WO2024093952A1 - Led光源类型转换结构及led显示屏 - Google Patents

Led光源类型转换结构及led显示屏 Download PDF

Info

Publication number
WO2024093952A1
WO2024093952A1 PCT/CN2023/127976 CN2023127976W WO2024093952A1 WO 2024093952 A1 WO2024093952 A1 WO 2024093952A1 CN 2023127976 W CN2023127976 W CN 2023127976W WO 2024093952 A1 WO2024093952 A1 WO 2024093952A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
led
light source
type conversion
source type
Prior art date
Application number
PCT/CN2023/127976
Other languages
English (en)
French (fr)
Inventor
李艳龙
张卉
Original Assignee
深圳市时代华影科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市时代华影科技股份有限公司 filed Critical 深圳市时代华影科技股份有限公司
Publication of WO2024093952A1 publication Critical patent/WO2024093952A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes

Definitions

  • the present application belongs to the field of LED display technology, and in particular relates to an LED light source type conversion structure and an LED display screen.
  • LED display technology it has become possible for LED screens to replace digital movie projectors for movie projection in cinemas.
  • LED screens have active light emission, high brightness, a wide adjustable brightness range, good screen brightness uniformity, support HDR (High Dynamic Range), and the sequential contrast and intra-frame contrast are much higher than traditional projection technology. Therefore, LED display technology is expected to become the next generation of cinema projection technology.
  • LED screens Before LED screens can enter theaters to play digital movies with official copyrights, they need to pass the DCI (Digital Cinema Initiatives) test.
  • DCI Digital Cinema Initiatives
  • the surface reflectivity of LED movie screens should not exceed 10%.
  • some manufacturers paint the non-luminous areas in the pixels of LED movie screens black to reduce the surface reflectivity.
  • problems such as glare and obvious graininess will occur during actual viewing.
  • the technical problem to be solved by the present application is how to expand the LED point-like light emission into the LED pixel surface-like light emission, and how to solve the problem of excessively high surface reflectivity of the LED display screen.
  • the present application provides an LED light source type conversion structure for converting an LED pixel from a point light source to a surface light source, the LED light source type conversion structure comprising:
  • a solid light guide assembly comprising a solid light guide body for covering the LED pixel, wherein the solid light guide body is used to expand the light beam emitted by the LED pixel;
  • a scattering component used for scattering the light beam expanded from the solid light guide
  • the external light suppression component is used to absorb incident external ambient light to reduce the reflectivity of the LED light source type conversion structure to the external ambient light.
  • the present application further provides an LED display screen, which includes a plurality of LED pixels, each of which is covered with the LED light source type conversion structure described in the first aspect.
  • the LED light source type conversion structure provided in the present application guides, expands and scatters the light emitted by the LED pixel through a solid light guide component and a scattering component, so that the point-like light-emitting area of the LED pixel can be expanded to the entire pixel to become surface light-emitting, thereby solving the problems of glare and graininess of existing LED display images.
  • the external light suppression component is used to absorb the external ambient light. When the external ambient light is incident on the surface of the LED light source type conversion structure provided in the present application from the outside, most of it will be absorbed. Therefore, the surface of the LED light source type conversion structure is basically gray-black, which can reduce the problem of excessive reflectivity of the LED display surface and effectively improve the in-frame contrast of the LED picture.
  • FIG1 is a cross-sectional schematic diagram of a first LED light source type conversion structure provided in a first embodiment of the present application
  • FIG2 is a graph showing a change in the luminous intensity (normalized) of a common LED pixel as a function of angle provided in the first embodiment of the present application;
  • FIG3 is a first exemplary structural diagram of a solid light guide provided in the first embodiment of the present application.
  • FIG4 is a second exemplary structural diagram of the solid light guide provided in the first embodiment of the present application.
  • FIG5 is a third exemplary structural diagram of the solid light guide provided in the first embodiment of the present application.
  • FIG6 is a diagram of a light path in a solid light guide having an inverted truncated cone bottom according to the first embodiment of the present application;
  • FIG. 7 is a diagram of the light path in a solid light guide having an inverted quadrangular pyramid bottom provided in the first embodiment of the present application;
  • FIG. 8 is a structural diagram of a light-isolating grid provided on the periphery of a solid light guide body according to the first embodiment of the present application;
  • FIG9 is a structural diagram of a scattering component provided in the first embodiment of the present application.
  • FIG10 is another structural diagram of the scattering assembly provided in the first embodiment of the present application.
  • FIG11 is a light path diagram of a solid light guide body with an inverted quadrangular pyramid bottom and a spherical cap provided in the first embodiment of the present application;
  • FIG. 12 is a working principle diagram of the external light suppression component provided in the first embodiment of the present application when a circular polarizer is used;
  • FIG13 is a reflection spectrum of a circular polarizer provided in the first embodiment of the present application attached to the light emitting surface of a solid light guide;
  • FIG. 14 is a diagram showing the simulated light intensity distribution result of a quadrangular pyramid structure with an inverted bottom provided in the first embodiment of the present application;
  • FIG15 is a diagram showing the simulated light intensity distribution result of the inverted tetrahedral pyramid + spherical cap combination structure at the bottom provided by the first embodiment of the present application;
  • FIG16 is a comparison diagram of the actual effects of an LED display screen without and with the LED light source type conversion structure provided in the first embodiment of the present application;
  • FIG17 is a comparison diagram of surface reflection spectra using a common light homogenization structure and a surface reflection spectra using the LED light source type conversion structure provided by the present application;
  • FIG. 18 is a cross-sectional schematic diagram of a second optical structure of converting an LED point light source into a surface light source provided in the first embodiment of the present application;
  • FIG. 19 is an appearance diagram of a connected LED light source type conversion structure formed by multiple LED light source type conversion structures provided in the second embodiment of the present application.
  • FIG1 shows an LED light source type conversion structure provided by the first embodiment of the present application, which is used to convert LED pixels from point light sources to surface light sources.
  • each such LED light source type conversion structure is used to correspond to a cover set on an LED pixel, the purpose of which is to perform secondary light distribution on the light emitted by the LED pixel.
  • FIG2 shows a common curve of the change of the luminous intensity (normalized) of LED pixels with angle.
  • the original luminous characteristics of LED pixels basically conform to the characteristics of Lambertian luminous bodies, with light emitted in all directions, and basically following the cosine law.
  • the LED light source type conversion structure includes a solid light guide component 1, a scattering component 2, and an external light suppression component 3.
  • the solid light guide assembly 1 includes a solid light guide body for covering the LED pixel, and the solid light guide body is used to expand the light beam emitted by the LED pixel to expand the light emitting area of the LED pixel.
  • the scattering component 2 is used to scatter the light beam expanded from the solid light guide within a preset angle range, so as to evenly distribute the light intensity within the preset angle range.
  • the external light suppression component 3 is used to absorb incident external ambient light to reduce the reflectivity of the LED light source type conversion structure to the external ambient light.
  • FIG3 shows an exemplary structure of a solid light guide, the outer surface of which includes a light incident surface 11, a light emitting surface 13, and a light beaming surface 12 connected between the light incident surface 11 and the light emitting surface 13.
  • the light incident surface 11 is used for allowing a light beam to be incident into the interior of the solid light guide; the light beaming surface 12 is used for confining at least part of the light beam within the interior of the solid light guide and propagating in the direction of the light emitting surface 13, so that at least part of the light beam is emitted from the light emitting surface 13.
  • the area of the light emitting surface 13 is larger than that of the light incident surface 11.
  • the light incident surface 11 includes a concave surface that is concave toward the light emitting surface 13.
  • the concave portion of the concave surface is used to be placed on the LED point light source, so that the light beam emitted by the LED point light source is vertically incident into the interior of the solid light guide through the concave surface.
  • the size of the concave surface is slightly larger than the size of the LED pixel light emitting surface, and the light emitted by the LED pixel is basically vertically incident on the concave surface. Therefore, the concave surface can easily couple most of the light emitted by the LED pixel into the interior of the solid light guide, thereby collecting light and reducing the light divergence angle.
  • the light collected by the light incident surface 11 continues to propagate in the solid light guide after passing through the concave surface, wherein the incident light with a small angle will directly reach the light emitting surface 13 , and the incident light with a large angle will be reflected or totally reflected on the light beaming surface 12 and then reach the light emitting surface 13 .
  • the curve formed by the first end of the light-beaming surface 12 is connected to the light-entering surface 11, and the curve formed by the second end of the light-beaming surface 12 is connected to the light-exiting surface 13.
  • the cross-sectional area of the solid light guide gradually increases, that is, in the direction from the first end to the second end, the light-beaming surface 12 is inclined, and by setting the angle between the light-beaming surface 12 and the vertical direction, more light propagating inside the solid light guide can be totally reflected by the light-beaming surface 12 when reaching the light-beaming surface 12 and then emitted from the light-exiting surface 13, thereby reducing light leakage, that is, light refracted from the light-beaming surface 12.
  • the curve formed by the second end and the light-emitting surface 13 are both rectangular, so that the structure shown in FIG1 can convert the LED point light source into a rectangular surface light source.
  • the curve formed by the first end can be a circle as shown in FIG3, and the portion of the light-beaming surface 12 close to the first end is in the shape of an inverted truncated cone, so that in the direction from the first end to the second end, the light-beaming surface 12 gradually changes from an inverted polygonal cone or an inverted truncated cone to a rectangle at the second end.
  • the curve enclosed by the first end can also be a polygon
  • the portion of the beam surface 12 close to the first end is in the shape of an inverted polygonal pyramid, such as an inverted quadrangular pyramid as shown in Figure 4, an inverted octagonal pyramid as shown in Figure 5, etc., so that along the direction from the first end to the second end, the beam surface 12 gradually changes from an inverted polygonal pyramid shape to a rectangle at the second end.
  • FIG6 is a light path in the solid light guide body with an inverted truncated cone bottom as shown in FIG3, and FIG7 is a light path in the solid light guide body with an inverted quadrangular pyramid bottom as shown in FIG4. It can be seen that almost all light can be emitted from the top of the light guide structure under the constraint of the light beam surface 12. This is due to the combination of the specific design of the concave surface of the light incident surface 11 and the specific design of the inclination angle of the light beam surface 12, so that the light entering the solid light guide body basically reaches the light exit surface 13 of the solid light guide body in the form of total reflection on the light beam surface 12, and the light energy utilization rate is very high.
  • the solid light guide body can be an integrally formed transparent structure made by injection molding of materials such as PMMA (polymethyl methacrylate) and PC (polycarbonate).
  • the solid light guide component also includes a light-isolating grid 14 made of opaque material, and the light-isolating grid 14 is used to absorb or re-reflect the light leaking from the solid light guide body into the solid light guide body.
  • the light-isolating grid 14 includes a bottom wall 141 and a side wall 142 extending from the bottom wall 141, and a cavity is formed between the bottom wall 141 and the side wall 142, and the solid light guide body is placed in the cavity, and the top of the side wall 142 is not closed to allow the light emitting surface 13 to emit light.
  • a through hole 143 is provided on the bottom wall 141 , and the through hole 143 is used for an external light source (such as an LED point light source) that emits the light beam to pass through.
  • the scattering component 2 For the scattering component 2 , the light emitted by the LED pixel is collected by the solid light guide, and then emitted from the solid light guide to reach the scattering component 2. Although the uniformity of the light emitted from the solid light guide is already very high, at the same time, the solid light guide also restricts the emitting angle of the light. Therefore, in this embodiment, the scattering component 2 is attached to the light emitting surface of the light guide structure to increase the viewing angle of the light.
  • the scattering component 2 can be made of transparent material.
  • the scattering component 2 includes a transparent film layer 20, and one surface of the transparent film layer 20 is provided with an irregular concave-convex structure 21. When light reaches the concave-convex structure on the surface, it will be scattered. By adjusting the size and height of the concave-convex structure, scattering in different directions can be achieved.
  • the scattering component 2 includes a transparent film layer 20 made of a low refractive index material, and the transparent film layer 20 is doped with transparent particles 22 with a high refractive index.
  • the refractive index of the transparent particles 22 to light is greater than the refractive index of the transparent film layer 20, and the difference in the refractive index of the two is preferably greater than 0.05.
  • the light passes through the interface of the two materials, due to the difference in refractive index, when the light enters the high refractive index material from the low refractive index material, refraction will occur; when the light enters the low refractive index material from the high refractive index material, if the incident angle is greater than the total reflection angle, total reflection will occur, and when the incident angle is less than the total reflection angle, refraction at a larger angle will occur; after multiple refractions and reflections, the light penetrates the scattering component 2 and presents the characteristics of being scattered.
  • the haze value of the scattering component 2 is related to the scattering direction of the light.
  • the scattering characteristics are closer to Lambertian scattering, and when the haze is smaller, it is closer to transparency, and the light will not be scattered.
  • the haze of the scattering component 2 is between 70% and 98%.
  • Light absorbing materials may also be added to the transparent film layer 20, and the light transmittance of the entire transparent film layer 20 is between 20% and 70%.
  • a spherical cap can be provided between the light-emitting surface 13 of the solid light guide and the transparent film layer, with the convex surface of the spherical cap facing the transparent film layer.
  • the transparent film layer can be made of a flexible material and directly adhered to the convex surface of the spherical cap. Due to the curvature of the convex surface of the spherical cap itself, the uniformity of the light is further enhanced, and there is also a certain light scattering effect. At this time, combined with the flexible transparent film layer on the spherical cap, the light can be scattered again, which greatly increases the luminous viewing angle and has a strong diffusion effect.
  • Figure 11 shows the light path of a solid light guide with an inverted tetrahedron at the bottom and a spherical cap. It can be seen that almost all the light is emitted from the light-emitting surface 13 after being constrained by the light-bearing surface 12.
  • the external light suppression component 3 The light emitted by the LED pixel is scattered by the scattering component 2 and then propagates in a preset direction. At this time, the uniformity and viewing angle of the light have reached an optimal state, but there will be a problem.
  • the LED pixel does not emit light, the LED light source type conversion structure will be affected by the external light and appear white, affecting the viewing effect.
  • the light After the external light is irradiated to the light scattering layer, the light will be scattered and reflected, and the reflectivity will be higher than 20%. Excessive reflectivity will directly reduce the in-frame contrast of the LED screen display, so it is necessary to further reduce the surface reflectivity of the light guide and diffusion structure. Therefore, this embodiment introduces the external light suppression component 3.
  • the external light suppression component 3 can be a semi-transparent film layer or a linear polarizer or a circular polarizer with a visible light transmittance between 20% and 70%.
  • the circular polarizer includes a quarter-wave plate and a linear polarizer arranged in sequence along the propagation direction of the light emitted from the light emitting surface 13.
  • the quarter-wave plate can be directly pasted on the light emitting surface of the scattering component 2.
  • Figure 12 shows the working principle of the external light suppression component provided by the present application when a circular polarizer is used.
  • the light whose vibration direction is perpendicular to the transmission axis of the linear polarizer will be absorbed, and the remaining light whose vibration direction is parallel to the transmission axis of the linear polarizer will pass through the linear polarizer and become the first linear polarized light; after passing through a 1/4 wavelength delay film placed at an angle of 45° to the linear polarization angle, the first linear polarized light is converted into the first circular polarized light, and the light intensity remains basically unchanged; after the first circular polarized light reaches the reflective surface, since the refractive index of the external light suppression component 3 is less than that of the solid light guide or scattering component 2, the external light suppression component 3 is relatively a light-scarce medium.
  • the solid light guide or scattering component 2 is a light-dense medium.
  • the incident light advances in the light-sparse medium and encounters the interface of the light-dense medium, half-wave loss will be generated in the reflection process.
  • the vibration direction of the electric field intensity vector of the light is exactly opposite to the vibration direction of the incident light and is converted into the second circularly polarized light.
  • the second circularly polarized light with the opposite rotation direction passes through the original 1/4 wavelength delay film again, the second circularly polarized light becomes the second linearly polarized light, but the polarization direction of the second linearly polarized light is perpendicular to the polarization direction of the upper linear polarizer. After passing through the linear polarizer, the light is absorbed, thereby achieving the effect of suppressing external light.
  • Figure 13 is the reflection spectrum of the circular polarizer attached to the light-emitting surface of the solid light guide.
  • Figures 14 and 15 The simulation results of the light intensity distribution of the LED light source type conversion structure provided in the present application on a single LED pixel are shown in Figures 14 and 15. It can be seen that the light intensity is basically consistent within the entire square pixel range.
  • Figure 14 is the simulation light intensity distribution result of the bottom of one of the embodiments with an inverted tetrahedron structure
  • Figure 15 is the simulation light intensity distribution result of the bottom of one of the embodiments with an inverted tetrahedron + spherical crown combination structure.
  • Figure 16 is a real picture. The left picture shows the light intensity effect without using the LED light source type conversion structure of this embodiment, and the right picture shows the light intensity effect with the LED light source type conversion structure of this embodiment. Its light uniformity has a very obvious advantage over the light uniformity of a bare lamp.
  • Figure 17 shows a comparison of the surface reflection spectra of a common light-homogenizing structure and the LED light source type conversion structure provided in the present application. After using the light-guiding and diffusion structure provided in the present application, the reflectivity of external light can be reduced from about 37% to about 6%, which has a better effect on suppressing external light.
  • the total haze of the scattering component 2 and the external light suppression component 3 is between 70% and 98% to ensure the overall scattering characteristics.
  • the positional relationship between the scattering component 2 and the external light suppression component 3 is not limited and can be flexibly set according to the situation. Combining the two structures of the scattering component 2 provided above, the following two positional relationships are listed for explanation:
  • the scattering component 2 adopts a transparent film layer with an irregular concave-convex structure on the surface as shown in Figure 9, the external light suppression component 3 and the scattering component 2 are arranged in sequence on the outside of the light outlet of the light guide component 1, the external light suppression component 3 is used to receive the incident light emitted by the LED pixel, and the side of the scattering component 2 with the irregular concave-convex structure serves as the light emitting surface of the LED light source type conversion structure.
  • the light-isolating grid 14 can absorb or reflect all leaked light into the solid light guide, thereby avoiding light crosstalk between pixels.
  • the scattering component 2 may also adopt the structure shown in FIG. 10 , and the external light suppression component 3 may be placed above the scattering component 2 or below the scattering component 2 , both of which may achieve the effect of improving the contrast within the picture frame.
  • the scattering component 2 adopts a transparent film layer doped with high-refractive index transparent particles inside or a transparent film layer with an irregular concave-convex structure on the surface.
  • the scattering component 2 and the external light suppression component 3 are sequentially arranged on the outside of the light outlet of the light guide component 1.
  • the scattering component 2 receives the incident light emitted by the LED pixel, and the external light suppression component 3 is used as the side of light emission.
  • the collected light enters the solid light guide from the incident surface 11, and then most of the light will be totally reflected to reach the spherical cap 4, which is a square three-dimensional structure with a convex surface. Due to the curvature of the convex surface itself, the uniformity of the light is further enhanced, and there is a certain light scattering effect.
  • a scattering component 2 made of a flexible material is added to the spherical cap, and its concave surface is placed close to the convex surface of the spherical cap to scatter the light again, which greatly increases the luminous viewing angle and has a strong diffusion effect; the light passing through the scattering component 2 then enters the external light suppression component 3.
  • a light-isolating grid 14 can also be added to the periphery of the solid light guide.
  • an additional anti-reflection coating can be attached to the "light emitting surface" of the LED light source type conversion structure.
  • the "light emitting surface” refers to the side with the concave-convex structure in the scattering component 2
  • the “light emitting surface” refers to the outer surface of the external light suppression component 3.
  • the second embodiment of the present application provides an LED display screen, which includes a plurality of LED pixels, each of which is covered with the LED light source type conversion structure as described in the first embodiment.
  • FIG. 19 shows the appearance of this connected optical structure by taking a solid light guide with an inverted truncated cone cavity structure at the bottom as an example, which can cover 13*13 LED dot matrices.
  • the polarization states of the light emitted by several LED pixels are consistent, such as all the same linear polarized light, or all the same circular polarized light.
  • the brightness of the 3D picture can be effectively improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Planar Illumination Modules (AREA)

Abstract

本申请适用于LED显示技术领域,提供了一种LED光源类型转换结构,用于将LED像素从点光源转换为面光源,所述LED光源类型转换结构包括:实心型导光组件,包括一用于罩设在LED像素上的实心导光体,所述实心导光体用于将LED像素所发出的光束进行扩束;散射组件,用于将从所述实心导光体扩束后的光束进行散射;外界光抑制组件,用于吸收入射的外界环境光线,以降低所述LED光源类型转换结构对外界环境光线的反射率。当外界环境光线从外部入射至本申请所提供的LED光源类型转换结构的表面时,大部分将被外界光抑制组件吸收,可降低LED显示屏表面反射率过高的问题,有效提高LED画面的帧内对比度。

Description

LED光源类型转换结构及LED显示屏
本申请要求于2022年11月01日提交至国家知识产权局中国专利局、申请号为2022113589409、申请名称为“LED光源类型转换结构及LED显示屏”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于LED显示技术领域,尤其涉及一种LED光源类型转换结构及LED显示屏。
背景技术
现有影院大多采用数字电影放映机进行电影放映,大多数数字放映机都采用美国德州仪器公司的DMD投影显示芯片。随着LED显示技术的发展,LED显示屏取代数字电影投影机用于影院电影放映已经成为可能。LED显示屏具有主动发光、亮度高、亮度可调范围大、屏幕亮度均匀性好,支持HDR(High Dynamic Range,高动态范围),顺序对比度和帧内对比度远高于传统投影技术,因此LED显示技术有望成为下一代影院放映技术。
LED显示屏在进入影院播放具有正式版权的数字电影前,需要通过DCI(Digital Cinema Initiatives,数字电影联盟)测试。为了满足HDR及更高的帧内对比度,DCI要求LED电影屏的表面反射率不高于10%,考虑到LED发光面积小特点,有部分厂商把LED电影屏像素内非发光区域涂黑以降低表面反射率。但对于点间距稍大的LED电影屏,由于LED发光部分的发光强度高,非发光部分呈黑色,实际观影时会出现画面刺眼、画面颗粒感明显等问题。
为了解决画面刺眼和颗粒感问题,需要通过匀光结构将LED点状发光扩展成为LED像素面发光,从而降低单位面积上的发光强度,增大出光面积,使得LED像素发光更加柔和,LED像素更加饱满。在匀光结构将LED发光面积增大的过程中,由于光路可逆,当外界光线入射至匀光结构表面时,部分光线又会被反射出来,导致整个匀光结构表面的反射率较高,无法满足DCI的要求。
技术问题
本申请所要解决的技术问题为如何将LED点状发光扩展为LED像素面状发光,如何解决LED显示屏表面反射率过高的问题。
技术解决方案
为解决上述技术问题,第一方面,本申请提供了一种LED光源类型转换结构,用于将LED像素从点光源转换为面光源,所述LED光源类型转换结构包括:
实心型导光组件,包括一用于罩设在LED像素上的实心导光体,所述实心导光体用于将LED像素所发出的光束进行扩束;
散射组件,用于将从所述实心导光体扩束后的光束进行散射;
外界光抑制组件,用于吸收入射的外界环境光线,以降低所述LED光源类型转换结构对外界环境光线的反射率。
第二方面,本申请还提供了一种LED显示屏,所述LED显示屏包括若干LED像素,每个LED像素上都罩设有第一方面所述的LED光源类型转换结构。
有益效果
本申请所提供的LED光源类型转换结构,一方面通过实心型导光组件和散射组件将LED像素所发出的光线进行导光、扩束并进行散射处理,可以将LED像素的点状发光面积扩大至整个像素变为面发光,解决了现有的LED显示屏图像刺眼和颗粒感的问题,另一方面,再通过外界光抑制组件来吸收外界环境光,当外界环境光线从外部入射至本申请所提供的LED光源类型转换结构的表面时,大部分将被吸收,因此LED光源类型转换结构的表面基本为灰黑色,可降低LED显示屏表面反射率过高的问题,有效提高LED画面的帧内对比度。
附图说明
图1是本申请第一实施例提供的第一种LED光源类型转换结构的剖面示意图;
图2是本申请第一实施例提供的常见的LED像素发光强度(归一化)随角度的变化曲线图;
图3是本申请第一实施例提供的实心导光体的第一种示例性结构图;
图4是本申请第一实施例提供的实心导光体的第二种示例性结构图;
图5是本申请第一实施例提供的实心导光体的第三种示例性结构图;
图6是本申请第一实施例提供的底部为倒置的圆台形状的实心导光体中的光线路径图;
图7是本申请第一实施例提供的底部为倒置的四棱台形状的实心导光体中的光线路径图;
图8是本申请第一实施例提供的在实心导光体外围设置隔光网格的结构图;
图9是本申请第一实施例提供的散射组件的一种结构图;
图10是本申请第一实施例提供的散射组件的另一种结构图;
图11是本申请第一实施例提供的底部为倒置的四棱台形状的实心导光体与球冠组合后的光线路径图;
图12是本申请第一实施例提供的外界光抑制组件采用圆偏光片时的工作原理图;
图13是本申请第一实施例提供的圆偏振片贴于实心导光体出光面的反射光谱;
图14是本申请第一实施例提供的底部为倒置的四棱台结构的仿真光强分布结果图;
图15是本申请第一实施例提供的底部为倒置的四棱台+球冠组合结构的仿真光强分布结果图;
图16是未采用和采用本申请第一实施例提供的LED光源类型转换结构的LED显示屏的实拍效果对比图;
图17是采用普通匀光结构和采用本申请所提供的LED光源类型转换结构的表面反射光谱对比图;
图18是本申请第一实施例提供的LED点光源转换为面光源的第二种光学结构的剖面示意图;
图19是本申请第二实施例提供的将多个LED光源类型转换结构做成的连体式LED光源类型转换结构的外形图。
本发明的最佳实施方式
在此处键入本发明的最佳实施方式描述段落。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
图1示出了本申请第一实施例提供的一种LED光源类型转换结构,用于将LED像素从点光源转换为面光源,如图1所示,每一个这种LED光源类型转换结构用于对应罩设在一个LED像素上,目的是给LED像素所发出的光线进行二次配光。图2示出了常见的LED像素发光强度(归一化)随角度的变化曲线,LED像素原本的发光特性基本符合朗伯发光体的特点,各方向均有光线出射,且基本遵循余弦定律,经过图1所示的LED光源类型转换结构二次配光之后,不仅可以解决LED屏图像刺眼和颗粒感问题,还可降低LED显示屏表面对外界环境光线反射率过高的问题,有效提高LED画面的帧内对比度,实现了匀光、扩散、防外界光反射的合理平衡。参照图1,该LED光源类型转换结构包括实心型导光组件1、散射组件2、外界光抑制组件3。
其中,实心型导光组件1包括一用于罩设在LED像素上上的实心导光体,该实心导光体用于将LED像素所发出的光束进行扩束,以扩大LED像素的出光面积。
散射组件2用于将从该实心导光体扩束后的光束在预设的角度范围内进行散射,以将光线的光强均匀分布在预设的角度范围内。
外界光抑制组件3用于吸收入射的外界环境光线,以降低LED光源类型转换结构对外界环境光线的反射率。
下文对上述三个组件的结构、功能以及彼此之间的位置关系分别进行详细说明。
对于实心型导光组件1。图3示出了实心导光体的一种示例性的结构,实心型导光体的外表面包括入光面11、出光面13以及连接在入光面11和出光面13之间的束光面12。入光面11用于供光束入射进实心导光体内部;束光面12用于将所述光束中的至少部分光线约束在实心导光体的内部并向出光面13所在的方向传播,以使所述至少部分光线从出光面13出射。出光面13的面积大于入光面11的面积。
如图3所示,入光面11包括一个向出光面13的方向凹陷的凹曲面,凹曲面的凹陷部位用于放置在LED点光源上,使LED点光源发出的所述光束通过所述凹曲面垂直入射进实心导光体内部。凹曲面的尺寸略大于LED像素发光面的尺寸,且LED像素发出的光线基本都垂直入射向该凹曲面,因此该凹曲面能较容易地将大部分LED像素所发出的光线耦合进实心导光体的内部,达到搜集光线,减小光线发散角的目的。
被入光面11搜集的光线透过凹曲面后在实心导光体中继续传输,其中小角度的入射光线将直接到达出光面13,大角度的入射光线将在束光面12上发生反射或全反射进而到达出光面13。
在图3中,束光面12的第一端所围成的曲线与入光面11连接,束光面12的第二端所围成的曲线与出光面13连接。沿第一端到第二端的方向上,实心导光体的横截面积逐渐增大,也就是说,沿第一端到第二端这个方向上看,束光面12是倾斜设置的,通过设置束光面12与竖直方向的夹角,可以使得在实心导光体内部传播的光线在到达束光面12时有更多的光线被束光面12全反射后从出光面13出射,减少漏光,即从束光面12折射出去的光线。
在具体的形状设计上,第二端所围成的曲线和出光面13均呈矩形,便于图1所示的结构将LED点光源转换为矩形状的面光源。而第一端所围成的曲线可以是图3所示的圆形,束光面12靠近第一端的部分为倒置的圆台的形状,这样沿第一端到第二端的方向上,束光面12从倒置的多棱台或倒置的圆台的形状渐变为第二端所具有的矩形。
另外,第一端所围成的曲线也可以是多边形,束光面12靠近第一端的部分为倒置的多棱台的形状,如图4所示的倒置的四棱台、图5所示的倒置的八棱台等,这样沿第一端到第二端的方向上,束光面12从倒置的多棱台形状渐变为第二端所具有的矩形。
图6为图3所示的底部为倒置的圆台形状的实心导光体中的光线路径,图7为图4所示的底部为倒置的四棱台形状的实心导光体中的光线路径,可以看出,几乎所有的光线在束光面12约束下都能从导光结构的上方出射。这是由于入光面11凹曲面的特定设计以及束光面12倾角的特定设计相结合后,使得进入到实心导光体内部的光线基本都在束光面12上以全反射形式到达实心导光体的出光面13,光能利用率很高。
上述实心导光体可以采用PMMA(聚甲基丙烯酸甲酯)、PC(聚碳酸酯)等材料注塑而制成的一体成型的透明结构体。
考虑到具体实施时,凹曲面在搜集光时会有少部分大角度的光线无法被搜集到实心导光体内部而产生漏光现象,并且束光面12也可能不会对光束中的所有光线都能做到全反射,难免也会有少部分光线折射到实心导光体之外也产生漏光现象,从而可能会使临近的LED像素之间形成光串扰。为解决此问题,参阅图1和图8,实心型导光组件还包括采用不透光材料制成的隔光网格14,隔光网格14用于将从实心导光体漏出的光线吸收或再反射进入实心导光体。从结构设计上,隔光网格14包括底壁141和自底壁141延伸而出的侧壁142,底壁141与侧壁142之间形成一空腔,所述实心导光体置于空腔中,侧壁142的顶端不封闭以供出光面13出光。底壁141上设有一个通孔143,通孔143用于供发出所述光束的外部光源(如LED点光源)穿过。
对于散射组件2。LED像素所发出的光线经实心导光体收集、导光后从出射,到达散射组件2。虽然从实心导光体出射的光线的均匀度已经很高了,但是与此同时该实心导光体也束缚了光线的发光角度,因此本实施例中散射组件2粘贴在导光结构的光出射面,从而增大光线视角。
散射组件2可以采用透明材料制作而成。作为一种实现方式,如图9所示,散射组件2包括透明膜层20,透明膜层20的一个表面设置有不规则的凹凸结构21,当光线到达表面的凹凸结构时,将被散射。调整凹凸结构的大小、高度,可实现不同方向的散射。
作为另一种实现方式,如图10所示,散射组件2包括由低折射率材料制成的透明膜层20,透明膜层20中掺杂有高折射率的透明颗粒22,透明颗粒22对光的折射率大于透明膜层20的光折射率,二者的光折射率差值优选在0.05以上。光线在经过两种材料的界面时,由于折射率差异,光线由低折射率材料进入高折射率材料时,将发生折射;当光线由高折射率材料进入低折射率材料时,若入射角大于全反射角,则发生全反射,当入射角度小于全反射角时,则发生较大角度的折射;经过多次折射和反射后,光线穿透散射组件2,呈现被散射的特点。调整高折射率颗粒的比例、大小,即可调整光线散射的方向。散射组件2的雾度值与光线散射方向相关,雾度越大时散射特性越接近于朗伯体散射,雾度越小越趋近于透明,光线将不被散射。优选地,散射组件2的雾度在70%~98%之间。
透明膜层20中还可添加有光吸收材料,整个透明膜层20的光透过率在20%~70%之间
另外,在实心导光体的出光面13与所述透明膜层之间可以设置一个球冠,该球冠的凸面朝向透明膜层,透明膜层可选用柔性材质,直接粘贴在该球冠 凸面上。由于球冠凸面本身的弧度作用,进一步强化了光线的均匀度,同时也有一定的光散射作用,此时再配合球冠上的柔性透明膜层,可进行再一次的光线散射,使得发光视角大大增加,具有很强的扩散作用。图11为底部为倒置的四棱台的实心导光体与球冠组合后的光线路径,可以看出也是几乎所有的光线经过束光面12约束后从出光面13出射。
对于外界光抑制组件3。LED像素发出的光线经过散射组件2的散射后,向预设的方向进行传播,此时光线的均匀度和视角都达到了较佳状态,但会出现一个问题,当LED像素不发光的时候,此LED光源类型转换结构会受外界光照射的影响而呈现白色,影响观影效果。由于外界光照射至光散射层后,光线将被散射和反射,反射率高于20%。过高的反射率将直接降低LED屏显示画面的帧内对比度,因此需要进一步降低导光与扩散结构的表面反射率。因此,本实施例引入了外界光抑制组件3。
外界光抑制组件3可以为可见光透过率在20%~70%之间的半透膜层或线偏光片或圆偏光片,圆偏光片包括沿出光面13所出射光线的传播方向上依次设置的四分之一波片和线偏光片,四分之一波片可直接粘贴在散射组件2的出光面上。
图12示出了本申请所提供的外界光抑制组件采用圆偏光片时的工作原理。当外界光线入射至线偏振片时,其中振动方向与线偏光片的透过轴垂直的光会被吸收,剩下的振动方向与线偏光片的透过轴平行的光会透过线偏光片变为第一线偏振光;经过与线偏振角度呈45°夹角放置的1/4波长延迟膜后,第一线偏振光转化位第一圆偏振光,光线强度基本无变化;第一圆偏振光到达反射表面后,由于外界光抑制组件3的折射率小于实心导光体或散射组件2的折射率,相对而言外界光抑制组件3为光疏介质,实心导光体或散射组件2为光密介质,入射光在光疏介质中前进,遇到光密介质界面时,在反射过程中会产生半波损失,光的电场强度矢量的振动方向和入射光的振动方向恰好相反转变为第二圆偏振光,当旋转方向相反的第二圆偏振光再次经过原来的1/4波长延迟膜时,第二圆偏振光变为第二线偏振光,但第二线偏振光的偏振方向与上层的线偏光片的偏振方向垂直,经过线偏光片后光线被吸收,从而实现对外界光抑制的作用。图13为圆偏振片贴于实心导光体出光面的反射光谱。
本申请所提供的LED光源类型转换结构,在单个LED像素上光强分布状况仿真结果如图14、15所示,可以看出整个方形像素范围内光强基本一致。其中图14为实施例之一的底部为倒置的四棱台结构的仿真光强分布结果,图15为实施例之一的底部为倒置的四棱台+球冠组合结构的仿真光强分布结果。图16为实拍图片,左侧图片是未使用本实施例的LED光源类型转换结构的光强效果,右侧图片是使用了本LED光源类型转换结构的光强效果,其光均匀度较之裸灯的光均匀度有非常明显的优势。
图17给出了普通匀光结构和本申请所提供的LED光源类型转换结构的表面反射光谱对比图,使用本申请所提供的导光与扩散结构后,可以使外界光的反射率从37%左右降低至6%左右,对外界光的抑制有一个较好的效果。
散射组件2和外界光抑制组件3的总雾度在70%~98%之间,以保证整体的散射特性。另外,散射组件2和外界光抑制组件3的位置关系不限,可以根据情况灵活设置,综合上文提供的散射组件2的两种结构,下面列以下两种位置关系进行说明:
位置关系1,如图1所示,散射组件2采用图9所示的一个表面具有不规则凹凸结构的透明膜层,外界光抑制组件3、散射组件2依次设置在导光组件1的出光口的外侧,外界光抑制组件3用于接收LED像素所发出光线的入射,散射组件2中具有不规则的凹凸结构的一面作为所述LED光源类型转换结构的光线出射面。
隔光网格14能将漏出的光全部吸收或反射进实心导光体中,可避免像素之间的光串扰。
此外,散射组件2也可采用图10所示的结构,这时外界光抑制组件3可以置于散射组件2之上也可以置于散射组件2之下,都能达到提高画面帧内对比度的效果。
位置关系2,如图18所示,散射组件2采用内部掺杂有高折射率透明颗粒的透明膜层或采用一个表面具有不规则凹凸结构的透明膜层,散射组件2、外界光抑制组件3依次设置在导光组件1的出光口的外侧,散射组件2接收LED像素所发出光线的入射,外界光抑制组件3用于作为光出射的一侧。
在图18中,被搜集的光线由入射面11进入实心导光体中,此后绝大部分光线会发生全反射到达球冠4,球冠4是带有一凸面的方形立体结构,由于凸面本身的弧度作用,进一步强化了光线的均匀度,同时有一定的光散射作用,此时在球冠上加上一柔性材质的散射组件2,将其凹面与球冠的凸面靠近放置,进行再一次的光线散射,使得发光视角大大增加,具有很强的扩散作用;穿过散射组件2的光线接着进入外界光抑制组件3。同上述方式1一样,也可以在实心导光体的外围加上隔光网格14。
为了进一步保证整体的防反射性能,还可以在LED光源类型转换结构的“光线出射面”上再额外附上一防反射镀层。对于上述方式1来说,“光线出射面”指散射组件2中具有凹凸结构的一面,对于上述方式2来说,“光线出射面”指外界光抑制组件3的外表面。
在第一实施例的基础上,本申请第二实施例提供了一种LED显示屏,所述LED显示屏包括若干LED像素,每个LED像素上都罩设有如第一实施例所述的LED光源类型转换结构。
进一步地,多个第一实施例所述的LED光源类型转换结构可以级联形成连体式光学结构,这样可以覆盖多个LED像素,图19以底部具有倒置的圆台空腔结构的实心导光体为例示出了这种连体式光学结构的外形,可以覆盖13*13个LED点阵。
其中,若干LED像素所发出的光线的偏振态一致,如都是同一种线偏振光,或都是同一种圆偏振光,当搭配主动快门式线偏/圆偏3D眼镜播放3D影片时,可有效提高3D画面的亮度。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。
工业实用性
在此处键入工业实用性描述段落。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (14)

  1. 一种LED光源类型转换结构,用于将LED像素从点光源转换为面光源,其特征在于,所述LED光源类型转换结构包括:
    实心型导光组件,包括一用于罩设在LED像素上的实心导光体,所述实心导光体用于将LED像素所发出的光束进行扩束;
    散射组件,用于将从所述实心导光体扩束后的光束进行散射;
    外界光抑制组件,用于吸收入射的外界环境光线,以降低所述LED光源类型转换结构对外界环境光线的反射率。
  2. 如权利要求1所述的LED光源类型转换结构,其特征在于,所述实心导光体的外表面包括入光面、出光面以及连接在所述入光面和所述出光面之间的束光面;
    所述入光面用于供光束入射进实心导光体内部;
    所述束光面用于将所述光束中的至少部分光线约束在实心导光体的内部并向所述出光面所在的方向传播,以使所述至少部分光线从所述出光面出射;
    所述出光面的面积大于所述入光面的面积。
  3. 如权利要求2所述的LED光源类型转换结构,其特征在于,所述入光面包括一个向所述出光面的方向凹陷的凹曲面,所述凹曲面的凹陷部位用于放置在点光源上,使点光源发出的所述光束通过所述凹曲面垂直入射进实心导光体内部。
  4. 如权利要求3所述的LED光源类型转换结构,其特征在于,所述束光面的第一端所围成的曲线与所述入光面连接,所述束光面的第二端所围成的曲线与所述出光面连接;沿所述第一端到所述第二端方向上,所述实心导光体的横截面积逐渐增大。
  5. 如权利要求4所述的LED光源类型转换结构,其特征在于,所述第一端所围成的曲线呈多边形或圆形,所述束光面靠近所述第一端的部分为倒置的多棱台或倒置的圆台的形状;
    所述第二端所围成的曲线和所述出光面均呈矩形;
    沿所述第一端到所述第二端的方向上,所述束光面从倒置的多棱台或倒置的圆台的形状渐变为所述第二端所具有的矩形。
  6. 如权利要求4所述的LED光源类型转换结构,其特征在于,所述束光面与竖直方向的夹角使得在所述实心导光体内部传播的光线在到达所述束光面时被所述束光面全反射后从所述出光面出射。
  7. 如权利要求2至6任一项所述的LED光源类型转换结构,其特征在于,所述实心型导光组件还包括用于将从所述实心导光体漏出的光线吸收或再反射进入所述实心导光体的隔光网格;所述隔光网格包括底壁和自所述底壁延伸而出的侧壁,所述底壁与所述侧壁之间形成一空腔,所述实心导光体置于所述空腔中,所述侧壁的顶端不封闭以供所述出光面出光;
    所述底壁上设有一个通孔,所述通孔用于供发出所述光束的外部光源穿过。
  8. 如权利要求1所述的LED光源类型转换结构,其特征在于,所述散射组件和所述外界光抑制组件的总雾度在70%~98%之间。
  9. 如权利要求1所述的LED光源类型转换结构,其特征在于,所述外界光抑制组件为可见光透过率在20%~70%之间的半透膜层或线偏光片或圆偏光片;
    所述圆偏光片包括沿出射光线的传播方向上依次设置的四分之一波片和线偏光片。
  10. 如权利要求1所述的LED光源类型转换结构,其特征在于,所述散射组件包括透明膜层;所述透明膜层的一个表面具有不规则的凹凸结构;
    所述外界光抑制组件、所述散射组件依次设置在所述实心导光体的出光面的外侧,所述散射组件中具有不规则的凹凸结构的一面作为所述LED光源类型转换结构的光线出射面。
  11. 如权利要求1所述的LED光源类型转换结构,其特征在于,所述散射组件包括透明膜层;所述透明膜层中掺杂有透明颗粒,所述透明颗粒的光折射率大于所述透明膜层的光折射率;所述透明膜层中添加有光吸收材料,所述透明膜层的光透过率在20%~70%之间;
    所述散射组件、所述外界光抑制组件依次设置在所述实心导光体的出光面的外侧;或者所述外界光抑制组件、所述散射组件依次设置在所述实心导光体的出光面的外侧。
  12. 如权利要求10或11所述的LED光源类型转换结构,其特征在于,所述透明膜层为柔性透明膜层;
    所述LED光源类型转换结构还包括一球冠,所述球冠设置在所述实心导光体的出光面与所述柔性透明膜层之间,且凸面朝向所述柔性透明膜层。
  13. 如权利要求1所述的LED光源类型转换结构,其特征在于,所述LED光源类型转换结构的光线出射面上附有防反射镀层。
  14. 一种LED显示屏,其特征在于,所述LED显示屏包括若干LED像素,每个LED像素上都罩设有如权利要求1-13任一项所述的LED光源类型转换结构。
PCT/CN2023/127976 2022-11-01 2023-10-30 Led光源类型转换结构及led显示屏 WO2024093952A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211358940.9 2022-11-01
CN202211358940.9A CN115731814A (zh) 2022-11-01 2022-11-01 Led光源类型转换结构及led显示屏

Publications (1)

Publication Number Publication Date
WO2024093952A1 true WO2024093952A1 (zh) 2024-05-10

Family

ID=85294291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127976 WO2024093952A1 (zh) 2022-11-01 2023-10-30 Led光源类型转换结构及led显示屏

Country Status (2)

Country Link
CN (1) CN115731814A (zh)
WO (1) WO2024093952A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115731814A (zh) * 2022-11-01 2023-03-03 深圳市时代华影科技股份有限公司 Led光源类型转换结构及led显示屏

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1227458A2 (de) * 2001-01-11 2002-07-31 Dr. techn. Josef Zelisko, Fabrik für Elektrotechnik und Maschinenbau Gesellschaft m.b.H. Anzeige- und/oder Signalsiervorrichtung
CN102402907A (zh) * 2011-12-05 2012-04-04 广东威创视讯科技股份有限公司 一种提高led显示屏显示效果的装置
CN110609418A (zh) * 2019-09-24 2019-12-24 深圳创维-Rgb电子有限公司 一种背光模组及显示设备
CN110969958A (zh) * 2018-09-28 2020-04-07 深圳光峰科技股份有限公司 一种led显示屏
CN211349975U (zh) * 2019-09-12 2020-08-25 深圳光峰科技股份有限公司 一种led屏幕
CN213070459U (zh) * 2020-09-28 2021-04-27 深圳市时代华影科技股份有限公司 一种led屏像素结构、led显示模组及led显示屏
CN213635177U (zh) * 2020-11-17 2021-07-06 深圳市时代华影科技股份有限公司 一种基于侧发光结构的led屏像素结构、led显示模组及led显示屏
CN214099000U (zh) * 2020-11-26 2021-08-31 苏州东岩电子科技有限公司 一种提高led显示屏对比度的部件
CN115731814A (zh) * 2022-11-01 2023-03-03 深圳市时代华影科技股份有限公司 Led光源类型转换结构及led显示屏

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1227458A2 (de) * 2001-01-11 2002-07-31 Dr. techn. Josef Zelisko, Fabrik für Elektrotechnik und Maschinenbau Gesellschaft m.b.H. Anzeige- und/oder Signalsiervorrichtung
CN102402907A (zh) * 2011-12-05 2012-04-04 广东威创视讯科技股份有限公司 一种提高led显示屏显示效果的装置
CN110969958A (zh) * 2018-09-28 2020-04-07 深圳光峰科技股份有限公司 一种led显示屏
CN211349975U (zh) * 2019-09-12 2020-08-25 深圳光峰科技股份有限公司 一种led屏幕
CN110609418A (zh) * 2019-09-24 2019-12-24 深圳创维-Rgb电子有限公司 一种背光模组及显示设备
CN213070459U (zh) * 2020-09-28 2021-04-27 深圳市时代华影科技股份有限公司 一种led屏像素结构、led显示模组及led显示屏
CN213635177U (zh) * 2020-11-17 2021-07-06 深圳市时代华影科技股份有限公司 一种基于侧发光结构的led屏像素结构、led显示模组及led显示屏
CN214099000U (zh) * 2020-11-26 2021-08-31 苏州东岩电子科技有限公司 一种提高led显示屏对比度的部件
CN115731814A (zh) * 2022-11-01 2023-03-03 深圳市时代华影科技股份有限公司 Led光源类型转换结构及led显示屏

Also Published As

Publication number Publication date
CN115731814A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
WO2024093952A1 (zh) Led光源类型转换结构及led显示屏
JP6806775B2 (ja) 大面積光源および大面積照明器具
US11313526B2 (en) Lighting unit and lighting fixture
WO2016045159A1 (zh) 一种发光二极管led发光器件、背光模组及显示面板
TWI682228B (zh) 小型投影系統及相關組件
JP2007141546A (ja) 光混合板、及び該光混合板を利用した直下式バックライト
CN110161750A (zh) 透镜结构、光源结构、背光模组和显示装置
CN110908193A (zh) 一种应用于Mini—LED阵列光源的扩散薄膜
WO2019134562A1 (zh) 背光源及其制作方法、显示装置
KR102005651B1 (ko) 도광판, 백라이트 모듈 및 디스플레이 장치
WO2020063155A1 (zh) 一种led显示屏
JPS6368814A (ja) 液晶表示装置用照明装置
CN114464604A (zh) 背光模组、显示装置、电子设备及背光模组的封装方法
WO2018166177A1 (zh) 透明显示装置
US20170160590A1 (en) Backlighting device
WO2020063700A1 (zh) Led显示屏
CN105759442B (zh) 一种激光显示画面散斑噪声消除器及显示器
WO2020063153A1 (zh) 一种led显示屏
US20170269356A1 (en) Lighting lens, image pickup module, and electronic apparatus
CN2549486Y (zh) 一种小型背投影彩色显示装置
CN218728143U (zh) 实心型导光组件及led显示屏
CN218763000U (zh) 光散射组件及led显示屏
CN211506155U (zh) 一种投影机光学系统和投影机光学引擎
CN114649494A (zh) 一种光学保护基板及制备方法、显示装置
CN107991837B (zh) 基于全反射的增强投影亮度和对比度的幕布及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884882

Country of ref document: EP

Kind code of ref document: A1