WO2024096200A1 - 유압 압축기용 유로절환밸브 - Google Patents

유압 압축기용 유로절환밸브 Download PDF

Info

Publication number
WO2024096200A1
WO2024096200A1 PCT/KR2023/002593 KR2023002593W WO2024096200A1 WO 2024096200 A1 WO2024096200 A1 WO 2024096200A1 KR 2023002593 W KR2023002593 W KR 2023002593W WO 2024096200 A1 WO2024096200 A1 WO 2024096200A1
Authority
WO
WIPO (PCT)
Prior art keywords
stem
valve chamber
inlet
outlet
valve
Prior art date
Application number
PCT/KR2023/002593
Other languages
English (en)
French (fr)
Inventor
최정주
강효림
탁현우
김도현
Original Assignee
동아대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아대학교 산학협력단 filed Critical 동아대학교 산학협력단
Publication of WO2024096200A1 publication Critical patent/WO2024096200A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K25/00Details relating to contact between valve members and seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K25/00Details relating to contact between valve members and seats
    • F16K25/005Particular materials for seats or closure elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/02Means in valves for absorbing fluid energy for preventing water-hammer or noise

Definitions

  • the present invention relates to a flow path switching valve for a compressor, and more specifically, to a flow path switching valve for a hydraulic compressor in which the flow path is switched by a sliding motion of the stem and is capable of stem buffering and flow rate control.
  • a typical hydraulic compressor realizes high-pressure fluid compression through the reciprocating motion of the piston. At this time, the supply direction of the working fluid must be changed for the movement of the piston, and the flow direction can be changed by an electrical signal applied to the valve.
  • the flow path switching valve for hydraulic compressors is used for simple flow path switching, but there is a problem in that components are frequently damaged due to strong piston pressure.
  • the present invention is to solve the above problems, and the purpose of the present invention is to minimize damage caused by the strong pressure of the piston and to improve durability by reducing friction that occurs when the valve stem moves.
  • a switching valve is provided.
  • Another object of the present invention is to provide a flow path switching valve for a hydraulic compressor capable of controlling flow rate with a simple configuration.
  • a flow path switching valve for a hydraulic compressor according to an aspect of the present invention for achieving the above object is provided with a valve chamber having an inlet on the side through which fluid flows in, and a first outlet and a second outlet through which fluid is discharged, which are formed to be open.
  • One valve body A stem installed to move in the axial direction inside the valve chamber of the valve body, a first disk formed to protrude in the radial direction on an outer surface of the stem and opening and closing the inlet and the first outlet according to the moving direction of the stem;
  • a flow path opening and closing member including a second disk that is formed to protrude in the radial direction on the outer surface of the stem at a position spaced apart from the first disk by a predetermined distance in the axial direction and opens and closes the inlet and the second outlet according to the moving direction of the stem.
  • a stem cushioning member installed between one end of the stem and one end of the valve chamber to absorb shock while contacting the flow path opening and closing member when the flow path is switched by moving in the axial direction within the valve chamber;
  • a valve operating member installed inside the valve chamber to be connected to the other end of the stem and moves the stem while moving in the axial direction with respect to the valve chamber.
  • the second outlet may be formed at a position spaced 180° in the circumferential direction with respect to the inlet, and the first outlet may be formed at a position spaced a certain distance away in the axial direction with respect to the second outlet.
  • the first disk has the same diameter as the valve chamber, and a fluid inlet is formed in a portion facing the inlet that communicates with a portion of the inlet and guides fluid into the valve chamber and toward the first outlet.
  • the opposite side of the part where the inlet is formed (a part 180° apart) has a size and shape that completely closes the second outlet;
  • the second disk may have the same diameter as the valve chamber, and may have a size and shape capable of opening a portion of the inlet and second outlet when moved to a position corresponding to the inlet and second outlet.
  • the valve operating member includes an inner piston connected to the other end of the stem, an outer piston that is spaced a certain distance from the inner piston and moves in the axial direction of the valve chamber by an external force, and between the inner piston and the outer piston. It may include an elastic body that is installed and elastically compresses when an external force is applied to the outer piston toward the inner piston and transmits the external force to the inner piston.
  • the stem cushioning member includes a first cushioning material made of an elastic resin material installed at one end of the stem, and a second cushioning material made of an elastic resin material installed at one end of the valve chamber and elastically contacting the first cushioning material. It may include cushioning material.
  • an inlet through which fluid flows is formed on the side, and a second outlet through which fluid is discharged is formed at a position spaced 180° in the circumferential direction with respect to the inlet.
  • a valve body having a valve chamber in which a first outlet through which fluid is discharged is opened at a position spaced apart from the second outlet at a predetermined distance in the axial direction;
  • a stem installed to move in the axial direction inside the valve chamber of the valve body, a first disk formed to protrude in the radial direction on an outer surface of the stem and opening and closing the inlet and the first outlet according to the moving direction of the stem;
  • a flow path opening and closing member including a second disk that is formed to protrude in the radial direction on the outer surface of the stem at a position spaced apart from the first disk by a predetermined distance in the axial direction and opens and closes the inlet and the second outlet according to the moving direction of the stem.
  • a stem cushioning member installed between one end of the stem and one end of the valve chamber to absorb shock while contacting the flow path opening and closing member when the flow path is switched by moving in the axial direction within the valve chamber;
  • an inner piston connected to the other end of the stem, an outer piston spaced a certain distance from the inner piston and moving in the axial direction of the valve chamber by an external force, and an outer piston installed between the inner piston and the outer piston.
  • It may include a valve operating member that moves the stem while moving in the axial direction with respect to the valve chamber by the external force, including an elastic body that is elastically compressed when an external force is applied to the inner piston and transmits the external force to the inner piston.
  • the first disk has the same diameter as the valve chamber, and a fluid inlet is formed in a portion facing the inlet that communicates with a portion of the inlet and guides fluid into the valve chamber and toward the first outlet.
  • the opposite side of the part where the inlet is formed (a part 180° apart) has a size and shape that completely closes the second outlet;
  • the second disk may have the same diameter as the valve chamber, and may have a size and shape capable of opening a portion of the inlet and second outlet when moved to a position corresponding to the inlet and second outlet.
  • the stem cushioning member includes a first cushioning material made of an elastic resin material installed at one end of the stem, and a first cushioning material made of an elastic resin material installed at one end of the valve chamber and elastically contacting the first cushioning material.
  • 2Can include buffering material.
  • a buffering action is generated by the elastic body and/or the stem buffer member installed between the outer piston and the inner piston, thereby causing damage and vibration to the valve components due to impact. , noise can be prevented.
  • the space between the first and second disks and the coupling disk of the channel opening and closing member sliding inside the valve chamber becomes empty and does not contact the inner peripheral surface of the valve chamber, thereby significantly reducing friction during the sliding process.
  • Figure 1 is a cross-sectional view of a flow path switching valve for a hydraulic compressor according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view showing a state in which the flow path of the flow path switching valve for a hydraulic compressor according to an embodiment of the present invention is switched.
  • Figure 3 is a plan view showing a portion of a flow path switching valve for a hydraulic compressor according to an embodiment of the present invention.
  • a flow path switching valve for a hydraulic compressor according to an embodiment of the present invention will be described in detail with reference to the attached drawings. Since the present invention can be subject to various changes and can have various forms, specific embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to a specific disclosed form, and should be understood to include all changes, equivalents, and substitutes included in the spirit and technical scope of the present invention. While describing each drawing, similar reference numerals are used for similar components. In the attached drawings, the dimensions of the structures are enlarged from the actual size for clarity of the present invention, or reduced from the actual size to understand the schematic configuration.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another.
  • a first component may be named a second component without departing from the scope of the present invention, and similarly, the second component may also be named a first component.
  • all terms used herein, including technical or scientific terms have the same meaning as generally understood by those skilled in the art to which the present invention pertains. Terms defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related technology, and unless explicitly defined in the present application, should not be interpreted in an ideal or excessively formal sense. No.
  • the flow path switching valve for a hydraulic compressor includes a valve body 100, a stem 210, a first disk 220, and a second disk 230. It includes a flow path opening and closing member 200, a stem buffering member 300, and a valve operating member 400.
  • the valve body 100 includes cylindrical (cylindrical) valve chambers 111 and 121 that accommodate the flow path opening and closing member 200 and the valve operating member 400 and form a space through which fluid passes. On the side of the valve chamber 111, an inlet 112 through which fluid flows in, and a first outlet 113 and a second outlet 114 through which fluid is discharged, are formed to be open inward and outward.
  • the valve body 100 is made of a material with excellent strength to withstand the pressure of the fluid.
  • the second outlet 114 is formed at a position spaced 180° in the circumferential direction with respect to the inlet 112 and is arranged to face each other, and the first outlet 113 is axially located with respect to the second outlet 114. It is formed at a location separated by a certain distance.
  • the valve body 100 is formed with an inlet 112, a first outlet 113, and a second outlet 114, a first valve body 110 in which the flow path opening and closing member 200 is accommodated, and a valve operating member.
  • the second valve body 120 on which 400 is installed, can be divided into two parts.
  • the first valve body 110 and the second valve body 120 are manufactured as separate pieces and then coaxially connected by a known coupling method such as welding, a spiral coupling method using female and male screws, or a coupling method using a separate clamp mechanism. They can be combined and integrated.
  • the valve chamber of the first valve body 110 is named as the first valve chamber 111
  • the valve chamber of the second valve body 120 is named as the second valve chamber 121.
  • the flow path opening and closing member 200 is installed to be able to slide in the axial direction inside the first valve chamber 111 and functions to switch the flow path according to the direction of movement. That is, it acts to switch the flow path so that the fluid flowing in through the inlet 112 is discharged through the first outlet 113, or the fluid flowing in through the inlet 112 is discharged through the second outlet 114. do.
  • the flow path opening and closing member 200 includes a stem 210 installed to move in the axial direction inside the first valve chamber 111, and a stem 210 that is formed to protrude in the radial direction on the outer surface of the stem 210.
  • a first disk 220 that opens and closes the inlet 112 and the first outlet 113 according to the moving direction of the 210, and a stem at a position spaced a certain distance in the axial direction with respect to the first disk 220.
  • It includes a second disk 230 that is formed to protrude in the radial direction on the outer surface of the stem 210 and opens and closes the inlet 112 and the second outlet 114 according to the moving direction of the stem 210. ) and the first disk 220 and the second disk 230 move together while sliding in the axial direction within the first valve chamber 111.
  • the stem 210 of the flow path opening and closing member 200 may have a circular rod or polygonal rod shape, and a first buffer 310 constituting the stem cushioning member 300 is attached to one end, and a valve to the other end.
  • a coupling disk 240 is formed that is connected to the operating member 400 and prevents the fluid flowing in through the inlet 112 from leaking toward the valve operating member 400.
  • the coupling disk 240 has a diameter that generally matches the diameter of the first valve chamber 111, so that it is connected to the first valve chamber ( 111) and slides on the inner circumferential surface. Additionally, a sealing material (not shown) may be provided on the outer peripheral surface of the coupling disk 240 to prevent fluid from leaking between the inner peripheral surface of the first valve chamber 111 and the outer peripheral surface of the coupling disk 240.
  • the first disk 220 may be formed in a disk shape with a diameter substantially equal to the inner diameter of the first valve chamber 111.
  • the portion of one end of the first disk 220 facing the inlet 112 communicates with a portion of the inlet 112 and guides fluid into the first valve chamber 111 and then toward the first outlet 113.
  • the guiding fluid inlet 221 is formed to be open on one side, and the opposite side of the portion where the fluid inlet 221 is formed (a portion spaced 180° in the circumferential direction) completely closes the second outlet 114. It has size (thickness) and shape.
  • the second disk 230 may also be formed in a disk shape with a diameter substantially equal to the inner diameter of the first valve chamber 111.
  • the second disk 230 is disposed between the coupling disk 240 and the first disk 220, and when moved to a position corresponding to the inlet 112 and the second outlet 114, the inlet 112 And it has a size (thickness) and shape that can open a portion of the second outlet 114.
  • the stem buffer member 300 is installed between one end of the stem 210 and one end of the first valve chamber 111 so that the passage opening and closing member 200 moves in the axial direction within the first valve chamber 111. It acts to absorb shock as it comes into contact when the flow path is switched.
  • the stem cushioning member 300 includes a first cushioning material 310 made of an elastic resin material (e.g., rubber or silicone, etc.) installed at one end of the stem 210, and the first valve chamber ( 111) may include a second cushioning material 320 made of an elastic resin material that is installed at one end and elastically contacts the first cushioning material 310.
  • the valve operating member 400 has a piston structure and is installed to be connected to the coupling disk 240 of the stem 210 inside the second valve chamber 121 of the second valve body 120 and receives an electrical signal. It acts to change the flow path by moving the stem 210 while moving in the axial direction with respect to the second valve chamber 121 by an actuator such as a solenoid that applies external force in the axial direction.
  • the valve operating member 400 includes an inner piston 410 connected to a coupling disk 240 formed at one end of the stem 210, and a second valve chamber spaced apart from the inner piston 410 by a predetermined distance by an external force.
  • the outer piston 420 moves in the axial direction of (121), and is installed between the inner piston 410 and the outer piston 420, so that when an external force is applied to the outer piston 420 toward the inner piston 410, the outer piston 420 elastically moves. It may include an elastic body 430 that transmits external force to the inner piston 410 while being compressed.
  • the outer piston 420 is made of a ferromagnetic material and is axially aligned with respect to the second valve body 120 by a magnetic field generated by an electric signal applied to the solenoid coil 450 installed on the outside of the second valve body 120. It may be configured to move in one direction, but it may also be connected to various known actuators to receive external force and move.
  • the elastic body 430 can be constructed by applying a compression coil spring.
  • the flow path switching of the flow path switching valve for a hydraulic compressor with this configuration can be accomplished as follows.
  • Figure 1 shows a state in which fluid flowing in through the inlet 112 can be discharged through the first outlet 113.
  • the first disk 220 is connected to the inlet 112 and the second outlet 114. It is located at a corresponding position, and at this time, the inlet 112 can flow through the fluid inlet 221 disposed at the top of the first disk 220 in the drawing, and the second outlet 114 is connected to the first disk (220). In the drawing of 220), it is completely closed by the portion disposed at the lower part, and the first outlet 113 is in an open state.
  • the fluid flowing into the fluid inlet 221 of the first disk 220 through the inlet 112 flows into the first valve chamber 111 and is then discharged to the outside through the first outlet 113.
  • the outer piston 420 of the valve operating member 400 When an electric signal is applied to the solenoid coil 450 to switch the flow path, the outer piston 420 of the valve operating member 400 is moved by the magnetic field formed around the second valve body 120 as shown in FIG. 2. It moves toward the inner piston 410. At this time, the elastic body 430 is elastically compressed and primarily absorbs the shock. When the elastic body 430 is completely compressed, external force is transmitted to the inner piston 410 through the elastic body 430, so that the inner piston 410 moves toward the first valve chamber 111 and moves the stem 210 to the right in the drawing. I order it. At this time, the first cushioning material 310 installed at one end of the stem 210 contacts the second cushioning material 320 at the end of the first valve chamber 111, and a secondary buffering action occurs.
  • the first disk 220 moves to the outside of the inlet 112 and the second outlet 114 and moves to the first outlet 113 of the first valve chamber 111. ) is completely closed to prevent fluid from flowing into the first outlet (113). Then, the second disk 230 stops at a position corresponding to the inlet 112 and the second outlet 114, and fluid flows through the open portions on both sides of the second disk 230 to the second outlet 114. can be discharged as
  • the flow path switching valve for a hydraulic compressor of the present invention as described above includes an elastic body 430 installed between the outer piston 420 and the inner piston 410 during the flow path switching process by the valve operating member 400 composed of a piston structure, and , Since a buffering action occurs by the stem buffer member 300, damage, vibration, and noise of valve components due to impact can be prevented.
  • the space between the first disk 220, the second disk 230, and the coupling disk 240 of the passage opening and closing member 200 sliding inside the first valve chamber 111 becomes empty, so that the first valve chamber (111) Since it does not come into contact with the inner peripheral surface of 111), the friction force can be significantly reduced during the sliding process.
  • the present invention can be applied to a flow path switching valve that switches the flow direction of fluid in a hydraulic compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multiple-Way Valves (AREA)

Abstract

본 발명은 스템의 슬라이딩 동작에 의해 유로가 절환되며, 스템의 완충 및 유량 조절이 가능한 유압 압축기용 유로절환밸브에 관한 것으로, 본 발명의 한 형태에 따른 유압 압축기용 유로절환밸브는, 측면에 유체가 유입되는 유입구와, 유체가 배출되는 제1배출구 및 제2배출구가 개방되게 형성된 밸브챔버를 구비한 밸브몸체; 상기 밸브몸체의 밸브챔버 내부에 축방향으로 이동하도록 설치되는 스템과, 상기 스템의 외면에 반경방향으로 돌출되게 형성되어 스템의 이동 방향에 따라 상기 유입구와 제1배출구를 개폐하는 제1디스크와, 상기 제1디스크에 대해 축방향으로 일정 거리 이격된 위치에서 스템의 외면에 반경방향으로 돌출되게 형성되어 스템의 이동 방향에 따라 상기 유입구와 제2배출구를 개폐하는 제2디스크를 구비한 유로개폐부재; 상기 스템의 일단부와 상기 밸브챔버의 일측 단부 사이에 설치되어 유로개폐부재가 밸브챔버 내에서 축방향으로 이동하여 유로가 절환될 때 접촉하면서 충격을 흡수하는 스템완충부재; 및, 상기 밸브챔버 내부에 상기 스템의 다른 일단부와 연결되게 설치되며, 밸브챔버에 대해서 축방향으로 이동하면서 스템을 이동시키는 밸브작동부재;를 포함할 수 있다.

Description

유압 압축기용 유로절환밸브
본 발명은 압축기용 유로절환밸브에 관한 것으로, 더욱 상세하게는 스템의 슬라이딩 동작에 의해 유로가 절환되며, 스템의 완충 및 유량 조절이 가능한 유압 압축기용 유로절환밸브에 관한 것이다.
일반적인 유압 압축기는 피스톤의 왕복 운동을 통해 고압의 유체 압축을 실현한다. 이 때, 피스톤의 운동을 위하여 작동 유체의 공급 방향 절환이 필수적으로 수반되어야 하며, 밸브에 인가되는 전기적 신호에 의해 유로 방향의 절환이 가능하다.
다양한 유로의 조합에 따라 복잡한 유로의 절환이 가능하지만, 유압 압축기용 유로절환밸브는 단순 유로의 절환 용도로 사용되는데, 강한 피스톤 압력에 의해 구성부품이 자주 파손되는 문제가 있다.
또한 일반적인 방향절환밸브는 단순히 유로를 개폐하여 유로 방향 제어를 가능하게 한 것으로, 유로의 단순 절환만 가능하며 유량 조절이 필요할 경우에는 배관구의 수가 많아져 형상이 복잡해지며, 이로 인해 유지 관리가 어려워지는 문제도 있다.
본 발명은 상기한 문제를 해결하기 위한 것으로, 본 발명의 목적은 피스톤의 강한 압력에 의한 손상을 최소화할 수 있으며, 밸브스템의 이동시 발생하는 마찰력을 저감시켜 내구성을 향상시킬 수 있는 유압 압축기용 유로절환밸브를 제공하는 것이다.
본 발명의 다른 목적은 간단한 구성으로 유량의 제어가 가능한 유압 압축기용 유로절환밸브를 제공하는 것이다.
상기한 목적을 달성하기 위한 본 발명의 한 형태에 따른 유압 압축기용 유로절환밸브는, 측면에 유체가 유입되는 유입구와, 유체가 배출되는 제1배출구 및 제2배출구가 개방되게 형성된 밸브챔버를 구비한 밸브몸체; 상기 밸브몸체의 밸브챔버 내부에 축방향으로 이동하도록 설치되는 스템과, 상기 스템의 외면에 반경방향으로 돌출되게 형성되어 스템의 이동 방향에 따라 상기 유입구와 제1배출구를 개폐하는 제1디스크와, 상기 제1디스크에 대해 축방향으로 일정 거리 이격된 위치에서 스템의 외면에 반경방향으로 돌출되게 형성되어 스템의 이동 방향에 따라 상기 유입구와 제2배출구를 개폐하는 제2디스크를 구비한 유로개폐부재; 상기 스템의 일단부와 상기 밸브챔버의 일측 단부 사이에 설치되어 유로개폐부재가 밸브챔버 내에서 축방향으로 이동하여 유로가 절환될 때 접촉하면서 충격을 흡수하는 스템완충부재; 및, 상기 밸브챔버 내부에 상기 스템의 다른 일단부와 연결되게 설치되며, 밸브챔버에 대해서 축방향으로 이동하면서 스템을 이동시키는 밸브작동부재;를 포함할 수 있다.
상기 제2배출구는 상기 유입구에 대해 원주방향으로 180°이격된 위치에 형성되고, 제1배출구는 제2배출구에 대해 축방향으로 일정 거리 이격된 위치에 형성될 수 있다.
상기 제1디스크는, 상기 밸브챔버와 동일한 직경을 가지며, 상기 유입구와 마주보는 부분에 유입구의 일부분과 연통되면서 유체를 밸브챔버 내부 및 제1배출구 쪽으로 유도하는 유체도입구가 형성되며, 상기 유체도입구가 형성된 부분의 반대편(180°이격된 부분)은 상기 제2배출구를 완전히 폐쇄하는 크기 및 형태를 가지며; 상기 제2디스크는, 상기 밸브챔버와 동일한 직경을 가지며, 상기 유입구 및 제2배출구와 대응하는 위치로 이동했을 때 유입구 및 제2배출구의 일부를 개방할 수 있는 크기 및 형태를 가질 수 있다.
상기 밸브작동부재는, 상기 스템의 다른 일단부와 연결되는 내측 피스톤과, 상기 내측 피스톤과 일정 거리 이격되어 외력에 의해 밸브챔버의 축방향으로 이동하는 외측 피스톤 및, 상기 내측 피스톤과 외측 피스톤 사이에 설치되어 외측 피스톤에 내측 피스톤 쪽으로 외력이 가해지면 탄력적으로 압축되면서 내측 피스톤에 외력을 전달하는 탄성체를 포함할 수 있다.
상기 스템완충부재는 상기 스템의 일단부에 설치되는 탄력성이 있는 수지 재질의 제1완충재와, 상기 밸브챔버의 일측 단부에 설치되어 상기 제1완충재와 탄력적으로 접촉하는 탄력성이 있는 수지 재질의 제2완충재를 포함할 수 있다.
본 발명의 다른 한 형태에 따른 유압 압축기용 유로절환밸브는, 측면에 유체가 유입되는 유입구가 형성되고, 상기 유입구에 대해 원주방향으로 180°이격된 위치에 유체가 배출되는 제2배출구가 형성되며, 상기 제2배출구에 대해 축방향으로 일정 거리 이격된 위치에 유체가 배출되는 제1배출구가 개방되게 형성된 밸브챔버를 구비한 밸브몸체; 상기 밸브몸체의 밸브챔버 내부에 축방향으로 이동하도록 설치되는 스템과, 상기 스템의 외면에 반경방향으로 돌출되게 형성되어 스템의 이동 방향에 따라 상기 유입구와 제1배출구를 개폐하는 제1디스크와, 상기 제1디스크에 대해 축방향으로 일정 거리 이격된 위치에서 스템의 외면에 반경방향으로 돌출되게 형성되어 스템의 이동 방향에 따라 상기 유입구와 제2배출구를 개폐하는 제2디스크를 구비한 유로개폐부재; 상기 스템의 일단부와 상기 밸브챔버의 일측 단부 사이에 설치되어 유로개폐부재가 밸브챔버 내에서 축방향으로 이동하여 유로가 절환될 때 접촉하면서 충격을 흡수하는 스템완충부재; 및, 상기 스템의 다른 일단부와 연결되는 내측 피스톤과, 상기 내측 피스톤과 일정 거리 이격되어 외력에 의해 밸브챔버의 축방향으로 이동하는 외측 피스톤 및, 상기 내측 피스톤과 외측 피스톤 사이에 설치되어 외측 피스톤에 내측 피스톤 쪽으로 외력이 가해지면 탄력적으로 압축되면서 내측 피스톤에 외력을 전달하는 탄성체를 포함하여, 외력에 의해 밸브챔버에 대해서 축방향으로 이동하면서 스템을 이동시키는 밸브작동부재;를 포함할 수 있다.
상기 제1디스크는, 상기 밸브챔버와 동일한 직경을 가지며, 상기 유입구와 마주보는 부분에 유입구의 일부분과 연통되면서 유체를 밸브챔버 내부 및 제1배출구 쪽으로 유도하는 유체도입구가 형성되며, 상기 유체도입구가 형성된 부분의 반대편(180°이격된 부분)은 상기 제2배출구를 완전히 폐쇄하는 크기 및 형태를 가지며; 상기 제2디스크는, 상기 밸브챔버와 동일한 직경을 가지며, 상기 유입구 및 제2배출구와 대응하는 위치로 이동했을 때 유입구 및 제2배출구의 일부를 개방할 수 있는 크기 및 형태를 가질 수 있다.
그리고 상기 스템완충부재는 상기 스템의 일단부에 설치되는 탄력성이 있는 수지 재질의 제1완충재와, 상기 밸브챔버의 일측 단부에 설치되어 상기 제1완충재와 탄력적으로 접촉하는 탄력성이 있는 수지 재질의 제2완충재를 포함할 수 있다.
본 발명에 따르면, 피스톤 구조로 이루어진 밸브작동부재에 의한 유로 절환 과정에서 외측 피스톤과 내측 피스톤 사이에 설치된 탄성체 및/또는 스템완충부재에 의해 완충 작용이 발생하므로 충격에 의한 밸브 구성 부품의 손상과 진동, 소음을 방지할 수 있다.
또한 밸브챔버 내부에서 슬라이딩하는 유로개폐부재의 제1디스크와 제2디스크 및 커플링디스크 사이가 빈 공간으로 되어 밸브챔버의 내주면과 접촉하지 않게 되므로 슬라이딩 과정에서 마찰력을 대폭 저감시킬 수 있다.
따라서 충격과 마찰에 의한 밸브의 구성 부품의 손상 및 수명 단축을 방지할 수 있다.
또한 유로 절환을 위한 구성이 단순화될 수 있으므로 유지 관리가 용이하며, 제조 비용도 절감할 수 있는 이점도 있다.
도 1은 본 발명의 일 실시예에 따른 유압 압축기용 유로절환밸브의 단면도이다.
도 2는 본 발명의 일 실시예에 따른 유압 압축기용 유로절환밸브의 유로가 전환된 상태를 나타낸 단면도이다.
도 3은 본 발명의 일 실시예에 따른 유압 압축기용 유로절환밸브의 일부분을 나타낸 평면도이다.
첨부한 도면을 참조하여 본 발명의 실시예에 의한 유압 압축기용 유로절환밸브에 대하여 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하거나, 개략적인 구성을 이해하기 위하여 실제보다 축소하여 도시한 것이다.
또한, 제1 및 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 한편, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1 내지 도 3에 도시한 것과 같이 본 발명의 일 실시예에 따른 유압 압축기용 유로절환밸브는, 밸브몸체(100), 스템(210)과 제1디스크(220) 및 제2디스크(230)를 포함하는 유로개폐부재(200), 스템완충부재(300), 및 밸브작동부재(400)를 포함한다.
밸브몸체(100)는 유로개폐부재(200) 및 밸브작동부재(400)를 수용함과 더불어 유체가 통과하는 공간을 형성하는 원통형(실린더형)의 밸브챔버(111, 121)를 구비한다. 밸브챔버(111)의 측면에는 유체가 유입되는 유입구(112)와, 유체가 배출되는 제1배출구(113) 및 제2배출구(114)가 내외측으로 개방되게 형성된다. 밸브몸체(100)는 유체의 압력을 견딜 수 있도록 강도가 우수한 재질로 이루어진다.
여기서 제2배출구(114)는 상기 유입구(112)에 대해 원주방향으로 180°이격된 위치에 형성되어 서로 마주보게 배치되고, 제1배출구(113)는 제2배출구(114)에 대해 축방향으로 일정 거리 이격된 위치에 형성된다.
밸브몸체(100)는 유입구(112)와 제1배출구(113) 및 제2배출구(114)가 형성되어 있고, 유로개폐부재(200)가 수용되는 제1밸브몸체(110)와, 밸브작동부재(400)가 설치되는 제2밸브몸체(120)의 2 부분으로 구분될 수 있다. 제1밸브몸체(110)와 제2밸브몸체(120)는 개별체로 제작된 후 용접되거나 암나사와 수나사에 의한 나선 결합 방식, 또는 별도의 클램프 기구를 사용한 결합 방식 등 공지의 결합방식으로 동축상으로 결합되어 일체화될 수 있다. 이해를 돕기 위하여 제1밸브몸체(110)의 밸브챔버는 제1밸브챔버(111)로, 제2밸브몸체(120)의 밸브챔버는 제2밸브챔버(121)로 명칭을 부여하여 설명한다.
유로개폐부재(200)는 제1밸브챔버(111) 내부에 축방향으로 슬라이딩이 가능하게 설치되어 이동 방향에 따라 유로를 절환하는 작용을 한다. 즉, 유입구(112)를 통해 유입되는 유체가 제1배출구(113)를 통해 배출되거나, 유입구(112)를 통해 유입되는 유체가 제2배출구(114)를 통해 배출되도록 유로를 절환하는 작용을 하게 된다.
이 실시예에서 유로개폐부재(200)는 상기 제1밸브챔버(111) 내부에 축방향으로 이동하도록 설치되는 스템(210)과, 상기 스템(210)의 외면에 반경방향으로 돌출되게 형성되어 스템(210)의 이동 방향에 따라 상기 유입구(112)와 제1배출구(113)를 개폐하는 제1디스크(220)와, 상기 제1디스크(220)에 대해 축방향으로 일정 거리 이격된 위치에서 스템(210)의 외면에 반경방향으로 돌출되게 형성되어 스템(210)의 이동 방향에 따라 상기 유입구(112)와 제2배출구(114)를 개폐하는 제2디스크(230)를 포함하며, 스템(210)과 제1디스크(220) 및 제2디스크(230)는 함께 제1밸브챔버(111) 내에서 축방향으로 슬라이딩하면서 이동한다.
유로개폐부재(200)의 스템(210)은 원형 봉 또는 다각형 봉 형태를 가질 수 있으며, 일단부에는 스템완충부재(300)를 구성하는 제1완충재(310)가 부착되고, 다른 일단부에는 밸브작동부재(400)와 연결됨과 동시에 유입구(112)를 통해 유입된 유체가 밸브작동부재(400) 쪽으로 누출되지 않도록 하는 커플링디스크(240)가 형성되어 있다. 상기 커플링디스크(240)는 제1밸브챔버(111)의 직경과 대체로 일치하는 직경을 갖도록 되어 스템(210)과 제1디스크(220) 및 제2디스크(230)와 함께 제1밸브챔버(111)의 내주면에 대해 슬라이딩한다. 그리고 제1밸브챔버(111)의 내주면과 커플링디스크(240)의 외주면 사이로 유체가 누출되지 않도록 커플링디스크(240)의 외주면에 실링재(미도시)가 마련될 수 있다.
상기 제1디스크(220)는 상기 제1밸브챔버(111)의 내경과 거의 동일한 직경을 갖는 원반형으로 이루어질 수 있다. 제1디스크(220)의 일측 단부 중 상기 유입구(112)와 마주보는 부분에는 유입구(112)의 일부분과 연통되면서 유체를 제1밸브챔버(111) 내부로 유도한 후 제1배출구(113) 쪽으로 유도하는 유체도입구(221)가 일측으로 개방되게 형성되며, 상기 유체도입구(221)가 형성된 부분의 반대편(원주방향으로 180°이격된 부분)은 상기 제2배출구(114)를 완전히 폐쇄하는 크기(두께) 및 형태를 갖는다.
상기 제2디스크(230) 역시 상기 제1밸브챔버(111)의 내경과 거의 동일한 직경을 갖는원반형으로 이루어질 수 있다. 제2디스크(230)는 상기 커플링디스크(240)와 제1디스크(220) 사이에 배치되며, 상기 유입구(112) 및 제2배출구(114)와 대응하는 위치로 이동했을 때 유입구(112) 및 제2배출구(114)의 일부를 개방할 수 있는 크기(두께) 및 형태를 갖는다.
스템완충부재(300)는 스템(210)의 일단부와 제1밸브챔버(111)의 일측 단부 사이에 설치되어 유로개폐부재(200)가 제1밸브챔버(111) 내에서 축방향으로 이동하여 유로가 절환될 때 접촉하면서 충격을 흡수하는 작용을 한다. 이 실시예에서 스템완충부재(300)는 스템(210)의 일단부에 설치되는 탄력성이 있는 수지 재질(예를 들어 고무 또는 실리콘 등)의 제1완충재(310)와, 상기 제1밸브챔버(111)의 일측 단부에 설치되어 상기 제1완충재(310)와 탄력적으로 접촉하는 탄력성이 있는 수지 재질의 제2완충재(320)를 포함할 수 있다.
밸브작동부재(400)는 피스톤 구조로 이루어져 상기 제2밸브몸체(120)의 제2밸브챔버(121) 내부에서 상기 스템(210)의 커플링디스크(240)와 연결되게 설치되며, 전기적 신호에 의해 축방향으로 외력을 가하는 솔레노이드와 같은 액추에이터에 의해 제2밸브챔버(121)에 대해서 축방향으로 이동하면서 스템(210)을 이동시켜 유로를 전환시키는 작용을 한다.
밸브작동부재(400)는 스템(210)의 일단부에 형성된 커플링디스크(240)와 연결되는 내측 피스톤(410)과, 상기 내측 피스톤(410)과 일정 거리 이격되어 외력에 의해 제2밸브챔버(121)의 축방향으로 이동하는 외측 피스톤(420) 및, 상기 내측 피스톤(410)과 외측 피스톤(420) 사이에 설치되어 외측 피스톤(420)에 내측 피스톤(410) 쪽으로 외력이 가해지면 탄력적으로 압축되면서 내측 피스톤(410)에 외력을 전달하는 탄성체(430)를 포함할 수 있다.
상기 외측 피스톤(420)은 강자성체로 되어, 제2밸브몸체(120)의 외측에 설치되는 솔레노이드 코일(450)에 인가되는 전기 신호에 의해 생성되는 자기장에 의해 제2밸브몸체(120)에 대해 축방향으로 이동하도록 구성될 수 있으나, 이외에도 다양한 공지의 액추에이터에 연결되어 외력을 전달받아 이동할 수도 있을 것이다.
상기 탄성체(430)는 압축코일스프링을 적용하여 구성할 수 있다.
이러한 구성으로 이루어진 유압 압축기용 유로절환밸브의 유로 절환은 다음과 같이 이루어질 수 있다.
도 1은 유입구(112)를 통해 유입된 유체가 제1배출구(113)를 통해서 배출될 수 있는 상태로서, 이 상태에서는 제1디스크(220)가 유입구(112) 및 제2배출구(114)와 대응하는 위치에 있으며, 이 때 유입구(112)는 제1디스크(220)의 도면상 상부에 배치된 유체도입구(221)를 통해 흘러갈 수 있으며, 제2배출구(114)는 제1디스크(220)의 도면상 하부에 배치된 부분에 의해 완전히 폐쇄되며, 제1배출구(113)는 개방된 상태이다.
따라서 유입구(112)를 통해 제1디스크(220)의 유체도입구(221)로 유입되는 유체는 제1밸브챔버(111) 내로 유입된 후 제1배출구(113)를 통해서 외부로 배출된다.
유로를 절환하기 위하여 솔레노이드 코일(450)에 전기 신호를 인가하면, 도 2에 도시한 것과 같이 제2밸브몸체(120) 주변에 형성되는 자기장에 의해 밸브작동부재(400)의 외측 피스톤(420)이 내측 피스톤(410) 쪽으로 이동하게 된다. 이 때 1차적으로 탄성체(430)가 탄력적으로 압축되면서 1차적으로 충격을 흡수한다. 탄성체(430)가 완전히 압축되면 탄성체(430)를 통해서 내측 피스톤(410)에 외력이 전달되어 내측 피스톤(410)이 제1밸브챔버(111) 쪽으로 이동하여 스템(210)을 도면상 오른쪽으로 이동시킨다. 이 때, 스템(210)의 일단부에 설치된 제1완충재(310)가 제1밸브챔버(111) 끝단의 제2완충재(320)와 접촉하면서 2차 완충 작용이 일어나게 된다.
이와 같이 스템(210)이 도면상 오른쪽으로 이동하면, 제1디스크(220)는 유입구(112) 및 제2배출구(114)의 외측으로 이동하여 제1밸브챔버(111) 중 제1배출구(113)와 연통된 부분을 완전히 폐쇄하여 제1배출구(113)로는 유체가 흘러가지 않게 한다. 그리고 제2디스크(230)가 유입구(112) 및 제2배출구(114)와 대응하는 위치에 정지하게 되며, 제2디스크(230) 양쪽의 개방된 부분을 통해서 유체가 흘러서 제2배출구(114)로 배출될 수 있다.
전술한 것과 같은 본 발명의 유압 압축기용 유로절환밸브는, 피스톤 구조로 이루어진 밸브작동부재(400)에 의한 유로 절환 과정에서 외측 피스톤(420)과 내측 피스톤(410) 사이에 설치된 탄성체(430) 및, 스템완충부재(300)에 의해 완충 작용이 발생하므로 충격에 의한 밸브 구성 부품의 손상과 진동, 소음을 방지할 수 있다.
또한 제1밸브챔버(111) 내부에서 슬라이딩하는 유로개폐부재(200)의 제1디스크(220)와 제2디스크(230) 및 커플링디스크(240) 사이가 빈 공간으로 되어 제1밸브챔버(111)의 내주면과 접촉하지 않게 되므로 슬라이딩 과정에서 마찰력을 대폭 저감시킬 수 있다.
이상에서 본 발명은 실시예를 참조하여 상세히 설명되었으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 상기에서 설명된 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 부가 및 변형이 가능할 것임은 당연하며, 이와 같은 변형된 실시 형태들 역시 아래에 첨부한 특허청구범위에 의하여 정하여지는 본 발명의 보호 범위에 속하는 것으로 이해되어야 할 것이다.
본 발명은 유압 압축기의 유체의 유로 방향을 절환하는 유로절환밸브에 적용될 수 있다.

Claims (8)

  1. 측면에 유체가 유입되는 유입구와, 유체가 배출되는 제1배출구 및 제2배출구가 개방되게 형성된 밸브챔버를 구비한 밸브몸체;
    상기 밸브몸체의 밸브챔버 내부에 축방향으로 이동하도록 설치되는 스템과, 상기 스템의 외면에 반경방향으로 돌출되게 형성되어 스템의 이동 방향에 따라 상기 유입구와 제1배출구를 개폐하는 제1디스크와, 상기 제1디스크에 대해 축방향으로 일정 거리 이격된 위치에서 스템의 외면에 반경방향으로 돌출되게 형성되어 스템의 이동 방향에 따라 상기 유입구와 제2배출구를 개폐하는 제2디스크를 구비한 유로개폐부재;
    상기 스템의 일단부와 상기 밸브챔버의 일측 단부 사이에 설치되어 유로개폐부재가 밸브챔버 내에서 축방향으로 이동하여 유로가 절환될 때 접촉하면서 충격을 흡수하는 스템완충부재; 및,
    상기 밸브챔버 내부에 상기 스템의 다른 일단부와 연결되게 설치되며, 밸브챔버에 대해서 축방향으로 이동하면서 스템을 이동시키는 밸브작동부재;
    를 포함하는 유압 압축기용 유로절환밸브.
  2. 제1항에 있어서, 상기 제2배출구는 상기 유입구에 대해 원주방향으로 180°이격된 위치에 형성되고, 제1배출구는 제2배출구에 대해 축방향으로 일정 거리 이격된 위치에 형성된 유압 압축기용 유로절환밸브.
  3. 제2항에 있어서, 상기 제1디스크는, 상기 밸브챔버와 동일한 직경을 가지며, 상기 유입구와 마주보는 부분에 유입구의 일부분과 연통되면서 유체를 밸브챔버 내부 및 제1배출구 쪽으로 유도하는 유체도입구가 형성되며, 상기 유체도입구가 형성된 부분의 반대편(180°이격된 부분)은 상기 제2배출구를 완전히 폐쇄하는 크기 및 형태를 가지며;
    상기 제2디스크는, 상기 밸브챔버와 동일한 직경을 가지며, 상기 유입구 및 제2배출구와 대응하는 위치로 이동했을 때 유입구 및 제2배출구의 일부를 개방할 수 있는 크기 및 형태를 갖는 유압 압축기용 유로절환밸브.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 밸브작동부재는, 상기 스템의 다른 일단부와 연결되는 내측 피스톤과, 상기 내측 피스톤과 일정 거리 이격되어 외력에 의해 밸브챔버의 축방향으로 이동하는 외측 피스톤 및, 상기 내측 피스톤과 외측 피스톤 사이에 설치되어 외측 피스톤에 내측 피스톤 쪽으로 외력이 가해지면 탄력적으로 압축되면서 내측 피스톤에 외력을 전달하는 탄성체를 포함하는 유압 압축기용 유로절환밸브.
  5. 제1항에 있어서, 상기 스템완충부재는 상기 스템의 일단부에 설치되는 탄력성이 있는 수지 재질의 제1완충재와, 상기 밸브챔버의 일측 단부에 설치되어 상기 제1완충재와 탄력적으로 접촉하는 탄력성이 있는 수지 재질의 제2완충재를 포함하는 유압 압축기용 유로절환밸브.
  6. 측면에 유체가 유입되는 유입구가 형성되고, 상기 유입구에 대해 원주방향으로 180°이격된 위치에 유체가 배출되는 제2배출구가 형성되며, 상기 제2배출구에 대해 축방향으로 일정 거리 이격된 위치에 유체가 배출되는 제1배출구가 개방되게 형성된 밸브챔버를 구비한 밸브몸체;
    상기 밸브몸체의 밸브챔버 내부에 축방향으로 이동하도록 설치되는 스템과, 상기 스템의 외면에 반경방향으로 돌출되게 형성되어 스템의 이동 방향에 따라 상기 유입구와 제1배출구를 개폐하는 제1디스크와, 상기 제1디스크에 대해 축방향으로 일정 거리 이격된 위치에서 스템의 외면에 반경방향으로 돌출되게 형성되어 스템의 이동 방향에 따라 상기 유입구와 제2배출구를 개폐하는 제2디스크를 구비한 유로개폐부재;
    상기 스템의 일단부와 상기 밸브챔버의 일측 단부 사이에 설치되어 유로개폐부재가 밸브챔버 내에서 축방향으로 이동하여 유로가 절환될 때 접촉하면서 충격을 흡수하는 스템완충부재; 및,
    상기 스템의 다른 일단부와 연결되는 내측 피스톤과, 상기 내측 피스톤과 일정 거리 이격되어 외력에 의해 밸브챔버의 축방향으로 이동하는 외측 피스톤 및, 상기 내측 피스톤과 외측 피스톤 사이에 설치되어 외측 피스톤에 내측 피스톤 쪽으로 외력이 가해지면 탄력적으로 압축되면서 내측 피스톤에 외력을 전달하는 탄성체를 포함하여, 외력에 의해 밸브챔버에 대해서 축방향으로 이동하면서 스템을 이동시키는 밸브작동부재;
    를 포함하는 유압 압축기용 유로절환밸브.
  7. 제6항에 있어서, 상기 제1디스크는, 상기 밸브챔버와 동일한 직경을 가지며, 상기 유입구와 마주보는 부분에 유입구의 일부분과 연통되면서 유체를 밸브챔버 내부 및 제1배출구 쪽으로 유도하는 유체도입구가 형성되며, 상기 유체도입구가 형성된 부분의 반대편(180°이격된 부분)은 상기 제2배출구를 완전히 폐쇄하는 크기 및 형태를 가지며;
    상기 제2디스크는, 상기 밸브챔버와 동일한 직경을 가지며, 상기 유입구 및 제2배출구와 대응하는 위치로 이동했을 때 유입구 및 제2배출구의 일부를 개방할 수 있는 크기 및 형태를 갖는 유압 압축기용 유로절환밸브.
  8. 제6항에 있어서, 상기 스템완충부재는 상기 스템의 일단부에 설치되는 탄력성이 있는 수지 재질의 제1완충재와, 상기 밸브챔버의 일측 단부에 설치되어 상기 제1완충재와 탄력적으로 접촉하는 탄력성이 있는 수지 재질의 제2완충재를 포함하는 유압 압축기용 유로절환밸브.
PCT/KR2023/002593 2022-11-03 2023-02-23 유압 압축기용 유로절환밸브 WO2024096200A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0145443 2022-11-03
KR1020220145443A KR20240063626A (ko) 2022-11-03 2022-11-03 유압 압축기용 유로절환밸브

Publications (1)

Publication Number Publication Date
WO2024096200A1 true WO2024096200A1 (ko) 2024-05-10

Family

ID=90930855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/002593 WO2024096200A1 (ko) 2022-11-03 2023-02-23 유압 압축기용 유로절환밸브

Country Status (2)

Country Link
KR (1) KR20240063626A (ko)
WO (1) WO2024096200A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4097200A (en) * 1977-01-03 1978-06-27 Sundstrand Corporation Self-pressurization system for gearboxes and the like
JPH08177745A (ja) * 1994-12-21 1996-07-12 Hitachi Constr Mach Co Ltd 油圧ポンプ流量制御装置
JP2001289154A (ja) * 2000-04-11 2001-10-19 Kosmek Ltd 増圧ポンプ
KR20030037111A (ko) * 2001-11-02 2003-05-12 엘지.필립스 엘시디 주식회사 다이어프램 펌프용 공기절환밸브
JP2017133458A (ja) * 2016-01-29 2017-08-03 アイシン精機株式会社 オイル供給装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211728A (ja) 2006-02-13 2007-08-23 Tgk Co Ltd 可変容量圧縮機用制御弁
KR101839145B1 (ko) 2011-05-23 2018-03-16 학교법인 두원학원 압축기용 제어밸브 및 그 제조방법
KR101188227B1 (ko) 2011-09-02 2012-10-08 이능수 3-방향 다목적 전환 밸브
KR101988572B1 (ko) 2017-11-20 2019-06-12 동일기계공업 주식회사 가변용량 압축기용 제어밸브

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4097200A (en) * 1977-01-03 1978-06-27 Sundstrand Corporation Self-pressurization system for gearboxes and the like
JPH08177745A (ja) * 1994-12-21 1996-07-12 Hitachi Constr Mach Co Ltd 油圧ポンプ流量制御装置
JP2001289154A (ja) * 2000-04-11 2001-10-19 Kosmek Ltd 増圧ポンプ
KR20030037111A (ko) * 2001-11-02 2003-05-12 엘지.필립스 엘시디 주식회사 다이어프램 펌프용 공기절환밸브
JP2017133458A (ja) * 2016-01-29 2017-08-03 アイシン精機株式会社 オイル供給装置

Also Published As

Publication number Publication date
KR20240063626A (ko) 2024-05-10

Similar Documents

Publication Publication Date Title
US3707992A (en) Electromagnetic valve assembly
US11067177B2 (en) Sprung gate valves movable by an actuator
KR100221563B1 (ko) 포핏밸브
KR101885527B1 (ko) 셔틀 밸브
US8413685B2 (en) Control valve
CN101317031A (zh) 压力补偿方法
WO2024096200A1 (ko) 유압 압축기용 유로절환밸브
CN216742851U (zh) 电磁阀
US2583539A (en) Valve packing construction
DK161853B (da) Elektromagnetisk proportional reguleringsventil
WO2011021730A1 (en) Solenoid valve
CN113586648A (zh) 双向独立阀磁流变阻尼器
US3848637A (en) High speed four-way valve
CN114321439B (zh) 一种自动换向阀
US11680650B2 (en) Four-position switching valve
CN216975955U (zh) 一种大流量高频电磁阀
US20230313893A1 (en) Double check valve, pneumatic braking device, and vehicle
WO2013161114A1 (ja) 方向制御弁
US11649906B2 (en) Solenoid valve
WO2018227183A1 (en) Hydraulic valve configuration for normally high valves with a normally low solenoid
CN221121131U (zh) 一种阀装置
CN219639444U (zh) 一种电磁阀
KR20180009437A (ko) 글로브 밸브용 액츄에이터
CN114811062A (zh) 内置电磁驱动机构的高压防爆阀门及其控制方法
CN117267445A (zh) 阀门时序控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885898

Country of ref document: EP

Kind code of ref document: A1