
CN114749811B (zh) * 2022-03-29 2023-06-09 华中科技大学 一种基于激光双光束旋切的碳纤维复合材料孔加工系统及方法

Also Published As

Publication number Publication date
CN111872548A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2022022067A1 (zh) 一种光束入射角可控的激光加工装置及激光加工方法
TWI551384B (zh) Processing equipment and processing methods
US9757816B2 (en) Machining device and machining method
JP4873191B2 (ja) レーザービームを用いた材料の穿孔および除去装置
CN106029290B (zh) 激光加工系统
JP2001519244A (ja) レーザー光線を用いてワークを精密加工及びマイクロ加工する方法及びこの方法を実施するための装置
KR20150126603A (ko) 테이퍼 제어를 위한 빔 각도 및 작업물 이동의 공조
JP2002066780A (ja) レーザ加工装置
CN213318327U (zh) 一种光束入射角可控的激光加工装置
CN112008239A (zh) 一种螺旋扫描激光加工装置及加工方法
CN105033470B (zh) 一种锥度可控的高质量钻孔加工设备及方法
US20190118305A1 (en) Laser 3d processing system
CN101380696A (zh) 一种薄壁管激光微切割装置及方法
TWI645928B (zh) 雷射加工裝置以及使用該雷射加工裝置的雷射處理方法
CN213998253U (zh) 一种飞秒激光锥孔加工系统
CN204735850U (zh) 一种锥度可控的高质量钻孔加工设备
KR102375235B1 (ko) 레이저 가공 시스템 및 방법
US20110011839A1 (en) Method and apparatus for laser micromachining a conical surface
CN104690423A (zh) 一种可实现零锥度和倒锥钻孔的加工装置及方法
CN113020820B (zh) 一种分段式回转扫描微孔阵列加工方法
CN113458588B (zh) 一种小口径深孔内壁激光加工系统
JP2021142546A (ja) 光学ユニット、レーザー加工装置及びレーザー加工方法
TWI759091B (zh) 焦點距離調整裝置以及雷射加工裝置
JP4376221B2 (ja) スキャン光学ユニット及びその制御方法並びにレーザ加工装置
JP6497894B2 (ja) 微細周期構造の形成方法および形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21849874

Country of ref document: EP

Kind code of ref document: A1