WO2022183668A1 - 一种透明脆性材料的横向切割方法及系统 - Google Patents

一种透明脆性材料的横向切割方法及系统 Download PDF

Info

Publication number
WO2022183668A1
WO2022183668A1 PCT/CN2021/108528 CN2021108528W WO2022183668A1 WO 2022183668 A1 WO2022183668 A1 WO 2022183668A1 CN 2021108528 W CN2021108528 W CN 2021108528W WO 2022183668 A1 WO2022183668 A1 WO 2022183668A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
brittle material
cutting
transparent
transparent brittle
Prior art date
Application number
PCT/CN2021/108528
Other languages
English (en)
French (fr)
Inventor
王雪辉
成迎虹
温彬
李曾卓
Original Assignee
武汉华工激光工程有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华工激光工程有限责任公司 filed Critical 武汉华工激光工程有限责任公司
Publication of WO2022183668A1 publication Critical patent/WO2022183668A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention relates to the field of material processing, in particular to a transverse cutting method and system for transparent brittle materials.
  • the laser cutting head 100 needs to be perpendicular to the glass 200, that is, as shown in FIG. However, because the laser cutting head 100 is limited by optical elements, the vertical cutting depth cannot reach more than 10mm. If the cutting surface needs to be an inclined plane, the glass needs to be inclined, and the laser cannot be effectively concentrated inside the material, and the oblique cutting effect is poor. Therefore, , the application range of this laser cutting method is limited;
  • the purpose of the present invention is to provide a transverse cutting method and system for transparent and brittle materials, which can form a transversely distributed laser in the Y direction (that is, the transverse direction) each time the light is emitted, so only one light emission in the Y direction can be completed.
  • the cutting of transparent and brittle materials has a simple operation process, which can save processing time on the premise of ensuring cutting quality and cutting depth, and greatly improve the cutting efficiency of transparent and brittle materials.
  • transverse cutting method of transparent brittle material which comprises the following steps:
  • a laser beam is generated and output again, and the laser beam is expanded and shaped in turn to form a laterally distributed laser distributed along the Y direction and focused on the interior of the transparent brittle material, so as to complete the corresponding laser beam of the next track unit. Cutting of transparent brittle material sections.
  • the transparent and brittle material includes glass or sapphire.
  • each oblique track unit is 10-50 ⁇ m.
  • the laterally distributed laser is a strip beam or a point-line beam formed by several laser spots.
  • a transparent brittle material cutting device for realizing the above-mentioned transverse cutting method comprising:
  • a laser for generating and outputting a laser beam
  • Beam expander which is used to adjust the laser spot size and divergence angle
  • a beam shaping system which is used for shaping the laser beam expanded by the beam expander into a laterally distributed laser beam distributed along the Y direction and focused inside the transparent brittle material;
  • a moving platform which is used to drive the transparent brittle material to move in the X and Z directions;
  • control system which connects the laser and the mobile platform, and is used to control the laser to stop emitting light when the laterally distributed laser completes the cutting of the transparent brittle material part corresponding to the previous track unit; Move the distance ⁇ X and ⁇ Z to the corresponding distance; then control the laser to continue to emit light, and complete the cutting of the transparent and brittle material part corresponding to the next track unit by distributing the laser laterally.
  • the emitting frequency of the laser is 100Khz ⁇ 6.25Mhz.
  • the beam shaping system includes:
  • a beam shaping unit which is used for shaping the laser beam expanded by the beam expander into a laterally distributed laser distributed along the Y direction;
  • a focusing unit for focusing the laterally distributed laser light inside the transparent and brittle material.
  • the beam shaping unit includes one or more of cylindrical lenses, diffractive optical elements, and spatial modulators.
  • control system connects the laser and the mobile platform through a wireless communication module.
  • control system includes an intelligent mobile terminal.
  • the cutting track in the XZ plane is divided into N track units on a microscopic level, and the laser is controlled to emit light at intervals, so that a horizontally distributed laser can be formed in the Y direction each time the light is emitted, and the cutting of the corresponding part of one track unit is completed correspondingly.
  • the cutting of transparent and brittle materials only needs to be emitted once in the Y direction, and there is no need to repeatedly emit light in the Z direction like galvanometer scanning cutting.
  • there is no need to tilt before laser cutting The material does not need to be moved during laser cutting.
  • the operation process is simple, which can greatly reduce the processing time and improve the cutting efficiency of transparent and brittle materials on the premise of ensuring the cutting quality and cutting depth.
  • Fig. 1 is the schematic diagram of laser beam vertical cutting transparent brittle material in the prior art
  • Fig. 2 is the XZ plane schematic diagram that the whole cutting track is decomposed along X, Z in the present invention, and carries out segmental laser cutting according to track unit;
  • Fig. 3 is a schematic diagram of transversely cutting the entire transparent brittle material in the present invention.
  • Fig. 4 is the structural schematic diagram of the transparent brittle material cutting device of the present invention.
  • 5 is a schematic diagram of different types of laterally distributed lasers
  • FIG. 7 is a schematic structural diagram of the beam shaping system of the present invention.
  • This embodiment provides a transverse cutting method of a transparent brittle material, as shown in Figures 2-4, which includes the following steps:
  • each track unit P1 is connected in sequence, and each track unit P1 is in the X direction.
  • the projection length is ⁇ X
  • the projection length in the Z direction is ⁇ Z. Therefore, the projection length of the entire cutting track P in the X direction is N* ⁇ X, and the projection length in the Z direction is N* ⁇ Z, and N is greater than or equal to 2.
  • the cutting trajectory P can be a regular oblique trajectory (as shown in Figure 2) or an irregular trajectory that does not coincide with the X and Z directions, or can be a vertical trajectory that only coincides with the Z direction.
  • the corresponding ⁇ X is 0;
  • the laterally distributed laser L' can be a strip beam with a length of 5-20mm (preferably 10mm), or a point-line beam formed by several laser spots with a diameter of 2-10 ⁇ m; at the same time, because the laterally distributed laser L' is focused Inside the transparent brittle material 300, it has energy impact on the surrounding environment.
  • the length of the track unit P1 is small, when the laterally distributed laser L' is processed inside the transparent brittle material 300, it is not necessary to move the transparent brittle material 300. , the surrounding environment at the focus point all interact with the laser, such as cracks, etc., at this time, it is regarded as the completion of the cutting of the corresponding part of the track unit P1. Therefore, there is no need to move the transparent brittle material when cutting the corresponding part of each track unit P1 300, and at the same time there is no need to tilt the transparent brittle material 300;
  • Steps S3-S4 are repeated to complete the cutting of the transparent brittle material 300 along the entire cutting path P, and the cutting effect is shown in FIG. 6 .
  • This embodiment provides a transparent brittle material cutting device for implementing the transverse cutting method described in Embodiment 1, as shown in FIG. 4 , which includes:
  • the laser 1 is used to generate and output the laser beam L; in this embodiment, the light output frequency of the laser 1 is 100Khz ⁇ 6.25Mhz;
  • Beam expander 2 which is used to adjust the laser spot size and divergence angle
  • a beam shaping system 3 which is used to shape the laser beam L expanded by the beam expander 2 into a laterally distributed laser L' distributed along the Y direction and focused inside the transparent brittle material 300;
  • a moving platform 4 which is used to drive the transparent brittle material 300 to move in the X and Z directions;
  • a control system which connects the laser 1 and the mobile platform 4 through a wireless communication module (such as Wifi, 4G/5G communication module, etc.), which is used when the horizontally distributed laser L' completes the transparent brittle material corresponding to the previous track unit P1
  • a wireless communication module such as Wifi, 4G/5G communication module, etc.
  • control the laser 1 to stop emitting light; then control the mobile platform 4 to move ⁇ X distance and ⁇ Z distance correspondingly along the Y direction and Z direction respectively; then control the laser 1 to continue emitting light, and complete the next track unit through the horizontal distribution of the laser L' Cutting of the transparent brittle material 300 corresponding to P1;
  • the control system includes intelligent mobile terminals such as smart phones, tablet computers, and desktop computers, so as to facilitate remote intelligent control.
  • the beam shaping system 3 includes:
  • the beam shaping unit 8 is used for shaping the laser beam L after the beam expander 2 into a laterally distributed laser L' distributed along the X direction.
  • the beam shaping unit 8 includes a cylindrical lens, a DOE (Difractive Optical Element, diffractive optical element), one or more of spatial modulators;
  • the focusing unit 9 is used to focus the laterally distributed laser light L' inside the transparent brittle material 300.
  • the present invention divides the cutting track in the XZ plane into N track units microscopically, and controls the laser to emit light at intervals, so that a horizontally distributed laser can be formed in the Y direction every time the light is emitted, and a track is completed correspondingly.
  • the cutting of the corresponding part of the unit thus, for each track unit, it only needs to emit light in the Y direction once to complete the cutting of the transparent and brittle material, and there is no need to repeat the light emission in the Z direction like the galvanometer scanning cutting. , There is no need to tilt the material before laser cutting, and there is no need to move the material during laser cutting.
  • the operation process is simple, and it can ensure the cutting quality and cutting depth (when the cutting track is a vertical track that coincides with the Z direction, the cutting depth can be ⁇ 10mm). Under the premise, the processing time can be greatly reduced and the cutting efficiency of transparent and brittle materials can be improved.

Abstract

一种透明脆性材料的横向切割方法,包括如下步骤:将切割轨迹(P)划分为N个长度相同的轨迹单元(P1),且每一轨迹单元在X向上的投影长度为ΔX、在Z向上的投影长度为ΔZ;产生并输出激光光束,且所述激光光束被整形为横向分布激光,以完成前一轨迹单元对应的透明脆性材料(300)部分的切割;停止出光,带动透明脆性材料分别沿X向、Z向对应移动ΔX距离和ΔZ距离;再次产生并输出激光光束(L),且所述激光光束再次被整形为横向分布激光,以完成下一轨迹单元对应的透明脆性材料部分的切割。以及一种实现横向切割方法的透明脆性材料的切割装置。该切割方法和切割装置操作过程简单,可在保证切割质量的前提下大幅提高透明脆性材料的切割效率。

Description

一种透明脆性材料的横向切割方法及系统 技术领域
本发明涉及材料加工领域,尤其涉及一种透明脆性材料的横向切割方法及系统。
背景技术
目前对于透明脆性材料,如玻璃的切割加工,有以下几种切割方法:
1、机械方法:用刀具等工具进行机械切割,其切割效果极差,无法适用与高要求的精度切割;
2、激光切割:若采用一般激光切割头100进行切割,则激光切割头100需要垂直于玻璃200,即如图1所示,激光光束L1在玻璃200内部纵向形成焦深,以形成垂直的切割面,但由于激光切割头100受光学元件限制,垂直切割深度无法达到10mm以上,若需要切割面为斜面,则需要将玻璃倾斜,且激光不能有效在材料内部集中,斜向切割效果差,因此,该种激光切割方式应用范围有限;
若采用振镜扫描切割,则需要通过激光扫描的方法沿玻璃的三维轮廓、在各个方向上逐步进行扫描式切割,其操作复杂,切割效率低。
发明内容
本发明的目的是提供一种透明脆性材料的横向切割方法及系统,其每次出光时可以在Y向(也即横向)上形成一条横向分布激光,因此只需要在Y向上一次出光即可完成透明脆性材料的切割,其操作过程简单,可在保证切割质量以及切割深度的前提下节省加工时间,大幅提高透明脆性材料的切割效率。
为了实现上述目的,本发明采用了如下技术方案:
提供了一种透明脆性材料的横向切割方法,其包括如下步骤:
将预期在透明脆性材料上形成的切割轨迹划分为N个长度相同的斜向轨迹单元,且每一轨迹单元在X向上的投影长度为ΔX、在Z向上的投影长度为ΔZ;
产生并输出激光光束,且所述激光光束依次经过扩束、光束整形后形成沿Y向分布的、且聚焦于所述透明脆性材料内部的横向分布激光,以完成前一轨迹单元对应的透明脆性材料部分的切割;
停止出光,带动透明脆性材料分别沿X向、Z向对应移动ΔX距离和ΔZ距离;
再次产生并输出激光光束,且所述激光光束再次依次经过扩束、光束整形后形成沿Y向分布的、且聚焦于所述透明脆性材料内部的横向分布激光,以完成下一轨迹单元对应的透明脆性材料部分的切割。
优选的,所述透明脆性材料包括玻璃或蓝宝石。
优选的,每一斜向轨迹单元的长度为10-50μm。
优选的,所述横向分布激光为条形光束或由若干激光光斑形成的点线光束。
还提供一种用于实现上述横向切割方法的透明脆性材料切割装置,其包括:
激光器,其用于产生并输出激光光束;
扩束镜,其用于调整激光光斑尺寸及发散角;
光束整形系统,其用于将经扩束镜扩束后的激光光束整形成沿Y向分布的、且聚焦于所述透明脆性材料内部的横向分布激光;
移动平台,其用于带动所述透明脆性材料在X、Z向上移动;
以及控制系统,其连接所述激光器以及移动平台,其用于当横向分布激光完成前一轨迹单元对应的透明脆性材料部分的切割后,控制激光器停止出光;再控制移动平台分别沿X向、Z向对应移动ΔX距离和ΔZ距离;然后控制激光器继续出光,通过横向分布激光完成下一轨迹单元对应的透明脆性材料部分的切割。
优选的,所述激光器的出光频率为100Khz~6.25Mhz。
优选的,所述光束整形系统包括:
光束整形单元,其用于将经扩束镜扩束后的激光光束整形成沿Y向分布的横向分布激光;
以及聚焦单元,其用于将横向分布激光聚焦于透明脆性材料内部。
优选的,所述光束整形单元包括柱透镜、衍射光学元件、空间调制器中的一种或几种。
优选的,所述控制系统通过无线通讯模块连接所述激光器以及移动平台。
优选的,所述控制系统包括智能移动终端。
本发明至少具备以下有益效果:
本发明通过在微观上将XZ平面内的切割轨迹划分为N个轨迹单元,且控制激光器间隔出光,每次出光即可在Y向上形成一条横向分布激光,且对应完成一个轨迹单元对应部分的切割,由此,对于每个轨迹单元而言,只需要在Y向 上一次出光即可完成透明脆性材料的切割,无需如振镜扫描切割一样在Z向上多次重复出光,同时,激光切割前无需倾斜材料,激光切割时也无需移动材料,其操作过程简单,可在保证切割质量、切割深度的前提下大幅减少加工时间、提高透明脆性材料的切割效率。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中激光光束垂直切割透明脆性材料的示意图;
图2为本发明中将整个切割轨迹沿X、Z进行分解,且按照轨迹单元进行分段激光切割的XZ平面示意图;
图3为本发明中对整个透明脆性材料进行横向切割的示意图;
图4为本发明透明脆性材料切割装置的结构示意图;
图5为不同类型横向分布激光的示意图;
图6为通过本发明完成透明脆性材料切割后的效果图;
图7为本发明光束整形系统的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1:
本实施例提供了一种透明脆性材料的横向切割方法,如图2-4所示,其包括如下步骤:
S1、在XZ平面上,将预期在透明脆性材料300上形成的切割轨迹P划分为N个长度相同的轨迹单元P1,每一轨迹单元P1顺次连接,且每一轨迹单元P1在X向上的投影长度为ΔX、在Z向上的投影长度为ΔZ,由此,整个切割轨迹P在X向上的投影长度为N*ΔX、在Z向上的投影长度为N*ΔZ,N为大于或等于2的正整数;其中,所述透明脆性材料300包括玻璃或蓝宝石等,每一轨迹单元 P1的长度可根据需要切割的透明脆性材料300的厚度决定,一般为10-50μm;
同时,所述切割轨迹P可以为与X、Z向均不重合的规则斜线轨迹(如图2所示)或不规则轨迹,也可以为仅与Z向重合的垂直轨迹,此时,对应的ΔX为0;
S2、启动激光器,产生并输出激光光束L,且所述激光光束L依次经过扩束、光束整形后形成沿Y向分布的、且聚焦于所述透明脆性材料300内部的横向分布激光L’,进一步的,所述横向分布激光L’在所述透明脆性材料300内部进行加工,以完成前一轨迹单元P1对应的透明脆性材料300部分的切割;本实施例中,如图5所示,所述横向分布激光L’可以是长度为5-20mm(优选10mm)的条形光束,也可以是由若干直径为2-10μm的激光光斑形成的点线光束;同时,由于横向分布激光L’聚焦于透明脆性材料300内部,其对于周围环境均有能量冲击,在轨迹单元P1长度很小的前提下,横向分布激光L’在所述透明脆性材料300内部进行加工时,无需移动透明脆性材料300,聚焦焦点处周围环境全部与激光发生作用,如产生裂纹等,此时视为完成轨迹单元P1对应部分的切割,因此,在对每一轨迹单元P1对应的部分进行切割时无需移动透明脆性材料300,同时也无需倾斜透明脆性材料300;
S3、控制激光器停止出光,带动透明脆性材料300分别沿X向、Z向对应移动ΔX距离和ΔZ距离;
S4、再次启动激光器,产生并输出激光光束L,且所述激光光束L再次依次经过扩束、光束整形后形成沿Y向分布的、且聚焦于所述透明脆性材料300内部的横向分布激光L’,所述横向分布激光L’在所述透明脆性材料300内部进行加工,以完成下一轨迹单元P1对应的透明脆性材料300部分的切割;
S5、重复步骤S3-S4,以沿整个切割轨迹P完成透明脆性材料300的切割,切割效果如图6所示。
实施例2:
本实施例提供了一种用于实现实施例1中所述横向切割方法的透明脆性材料切割装置,如图4所示,其包括:
激光器1,其用于产生并输出激光光束L;本实施例中,所述激光器1的出光频率为100Khz~6.25Mhz;
扩束镜2,其用于调整激光光斑尺寸及发散角;
光束整形系统3,其用于将经扩束镜2扩束后的激光光束L整形成沿Y向分布的、且聚焦于所述透明脆性材料300内部的横向分布激光L’;
移动平台4,其用于带动所述透明脆性材料300在X、Z向上移动;
以及控制系统,其通过无线通讯模块(如Wifi,4G/5G通讯模块等)连接所述激光器1以及移动平台4,其用于当横向分布激光L’完成前一轨迹单元P1对应的透明脆性材料300部分的切割后,控制激光器1停止出光;再控制移动平台4分别沿Y向、Z向对应移动ΔX距离和ΔZ距离;然后控制激光器1继续出光,通过横向分布激光L’完成下一轨迹单元P1对应的透明脆性材料300部分的切割;本实施例中,所述控制系统包括智能手机、平板电脑、台式电脑等智能移动终端,以便于进行远程智能控制。
实施例3:
本实施例与实施例2的不同之处仅在于,如图7所示,所述光束整形系统3包括:
光束整形单元8,其用于将经扩束镜2扩束后的激光光束L整形成沿X向分布的横向分布激光L’,本实施例中,所述光束整形单元8包括柱透镜、DOE(Difractive Optical Element,衍射光学元件)、空间调制器等中的一种或几种;
聚焦单元9,其用于将横向分布激光L’聚焦于透明脆性材料300内部。
综上所述,本发明通过在微观上将XZ平面内的切割轨迹划分为N个轨迹单元,且控制激光器间隔出光,每次出光即可在Y向上形成一条横向分布激光,且对应完成一个轨迹单元对应部分的切割,由此,对于每个轨迹单元而言,其只需要在Y向上一次出光即可完成透明脆性材料的切割,无需如振镜扫描切割一样在Z向上多次重复出光,同时,激光切割前无需倾斜材料,激光切割时也无需移动材料,其操作过程简单,可在保证切割质量、切割深度(在切割轨迹为与Z向重合的垂直轨迹时,切割深度可≥10mm)的前提下大幅减少加工时间、提高透明脆性材料的切割效率。
需要说明的是,上述实施例1-3中的技术特征可进行任意组合,且组合而成的技术方案均属于本申请的保护范围。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员 应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。

Claims (10)

  1. 一种透明脆性材料的横向切割方法,其特征在于,包括如下步骤:
    将预期在透明脆性材料上形成的切割轨迹划分为N个长度相同的斜向轨迹单元,且每一轨迹单元在X向上的投影长度为ΔX、在Z向上的投影长度为ΔZ;
    产生并输出激光光束,且所述激光光束依次经过扩束、光束整形后形成沿Y向分布的、且聚焦于所述透明脆性材料内部的横向分布激光,以完成前一轨迹单元对应的透明脆性材料部分的切割;
    停止出光,带动透明脆性材料分别沿X向、Z向对应移动ΔX距离和ΔZ距离;
    再次产生并输出激光光束,且所述激光光束再次依次经过扩束、光束整形后形成沿Y向分布的、且聚焦于所述透明脆性材料内部的横向分布激光,以完成下一轨迹单元对应的透明脆性材料部分的切割。
  2. 如权利要求1所述的横向切割方法,其特征在于,所述透明脆性材料包括玻璃或蓝宝石。
  3. 如权利要求1所述的横向切割方法,其特征在于,每一斜向轨迹单元的长度为10-50μm。
  4. 如权利要求1所述的横向切割方法,其特征在于,所述横向分布激光为条形光束或由若干激光光斑形成的点线光束。
  5. 一种用于实现权利要求1-4任一项所述横向切割方法的透明脆性材料切割装置,其特征在于,包括:
    激光器,其用于产生并输出激光光束;
    扩束镜,其用于调整激光光斑尺寸及发散角;
    光束整形系统,其用于将经扩束镜扩束后的激光光束整形成沿Y向分布的、且聚焦于所述透明脆性材料内部的横向分布激光;
    移动平台,其用于带动所述透明脆性材料在X、Z向上移动;
    以及控制系统,其连接所述激光器以及移动平台,其用于当横向分布激光完成前一轨迹单元对应的透明脆性材料部分的切割后,控制激光器停止出光;再控制移动平台分别沿X向、Z向对应移动ΔX距离和ΔZ距离;然后控制激光器继续出光,通过横向分布激光完成下一轨迹单元对应的透明脆性材料部分的切割。
  6. 如权利要求5所述的透明脆性材料切割装置,其特征在于,所述激光器 的出光频率为100Khz~6.25Mhz。
  7. 如权利要求5所述的透明脆性材料切割装置,其特征在于,所述光束整形系统包括:
    光束整形单元,其用于将经扩束镜扩束后的激光光束整形成沿Y向分布的横向分布激光;
    以及聚焦单元,其用于将横向分布激光聚焦于透明脆性材料内部。
  8. 如权利要求7所述的透明脆性材料切割装置,其特征在于,所述光束整形单元包括柱透镜、衍射光学元件、空间调制器中的一种或几种。
  9. 如权利要求7所述的透明脆性材料切割装置,其特征在于,所述控制系统通过无线通讯模块连接所述激光器以及移动平台。
  10. 如权利要求7所述的透明脆性材料切割装置,其特征在于,所述控制系统包括智能移动终端。
PCT/CN2021/108528 2021-03-04 2021-07-27 一种透明脆性材料的横向切割方法及系统 WO2022183668A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110240043.7 2021-03-04
CN202110240043.7A CN112975158A (zh) 2021-03-04 2021-03-04 一种透明脆性材料的横向切割方法及系统

Publications (1)

Publication Number Publication Date
WO2022183668A1 true WO2022183668A1 (zh) 2022-09-09

Family

ID=76352724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108528 WO2022183668A1 (zh) 2021-03-04 2021-07-27 一种透明脆性材料的横向切割方法及系统

Country Status (2)

Country Link
CN (1) CN112975158A (zh)
WO (1) WO2022183668A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112975158A (zh) * 2021-03-04 2021-06-18 武汉华工激光工程有限责任公司 一种透明脆性材料的横向切割方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104237997A (zh) * 2014-09-22 2014-12-24 苏州德龙激光股份有限公司 激光于玻璃内部加工导光板的装置及其方法
WO2017216603A1 (en) * 2016-06-14 2017-12-21 Evana Technologies, Uab Laser processing method and a system for wafer dicing or cutting by use of a multi-segment focusing lens
CN110039194A (zh) * 2019-04-17 2019-07-23 大族激光科技产业集团股份有限公司 一种激光切割装置
EP3549710A1 (en) * 2018-03-30 2019-10-09 DGSHAPE Corporation Processing method, processing system, and processing program
CN111112859A (zh) * 2019-12-20 2020-05-08 武汉华工激光工程有限责任公司 一种透明脆性材料零锥度通孔工艺方法
CN111558785A (zh) * 2020-07-14 2020-08-21 武汉华工激光工程有限责任公司 一种用于透明材料三维轮廓加工的方法
CN112975158A (zh) * 2021-03-04 2021-06-18 武汉华工激光工程有限责任公司 一种透明脆性材料的横向切割方法及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2673557A1 (fr) * 1991-03-08 1992-09-11 Ugine Aciers Procede et dispositif optique statique pour irradiation laser d'un produit metallique en mouvement et son application au traitement de toles magnetiques.
JP2000202671A (ja) * 1999-01-14 2000-07-25 Mitsubishi Heavy Ind Ltd レ―ザ加工装置
JP2002087834A (ja) * 2000-09-14 2002-03-27 Japan Science & Technology Corp エキシマレーザーによる透明部材の加工方法およびその加工品
JP2002120078A (ja) * 2001-07-12 2002-04-23 Semiconductor Energy Lab Co Ltd レーザ加工方法
JP2004343008A (ja) * 2003-05-19 2004-12-02 Disco Abrasive Syst Ltd レーザ光線を利用した被加工物分割方法
JP4752488B2 (ja) * 2005-12-20 2011-08-17 セイコーエプソン株式会社 レーザ内部スクライブ方法
JP5328209B2 (ja) * 2007-06-15 2013-10-30 三菱電機株式会社 基板加工方法
CN106994564B (zh) * 2017-04-27 2019-11-26 东莞市盛雄激光先进装备股份有限公司 一种激光切割装置及其切割方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104237997A (zh) * 2014-09-22 2014-12-24 苏州德龙激光股份有限公司 激光于玻璃内部加工导光板的装置及其方法
WO2017216603A1 (en) * 2016-06-14 2017-12-21 Evana Technologies, Uab Laser processing method and a system for wafer dicing or cutting by use of a multi-segment focusing lens
EP3549710A1 (en) * 2018-03-30 2019-10-09 DGSHAPE Corporation Processing method, processing system, and processing program
CN110039194A (zh) * 2019-04-17 2019-07-23 大族激光科技产业集团股份有限公司 一种激光切割装置
CN111112859A (zh) * 2019-12-20 2020-05-08 武汉华工激光工程有限责任公司 一种透明脆性材料零锥度通孔工艺方法
CN111558785A (zh) * 2020-07-14 2020-08-21 武汉华工激光工程有限责任公司 一种用于透明材料三维轮廓加工的方法
CN112975158A (zh) * 2021-03-04 2021-06-18 武汉华工激光工程有限责任公司 一种透明脆性材料的横向切割方法及系统

Also Published As

Publication number Publication date
CN112975158A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
CN104339088A (zh) 用于在透明材料内执行激光成丝的系统
KR102453653B1 (ko) 적층 가공을 위한 패턴화된 광의 스위치야드 빔 라우팅
CN106808087B (zh) 一种减小激光熔覆后工件形变量的方法
WO2022183668A1 (zh) 一种透明脆性材料的横向切割方法及系统
CN202539812U (zh) 一种激光多点聚焦加工系统
CN110102763B (zh) 一种激光打印装置
CN104858544A (zh) 方形脉冲激光剥离技术
CN113146072A (zh) 镀膜脆性材料的激光加工装置及其方法
CN111299850B (zh) 一种激光加工方法
CN106711765B (zh) 一种具有三光斑照射一次成型功能的半导体激光熔覆光源结构
CN216462460U (zh) 增材制造设备用多光路结构
CN101804515A (zh) 大幅面精密激光刻线和打点的设备
KR100976035B1 (ko) 레이저 절단장치
CN112719635A (zh) 一种切割透明脆性材料的方法和装置
CN110039204A (zh) 被加工物的激光加工方法
CN107866637A (zh) 脆性材料基板的断开方法及断开装置
TWI715548B (zh) 硬脆材料的雷射切割方法及雷射切割機與雷射切割機的光學系統
CN112828474A (zh) 用于透明脆性材料的斜向切割补偿方法及系统
KR101928264B1 (ko) 레이저빔 성형 장치
JP2007030033A (ja) 透明材料へのマーキング方法およびこれを用いた装置
CN218169060U (zh) 基于二维声光偏转器的晶圆激光解键合的系统
CN204053228U (zh) 一种金属激光切割机
CN214921502U (zh) 镀膜脆性材料的激光加工装置
CN219581911U (zh) 一种小体积激光模组
CN114083144B (zh) 用于控制透明脆性材料的光学切割宽度的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928746

Country of ref document: EP

Kind code of ref document: A1