WO2022142296A1 - 用于透明脆性材料的斜向切割补偿方法及系统 - Google Patents

用于透明脆性材料的斜向切割补偿方法及系统 Download PDF

Info

Publication number
WO2022142296A1
WO2022142296A1 PCT/CN2021/108527 CN2021108527W WO2022142296A1 WO 2022142296 A1 WO2022142296 A1 WO 2022142296A1 CN 2021108527 W CN2021108527 W CN 2021108527W WO 2022142296 A1 WO2022142296 A1 WO 2022142296A1
Authority
WO
WIPO (PCT)
Prior art keywords
brittle material
transparent
oblique cutting
laser
transparent brittle
Prior art date
Application number
PCT/CN2021/108527
Other languages
English (en)
French (fr)
Inventor
王雪辉
成迎虹
温彬
李曾卓
Original Assignee
武汉华工激光工程有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华工激光工程有限责任公司 filed Critical 武汉华工激光工程有限责任公司
Publication of WO2022142296A1 publication Critical patent/WO2022142296A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention relates to the field of material processing, in particular to a method and system for compensating for oblique cutting of transparent and brittle materials.
  • Laser cutting If a general laser cutting head is used for cutting, the laser cutting head needs to be perpendicular to the glass 100. As shown in Figure 1a, the laser beam L1 longitudinally forms a focal depth section S1 inside the glass 100 to form a vertical cutting surface , if the cutting surface needs to be an inclined surface, as shown in Figure 1b, the glass 100 needs to be inclined, and the laser beam L1 is refracted at this time, and in the formed focal depth segment S1, the laser energy cannot be concentrated inside the glass 100, resulting in oblique cutting poor effect;
  • the purpose of the present invention is to provide a method and system for oblique cutting of transparent and brittle materials, which compensate the aberration caused by the laser entering the inclined transparent and brittle material by adding an optical path compensation unit, so that the laser focused in the transparent and brittle material is focused.
  • the energy can be effectively concentrated to ensure that the focal depth segment formed in the transparent brittle material is sufficient to obliquely cut the oblique transparent brittle material along the oblique cutting trajectory.
  • an oblique cut compensation method for transparent brittle materials comprising the steps of:
  • a processing jig is arranged, and the processing jig has a jig inclined surface, and the transparent brittle material is inclined, so that the lower surface of the transparent brittle material is attached to the jig inclined surface;
  • the optical path compensation unit is arranged, and there is a gap between it and the upper surface of the inclined transparent and brittle material, which is used to compensate the aberration caused by the laser beam entering the inclined transparent and brittle material, so that the laser energy focused in the transparent and brittle material is sufficient Oblique cutting of inclined transparent brittle materials along the oblique cutting track;
  • the laser beam passes through the optical path compensation unit and the air refraction in the space between the optical path compensation unit and the transparent brittle material in turn and focuses on the inside of the inclined transparent and brittle material, and completes the oblique cutting of the inclined transparent and brittle material along the oblique cutting track.
  • the transparent brittle material has a lower surface and an upper surface that are parallel to each other.
  • the transparent and brittle material includes glass or sapphire.
  • the angle between the inclined plane of the fixture and the horizontal plane is ⁇
  • the angle between the oblique cutting track and the upper surface of the inclined transparent brittle material is ⁇
  • ⁇ and ⁇ are complementary angles to each other.
  • the refractive index of the optical path compensation unit is the same as that of the transparent brittle material.
  • the laser beam passes through the optical path compensation unit and the air refraction in the space between the optical path compensation unit and the transparent brittle material in turn and focuses on the inside of the inclined transparent and brittle material, and completes the cutting of the inclined transparent and brittle material along the oblique cutting track.
  • the process of "oblique cutting” includes the following steps:
  • a laser beam is generated and output, and the laser beam is emitted from the laser cutting head after beam expansion, and then passes through the optical path compensation unit, the optical path compensation unit, and the air in the gap between the transparent brittle material and is refracted to the inside of the inclined transparent brittle material.
  • the inclined transparent brittle material is controlled to move along the direction perpendicular to the plane where the oblique cutting track is located, so as to form a surface cutting track on the upper surface of the inclined transparent brittle material, and finally along the oblique cutting track
  • the oblique cutting of the inclined transparent brittle material is completed towards the cutting track.
  • the optical path compensation unit is a triangular prism, which has a first slope parallel to the upper surface of the inclined transparent brittle material, a second slope parallel to the horizontal plane, and a third slope connected to the first slope and the second slope respectively. .
  • a gap is formed between the first inclined surface and the upper surface of the inclined transparent brittle material, and the width of the gap is 1-2 mm.
  • an oblique cutting compensation system for realizing the above-mentioned oblique cutting compensation method, characterized in that it includes:
  • a processing jig which has a jig slope, and the included angle between the jig slope and the horizontal plane is ⁇ , and the lower surface of the inclined transparent brittle material is attached to the jig slope;
  • a laser for generating and outputting a laser beam
  • Beam expander which is used to adjust the laser spot size and divergence angle
  • a laser cutting head which is used for beam shaping the laser beam output by the beam expander
  • the optical path compensation unit has a gap between it and the upper surface of the inclined transparent and brittle material, which is used to compensate the aberration caused when the laser beam emitted by the laser cutting head enters the inclined transparent and brittle material, so as to focus on the transparent and brittle material
  • the laser energy inside is sufficient to obliquely cut the oblique transparent brittle material along the oblique cutting trajectory;
  • the moving platform is used to drive the processing jig and the inclined transparent brittle material to move to a predetermined position synchronously along the Z direction before the laser emits light, and to drive the processing jig and the inclined transparent brittle material synchronously along the Z direction after the laser emits light. Move perpendicular to the direction of the plane where the oblique cutting track is located;
  • control system which is connected with the laser and the mobile platform, and is used for controlling the laser to emit light; and controlling the movement of the mobile platform.
  • the laser cutting head is a Bessel cutting head.
  • the invention has reasonable structure design and simple operation.
  • an optical path compensation unit By adding an optical path compensation unit, and setting it with the processing jig and the inclined transparent brittle material according to a unique positional layout, it compensates for the laser beam entering the inclined transparent and brittle material.
  • the resulting aberration makes the laser energy focused in the transparent and brittle material can be effectively concentrated, ensuring that the focal depth segment formed in the transparent and brittle material is sufficient to obliquely cut the inclined transparent and brittle material along the oblique cutting track.
  • 1a is a schematic diagram of vertical cutting of a transparent brittle material by a laser beam in the prior art
  • Fig. 1b is a schematic diagram of oblique cutting of oblique transparent brittle material by laser beam in the prior art
  • FIG. 2 is a schematic diagram of the positional relationship of the processing jig, the transparent brittle material and the optical path compensation unit in the present invention
  • Fig. 3 is the schematic diagram that the laser beam carries out the oblique cutting to the inclined transparent brittle material in the present invention
  • Fig. 4 is the optical path diagram of the laser beam refracted into the transparent brittle material through the optical path compensation unit in the present invention
  • Fig. 5 is the schematic diagram of the cutting track formed when the laser beam carries out oblique cutting to the inclined transparent brittle material in the present invention
  • FIG. 6 is a schematic structural diagram of the oblique cutting compensation system in the present invention.
  • this embodiment provides a method for compensating for oblique cutting of transparent brittle materials, which includes the following steps:
  • the transparent brittle material 2 includes glass or sapphire, which has a lower surface 201 and an upper surface 202 that are parallel to each other;
  • the optical path compensation unit 3 is arranged, which is located above the oblique cutting track P expected to be formed on the inclined transparent brittle material 2, and there is a gap 203 between it and the upper surface 202 of the inclined transparent brittle material 2, for compensating the laser The aberration caused when the beam enters the inclined transparent and brittle material 2, so that the laser energy focused in the transparent and brittle material 2 is sufficient to obliquely cut the inclined transparent and brittle material 2 along the oblique cutting track P; wherein, the said The angle between the oblique cutting track P and the upper surface 202 of the inclined transparent brittle material 2 is ⁇ .
  • the oblique cutting track P is perpendicular to the horizontal plane S and the laser cutting head 4, and ⁇ and ⁇ are complementary to each other. horn;
  • the refractive index of the optical path compensation unit 3 is the same as that of the transparent brittle material 2
  • the optical path compensation unit 3 is preferably a triangular prism, which has a first inclined surface 301 parallel to the upper surface 202 of the inclined transparent brittle material 2, A second slope 302 parallel to the horizontal plane S and a third slope 303 connected to the first slope 301 and the second slope 302 respectively; wherein, the first slope 301 is formed between the upper surface 202 of the inclined transparent brittle material 2 A gap 203, and the width of the gap 203 is 1-2mm, so as to ensure the cutting effect on the premise of avoiding the interference of the position of the components;
  • the laser cutting head 4 can be a Bessel cutting head;
  • the laser beam L is emitted by the beam expander and the laser cutting head 4, and then enters the optical path compensation unit 3, and is then refracted by the first inclined surface 301 to the optical path
  • the upper surface 202 of the inclined transparent and brittle material 2 is refracted and focused on the inside of the inclined transparent and brittle material 2, so as to realize the correction of the inclined transparent and brittle material. 2 oblique cuts;
  • the step S2 includes:
  • the track P is formed on the XZ plane, and the inclined transparent brittle material 2 is controlled to move along the Y direction to form a surface cutting track P' on the upper surface of the inclined transparent brittle material 2, and finally complete the oblique cutting track P along the oblique cutting track P. Oblique cutting of transparent brittle material 2.
  • an optical path compensation unit 3 is added, and the processing jig 1 and the inclined transparent brittle material 2 are arranged in a unique positional layout to compensate
  • the aberration caused by the laser entering the oblique transparent and brittle material 2 enables the laser energy focused in the transparent and brittle material 2 to be effectively concentrated, so that the focal depth segment S' formed in the transparent and brittle material 2 is sufficient along the oblique direction.
  • the cutting path P performs an oblique cut on the inclined transparent brittle material 2 .
  • This embodiment provides an oblique cutting compensation system for implementing the oblique cutting compensation method described in Embodiment 1, which is suitable for the cutting of transparent brittle materials, as shown in Figures 2-3 and 6, including:
  • the processing jig 1 has a jig slope 101, and the included angle between the jig slope 101 and the horizontal plane S is ⁇ ; at the same time, the lower surface 201 of the inclined transparent brittle material 2 is attached to the jig slope 101;
  • a laser 6 for generating and outputting a laser beam L
  • Beam expander 5 which is used to adjust the laser spot size and divergence angle
  • the laser cutting head 4 is used for beam shaping the laser beam L output by the beam expander 5, and shaping it into the beam distribution form required for cutting; preferably, the laser cutting head 4 is a Bessel cutting head , which can shape the laser beam L output by the beam expander 5 into a Bessel beam with a focal depth of 0.1-6mm;
  • the optical path compensation unit 3 which is located above the oblique cutting track P expected to be formed on the inclined transparent brittle material 2, and there is a gap 203 between it and the upper surface 202 of the inclined transparent brittle material 2, the optical path compensation unit 3 It is used to compensate the aberration caused when the laser beam L emitted by the laser cutting head 4 enters the inclined transparent and brittle material 2, so that the laser energy focused in the transparent and brittle material 2 is sufficient to be transparent to the inclined transparent material Brittle material 2 is cut obliquely;
  • the moving platform 8 is used to drive the processing fixture 1 and the inclined transparent brittle material 2 to move to a predetermined position synchronously along the Z direction before the laser 1 emits light, and drive the processing fixture 1 to tilt after the laser 1 emits light.
  • the transparent brittle material 2 moves synchronously along the direction perpendicular to the plane where the oblique cutting track P is located;
  • a control system 7 which connects the laser 6 and the mobile platform 8, which is used to control the laser 6 to emit light; and controls the mobile platform 8, so that the mobile platform 8 drives the processing fixture 1 before the laser 1 emits light, and the inclined transparent
  • the brittle material 2 moves to a predetermined position synchronously along the Z direction, and after the laser 1 emits light, the processing jig 1 and the inclined transparent brittle material 2 are moved synchronously in a direction perpendicular to the plane of the oblique cutting track P.
  • the cutting compensation device of the present invention has a reasonable structure design and simple operation, and is suitable for oblique cutting of inclined transparent and brittle materials.
  • the transparent and brittle materials are set according to the unique position layout, so as to compensate the aberration caused by the laser entering the inclined transparent and brittle materials, so that the laser energy focused in the transparent and brittle materials can be effectively concentrated to ensure that the transparent and brittle materials
  • the focal depth segment formed within is sufficient to obliquely cut the oblique transparent brittle material along the oblique cutting trajectory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

一种用于透明脆性材料的斜向切割补偿方法,其包括如下步骤:设置加工治具(1),并倾斜透明脆性材料(2),使透明脆性材料的下表面(201)与治具斜面(101)贴合;设置光路补偿单元(3),其用于补偿激光光束射入倾斜的透明脆性材料时带来的像差;激光光束依次经过光路补偿单元以及光路补偿单元、透明脆性材料之间的空隙(203)内的空气折射聚焦于倾斜的透明脆性材料内部,并沿斜向切割轨迹(P)完成对倾斜的透明脆性材料的斜向切割。以及一种用于透明脆性材料的斜向切割补偿系统。该方法及系统通过增加光路补偿单元补偿激光射入倾斜的透明脆性材料时带来的像差,使得聚焦于透明脆性材料内的激光能量能够被有效集中,保证在透明脆性材料内形成的焦深段足以沿斜向切割轨迹对倾斜的透明脆性材料进行斜向切割。

Description

用于透明脆性材料的斜向切割补偿方法及系统 技术领域
本发明涉及材料加工领域,尤其涉及一种透透明脆性材料的斜向切割补偿方法及系统。
背景技术
目前对于透明脆性材料,如玻璃的切割加工,有以下几种切割方法:
1、机械方法:用刀具等工具进行机械切割,其切割效果极差,无法适用与高要求的精度切割;
2、激光切割:若采用一般激光切割头进行切割,则激光切割头需要垂直于玻璃100,如图1a所示,激光光束L1在玻璃100内部纵向形成焦深段S1,以形成垂直的切割面,若需要切割面为斜面,则如图1b所示,需要将玻璃100倾斜,此时激光光束L1发生折射,形成的焦深段S1内,激光能量不能在玻璃100内部集中,导致斜向切割效果差;
若采用振镜扫描切割,则需要通过激光扫描的方法沿玻璃的三维轮廓、在各个方向上逐步进行扫描式切割,其操作复杂,切割效率低。
发明内容
本发明的目的是提供一种透明脆性材料的斜向切割方法及系统,其通过增加光路补偿单元补偿激光射入倾斜的透明脆性材料时带来的像差,使得聚焦于透明脆性材料内的激光能量能够被有效集中,保证在透明脆性材料内形成的焦深段足以沿斜向切割轨迹对倾斜的透明脆性材料进行斜向切割。
为了实现上述目的,本发明采用了如下技术方案:
一方面,提供了一种用于透明脆性材料的斜向切割补偿方法,其包括如下步骤:
设置加工治具,且所述加工治具具有治具斜面,并倾斜透明脆性材料,使所述透明脆性材料的下表面与治具斜面贴合;
设置光路补偿单元,其与倾斜的透明脆性材料的上表面之间存在空隙,用于补偿激光光束射入倾斜的透明脆性材料时带来的像差,使得聚焦于透明脆性材料内的激光能量足以沿斜向切割轨迹对倾斜的透明脆性材料进行斜向切割;
激光光束依次经过光路补偿单元以及光路补偿单元、透明脆性材料之间的空 隙内的空气折射聚焦于倾斜的透明脆性材料内部,并沿斜向切割轨迹完成对倾斜的透明脆性材料的斜向切割。
优选的,所述透明脆性材料具有相互平行的下表面和上表面。
优选的,所述透明脆性材料包括玻璃或蓝宝石。
优选的,所述治具斜面与水平面的夹角为α,所述斜向切割轨迹与倾斜的透明脆性材料的上表面之间的夹角为β,且α与β互为余角。
优选的,所述光路补偿单元的折射率与透明脆性材料相同。
优选的,“激光光束依次经过光路补偿单元以及光路补偿单元、透明脆性材料之间的空隙内的空气折射聚焦于倾斜的透明脆性材料内部,并沿斜向切割轨迹完成对倾斜的透明脆性材料的斜向切割”的过程包括如下步骤:
控制加工治具、倾斜的透明脆性材料同步沿Z向移动至预定位置;
产生并输出激光光束,且所述激光光束经过扩束后从激光切割头射出,再依次经过光路补偿单元以及光路补偿单元、透明脆性材料之间的空隙内的空气折射到倾斜的透明脆性材料内部,且聚焦在斜向切割轨迹上;同时控制倾斜的透明脆性材料沿垂直于斜向切割轨迹所在平面的方向移动,以在倾斜的透明脆性材料的上表面上形成表面切割轨迹,并最终沿斜向切割轨迹完成对倾斜的透明脆性材料的斜向切割。
优选的,所述光路补偿单元为三棱镜,其具有与倾斜的透明脆性材料的上表面平行的第一斜面、与水平面平行的第二斜面以及分别与第一斜面、第二斜面连接的第三斜面。
优选的,所述第一斜面与倾斜的透明脆性材料的上表面之间形成空隙,且空隙的宽度为1-2mm。
还提供一种用于实现上述斜向切割补偿方法的斜向切割补偿系统,其特征在于,包括:
加工治具,其具有治具斜面,且所述治具斜面与水平面的夹角为α,所述倾斜透明脆性材料的下表面与治具斜面贴合;
激光器,其用于产生并输出激光光束;
扩束镜,其用于调整激光光斑尺寸及发散角;
激光切割头,其用于对经扩束镜输出的激光光束进行光束整形;
光路补偿单元,其与倾斜的透明脆性材料的上表面之间存在空隙,用于补偿经过激光切割头射出的激光光束射入倾斜的透明脆性材料时带来的像差,使得聚焦于透明脆性材料内的激光能量足以沿斜向切割轨迹对倾斜的透明脆性材料进行斜向切割;
移动平台,其用于在激光器出光前带动所述加工治具、倾斜的透明脆性材料同步沿Z向移动至预定位置,以及在激光器出光后带动所述加工治具、倾斜的透明脆性材料同步沿垂直于斜向切割轨迹所在平面的方向移动;
以及控制系统,其连接所述激光器以及移动平台,其用于控制激光器出光;以及控制移动平台运动。
优选的,所述激光切割头为贝塞尔切割头。
本发明至少具备以下有益效果:
本发明结构设计合理,操作简单,其通过增加光路补偿单元,并将其与加工治具、倾斜的透明脆性材料按照独特的位置布局进行设置,以此补偿激光射入倾斜的透明脆性材料时带来的像差,使得聚焦于透明脆性材料内的激光能量能够被有效集中,保证在透明脆性材料内形成的焦深段足以沿斜向切割轨迹对倾斜的透明脆性材料进行斜向切割,以此在确保切割质量的同时大幅提高切割工作效率。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a为现有技术中激光光束对透明脆性材料进行垂直切割的示意图;
图1b为现有技术中激光光束对倾斜的透明脆性材料进行斜向切割的示意图;
图2为本发明中加工治具、透明脆性材料以及光路补偿单元的位置关系示意图;
图3为本发明中激光光束对倾斜的透明脆性材料进行斜向切割的示意图;
图4为本发明中激光光束通过光路补偿单元折射到透明脆性材料中的光路图;
图5为本发明中激光光束对倾斜的透明脆性材料进行斜向切割时形成的切 割轨迹示意图;
图6为本发明中斜向切割补偿系统的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1:
如图2-3所示,本实施例提供了一种用于透明脆性材料的斜向切割补偿方法,其包括如下步骤:
S1、设置加工治具1,且所述加工治具1具有治具斜面101,且所述治具斜面与水平面S的夹角为α;倾斜透明脆性材料2,使所述透明脆性材料2的下表面201与治具斜面101贴合,由此,可通过加工治具1承载透明脆性材料2,且所述透明脆性材料2的下表面201与水平面S的夹角也为α;其中,所述透明脆性材料2包括玻璃或蓝宝石,其具有相互平行的下表面201和上表面202;
以及设置光路补偿单元3,其位于预期在倾斜的透明脆性材料2上形成的斜向切割轨迹P的上方,且与倾斜的透明脆性材料2的上表面202之间存在空隙203,用于补偿激光光束射入倾斜的透明脆性材料2时带来的像差,使得聚焦于透明脆性材料2内的激光能量足以沿斜向切割轨迹P对倾斜的透明脆性材料2进行斜向切割;其中,所述斜向切割轨迹P与倾斜的透明脆性材料2的上表面202之间的夹角为β,同时,所述斜向切割轨迹P与水平面S、激光切割头4均垂直,α与β互为余角;
本实施例中,所述光路补偿单元3的折射率与透明脆性材料2相同,且光路补偿单元3优选为三棱镜,其具有与倾斜的透明脆性材料2的上表面202平行的第一斜面301、与水平面S平行的第二斜面302以及分别与第一斜面301、第二斜面302连接的第三斜面303;其中,所述第一斜面301与倾斜的透明脆性材料2的上表面202之间形成空隙203,且空隙203的宽度为1-2mm,以在避免部件位置干涉的前提下保证切割效果;
S2、启动激光器,产生并输出激光光束L,且所述激光光束L经过扩束后从激光切割头4射出,再依次经过光路补偿单元3以及光路补偿单元3、透明脆性 材料2之间的空隙203内的空气折射聚焦于倾斜的透明脆性材料2内部,以形成焦深段S’,并沿斜向切割轨迹P完成对倾斜的透明脆性材料2的斜向切割;本实施例中,所述激光切割头4可以为贝塞尔切割头;
具体的,如图4所示,以光路补偿单元3为三棱镜为例,激光光束L经扩束镜、激光切割头4射出后再射入光路补偿单元3,再由第一斜面301折射到光路补偿单元3与倾斜的透明脆性材料2上表面202之间的空隙203中,再经倾斜的透明脆性材料2上表面202折射聚焦于倾斜的透明脆性材料2内部,以实现对倾斜的透明脆性材料2的斜向切割;
具体的,如图3,5所示,所述步骤S2包括:
S21、控制加工治具1、倾斜的透明脆性材料2同步沿Z向移动至预定位置,且加工治具1、倾斜的透明脆性材料2移动时,光路补偿单元3、激光切割头4位置保持不变;
S22、启动激光器,产生并输出激光光束L,且所述激光光束L经过扩束后从激光切割头4射出,再依次经过光路补偿单元3以及光路补偿单元3、透明脆性材料2之间的空隙203内的空气折射到倾斜的透明脆性材料2内部,且聚焦在斜向切割轨迹P上;同时控制倾斜的透明脆性材料2沿垂直于斜向切割轨迹P所在平面的方向移动,如若斜向切割轨迹P形成于XZ平面,则控制倾斜的透明脆性材料2沿Y向移动,以在倾斜的透明脆性材料2的上表面上形成表面切割轨迹P’,并最终沿斜向切割轨迹P完成对倾斜的透明脆性材料2的斜向切割。
如图3所示,相较于图1b而言,本实施例通过增加光路补偿单元3,并将其与加工治具1、倾斜的透明脆性材料2按照独特的位置布局进行设置,以此补偿激光射入倾斜的透明脆性材料2时带来的像差,使得聚焦于透明脆性材料2内的激光能量能够被有效集中,使得在透明脆性材料2内形成的焦深段S’足以沿斜向切割轨迹P对倾斜的透明脆性材料2进行斜向切割。
实施例2:
本实施例提供了一种用于实现实施例1所述斜向切割补偿方法的斜向切割补偿系统,其适用于透明脆性材料的切割,如图2-3,6所示,其包括:
加工治具1,其具有治具斜面101,且所述治具斜面101与水平面S的夹角为α;同时,所述倾斜透明脆性材料2的下表面201与治具斜面101贴合;
激光器6,其用于产生并输出激光光束L;
扩束镜5,其用于调整激光光斑尺寸及发散角;
激光切割头4,其用于对经扩束镜5输出的激光光束L进行光束整形,将其整形为切割所需的光束分布形式;优选的,所述激光切割头4为贝塞尔切割头,其可以将经扩束镜5输出的激光光束L整形为焦深0.1-6mm的贝塞尔光束;
光路补偿单元3,其位于预期在倾斜的透明脆性材料2上形成的斜向切割轨迹P的上方,且与倾斜的透明脆性材料2的上表面202之间存在空隙203,所述光路补偿单元3用于补偿经过激光切割头4射出的激光光束L射入倾斜的透明脆性材料2时带来的像差,使得聚焦于透明脆性材料2内的激光能量足以沿斜向切割轨迹P对倾斜的透明脆性材料2进行斜向切割;
移动平台8,其用于在激光器1出光前带动所述加工治具1、倾斜的透明脆性材料2同步沿Z向移动至预定位置,以及在激光器1出光后带动所述加工治具1、倾斜的透明脆性材料2同步沿垂直于斜向切割轨迹P所在平面的方向移动;
以及控制系统7,其连接所述激光器6以及移动平台8,其用于控制激光器6出光;以及控制移动平台8,使移动平台8在激光器1出光前带动所述加工治具1、倾斜的透明脆性材料2同步沿Z向移动至预定位置,以及在激光器1出光后带动所述加工治具1、倾斜的透明脆性材料2同步沿垂直于斜向切割轨迹P所在平面的方向移动。
其他技术特征,如透明脆性材料2、光路补偿单元3以及加工治具1的位置关系,激光切割头4、光路补偿单元3的类型等与实施例1相同,在此不再赘述。
综上所述,本发明的切割补偿装置结构设计合理,操作简单,适用于对倾斜的透明脆性材料进行斜向切割,具体的,其通过增加光路补偿单元,并将其与加工治具、倾斜的透明脆性材料按照独特的位置布局进行设置,以此补偿激光射入倾斜的透明脆性材料时带来的像差,使得聚焦于透明脆性材料内的激光能量能够被有效集中,保证在透明脆性材料内形成的焦深段足以沿斜向切割轨迹对倾斜的透明脆性材料进行斜向切割。
需要说明的是,上述实施例1-3中的技术特征可进行任意组合,且组合而成的技术方案均属于本申请的保护范围。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员 应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。

Claims (10)

  1. 一种用于透明脆性材料的斜向切割补偿方法,其特征在于,包括如下步骤:
    设置加工治具,且所述加工治具具有治具斜面,并倾斜透明脆性材料,使所述透明脆性材料的下表面与治具斜面贴合;
    设置光路补偿单元,其与倾斜的透明脆性材料的上表面之间存在空隙,用于补偿激光光束射入倾斜的透明脆性材料时带来的像差,使得聚焦于透明脆性材料内的激光能量足以沿斜向切割轨迹对倾斜的透明脆性材料进行斜向切割;
    激光光束依次经过光路补偿单元以及光路补偿单元、透明脆性材料之间的空隙内的空气折射聚焦于倾斜的透明脆性材料内部,并沿斜向切割轨迹完成对倾斜的透明脆性材料的斜向切割。
  2. 如权利要求1所述的斜向切割补偿方法,其特征在于,所述透明脆性材料具有相互平行的下表面和上表面。
  3. 如权利要求1所述的斜向切割补偿方法,其特征在于,所述透明脆性材料包括玻璃或蓝宝石。
  4. 如权利要求2所述的斜向切割补偿方法,其特征在于,所述治具斜面与水平面的夹角为α,所述斜向切割轨迹与倾斜的透明脆性材料的上表面之间的夹角为β,且α与β互为余角。
  5. 如权利要求2所述的斜向切割补偿方法,其特征在于,所述光路补偿单元的折射率与透明脆性材料相同。
  6. 如权利要求1所述的斜向切割补偿方法,其特征在于,“激光光束依次经过光路补偿单元以及光路补偿单元、透明脆性材料之间的空隙内的空气折射聚焦于倾斜的透明脆性材料内部,并沿斜向切割轨迹完成对倾斜的透明脆性材料的斜向切割”的过程包括如下步骤:
    控制加工治具、倾斜的透明脆性材料同步沿Z向移动至预定位置;
    产生并输出激光光束,且所述激光光束经过扩束后从激光切割头射出,再依次经过光路补偿单元以及光路补偿单元、透明脆性材料之间的空隙内的空气折射到倾斜的透明脆性材料内部,且聚焦在斜向切割轨迹上;同时控制倾斜的透明脆性材料沿垂直于斜向切割轨迹所在平面的方向移动,以在倾斜的透明脆性材料的上表面上形成表面切割轨迹,并最终沿斜向切割轨迹完成对倾斜的透明脆性材料 的斜向切割。
  7. 如权利要求2所述的斜向切割补偿方法,其特征在于,所述光路补偿单元为三棱镜,其具有与倾斜的透明脆性材料的上表面平行的第一斜面、与水平面平行的第二斜面以及分别与第一斜面、第二斜面连接的第三斜面。
  8. 如权利要求2所述的斜向切割补偿方法,其特征在于,所述第一斜面与倾斜的透明脆性材料的上表面之间形成空隙,且空隙的宽度为1-2mm。
  9. 一种用于实现权利要求1-8任一项所述斜向切割补偿方法的斜向切割补偿系统,其特征在于,包括:
    加工治具,其具有治具斜面,且所述治具斜面与水平面的夹角为α,所述倾斜透明脆性材料的下表面与治具斜面贴合;
    激光器,其用于产生并输出激光光束;
    扩束镜,其用于调整激光光斑尺寸及发散角;
    激光切割头,其用于对经扩束镜输出的激光光束进行光束整形;
    光路补偿单元,其与倾斜的透明脆性材料的上表面之间存在空隙,用于补偿经过激光切割头射出的激光光束射入倾斜的透明脆性材料时带来的像差,使得聚焦于透明脆性材料内的激光能量足以沿斜向切割轨迹对倾斜的透明脆性材料进行斜向切割;
    移动平台,其用于在激光器出光前带动所述加工治具、倾斜的透明脆性材料同步沿Z向移动至预定位置,以及在激光器出光后带动所述加工治具、倾斜的透明脆性材料同步沿垂直于斜向切割轨迹所在平面的方向移动;
    以及控制系统,其连接所述激光器以及移动平台,其用于控制激光器出光;以及控制移动平台运动。
  10. 如权利要求9所述的斜向切割补偿系统,其特征在于,所述激光切割头为贝塞尔切割头。
PCT/CN2021/108527 2020-12-31 2021-07-27 用于透明脆性材料的斜向切割补偿方法及系统 WO2022142296A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011626223.0 2020-12-31
CN202011626223.0A CN112828474B (zh) 2020-12-31 2020-12-31 用于透明脆性材料的斜向切割补偿方法及系统

Publications (1)

Publication Number Publication Date
WO2022142296A1 true WO2022142296A1 (zh) 2022-07-07

Family

ID=75924555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108527 WO2022142296A1 (zh) 2020-12-31 2021-07-27 用于透明脆性材料的斜向切割补偿方法及系统

Country Status (2)

Country Link
CN (1) CN112828474B (zh)
WO (1) WO2022142296A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112828474B (zh) * 2020-12-31 2022-07-05 武汉华工激光工程有限责任公司 用于透明脆性材料的斜向切割补偿方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101048255A (zh) * 2004-10-25 2007-10-03 三星钻石工业股份有限公司 裂痕形成方法及裂痕形成装置
CN202062161U (zh) * 2011-03-28 2011-12-07 江苏金方圆数控机床有限公司 激光切割光路补偿系统
CN102944931A (zh) * 2012-11-19 2013-02-27 中国电子科技集团公司第十一研究所 一种光程精密补偿器
EP2868421A1 (en) * 2013-11-04 2015-05-06 Rofin-Sinar Technologies, Inc. Method and apparatus for machining diamonds and gemstones using filamentation by burst ultrafast laser pulses
US10131016B1 (en) * 2014-08-14 2018-11-20 Gentex Corporation Laser system and process with buffer material
CN209424743U (zh) * 2018-12-28 2019-09-24 武汉华工激光工程有限责任公司 一种激光加工装置
CN111151873A (zh) * 2018-11-06 2020-05-15 大族激光科技产业集团股份有限公司 一种脆性材料激光切割装置及方法
CN112828474A (zh) * 2020-12-31 2021-05-25 武汉华工激光工程有限责任公司 用于透明脆性材料的斜向切割补偿方法及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3077462B2 (ja) * 1993-09-01 2000-08-14 日立電線株式会社 ガラスの切断方法
JP5060880B2 (ja) * 2007-09-11 2012-10-31 三星ダイヤモンド工業株式会社 脆性材料基板の分断装置および分断方法
WO2013002165A1 (ja) * 2011-06-28 2013-01-03 株式会社Ihi 脆性的な部材を切断する装置、方法、および切断された脆性的な部材
JP2015016998A (ja) * 2011-11-14 2015-01-29 旭硝子株式会社 ガラス板の切断方法、及びガラス板の切断装置
TWI673128B (zh) * 2014-01-27 2019-10-01 美商康寧公司 藉由機械處理雷射切割玻璃的邊緣去角及/或切斜之玻璃物件及方法
JP6399568B2 (ja) * 2016-05-30 2018-10-03 Biデザイン合同会社 板材製品の製造方法及びその製造方法を用いた板材加工機
DE102016225602B3 (de) * 2016-12-20 2018-05-09 Sauer Gmbh Verfahren zur Bearbeitung einer Schneidplatte sowie entsprechende Vorrichtung zur Bearbeitung einer Schneidplatte
CN206717293U (zh) * 2017-05-23 2017-12-08 深圳市众联智强科技有限公司 一种新型自动变更光斑长宽的玻璃切割光学装置
US11401195B2 (en) * 2018-03-29 2022-08-02 Corning Incorporated Selective laser processing of transparent workpiece stacks

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101048255A (zh) * 2004-10-25 2007-10-03 三星钻石工业股份有限公司 裂痕形成方法及裂痕形成装置
CN202062161U (zh) * 2011-03-28 2011-12-07 江苏金方圆数控机床有限公司 激光切割光路补偿系统
CN102944931A (zh) * 2012-11-19 2013-02-27 中国电子科技集团公司第十一研究所 一种光程精密补偿器
EP2868421A1 (en) * 2013-11-04 2015-05-06 Rofin-Sinar Technologies, Inc. Method and apparatus for machining diamonds and gemstones using filamentation by burst ultrafast laser pulses
US10131016B1 (en) * 2014-08-14 2018-11-20 Gentex Corporation Laser system and process with buffer material
CN111151873A (zh) * 2018-11-06 2020-05-15 大族激光科技产业集团股份有限公司 一种脆性材料激光切割装置及方法
CN209424743U (zh) * 2018-12-28 2019-09-24 武汉华工激光工程有限责任公司 一种激光加工装置
CN112828474A (zh) * 2020-12-31 2021-05-25 武汉华工激光工程有限责任公司 用于透明脆性材料的斜向切割补偿方法及系统

Also Published As

Publication number Publication date
CN112828474A (zh) 2021-05-25
CN112828474B (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
JP4175636B2 (ja) ガラスの切断方法
US8497451B2 (en) Brittle nonmetallic workpiece and method and device for making same
JPH03258476A (ja) レーザ切断方法
CN106945190A (zh) SiC晶片的生成方法
CN111069770A (zh) 一种光路分光单元及其同轴送丝熔覆头
CN103030266B (zh) 激光切割方法与装置
CN113634769B (zh) 基于高斯光束、光束整形复合光束的金属slm打印系统
CN110977152A (zh) 一种slm双激光复合加工系统
WO2022142296A1 (zh) 用于透明脆性材料的斜向切割补偿方法及系统
US20130170515A1 (en) Laser processing apparatus and laser processing method
JP2009178720A (ja) レーザ加工装置
CN109759722B (zh) 一种双工艺组合的led芯片加工系统及方法
CN113199138B (zh) 一种复合激光加工方法及复合激光加工装置
JP2004223796A (ja) 脆性材料の割断加工方法
CN113199140A (zh) 一种纳皮飞秒合束激光并行精整和抛光加工方法
CN116021174B (zh) 一种激光光斑的动态控制方法和激光切割装置
TWI491574B (zh) 脆性工件之切斷方法及切斷裝置
WO2022183668A1 (zh) 一种透明脆性材料的横向切割方法及系统
TWI741448B (zh) 具有同步光路延遲的雷射裝置
KR20110040150A (ko) 레이저 가공장치
TWI715548B (zh) 硬脆材料的雷射切割方法及雷射切割機與雷射切割機的光學系統
CN210789658U (zh) 一种用于手机显示屏的激光切割装置
TW202330141A (zh) 雷射鑽孔裝置
CN107866637A (zh) 脆性材料基板的断开方法及断开装置
CN112719635A (zh) 一种切割透明脆性材料的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913047

Country of ref document: EP

Kind code of ref document: A1