WO2024095552A1 - 揺動テーブル - Google Patents

揺動テーブル Download PDF

Info

Publication number
WO2024095552A1
WO2024095552A1 PCT/JP2023/028732 JP2023028732W WO2024095552A1 WO 2024095552 A1 WO2024095552 A1 WO 2024095552A1 JP 2023028732 W JP2023028732 W JP 2023028732W WO 2024095552 A1 WO2024095552 A1 WO 2024095552A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
attached
rolling bearing
slider
oscillating
Prior art date
Application number
PCT/JP2023/028732
Other languages
English (en)
French (fr)
Inventor
拓明 下吉
悟 加藤
Original Assignee
日本トムソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本トムソン株式会社 filed Critical 日本トムソン株式会社
Publication of WO2024095552A1 publication Critical patent/WO2024095552A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C31/00Bearings for parts which both rotate and move linearly
    • F16C31/04Ball or roller bearings
    • F16C31/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members

Definitions

  • a sliding device consisting of a base body and a sliding body is known (see, for example, Patent Document 1).
  • a meshing body such as a worm or pinion is used as the drive system.
  • the rack teeth that mesh with this meshing body are formed on the first sliding member side fixed to the base body or the second sliding member side fixed to the sliding body.
  • one of the objectives is to provide an oscillating table that allows for easy calculation of the service life, accurate positioning of the table section, and appropriate high-speed operation.
  • the oscillating table comprises a base portion, a linear motion mechanism including a rail attached to the base portion and a slider attached to the rail so as to be movable relative to the rail, a drive source for linearly reciprocating the slider, a first support portion attached to the slider and performing linear reciprocating motion together with the slider, a first rolling bearing attached to the first support portion, a table portion to which power from the drive source is transmitted for oscillating motion, a second support portion supporting the table portion, a second rolling bearing attached to the second support portion, and an eccentric shaft including a first shaft portion and a second shaft portion disposed in an eccentric position relative to the first shaft portion, the first shaft portion being supported by the first rolling bearing, and the second shaft portion being supported by the second rolling bearing.
  • the above-mentioned oscillating table makes it easy to calculate the service life, and allows accurate positioning of the table section, allowing for proper high-speed operation.
  • FIG. 1 is a schematic perspective view showing an oscillating table according to a first embodiment of the present disclosure.
  • FIG. 2 is a schematic plan view of the oscillating table shown in FIG.
  • FIG. 3 is a schematic side view of the oscillating table shown in FIG.
  • FIG. 4 is a schematic front view of the oscillating table shown in FIG.
  • FIG. 5 is a schematic perspective view showing the oscillating table in the first embodiment with a table portion, which will be described later, removed and some members indicated by dashed lines.
  • FIG. 6 is a schematic plan view of the oscillating table shown in FIG.
  • FIG. 7 is a schematic side view of the oscillating table shown in FIG.
  • FIG. 8 is a schematic front view of the oscillating table shown in FIG. FIG.
  • FIG. 9 is a schematic cross-sectional view of the rocking table shown in FIG. 5, including a base portion to be described later, cut along the YZ plane.
  • FIG. 10 is a schematic plan view of the oscillating table shown in FIG.
  • FIG. 11 is a schematic side view of the oscillating table shown in FIG.
  • FIG. 12 is a schematic front view of the oscillating table shown in FIG.
  • FIG. 13 is an enlarged view of region XIII shown in FIG.
  • FIG. 14 is a schematic side view of the oscillating table shown in FIG.
  • FIG. 15 is a schematic side view of the oscillating table showing a state in which a table portion, which will be described later, is tilted by oscillating.
  • FIG. 16 is a schematic side view of the rocking table before it is tilted, that is, showing a state in which a table portion, which will be described later, is horizontal.
  • the oscillating table of the present disclosure comprises a base portion, a linear motion mechanism including a rail attached to the base portion and a slider attached so as to be movable relative to the rail, a drive source for linearly reciprocating the slider, a first support portion attached to the slider and performing linear reciprocating motion together with the slider, a first rolling bearing attached to the first support portion, a table portion to which power from the drive source is transmitted and which can perform oscillating motion, a second support portion supporting the table portion, a second rolling bearing attached to the second support portion, and an eccentric shaft including a first shaft portion and a second shaft portion arranged in an eccentric position relative to the first shaft portion, the first shaft portion being supported by the first rolling bearing and the second shaft portion being supported by the second rolling bearing.
  • the slider included in the linear motion mechanism reciprocates linearly due to the power from the drive source.
  • the first support part attached to the slider reciprocates linearly together with the slider.
  • the table part attached to the second support part via the eccentric shaft oscillates with the linear reciprocating motion of the first support part.
  • the first shaft part of the eccentric shaft is supported by the first rolling bearing
  • the second shaft part of the eccentric shaft is supported by the second rolling bearing.
  • the configuration employs the first rolling bearing and the second rolling bearing, unlike the drive system employing the worm gear, no gap is generated, so the table part can be accurately positioned and is suitable for high-speed operation. Therefore, with such an oscillating table, the life calculation is easy, the table part can be accurately positioned, and high-speed operation can be performed appropriately.
  • accurate positioning of the table part means that the angle of inclination of the table part tilted by the oscillating motion can be accurately determined.
  • the linear motion mechanism may include a linear motion guide unit. This allows the table portion to oscillate smoothly and allows for more accurate positioning.
  • At least one of the first rolling bearing and the second rolling bearing may include an angular bearing.
  • the table portion can be oscillated smoothly while properly supporting the eccentric shaft, and accurate life calculations can be performed.
  • the driving source may include a ball screw having a ball screw nut attached to the screw shaft and the first support portion, and a motor that rotates the screw shaft.
  • the rotational motion of the motor can be converted into linear motion of the slider, allowing the table portion to oscillate more smoothly, and the rotation of the motor can be controlled to achieve high-speed operation and accurate positioning.
  • the direction in which an imaginary line segment connecting the center of the first shaft portion and the center of the second shaft portion extends may be horizontal when the table portion is horizontal.
  • the above-mentioned oscillating table may be provided with multiple sliders.
  • the first support part can be accurately moved back and forth in a straight line by multiple sliders, enabling more accurate positioning and high-speed operation.
  • the table portion may include a sliding portion having a sliding surface formed of a curved surface.
  • the base portion may include a guide portion formed of a curved surface, having a guide surface that contacts the sliding surface, and guiding the table portion. In this way, the rocking motion of the table portion can be made smoother by the sliding portion having the sliding surface and the guide portion having the guide surface.
  • the guide parts may be provided in pairs on either side of the rail. This allows the oscillating table part to be guided more appropriately.
  • FIG. 1 is a schematic perspective view showing a rocking table in the first embodiment of the present disclosure.
  • the Y direction is the direction in which a rail described later extends, and indicates the longitudinal direction of the rocking table
  • the X direction indicates the short side direction of the rocking table
  • the Z direction indicates the thickness direction (height direction) of the rocking table.
  • the X direction, the Y direction, and the Z direction are each perpendicular to each other.
  • FIG. 2 is a schematic plan view of the rocking table shown in FIG. 1.
  • FIG. 2 is a view of the rocking table shown in FIG. 1 as viewed in the direction indicated by the arrow II.
  • FIG. 1 is a schematic perspective view showing a rocking table in the first embodiment of the present disclosure.
  • the Y direction is the direction in which a rail described later extends, and indicates the longitudinal direction of the rocking table
  • the X direction indicates the short side direction of the rocking table
  • the Z direction indicates the thickness direction (height direction) of
  • FIG. 3 is a schematic side view of the rocking table shown in FIG. 1.
  • FIG. 3 is a view of the rocking table shown in FIG. 1 as viewed in the direction indicated by the arrow III.
  • FIG. 4 is a schematic front view of the rocking table shown in FIG. 1.
  • FIG. 4 is a view of the rocking table shown in FIG. 1 as viewed in the direction indicated by the arrow IV.
  • FIG. 5 is a schematic perspective view of the oscillating table in embodiment 1 with the table portion described below removed and some components indicated by dashed lines.
  • FIG. 6 is a schematic plan view of the oscillating table shown in FIG. 5.
  • FIG. 6 is a view of the oscillating table shown in FIG. 5 as viewed in the direction indicated by arrow VI.
  • FIG. 7 is a schematic side view of the oscillating table shown in FIG. 5.
  • FIG. 7 is a view of the oscillating table shown in FIG. 5 as viewed in the direction indicated by arrow VII.
  • FIG. 8 is a schematic front view of the oscillating table shown in FIG. 5.
  • FIG. 8 is a view of the oscillating table shown in FIG. 5 as viewed in the direction indicated by arrow VIII.
  • FIG. 9 is a schematic cross-sectional view of the rocking table shown in FIG. 5, including a base portion described later, cut along the Y-Z plane.
  • FIG. 10 is a schematic plan view of the rocking table shown in FIG. 9.
  • FIG. 10 is a view of the rocking table shown in FIG. 9, seen in the direction indicated by arrow X.
  • FIG. 11 is a schematic side view of the rocking table shown in FIG. 9.
  • FIG. 11 is a view of the rocking table shown in FIG. 9, seen in the direction indicated by arrow XI.
  • FIG. 12 is a schematic front view of the rocking table shown in FIG. 9.
  • FIG. 12 is a view of the rocking table shown in FIG. 9, seen in the direction indicated by arrow XII.
  • FIG. 13 is an enlarged view of region XIII shown in FIG. 10.
  • FIG. 14 is a schematic side view of the rocking table shown in FIG. 13.
  • FIG. 15 is a schematic side view of the rocking table showing a state in which a table portion described later is tilted by rocking.
  • FIG. 16 is a schematic side view of the rocking table before tilting, i.e., showing a state in which the table portion described later is horizontal.
  • the oscillating table 10 includes a base portion 11, a linear motion mechanism 12, a drive source 13, a first support portion 14, a first rolling bearing 15, a table portion 16, a second support portion 18, a second rolling bearing 19, and an eccentric shaft 20.
  • both the first rolling bearing 15 and the second rolling bearing 19 are angular bearings.
  • the base portion 11 is rectangular when viewed in the thickness direction, that is, the Z direction.
  • the base portion 11 is the base of the oscillating table 10, and each member is directly or indirectly attached to the base portion 11.
  • the base portion 11 includes a plate-shaped base plate 34 and a pair of guide portions 17a and 17b.
  • a pair of guide portions 17a and 17b are integrally formed with the base plate 34.
  • Guide portion 17a and guide portion 17b are spaced apart in the X direction to sandwich a rail 21 described later.
  • Guide portion 17a and guide portion 17b are each provided to rise from base plate 34.
  • Guide portion 17a is formed of a curved surface and has guide surface 29a that comes into contact with sliding surface 38a described later.
  • Guide portion 17b is formed of a curved surface and has guide surface 29b that comes into contact with sliding surface 38b described later.
  • Guide surface 29a and guide surface 29b are provided at the Z direction ends of guide portion 17a and guide portion 17b, respectively.
  • Guide surface 29a and guide surface 29b are each arc-shaped when viewed in the X direction.
  • Guide surface 29a and guide surface 29b have the same curvature.
  • Guide surface 29a and guide surface 29b guide table portion 16 during the swinging motion of table portion 16.
  • the linear motion mechanism 12 is a linear motion guide unit.
  • the linear motion mechanism 12 includes a rail 21 and multiple sliders, in this embodiment two sliders 22a and 22b.
  • the rail 21 is attached to the base portion 11, specifically, to the central region in the X direction of the base plate 34, so that the longitudinal direction is placed in the Y direction.
  • the rail 21 is attached and fixed to the base plate 34 by multiple bolts.
  • the rail 21 has a rail track surface on which the rolling elements roll that is recessed along the longitudinal direction.
  • Sliders 22a and 22b are each attached to rail 21.
  • Sliders 22a and 22b each have a slider track surface along which the rolling elements roll that is recessed along the longitudinal direction.
  • a plurality of rolling elements, for example balls, are provided between the slider track surface of slider 22a and the rail track surface.
  • a plurality of rolling elements, for example balls are provided between the slider track surface of slider 22b and the rail track surface.
  • Linear motion mechanism 12 which serves as a linear motion guide unit, can smoothly move sliders 22a and 22b back and forth in a straight line in the longitudinal direction of rail 21.
  • the driving source 13 causes the sliders 22a and 22b to perform a linear reciprocating motion.
  • the driving source 13 includes a ball screw 23 and a motor 24.
  • the ball screw 23 includes a ball screw nut 25 and a screw shaft 26.
  • the screw shaft 26 is arranged so that its longitudinal direction extends in the Y direction.
  • a screw groove is provided on the outer diameter surface of the screw shaft 26.
  • the screw shaft 26 is rotated by the motor 24.
  • the ball screw nut 25 is attached to the screw shaft 26, and rolling elements (balls) are arranged between the screw groove and a raceway surface provided on the ball screw nut 25.
  • the ball screw nut 25 performs a linear reciprocating motion in the Y direction, which is the longitudinal direction of the screw shaft 26.
  • the first support 14 is block-shaped and attached to the ball screw nut 25.
  • the first support 14 is also attached so as to be placed on the sliders 22a and 22b. That is, the ball screw nut 25, the first support 14, the sliders 22a and 22b are attached to each other and configured to move as one unit.
  • the first support 14 is provided with a through hole penetrating in the X direction, and the first rolling bearing 15 is attached in this through hole. In this embodiment, the first support 14 is attached so that the outer ring of the first rolling bearing 15 is fitted into the through hole provided in the first support 14.
  • the table portion 16 is plate-shaped and is attached so as to cover the base portion 11 in the Z direction.
  • the table portion 16 can be swung by power transmitted from a drive source.
  • the table portion 16 includes a mounting portion 27 having a plane 37 that can be parallel to the X-Y plane.
  • the plane 37 of the mounting portion 27 is the surface exposed in the Z direction.
  • the surface located on the opposite side of the plane 37 of the mounting portion 27 in the thickness direction faces the base portion 11. Due to the swiveling motion of the table portion 16, the plane 37 of the mounting portion 27 is inclined with respect to the horizontal direction.
  • flange portions 35a and 35b are provided that protrude toward the base plate 34.
  • the Z-direction end faces of the flange portions 35a and 35b are configured with curved surfaces.
  • the Z-direction end face of the flange portion 35a and the Z-direction end face of the flange portion 35b are each arc-shaped when viewed in the X direction.
  • the table portion 16 includes a sliding portion 28a having a sliding surface 38a formed of a curved surface.
  • the table portion 16 includes a sliding portion 28b having a sliding surface 38b formed of a curved surface.
  • the sliding portions 28a and 28b are each attached by bolts to the surface of the mounting portion 27 that faces the base plate 34.
  • the sliding portions 28a and 28b are each detachably attached to the mounting portion 27.
  • the sliding portion 28a is disposed so as to contact the flange portion 35a.
  • the sliding portion 28b is disposed so as to contact the flange portion 35b.
  • the sliding surfaces 38a and 38b are each arc-shaped when viewed in the X direction. The curvatures of the sliding surfaces 38a and 38b are the same.
  • the second support part 18 is attached to the table part 16 and supports the table part 16.
  • the second support part 18 is attached to the surface of the mounting part 27 of the table part 16 that faces the base plate 34.
  • the second support part 18 is also block-shaped. Specifically, when viewed in the X direction, the second support part 18 has a tapered portion whose width in the Y direction narrows as it approaches the base part 11.
  • the second support part 18 is provided with a through hole that penetrates in the X direction, and the second rolling bearing 19 is attached in this through hole.
  • the second support part 18 is attached so that the outer ring of the second rolling bearing 19 is fitted into the through hole provided in the second support part 18.
  • the eccentric shaft 20 is attached so that its axial direction is in the X direction.
  • the eccentric shaft 20 includes a first shaft portion 31, a second shaft portion 32, and a connecting portion 33.
  • the connecting portion 33 is plate-shaped and is provided to connect the first shaft portion 31 and the second shaft portion 32.
  • the second shaft portion 32 is disposed in an eccentric position relative to the first shaft portion 31. Specifically, the X-direction end of the first shaft portion and the X-direction end of the second shaft portion 32 are connected in a state in which the centers of the respective shaft portions are shifted, i.e., in an eccentric state.
  • the eccentric shaft 20 rotates around the center 36b of the second shaft portion 32. In this case, the second shaft portion 32 rotates on its own axis.
  • the first shaft portion 31 revolves around the center 36b of the second shaft portion 32 as the rotation center.
  • the center 36a of the first shaft portion 31 and the center 36b of the second shaft portion 32 are illustrated in Figures 15 and 16.
  • the eccentric shaft 20 is supported by the first rolling bearing 15 and the second rolling bearing 19.
  • the first shaft portion 31 of the eccentric shaft 20 is supported by the first rolling bearing 15.
  • the second shaft portion 32 of the eccentric shaft 20 is supported by the second rolling bearing 19.
  • the first shaft portion 31 is fitted inside the inner ring included in the first rolling bearing 15.
  • the second shaft portion 32 is fitted inside the inner ring included in the second rolling bearing 19.
  • the table portion 16 specifically the plane 37 of the mounting portion 27, is horizontal
  • the direction in which the virtual line segment 39 connecting the center 36a of the first shaft portion 31 and the center 36b of the second shaft portion 32 extends is horizontal.
  • the virtual line segment 39 is illustrated by a dashed line in Figures 15 and 16.
  • this virtual line segment 39 also tilts.
  • the screw shaft 26 of the ball screw 23 rotates due to the transmission of rotational force from the motor 24.
  • the first support portion 14 also performs linear motion.
  • the eccentric shaft 20 rotates in response to the linear motion of the first support portion 14. Due to the rotation of the eccentric shaft 20, the table portion 16 oscillates together with the second support portion 18, guided by the guide surfaces 29a of the pair of guide portions 17a and the guide surfaces 29b of the pair of guide portions 17b.
  • the oscillation of the table portion 16 causes the flat surface 37 of the mounting portion 27 to tilt.
  • the sliders 22a and 22b included in the linear motion mechanism perform linear reciprocating motion due to power from the drive source 13.
  • the first support portion 14 attached to the sliders 22a and 22b performs linear reciprocating motion together with the sliders 22a and 22b.
  • the table portion 16 attached to the second support portion 18 via the eccentric shaft 20 performs an oscillating motion in conjunction with the linear reciprocating motion of the first support portion 14.
  • the first shaft portion 31 of the eccentric shaft 20 is supported by the first rolling bearing
  • the second shaft portion 32 of the eccentric shaft 20 is supported by the second rolling bearing 19.
  • this configuration makes it easy to calculate the lifespan based on fatigue of the rolling elements, etc.
  • the table portion 16 can be accurately positioned and is suitable for high-speed operation. Therefore, with such a rocking table 10, it is easy to calculate the lifespan, the table portion 16 can be accurately positioned, and high-speed operation can be performed appropriately.
  • the linear motion mechanism 12 includes a linear motion guide unit. This allows the table portion 16 to oscillate smoothly and to be positioned more accurately.
  • both the first rolling bearing and the second rolling bearing are angular bearings. Therefore, the table portion 16 can be swung smoothly while properly supporting the eccentric shaft 20, and accurate life calculations can be performed.
  • the driving source 13 includes a ball screw 23 having a ball screw nut 25 attached to the screw shaft 26 and the first support portion 14, and a motor 24 that rotates the screw shaft 26. Therefore, the rotational motion of the motor 24 can be converted into linear motion of the sliders 22a and 22b, making it possible to more smoothly oscillate the table portion 16, and by controlling the rotation of the motor 24, high-speed operation and accurate positioning can be achieved.
  • multiple sliders 22a and 22b are provided. Therefore, the multiple sliders 22a and 22b allow the first support portion 14 to accurately perform linear reciprocating motion, allowing for more accurate positioning and high-speed operation.
  • the table portion 16 includes a sliding portion 28a having a sliding surface 38a formed of a curved surface, and a sliding portion 28b having a sliding surface 38b formed of a curved surface.
  • the base portion 11 includes a guide portion 17a formed of a curved surface, having a guide surface 29a in contact with the sliding surface 38a, and guiding the table portion 16, and a guide portion 17b formed of a curved surface, having a guide surface 29b in contact with the sliding surface 38b, and guiding the table portion 16.
  • the rocking motion of the table portion 16 can be made smoother by the sliding portion 28a and the sliding portion 28b having the sliding surface 38a and the sliding surface 38b, respectively, and the guide portion 17a and the guide portion 17b having the guide surface 29a and the guide surface 29b, respectively.
  • the guide portion 17a and the guide portion 17b are provided as a pair on either side of the rail 21. This allows the oscillating table portion 16 to be guided more appropriately.
  • the guide portion 17a and the guide portion 17b are provided as a pair to sandwich the rail 21, but this is not limiting, and only one of them may be provided.
  • multiple sliders 22a and sliders 22b are provided, but this is not limited, and there may be only one slider.
  • the driving source 13 includes a ball screw 23 having a ball screw nut 25 attached to the screw shaft 26 and the first support portion 14, and a motor 24 that rotates the screw shaft 26.
  • the driving source 13 may use other mechanisms capable of linear reciprocating motion, such as a linear motor.
  • a linear guide unit is used as the linear motion mechanism, but this is not limited to this, and other linear motion mechanisms may be adopted.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Machine Tool Units (AREA)
  • Bearings For Parts Moving Linearly (AREA)

Abstract

揺動テーブルは、ベース部と、ベース部に取り付けられるレールおよびレールに相対移動可能に取り付けられるスライダを含む直動機構と、スライダを直線往復運動させる駆動源と、スライダに取り付けられ、スライダと共に直線往復運動する第1支持部と、第1支持部に取り付けられる第1転がり軸受と、駆動源からの動力が伝達されて揺動運動可能なテーブル部と、テーブル部を支持する第2支持部と、第2支持部に取り付けられる第2転がり軸受と、第1軸部および第1軸部に対して偏心した位置に配置される第2軸部を含み、第1軸部が第1転がり軸受に支持され、第2軸部が第2転がり軸受に支持される偏心軸と、を備える。

Description

揺動テーブル
 本開示は、揺動テーブルに関するものである。本出願は、2022年10月31日出願の日本出願第2022-174481号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 基体と摺動体からなる摺動装置が知られている(例えば特許文献1参照)。特許文献1に開示の摺動装置によると、駆動方式としてウォームやピニオン等の噛合体を用いている。そして、この噛合体と噛み合うラック歯は、基体に固着された第1摺動部材側または摺動体に固着された第2摺動部材側に形成されている。
特開2001-99254号公報
 揺動テーブル(例えば、ゴニオステージ)において、従来のウォームギアを採用する駆動方式では、以下の点で問題があった。すなわち、ウォームギアを採用する駆動方式は、駆動に際しいわゆる滑り機構を利用しているため、装置の寿命の計算が難しい。また、装置として隙間が存在する構成であるため、バックラッシュが生じ、テーブル部の正確な位置決めが極めて困難である。さらに、高速で運転するにも限界がある。
 そこで、寿命計算が容易であると共に、テーブル部の正確な位置決めを行うことができ、高速運転を適切に行うことができる揺動テーブルを提供することを目的の1つとする。
 本開示に従った揺動テーブルは、ベース部と、ベース部に取り付けられるレールおよびレールに相対移動可能に取り付けられるスライダを含む直動機構と、スライダを直線往復運動させる駆動源と、スライダに取り付けられ、スライダと共に直線往復運動する第1支持部と、第1支持部に取り付けられる第1転がり軸受と、駆動源からの動力が伝達されて揺動運動可能なテーブル部と、テーブル部を支持する第2支持部と、第2支持部に取り付けられる第2転がり軸受と、第1軸部および第1軸部に対して偏心した位置に配置される第2軸部を含み、第1軸部が第1転がり軸受に支持され、第2軸部が第2転がり軸受に支持される偏心軸と、を備える。
 上記揺動テーブルによれば、寿命計算が容易であると共に、テーブル部の正確な位置決めを行うことができ、高速運転を適切に行うことができる。
図1は、本開示の実施の形態1における揺動テーブルを示す概略斜視図である。 図2は、図1に示す揺動テーブルの概略平面図である。 図3は、図1に示す揺動テーブルの概略側面図である。 図4は、図1に示す揺動テーブルの概略正面図である。 図5は、後述するテーブル部を取り除き、一部の部材を破線で表した状態を示す実施の形態1における揺動テーブルを示す概略斜視図である。 図6は、図5に示す揺動テーブルの概略平面図である。 図7は、図5に示す揺動テーブルの概略側面図である。 図8は、図5に示す揺動テーブルの概略正面図である。 図9は、図5に示す揺動テーブルを後述するベース部を含み、Y-Z平面で切断した場合の概略断面図である。 図10は、図9に示す揺動テーブルの概略平面図である。 図11は、図9に示す揺動テーブルの概略側面図である。 図12は、図9に示す揺動テーブルの概略正面図である。 図13は、図10に示す領域XIIIの拡大図である。 図14は、図13に示す揺動テーブルの概略側面図である。 図15は、後述するテーブル部を揺動により傾斜させた状態を示す揺動テーブルの概略側面図である。 図16は、傾斜させる前、すなわち、後述するテーブル部が水平な状態を示す揺動テーブルの概略側面図である。
 [実施形態の概要]
 本開示の揺動テーブルは、ベース部と、ベース部に取り付けられるレールおよびレールに相対移動可能に取り付けられるスライダを含む直動機構と、スライダを直線往復運動させる駆動源と、スライダに取り付けられ、スライダと共に直線往復運動する第1支持部と、第1支持部に取り付けられる第1転がり軸受と、駆動源からの動力が伝達されて揺動運動可能なテーブル部と、テーブル部を支持する第2支持部と、第2支持部に取り付けられる第2転がり軸受と、第1軸部および第1軸部に対して偏心した位置に配置される第2軸部を含み、第1軸部が第1転がり軸受に支持され、第2軸部が第2転がり軸受に支持される偏心軸と、を備える。
 本開示の揺動テーブルによると、直動機構に含まれるスライダは、駆動源からの動力により直線往復運動する。スライダに取り付けられた第1支持部は、スライダと共に直線往復運動する。そうすると、偏心軸を介して第2支持部に取り付けられるテーブル部は、第1支持部の直線往復運動に伴って揺動運動する。ここで、偏心軸の第1軸部は、第1転がり軸受によって支持され、偏心軸の第2軸部は、第2転がり軸受によって支持されている。このような構成は、滑り機構と異なり、転動体の疲労等に基づく寿命計算が容易である。また、第1転がり軸受および第2転がり軸受を採用する構成であるため、ウォームギアを採用する駆動方式と異なり、隙間が生じないため、テーブル部の正確な位置決めを行うことができると共に、高速運転に適している。したがって、このような揺動テーブルによると、寿命計算が容易であると共に、テーブル部の正確な位置決めを行うことができ、高速運転を適切に行うことができる。ここで、テーブル部の正確な位置決めとは、揺動運動により傾斜するテーブル部の傾斜の角度を正確に決めることができることをいう。
 上記揺動テーブルにおいて、直動機構は、直動案内ユニットを含んでもよい。このようにすることにより、円滑にテーブル部を揺動させることができると共に、さらに正確に位置決めを行うことができる。
 上記揺動テーブルにおいて、第1転がり軸受および第2転がり軸受のうちの少なくともいずれか一方は、アンギュラベアリングを含んでもよい。このようにすることにより、偏心軸を適切に支持しながら、円滑にテーブル部を揺動させることができ、正確な寿命計算を行うことができる。
 上記揺動テーブルにおいて、駆動源は、ねじ軸および第1支持部に取り付けられるボールねじナットを備えるボールねじと、ねじ軸を回転させるモータと、を含んでもよい。このようにすることにより、モータの回転運動をスライダの直動運動に変換して、より円滑にテーブル部を揺動させることができると共にモータの回転を制御して、高速運転および正確な位置決めを実施することができる。
 上記揺動テーブルにおいて、水平方向に見て、テーブル部が水平であるとき、第1軸部の中心と第2軸部の中心とを結ぶ仮想線分の延びる方向は水平であってもよい。このようにすることにより、テーブル部の位置が水平であるときの揺動テーブルの安定性を確保することができる。
 上記揺動テーブルにおいて、スライダは、複数設けられていてもよい。このようにすることにより、複数のスライダによって第1支持部の直線往復運動を正確に行うことができ、より正確な位置決めおよび高速運転を実施することができる。
 上記揺動テーブルにおいて、テーブル部は、曲面から構成される摺動面を有する摺動部を含んでもよい。ベース部は、曲面から構成され、摺動面と接触する案内面を有し、テーブル部を案内する案内部を含んでもよい。このようにすることにより、摺動面を有する摺動部および案内面を有する案内部によって、テーブル部の揺動運動をより円滑にすることができる。
 上記揺動テーブルにおいて、案内部は、レールを挟むように一対設けられていてもよい。このようにすることにより、より適切に揺動するテーブル部を案内することができる。
 [実施形態の具体例]
 次に、本開示の揺動テーブルの具体的な実施の形態の一例を、図面を参照しつつ説明する。以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
 (実施の形態1)
 まず、本開示の実施の形態である実施の形態1について説明する。図1は、本開示の実施の形態1における揺動テーブルを示す概略斜視図である。図1および以下に示す図において、Y方向は、後述するレールの延びる方向であり、揺動テーブルの長手方向を示し、X方向は、揺動テーブルの短手方向を示し、Z方向は、揺動テーブルの厚さ方向(高さ方向)を示す。X方向、Y方向およびZ方向はそれぞれ、直交している。図2は、図1に示す揺動テーブルの概略平面図である。図2は、図1に示す揺動テーブルを矢印IIで示す向きに見た図である。図3は、図1に示す揺動テーブルの概略側面図である。図3は、図1に示す揺動テーブルを矢印IIIで示す向きに見た図である。図4は、図1に示す揺動テーブルの概略正面図である。図4は、図1に示す揺動テーブルを矢印IVで示す向きに見た図である。
 図5は、後述するテーブル部を取り除き、一部の部材を破線で表した状態を示す実施の形態1における揺動テーブルを示す概略斜視図である。図6は、図5に示す揺動テーブルの概略平面図である。図6は、図5に示す揺動テーブルを矢印VIで示す向きに見た図である。図7は、図5に示す揺動テーブルの概略側面図である。図7は、図5に示す揺動テーブルを矢印VIIで示す向きに見た図である。図8は、図5に示す揺動テーブルの概略正面図である。図8は、図5に示す揺動テーブルを矢印VIIIで示す向きに見た図である。
 図9は、図5に示す揺動テーブルを後述するベース部を含み、Y-Z平面で切断した場合の概略断面図である。図10は、図9に示す揺動テーブルの概略平面図である。図10は、図9に示す揺動テーブルを矢印Xで示す向きに見た図である。図11は、図9に示す揺動テーブルの概略側面図である。図11は、図9に示す揺動テーブルを矢印XIで示す向きに見た図である。図12は、図9に示す揺動テーブルの概略正面図である。図12は、図9に示す揺動テーブルを矢印XIIで示す向きに見た図である。図13は、図10に示す領域XIIIの拡大図である。図14は、図13に示す揺動テーブルの概略側面図である。図15は、後述するテーブル部を揺動により傾斜させた状態を示す揺動テーブルの概略側面図である。図16は、傾斜させる前、すなわち、後述するテーブル部が水平な状態を示す揺動テーブルの概略側面図である。
 図1~図16を参照して、本開示の実施の形態1に係る揺動テーブル10は、ベース部11と、直動機構12と、駆動源13と、第1支持部14と、第1転がり軸受15と、テーブル部16と、第2支持部18と、第2転がり軸受19と、偏心軸20と、を含む。本実施形態においては、第1転がり軸受15および第2転がり軸受19は共に、アンギュラベアリングである。次に、各部材の構成について説明する。
 ベース部11は、厚さ方向であるZ方向に見て矩形状である。ベース部11は、揺動テーブル10の土台となる部分であり、各部材が直接または間接的に取り付けられる。ベース部11は、板状のベース板34と、一対の案内部17a、案内部17bと、を含む。
 一対の案内部17a、案内部17bは、ベース板34と一体に構成されている。案内部17aおよび案内部17bは、後述するレール21を挟むようにX方向に間隔をあけて設けられている。案内部17aおよび案内部17bはそれぞれ、ベース板34から立ち上がるように設けられている。案内部17aは、曲面から構成され、後述する摺動面38aと接触する案内面29aを有する。案内部17bは、曲面から構成され、後述する摺動面38bと接触する案内面29bを有する。案内面29aおよび案内面29bはそれぞれ、案内部17aおよび案内部17bそれぞれのZ方向の端部に設けられている。案内面29aおよび案内面29bはそれぞれ、X方向に見て円弧状である。案内面29aおよび案内面29bの曲率は、同じである。案内面29aおよび案内面29bは、テーブル部16の揺動運動時において、テーブル部16を案内する。
 直動機構12は、本実施形態においては、直動案内ユニットである。直動機構12は、レール21と、複数、本実施形態においては、2つのスライダ22a、スライダ22bと、を含む。レール21は、ベース部11、具体的には、ベース板34のX方向の中央の領域に長手方向をY方向として載置するように取り付けられる。レール21は、複数のボルトによりベース板34に取り付けられ、固定される。レール21には、転動体が転動するレール軌道面が長手方向に沿って凹むように設けられている。
 スライダ22a、スライダ22bはそれぞれ、レール21に取り付けられる。スライダ22a、スライダ22bにはそれぞれ、転動体が転動するスライダ軌道面が長手方向に沿って凹むように設けられている。スライダ22aのスライダ軌道面とレール軌道面との間には、複数の転動体、例えばボールが設けられる。同様に、スライダ22bのスライダ軌道面とレール軌道面との間には、複数の転動体、例えば、ボールが設けられる。直動案内ユニットとしての直動機構12は、スライダ22a、スライダ22bをレール21の長手方向に円滑に直線往復運動させることができる。
 駆動源13は、スライダ22a、スライダ22bを直線往復運動させる。駆動源13は、本実施形態においては、ボールねじ23と、モータ24と、を含む。ボールねじ23は、ボールねじナット25と、ねじ軸26と、を含む。ねじ軸26は、長手方向がY方向に延びるように設けられている。ねじ軸26の外径面にはねじ溝が設けられている。ねじ軸26は、モータ24により回転する。ボールねじナット25は、ねじ軸26に取り付けられており、ねじ溝とボールねじナット25に設けられた軌道面との間には、転動体(ボール)が配置されている。ねじ軸26の回転により、ボールねじナット25は、ねじ軸26の長手方向であるY方向に直線往復運動を行う。
 第1支持部14は、ブロック状であり、ボールねじナット25に取り付けられている。また、第1支持部14は、スライダ22aおよびスライダ22bの上に載置されるようにして取り付けられている。すなわち、ボールねじナット25、第1支持部14、スライダ22aおよびスライダ22bはそれぞれ取り付けられて一体として動くように構成されている。ねじ軸26の回転によりボールねじナット25、ボールねじナット25に取り付けられた第1支持部14、第1支持部14に取り付けられたスライダ22aおよびスライダ22bが連動してY方向に直線往復運動を行う。第1支持部14には、X方向に貫通する貫通孔が設けられており、この貫通孔内に第1転がり軸受15が取り付けられている。本実施形態においては、第1支持部14に設けられた貫通孔に第1転がり軸受15の外輪が嵌め込まれるようにして取り付けられている。
 テーブル部16は、板状であって、Z方向においてベース部11を覆うようにして取り付けられている。テーブル部16は、駆動源からの動力が伝達されて揺動可能である。テーブル部16は、X-Y平面に平行とすることが可能な平面37を有する載置部27を含む。載置部27の平面37は、Z方向において露出する面となる。載置部27の平面37と厚さ方向において反対側に位置する面が、ベース部11と対向することになる。テーブル部16の揺動運動により、載置部27の平面37は、水平方向に対して傾斜することになる。載置部27のX方向の両端には、ベース板34側に突出する鍔部35aおよび鍔部35bが設けられている。鍔部35aおよび鍔部35bのZ方向の端面は、曲面で構成されている。鍔部35aのZ方向の端面および鍔部35bのZ方向の端面はそれぞれ、X方向に見て円弧状である。
 テーブル部16は、曲面から構成される摺動面38aを有する摺動部28aを含む。テーブル部16は、曲面から構成される摺動面38bを有する摺動部28bを含む。摺動部28aおよび摺動部28bはそれぞれ、載置部27のうち、ベース板34と対向する面にボルトにより取り付けられている。本実施形態においては、摺動部28aおよび摺動部28bはそれぞれ、載置部27に着脱自在に取り付けられている。摺動部28aは、鍔部35aと接触するように配置されている。摺動部28bは、鍔部35bに接触するように配置されている。摺動面38aおよび摺動面38bはそれぞれ、X方向に見て円弧状である。摺動面38aおよび摺動面38bの曲率は、同じである。
 第2支持部18はテーブル部16に取り付けられており、テーブル部16を支持する。第2支持部18は、テーブル部16の載置部27のうち、ベース板34と対向する面に取り付けられている。第2支持部18もブロック状である。具体的には、第2支持部18は、X方向に見て、Y方向の幅がベース部11に近づくにしたがって狭くなるテーパー状部分を有する。第2支持部18には、X方向に貫通する貫通孔が設けられており、この貫通孔内に第2転がり軸受19が取り付けられている。本実施形態においては、第2支持部18に設けられた貫通孔に第2転がり軸受19の外輪が嵌め込まれるようにして取り付けられている。
 偏心軸20は、軸方向がX方向となるように取り付けられる。偏心軸20は、第1軸部31と、第2軸部32と、連結部33と、を含む。連結部33は、板状であって、第1軸部31と第2軸部32とを連結するように設けられる。第2軸部32は、第1軸部31に対して偏心した位置に配置される。具体的には、第1軸部のX方向の端部と第2軸部32のX方向の端部とをそれぞれの軸部の中心をずらした状態、すなわち、偏心した状態で連結する。偏心軸20は、第2軸部32の中心36bを回転中心として回転する。この場合、第2軸部32は、自転運動となる。第2軸部32は、第1軸部31に対して偏心した位置に配置されているため、第1軸部31は、第2軸部32の中心36bを回転中心とした公転運動となる。なお、第1軸部31の中心36aおよび第2軸部32の中心36bについては、図15および図16において図示している。
 偏心軸20は、第1転がり軸受15および第2転がり軸受19によって支持されている。具体的には、偏心軸20の第1軸部31が、第1転がり軸受15に支持されている。また、偏心軸20の第2軸部32が、第2転がり軸受19に支持されている。本実施形態においては、第1転がり軸受15に含まれる内輪の内側に第1軸部31が嵌め込まれる。また、第2転がり軸受19に含まれる内輪の内側に第2軸部32が嵌め込まれる。ここで、水平方向に見て、テーブル部16、具体的には、載置部27の平面37が水平であるとき、第1軸部31の中心36aと第2軸部32の中心36bとを結ぶ仮想線分39の延びる方向は水平であるように構成される。なお、仮想線分39については、図15および図16において、一点鎖線で図示している。また、テーブル部16が揺動し、平面37が傾斜するとこの仮想線分39も傾斜する。
 次に、揺動テーブル10の動作について説明する。モータ24からの回転力の伝達により、ボールねじ23のねじ軸26が回転する。そうすると、ねじ軸26に取り付けられたボールねじナット25がY方向に直線運動を行う。このボールねじナット25の直線運動に連動して、第1支持部14も直線運動を行う。この第1支持部14の直線運動に応じて、偏心軸20が回転する。この偏心軸20の回転により、一対の案内部17aの案内面29aおよび案内部17bの案内面29bに案内されて、第2支持部18と共に、テーブル部16が揺動する。テーブル部16の揺動により、載置部27の平面37が傾斜する。
 このような構成の揺動テーブル10によると、直動機構に含まれるスライダ22aおよびスライダ22bは、駆動源13からの動力により直線往復運動する。スライダ22aおよびスライダ22bに取り付けられた第1支持部14は、スライダ22aおよびスライダ22bと共に直線往復運動する。そうすると、偏心軸20を介して第2支持部18に取り付けられるテーブル部16は、第1支持部14の直線往復運動に伴って揺動運動する。ここで、偏心軸20の第1軸部31は、第1転がり軸受15によって支持され、偏心軸20の第2軸部32は、第2転がり軸受19によって支持されている。このような構成は、滑り機構と異なり、転動体の疲労等に基づく寿命計算が容易である。また、第1転がり軸受15および第2転がり軸受19を採用する構成であるため、ウォームギアを採用する駆動方式と異なり、隙間が生じないため、テーブル部16の正確な位置決めを行うことができると共に、高速運転に適している。したがって、このような揺動テーブル10によると、寿命計算が容易であると共に、テーブル部16の正確な位置決めを行うことができ、高速運転を適切に行うことができる。
 本実施形態においては、直動機構12は、直動案内ユニットを含む。よって、円滑にテーブル部16を揺動させることができると共に、さらに正確に位置決めを行うことができる。
 本実施形態においては、第1転がり軸受および第2転がり軸受は共に、アンギュラベアリングである。よって、偏心軸20を適切に支持しながら、円滑にテーブル部16を揺動させることができ、正確な寿命計算を行うことができる。
 本実施形態においては、駆動源13は、ねじ軸26および第1支持部14に取り付けられるボールねじナット25を備えるボールねじ23と、ねじ軸26を回転させるモータ24と、を含む。よって、モータ24の回転運動をスライダ22aおよびスライダ22bの直動運動に変換して、より円滑にテーブル部16を揺動させることができると共にモータ24の回転を制御して、高速運転および正確な位置決めを実施することができる。
 本実施形態においては、水平方向に見て、テーブル部16が水平であるとき、第1軸部31の中心36aと第2軸部32の中心36bとを結ぶ仮想線分39の延びる方向は水平である。よって、テーブル部16の位置が水平であるときの揺動テーブル10の安定性を確保することができる。
 本実施形態においては、スライダ22aおよびスライダ22bは、複数、具体的には、2つ設けられている。よって、複数のスライダ22aおよびスライダ22bによって第1支持部14の直線往復運動を正確に行うことができ、より正確な位置決めおよび高速運転を実施することができる。
 本実施形態においては、テーブル部16は、曲面から構成される摺動面38aを有する摺動部28aおよび曲面から構成される摺動面38bを有する摺動部28bを含む。ベース部11は、曲面から構成され、摺動面38aと接触する案内面29aを有し、テーブル部16を案内する案内部17aおよび曲面から構成され、摺動面38bと接触する案内面29bを有し、テーブル部16を案内する案内部17bを含む。よって、摺動面38a、摺動面38bをそれぞれ有する摺動部28aおよび摺動部28b、および案内面29aおよび案内面29bをそれぞれ有する案内部17aおよび案内部17bによって、テーブル部16の揺動運動をより円滑にすることができる。
 本実施形態においては、案内部17aおよび案内部17bは、レール21を挟むように一対設けられている。よって、より適切に揺動するテーブル部16を案内することができる。
 (他の実施の形態)
 なお、上記実施の形態においては、案内部17aおよび案内部17bは、レール21を挟むように一対設けられていることとしたが、これに限らず、いずれか一方を設けることとしてもよい。
 また、上記実施の形態においては、スライダ22aおよびスライダ22bは、複数設けられることとしたが、これに限らず、スライダは1つであってもよい。
 なお、上記実施の形態においては、駆動源13は、ねじ軸26および第1支持部14に取り付けられるボールねじナット25を備えるボールねじ23と、ねじ軸26を回転させるモータ24と、を含むこととしたが、これに限らず、駆動源13は、直線往復運動を行うことができる他の機構、例えばリニアモータを用いてもよい。また、上記実施の形態において、直動機構として直動案内ユニットを用いることとしたが、これに限らず、他の直動機構を採用することとしてもよい。
 今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は、請求の範囲によって規定され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 揺動テーブル、11 ベース部、12 直動機構、13 駆動源、14 第1支持部、15 第1転がり軸受、16 テーブル部、17a,17b 案内部、18 第2支持部、19 第2転がり軸受、20 偏心軸、21 レール、22a,22b スライダ、23 ボールねじ、24 モータ、25 ボールねじナット、26 ねじ軸、27 載置部、28a,28b 摺動部、29a,29b 案内面、31 第1軸部、32 第2軸部、33 連結部、34 ベース板、35a,35b 鍔部、36a,36b 中心、37 平面、38a,38b 摺動面、39 仮想線分。

Claims (8)

  1.  ベース部と、
     前記ベース部に取り付けられるレールおよび前記レールに相対移動可能に取り付けられるスライダを含む直動機構と、
     前記スライダを直線往復運動させる駆動源と、
     前記スライダに取り付けられ、前記スライダと共に直線往復運動する第1支持部と、
     前記第1支持部に取り付けられる第1転がり軸受と、
     前記駆動源からの動力が伝達されて揺動運動可能なテーブル部と、
     前記テーブル部を支持する第2支持部と、
     前記第2支持部に取り付けられる第2転がり軸受と、
     第1軸部および前記第1軸部に対して偏心した位置に配置される第2軸部を含み、前記第1軸部が前記第1転がり軸受に支持され、前記第2軸部が前記第2転がり軸受に支持される偏心軸と、を備える、揺動テーブル。
  2.  前記直動機構は、直動案内ユニットを含む、請求項1に記載の揺動テーブル。
  3.  前記第1転がり軸受および前記第2転がり軸受のうちの少なくともいずれか一方は、アンギュラベアリングを含む、請求項1または請求項2に記載の揺動テーブル。
  4.  前記駆動源は、
     ねじ軸および前記第1支持部に取り付けられるボールねじナットを備えるボールねじと、
     前記ねじ軸を回転させるモータと、を含む、請求項1または請求項2に記載の揺動テーブル。
  5.  水平方向に見て、前記テーブル部が水平であるとき、前記第1軸部の中心と前記第2軸部の中心とを結ぶ仮想線分の延びる方向は水平である、請求項1または請求項2に記載の揺動テーブル。
  6.  前記スライダは、複数設けられている、請求項1または請求項2に記載の揺動テーブル。
  7.  前記テーブル部は、曲面から構成される摺動面を有する摺動部を含み、
     前記ベース部は、曲面から構成され、前記摺動面と接触する案内面を有し、前記テーブル部を案内する案内部を含む、請求項1または請求項2に記載の揺動テーブル。
  8.  前記案内部は、前記レールを挟むように一対設けられている、請求項7に記載の揺動テーブル。
PCT/JP2023/028732 2022-10-31 2023-08-07 揺動テーブル WO2024095552A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-174481 2022-10-31
JP2022174481A JP2024065556A (ja) 2022-10-31 2022-10-31 揺動テーブル

Publications (1)

Publication Number Publication Date
WO2024095552A1 true WO2024095552A1 (ja) 2024-05-10

Family

ID=90930200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028732 WO2024095552A1 (ja) 2022-10-31 2023-08-07 揺動テーブル

Country Status (2)

Country Link
JP (1) JP2024065556A (ja)
WO (1) WO2024095552A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08211173A (ja) * 1995-02-07 1996-08-20 Kazuya Hirose 多自由度位置決めステージ
JP2008240773A (ja) * 2007-03-26 2008-10-09 Thk Co Ltd 自在走行アクチュエータ
JP2013103303A (ja) * 2011-11-15 2013-05-30 Yoshiharu Nakatomi ステージ機構およびステージ機構の製造方法
JP2017095194A (ja) * 2015-11-18 2017-06-01 日本精工株式会社 搬送装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08211173A (ja) * 1995-02-07 1996-08-20 Kazuya Hirose 多自由度位置決めステージ
JP2008240773A (ja) * 2007-03-26 2008-10-09 Thk Co Ltd 自在走行アクチュエータ
JP2013103303A (ja) * 2011-11-15 2013-05-30 Yoshiharu Nakatomi ステージ機構およびステージ機構の製造方法
JP2017095194A (ja) * 2015-11-18 2017-06-01 日本精工株式会社 搬送装置

Also Published As

Publication number Publication date
JP2024065556A (ja) 2024-05-15

Similar Documents

Publication Publication Date Title
TWI310328B (en) Gantry positioning system
US7344017B1 (en) Three axis drive apparatus
EP1583133B1 (en) Wafer scanning device
KR101184423B1 (ko) 자동 고니오 스테이지
KR920005486Y1 (ko) 왕복동 공구
WO2024095552A1 (ja) 揺動テーブル
JPH07280057A (ja) 直進運動機構およびその作製方法並びにその作製方法を実施する加工機械
JP2012061530A (ja) 位置決めステージ
CN109863331B (zh) 驱动器
CN113687493B (zh) 一种自动调焦装置及其使用方法
JP4358385B2 (ja) 工作機械における移動体の案内装置
JP4204816B2 (ja) テーブル駆動装置
EP1312441A1 (en) Machine tool
JP2023127162A (ja) アクチュエータおよび機械
CN220643297U (zh) 摇摆机构
JPS62160052A (ja) ボールねじ付中空軸モータ
US20240001574A1 (en) Cutter structure, travelling carriage structure, and cutting machine
JPH10154012A (ja) ステージ機構
JP2023023331A (ja) アクチュエータおよび案内装置
JP2001091865A (ja) 光路切替装置
JPS6029385Y2 (ja) Xy移動テ−ブル
JP4580876B2 (ja) テーブル装置
CN115539598A (zh) 运动机构及运动系统
JPS63185550A (ja) ねじ送り移動テ−ブル
CN115383205A (zh) 一种切割装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885324

Country of ref document: EP

Kind code of ref document: A1