WO2016045159A1 - 一种发光二极管led发光器件、背光模组及显示面板 - Google Patents

一种发光二极管led发光器件、背光模组及显示面板 Download PDF

Info

Publication number
WO2016045159A1
WO2016045159A1 PCT/CN2014/088963 CN2014088963W WO2016045159A1 WO 2016045159 A1 WO2016045159 A1 WO 2016045159A1 CN 2014088963 W CN2014088963 W CN 2014088963W WO 2016045159 A1 WO2016045159 A1 WO 2016045159A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
refractive index
concave
light emitting
Prior art date
Application number
PCT/CN2014/088963
Other languages
English (en)
French (fr)
Inventor
李富琳
乔明胜
钟强
Original Assignee
青岛海信电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信电器股份有限公司 filed Critical 青岛海信电器股份有限公司
Publication of WO2016045159A1 publication Critical patent/WO2016045159A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation

Definitions

  • the present application relates to the field of backlight illumination technologies, and in particular, to an LED (Light Emitting Diode) light emitting device, a backlight module, and a display panel.
  • LED Light Emitting Diode
  • liquid crystal displays have become the mainstream display devices in the field of display technology due to their advantages of low power consumption, low radiation, thin body and soft picture.
  • the liquid crystal display is filled with liquid crystal, but the liquid crystal itself does not emit light, so the liquid crystal display requires a backlight module to provide a light source.
  • LED is a kind of semiconductor optoelectronic device that can convert electric energy into light energy. Because of its fast response, long life, energy saving and environmental protection, LED is often used in the backlight module of liquid crystal display to provide light source for liquid crystal display.
  • the backlight module includes a plurality of LEDs, a lens and a diffusion plate.
  • the thinning of the display has become a trend.
  • the thinning of the liquid crystal display will cause the spot on the diffusion plate to become smaller, so that the light irradiated on the diffusion plate is not uniform, and the diffusion plate will appear.
  • Bright spots appear in the upper spot area, and dark spots appear outside the spot area, that is, firefly phenomenon, which directly affects the display effect of the liquid crystal display.
  • Embodiments of the present application provide a light emitting diode LED light emitting device, a backlight module, and a display panel, which can expand the divergence angle of the light emitted by the LED light source on the basis of ensuring the thinning of the backlight module.
  • An embodiment of the present application provides an LED light emitting device, including an LED light source, in an aspect. a first lens and a second lens, an optical axis of the first lens and an optical axis of the second lens are coincident;
  • the LED light source is disposed on an optical axis of the first lens away from the side of the second lens;
  • the first lens is a concave lens, and a light emitting surface of the first lens is a convex surface;
  • the second lens is a concave lens, and the light incident surface of the second lens is a concave surface, wherein a light emitting surface of the first lens has the same curvature as a light incident surface of the second lens, and the first lens The light emitting surface is in close contact with the light incident surface of the second lens, and the refractive index of the second lens is greater than the refractive index of the first lens.
  • any one of the first lens and the second lens is sealed with a quantum dot material, and the LED light source is a blue LED.
  • the light emitting surface of the second lens is any one of a hemispherical surface, a semi-ellipsoidal surface, or a double spherical butterfly surface.
  • the second lens is a plano-concave lens, and a light-emitting surface of the second lens is a flat surface.
  • a light emitting diode LED light emitting device including an LED light source, a first lens and a second lens, wherein an optical axis of the first lens and an optical axis of the second lens coincide;
  • the LED light source is disposed on an optical axis of the first lens away from the side of the second lens;
  • the first lens and the second lens are both concave lenses
  • a gap is formed between the light exit surface of the first lens and the light incident surface of the second lens, the gap having a refractive index smaller than a refractive index of the first lens and smaller than a refractive index of the second lens.
  • the gap is filled with a glue
  • the refractive index of the glue is smaller than the refractive index of the first lens
  • the refractive index of the glue is smaller than the refractive index of the second lens
  • the gap is filled with air.
  • the first lens and the second lens are both convex and concave lenses, and the first lens is formed by any one of the gaps between the light-emitting surface of the first lens and the light-incident surface of the second lens.
  • the light incident surface is a concave surface
  • the light emitting surface of the first lens is a convex surface
  • the second lens light incident surface is a concave surface
  • the light emitting surface of the second lens is a convex surface.
  • the light exiting surface of the second lens is a hemispherical surface or a semi-ellipsoidal surface.
  • the first lens is a convex-concave lens
  • the second lens is a plano-concave lens
  • a light incident surface of the first lens is a concave surface
  • a light emitting surface of the first lens is a convex surface
  • the smooth surface is a concave surface
  • the light emitting surface of the second lens is a flat surface.
  • the first lens is a plano-concave lens
  • the second lens is a convex-concave lens
  • a light incident surface of the first lens is a concave surface
  • a light-emitting surface of the first lens is a plane
  • an entrance of the second lens The glossy surface is concave
  • the light emitting surface of the second lens is a convex surface.
  • any one of the first lens and the second lens is sealed with a quantum dot material according to any embodiment of forming a gap between the light-emitting surface of the first lens and the light-incident surface of the second lens.
  • the LED light source is a blue LED.
  • the gap is filled with a quantum dot material, and the LED light source is a blue LED.
  • a still further aspect of the embodiments of the present application provides an LED light emitting device including an LED light source, a first lens and a second lens, wherein an optical axis of the first lens and an optical axis of the second lens coincide;
  • the LED light source is disposed on an optical axis of the first lens away from the side of the second lens;
  • the first lens and the second lens are both concave lenses
  • a gap is formed between the light emitting surface of the first lens and the light incident surface of the second lens, and the refractive index of the gap is greater than a refractive index of the first lens but smaller than a refractive index of the second lens.
  • the gap is filled with a glue material
  • the glue material has a refractive index greater than a refractive index of the first lens, but the glue material has a refractive index smaller than a refractive index of the second lens.
  • a still further aspect of the present application provides a backlight module, where the backlight module includes at least one LED light emitting device, and the LED light emitting device is any one of the LED light emitting devices described above.
  • a further aspect of the present application provides a display panel, where the display panel includes any of the backlight modules described above.
  • Embodiments of the present application provide an LED light emitting device, a backlight module, and a display panel.
  • the LED light emitting device includes an LED light source, a first lens and a second lens, an optical axis of the first lens and an optical axis of the second lens are coincident; and the LED light source is disposed on an optical axis of the first lens away from the second lens side
  • the first lens is a concave lens
  • the light emitting surface of the first lens is a convex surface
  • the second lens is a concave lens
  • the light incident surface of the second lens is a concave surface, wherein the light emitting surface of the first lens and the light incident surface of the second lens
  • the curvature is the same, the light exiting surface of the first lens is in close contact with the light incident surface of the second lens, and the refractive index of the second lens is greater than the refractive index of the first lens.
  • Two concave lenses are stacked, and since the first lens is a concave lens, and the light emitting surface of the first lens is convex, the light incident surface of the first lens is concave, and when the light is incident on the light incident surface of the first lens, Since the refractive index of the air is smaller than the refractive index of the first lens, the light from the light-diffusing medium to the light-tight medium is close to the normal, and the light-incident surface of the first lens is concave, and the light undergoes the first divergence; When the light exiting surface of the first lens, that is, when the light is from the first lens to the second lens, the refractive index of the first lens is smaller than the refractive index of the second lens, and the light exiting surface of the first lens and the light entering the second lens The surface is close to the surface, and the light is incident from the light-diffusing medium to the light-tight medium.
  • the light-emitting surface of the first lens is convex. Secondary divergence; when the light is shining When the light exiting surface of the second lens, the refractive index of the second lens is greater than the refractive index of the air, the light will be away from the normal line from the optically dense medium to the light-dissipating medium, and the second lens is a concave lens, at which time the light undergoes a third divergence.
  • the light originally diverging through the two faces is now diverged through the three faces, expanding the divergence angle of the light, so that the spot on the diffusing plate becomes larger.
  • the first lens and the second lens whose refractive index and curvature can meet the diffusion angle can be selected, thereby avoiding the occurrence of firefly phenomenon, thereby ensuring the thinning of the backlight module. , improving the uniformity of illumination of the backlight module.
  • the light emitting diode LED light emitting device may include an LED light source, a first lens and a second lens, an optical axis of the first lens and an optical axis of the second lens are coincident, and the LED light source is disposed on a side of the first lens away from the second lens On the optical axis, both the first lens and the second lens are concave lenses, and a gap is formed between the light emitting surface of the first lens and the light incident surface of the second lens, and the refractive index of the gap is smaller than the refractive index of the first lens, and is smaller than The refractive index of the two lenses.
  • Two concave lenses are stacked, and because there is a gap between the first lens and the second lens, and the refractive index of the gap is smaller than the refractive index of the first lens and smaller than the refractive index of the second lens, the lens of the light on both sides of the gap Refraction can be performed on the surface.
  • the light originally refracted through the two faces is now refracted through the four faces, increasing the number of times the light is refracted and expanding the divergence angle of the light.
  • the spot that is irradiated on the diffusion plate is made larger.
  • the first lens and the second lens whose refractive index and curvature can meet the diffusion angle can be selected, thereby avoiding the occurrence of firefly phenomenon, thereby ensuring the thinning of the backlight module. , improving the uniformity of illumination of the backlight module.
  • the light emitting diode LED light emitting device may include an LED light source, a first lens and a second lens, an optical axis of the first lens and an optical axis of the second lens are coincident, and the LED light source is disposed on a side of the first lens away from the second lens On the optical axis, the first lens and the second lens are both concave lenses, and a gap is formed between the light emitting surface of the first lens and the light incident surface of the second lens, and the refractive index of the gap is greater than the refractive index of the first lens, but smaller than the first lens The refractive index of the two lenses.
  • Two concave lenses are stacked, and because there is a gap between the first lens and the second lens, and the refractive index of the gap is smaller than the refractive index of the first lens and smaller than the refractive index of the second lens, the lens of the light on both sides of the gap Refraction can be performed on the surface.
  • the light originally refracted through the two faces is now refracted through the four faces, increasing the number of times the light is refracted and expanding the divergence angle of the light.
  • the spot that is irradiated on the diffusion plate is made larger.
  • the first lens and the second lens whose refractive index and curvature can meet the diffusion angle can be selected, thereby avoiding the occurrence of firefly phenomenon, thereby ensuring the thinning of the backlight module. , improving the uniformity of illumination of the backlight module.
  • the refractive index of the first lens is smaller than the refractive index of the gap
  • the refractive index of the gap is smaller than the refractive index of the second lens.
  • FIG. 1 is a schematic diagram of an LED light emitting device according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of another LED light emitting device according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a lens according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of still another LED light emitting device according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of still another LED light emitting device according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another LED light emitting device according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another lens according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of still another LED light emitting device according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another LED light emitting device according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a backlight module according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another backlight module according to an embodiment of the present application.
  • An embodiment of the present application provides an LED light emitting device, as shown in FIG. 1, including an LED light source 101, a first lens 102 and a second lens 103, an optical axis 1021 of the first lens 1021, and an optical axis of the second lens 103.
  • the LED light source 101 is disposed on the optical axis 1021 of the first lens 102 away from the second lens 103; the first lens 102 is a concave lens, the light emitting surface 102b of the first lens 102 is a convex surface; and the second lens 103 is a concave lens.
  • the light incident surface of the second lens 103 is a concave surface, wherein the light exiting surface 102b of the first lens 102 and the light incident surface of the second lens 103 have the same curvature, and the light emitting surface 102b of the first lens 102 and the light incident surface of the second lens 103. Adjacent, and the refractive index of the second lens 103 is greater than the refraction of the first lens 102 rate.
  • the LED light emitting device is not limited to the two lenses disposed in a stack, and two or more concave lenses may be stacked. It is only necessary to ensure that the optical axes of all the concave lenses coincide, and the farther away from the LED light source, the greater the refractive index of the lens. And in the two adjacent concave lenses, the light-emitting surface of the concave lens adjacent to the LED light source is convex, and the light-incident surface of the concave lens away from the LED light source is concave, and the two surfaces are in close contact with each other.
  • the optical axis 1021 of the first lens 102 identified in FIG. 1 is also the optical axis of the second lens 103.
  • the light exiting surface of the first lens 102 and the light incident surface of the second lens 103 have the same curvature, and the light emitting surface of the first lens 102 is in close contact with the light incident surface of the second lens 103, the light emitting surface of the first lens 102
  • the light incident surface of the second lens 103 is coincident with the light incident surface of the second lens 103. Therefore, the light incident surface of the first lens 102 and the light incident surface of the second lens 103 are coincident surfaces.
  • the first lens 102 and the second lens 103 may be lenses of various materials, such as glass, plastic or silica gel, as long as the refractive index of the second lens 103 is greater than the refractive index of the first lens 102. This embodiment of the present application does not limit this.
  • the LED light source 101 is disposed on the optical axis 1021 of the first lens 102 away from the second lens 103, so that the light emitted by the LED light source 101 can be uniformly and sufficiently irradiated on the first lens 102, which is beneficial to the light in the first lens. Uniform divergence on 102.
  • the convex surface refers to the line segment connected to any two points on the surface is inside the geometry to which the surface belongs, and the concave surface refers to the line segment connected to any two points on the surface. The outer part of the geometry to which the face belongs.
  • both the first lens 102 and the second lens 103 are disposed as concave lenses such that light emitted from the LED light source 101 is refracted by the first lens 102 and the second lens 103 With a large divergence angle.
  • the first lens is a concave lens and the light emitting surface of the first lens is convex
  • the light incident surface of the first lens is concave
  • the light incident surface of the first lens is concave
  • the refractive index of the air is smaller than the refractive index of the first lens
  • the light will be close to the normal from the light-diffusing medium to the light-tight medium, and the light undergoes the first divergence;
  • the light is incident from the light-diffusing medium to the optically dense medium. Since the light is incident from the light-diffusing medium to the optically dense medium, the light is close to the normal line, and the light-emitting surface of the first lens is convex.
  • a second divergence when the light is shining When the refractive index of the second lens is greater than the refractive index of the air, the light will travel away from the normal from the optically dense medium to the light-dissipating medium, and the second lens is a concave lens, at which time the light undergoes a third divergence.
  • the light originally diverging through the two faces is now diverged through the three faces, expanding the divergence angle of the light, so that the spot irradiated on the diffusing plate becomes larger.
  • the first lens and the second lens whose refractive index and curvature can meet the diffusion angle are selected, the occurrence of the firefly phenomenon can be avoided, and the uniformity of illumination of the backlight module is improved.
  • the divergence angle of the light becomes larger, it is only necessary to set a smaller number of LEDs without lowering the brightness of the spot, and the adjacent divergent rays can be merged at a closer position, thus ensuring the backlight module.
  • the cost of the backlight module is reduced.
  • the arrow appearing in the drawing of the embodiment of the present application is the propagation direction of the light emitted by the LED light emitting device.
  • any one of the first lens 102 and the second lens 103 is sealed with a quantum dot material, and the LED light source 101 is a blue LED.
  • color gamut As a measure of the color performance of liquid crystal displays, color gamut has attracted more and more attention.
  • the liquid crystal displays commonly used in the market generally have a wide color gamut range, and the color gamut that can be displayed is generally about 68% to 72%, and thus cannot provide a good color effect.
  • high color gamut backlight technology is becoming the focus of research in the industry.
  • Quantum Dot also known as nanocrystal, is a photoluminescence crystal structure semiconductor. The color of the light is determined by its size. Applying the quantum dot material to the liquid crystal display can improve the display of the liquid crystal display.
  • the gamut range is achieved by using a blue LED to excite quantum dot materials, which can produce a white light source, which can achieve a color gamut of more than 100%.
  • the quantum dot material will fail when subjected to high temperature and oxygen. Therefore, it is generally required in the prior art to seal the quantum dot material before use.
  • the main implementation method is to encapsulate the quantum dot material in the lens, and the lens is provided with a cavity. The quantum dot material can be injected into the cavity of the lens, but the light generated by the blue LED after exciting the quantum dot material is scattered, which disturbs the optical path, so that the spot irradiated onto the diffusion plate becomes small.
  • the quantum dot material in the first lens 102 it is preferable to seal the quantum dot material in the first lens 102, thereby preventing the quantum dot material and the oxygen contact from failing. Since the lens is generally hard, there is no excitation of the quantum dot material. The generated heat deforms the lens, and when the light emitted by the blue LED illuminates the light incident surface of the first lens 102, the blue light ray is diverged once, and the diverged blue light illuminates the quantum dot material, which is relatively uniform. The quantum dot material is excited to generate white light.
  • the quantum dot material While the blue light ray excites the quantum dot material to generate white light, the quantum dot material also scatters the light, and the scattered light passes through the light emitting surface of the first lens 102 and the light emitting surface of the second lens 103. Refraction, such that the refraction through two faces The resulting light will have a large divergence angle.
  • the concave lens can be classified into a biconcave lens, a plano-concave lens, and a convex-concave lens.
  • the first lens 102 and the second lens 103 are both convex and concave lenses
  • the light incident surface 102a of the first lens 102 is a concave surface
  • the light emitting surface 103a of the second lens 103 is a convex surface.
  • the light incident surface 102a of the first lens 102 is concave, so that the light emitted by the LED light source 101 can be irradiated on the light incident surface 102a of the first lens 102 as much as possible, and the light emitted by the LED light source 101 passes through the first After the refracting of the light incident surface 102a of the lens 102, the light is more uniformly dispersed.
  • the light exiting surface 103a of the second lens 103 is convex, so that the light irradiated thereon can be more uniformly diverged.
  • the light emitted by the LED light source 101 passes through the light incident surface 102a and the light exiting surface 102b of the first lens 102, and the light exiting surface 103a of the second lens 103, respectively, assuming the light and diffusion of the LED light source 101.
  • the angle between the normal of the light incident surface of the plate 11 is r
  • the angle between the light refracted by the first lens 102 and the normal of the light incident surface of the diffusing plate 11 is ⁇
  • the light refracted by the second lens 103 The angle with the normal line of the light incident surface of the diffusing plate 11 is ⁇
  • the normal line is a straight line perpendicular to the light incident surface of the diffusing plate 11. It can be seen from FIG.
  • the light has a large divergence angle after passing through the first lens 102 and the second lens 103, and the light is only passed through the first in comparison with the prior art.
  • the small spot 13 formed on the diffusing plate 11 is refracted by the three faces of the first lens 102 and the second lens 103 in the embodiment of the present application, and is emitted from the LED light source 101.
  • the light can be diverged three times so that the resulting exiting light will have a larger divergence angle, resulting in a larger spot 12 on the diffuser.
  • the first lens 102 may further include a support surface 102c, the light incident surface 102a of the first lens 102, the light exit surface 102b, and the support surface 102c constitute an outer surface of the first lens 102; the second lens 103 may also The support surface 103c, the light incident surface 102b of the second lens 103, the light exit surface 103a, and the support surface 103c constitute the outer surface of the second lens 103.
  • the supporting surface 102c of the first lens 102 and the supporting surface 103c of the second lens 103 may be in the same plane or in different planes, which is not limited in the embodiment of the present application.
  • the light-emitting surface 103a of the second lens 103 is any one of a hemispherical surface, a semi-ellipsoidal surface, or a double-spherical butterfly surface.
  • the light-emitting surface 103a of the second lens 103 is a double-spherical butterfly surface
  • the light incident on the middle of the double-ball face will be mostly refracted around the double-ball face, so that the first lens 102 passes through.
  • the light distribution after the second lens 103 is irradiated onto the diffusion plate 11 is more uniform.
  • the first lens 102 is a convex-concave lens
  • the second lens 103 is a plano-concave lens
  • the light incident surface 102a of the first lens 102 is a concave surface
  • the light-emitting surface 103a of the second lens 103 is a flat surface.
  • the light-emitting surface 103a of the lens 103 may also be a concave surface, so that the light passing through the two lenses is diverged, but such a shape may cause a part of the edge light to be unable to illuminate the light-emitting surface 103a of the second lens 103, thereby affecting the light divergence. Since the uniformity is preferable, it is preferable that the light-emitting surface 103a of the second lens 103 is a convex surface.
  • FIG. 5 Another embodiment of the present application provides a light emitting diode LED light emitting device, as shown in FIG. 5, including an LED light source 201, a first lens 202 and a second lens 203, and an optical axis 2021 of the first lens 202 and a second lens 203.
  • the optical axis 201 is disposed on the optical axis 2021 of the first lens 202 away from the second lens 203; the first lens 202 and the second lens 203 are both concave lenses; the light emitting surface 202b of the first lens 202 and the second A gap 204 is formed between the light incident surfaces 203a of the lens 203, the refractive index of the gap being smaller than the refractive index of the first lens 202 and smaller than the refractive index of the second lens 203.
  • the relationship between the refractive index of the first lens 202, the refractive index of the second lens 203, and the refractive index of the gap 204 is not limited in the embodiment of the present application. Regardless of the refractive index of the first lens 202, the refractive index of the second lens 203, and the refractive index of the gap 204, the purpose of expanding the divergence angle can be achieved.
  • the LED light emitting device provided by the embodiment of the present invention is not limited to the two lenses disposed in a stack, and two or more concave lenses may be stacked. It is only necessary to ensure that the optical axes of all the concave lenses coincide, and a gap is formed between at least two adjacent concave lenses.
  • the optical axis 2021 of the first lens 202 is also the optical axis of the second lens 203.
  • the first lens 202 and the second lens 203 may be lenses of various materials, such as glass, plastic, or silica gel.
  • the first lens 202 and the second lens 203 may be lenses of the same material or may be lenses of different materials, which is not limited in the embodiment of the present application.
  • the first lens and the second lens whose refractive index and curvature can meet the diffusion angle are selected, the occurrence of the firefly phenomenon can be avoided, and the uniformity of illumination of the backlight module is improved.
  • the divergence angle of the light becomes larger, it is only necessary to set a smaller number of LEDs without lowering the brightness of the spot, and the adjacent divergent rays can be merged at a closer position, thus ensuring the backlight module.
  • the cost of the backlight module is reduced.
  • the refractive index of the second lens 203 may be greater than the refractive index of the first lens 202, and It may be smaller than the refractive index of the first lens 202.
  • the refractive index of the second lens 203 is greater than the refractive index of the first lens 202, the light can obtain a larger divergence angle after being refracted by the second lens 203.
  • the concave lens can be divided into a biconcave lens, a plano-concave lens and a convex-concave lens. Since the first lens 202 and the second lens 203 are both concave lenses, the first lens 202 and the second lens 203 can be used in combination in nine combinations. However, in practical applications, each combination mode has different diffusion angles of light, uniformity of diffusion of light, and difficulty in its own fabrication.
  • the gap 204 is filled with a glue material.
  • the glue can be an optical glue.
  • the optical glue is a kind of adhesive. It can bond transparent optical components. It is colorless and transparent, and its light transmittance is above 90%.
  • the optical adhesive may be an adhesive such as a silicone rubber, a polyurethane or an epoxy resin. The embodiment of the present application does not limit this, as long as the refractive index of the glue is smaller than the refractive index of the first lens, and the refractive index of the glue is less than The refractive index of the two lenses is sufficient.
  • the gap 204 may also be air, and the first lens and the second lens are fixed by other means.
  • the specific fixing method is not limited in this application.
  • the quantum dot material may be sealed in any one of the first lens 202 and the second lens 203, and the LED light source 201 is a blue LED.
  • color gamut As a measure of the color performance of liquid crystal displays, color gamut has attracted more and more attention.
  • the liquid crystal displays commonly used in the market generally have a wide color gamut range, and the color gamut that can be displayed is generally about 68% to 72%, and thus cannot provide a good color effect.
  • high color gamut backlight technology is becoming the focus of research in the industry.
  • Quantum Dot also known as nanocrystal, is a photoluminescence crystal structure semiconductor. The color of the light is determined by its size. Applying the quantum dot material to the liquid crystal display can improve the display of the liquid crystal display.
  • the gamut range is achieved by using a blue LED to excite quantum dot materials, which can produce a white light source, which can achieve a color gamut of more than 100%.
  • the quantum dot material will fail when subjected to high temperature and oxygen. Therefore, it is generally required in the prior art to seal the quantum dot material before use.
  • the main implementation method is to encapsulate the quantum dot material in the lens, and the lens is provided with an empty space. The cavity can inject the quantum dot material into the cavity of the lens, but the light generated by the blue LED after exciting the quantum dot material is scattered, which disturbs the optical path, so that the spot irradiated onto the diffusion plate becomes smaller.
  • the quantum dot material in the first lens 202 it is preferable to seal the quantum dot material in the first lens 202, thereby preventing the quantum dot material and the oxygen contact from failing. Since the lens is generally hard, there is no excitation of the quantum dot material. The generated heat deforms the lens, and when the light emitted by the blue LED illuminates the light incident surface of the first lens 202, the blue light passes through a divergence, and the diverged blue light illuminates the quantum dot material, which is relatively uniform.
  • the blue light is exciting the quantum dot While the material produces white light, the quantum dot material also scatters the light, and the scattered light passes through the light exit surface of the first lens 202, the light incident surface of the second lens 203, and the light exit surface of the second lens 203.
  • the refracted light passing through the three faces will have a large divergence angle.
  • the quantum dot material can also be filled in the gap 204.
  • Quantum dot materials require a sealed fill.
  • the specific implementation of the seal is not limited herein, but is exemplified by the preferred embodiment.
  • a sealant is filled at the edge of the gap formed by the first lens and the second lens, as shown by the dashed box in FIG.
  • the lens Since the lens is generally hard, the heat generated after exciting the quantum dot material deforms the lens, and the light emitted by the blue LED illuminates the first lens 202.
  • the blue light passes through a divergence, and the divergent blue light illuminates the quantum dot material, which will relatively uniformly excite the quantum dot material to produce white light.
  • the blue light ray stimulates the quantum dot material to generate white light, and the quantum dot
  • the material also scatters the light, and the scattered light passes through the light exit surface of the first lens 202, the light incident surface of the second lens 203 and the light exit surface of the second lens 203, so that the three surfaces are refracted. Light will have a large divergence angle.
  • the first lens 202 and the second lens 203 are both convex and concave lenses
  • the light incident surface 202 a of the first lens 202 is a concave surface
  • the light emitting surface 202 b of the first lens 202 is a convex surface
  • the second lens 203 is 203.
  • the light incident surface 203a is a concave surface
  • the light emitting surface 203b of the second lens 203 is a convex surface.
  • the light incident surface 202a of the first lens 202 is concave, so that the light emitted by the LED light source 201 can be irradiated on the light incident surface 202a of the first lens 202 as much as possible, and the light emitted by the LED light source 201 passes through the first After the refraction of the light incident surface 202a of the lens 202, the light is more evenly dispersed.
  • the light emitted by the LED light source 201 passes through the first lens 202, since the refractive index of the gap 204 is smaller than the refractive index of the first lens 202, and the first lens 202 is a concave lens, the light passes through the first lens 202.
  • the divergence is performed; similarly, when the diverged light passes through the second lens 203, since the refractive index of the bonding substance 204 is smaller than the refractive index of the second lens 203, and the second lens 203 is also a concave lens, the light passes through the second lens 203. After the refraction, the light has a larger divergence angle.
  • the angle between the light emitted by the LED light source 201 and the normal of the light incident surface of the diffusing plate 21 is r
  • the angle between the light refracted by the first lens 202 and the normal of the light incident surface of the diffusing plate 21 is ⁇
  • the angle between the light refracted by the second lens 203 and the normal line of the light incident surface of the diffusing plate 21 is ⁇
  • the normal line is a straight line perpendicular to the light incident surface of the diffusing plate 21. It can be seen from FIG.
  • the light has a large divergence angle after passing through the first lens 202 and the second lens 203, and the light is only passed through the first in comparison with the prior art.
  • the spot 23 formed on the diffuser plate 21, in the embodiment of the present application the light is respectively refracted by the first lens 202 and the second lens 203, after multiple divergence, the light may be A larger spot 22 is formed on the diffusion plate 21.
  • the first lens 202 may further include a supporting surface 202c.
  • the light incident surface 202a of the first lens 202, the light exiting surface 202b, and the supporting surface 202c constitute an outer surface of the first lens 202.
  • the second lens 203 may also be The support surface 203c is included, the light incident surface 203a of the second lens 203, the light exit surface 203b, and the support surface 203c constitute the outer surface of the second lens 203.
  • the supporting surface 202c of the first lens 202 and the supporting surface 203c of the second lens 203 may be in the same plane or in different planes, which is not limited in the embodiment of the present application.
  • the light-emitting surface 203b of the second lens 203 is any one of a hemispherical surface, a semi-ellipsoidal surface, or a double-spherical butterfly surface.
  • the light-emitting surface 203b of the second lens 203 is a double-ball face
  • the light incident on the middle of the double-ball face will be mostly refracted to the periphery of the double-ball face, so that the first lens 202 is passed.
  • the light distribution after the second lens 203 is irradiated onto the diffusion plate 21 is more uniform.
  • the first lens 202 is a convex-concave lens
  • the second lens 203 is a plano-concave lens
  • the light-incident surface 202 a of the first lens 202 is a concave surface
  • the light-emitting surface 202 b of the first lens 202 is a convex surface
  • the light incident surface 203a of the second lens 203 is a concave surface
  • the light emitting surface 203b of the second lens 203 is a flat surface.
  • the gap between the first lens 202 and the second lens 203 is filled with a glue substance 204.
  • the light exit surface 203b is a convex surface.
  • the first lens 202 is a plano-concave lens
  • the second lens 203 is a convex-concave lens.
  • the light-incident surface 202 a of the first lens 202 is a concave surface
  • the light-emitting surface 202 b of the first lens 202 is a plane.
  • the light incident surface 203a of the second lens 203 is a concave surface
  • the light emitting surface 203b of the second lens 203 is a convex surface.
  • the gap between the first lens 202 and the second lens 203 is filled with a glue substance 204.
  • the first lens 202 can also be a biconcave lens
  • the second lens 203 is a convex-concave lens
  • the light incident surface 202a of the first lens 202 is a concave surface
  • the light emitting surface 202b of the first lens 202 is a concave surface
  • the second lens 203 is
  • the light incident surface 203a is a convex surface
  • the light emitting surface 203b of the second lens 203 is a concave surface.
  • the gap between the first lens 202 and the second lens 203 is filled with a glue substance 204.
  • Yet another embodiment of the present application provides an LED light emitting device, as shown in FIG. 5, including an LED light source 201, a first lens 202 and a second lens 203, an optical axis 2021 of the first lens 202, and an optical axis of the second lens 203.
  • the LED light source 201 is disposed on the optical axis 2021 of the first lens 202 away from the second lens 203; the first lens 202 and the second lens 203 are both concave lenses; the light emitting surface 202b of the first lens 202 and the second lens 203 a gap 204 is formed between the light incident surfaces 203a, and the refractive index of the gap is greater than that of the first lens 202 The refractive index is smaller than the refractive index of the second lens 203.
  • the LED light emitting device is not limited to the two lenses disposed in a stack, and two or more concave lenses may be stacked. As long as it is ensured that the optical axes of all the concave lenses coincide, a gap is formed between at least two adjacent concave lenses, and the refractive indices of the two concave lenses are satisfied: the refractive index of the concave lens close to the LED light source is smaller than the refractive index of the gap, and the refractive index of the gap Less than the refractive index of the concave lens away from the LED light source.
  • the optical axis 2021 of the first lens 202 is also the optical axis of the second lens 203.
  • the first lens 202 and the second lens 203 may be lenses of various materials, such as glass, plastic, or silica gel.
  • the first lens 202 and the second lens 203 may be lenses of the same material or may be lenses of different materials, which is not limited in the embodiment of the present application.
  • the first lens and the second lens whose refractive index and curvature can meet the diffusion angle are selected, the occurrence of the firefly phenomenon can be avoided, and the uniformity of illumination of the backlight module is improved.
  • the divergence angle of the light becomes larger, it is only necessary to set a smaller number of LEDs without lowering the brightness of the spot, and the adjacent divergent rays can be merged at a closer position, thus ensuring the backlight module.
  • the cost of the backlight module is reduced.
  • the refractive index of the first lens is smaller than the refractive index of the gap, the refractive index of the gap is smaller than the refractive index of the second lens.
  • the gap 204 is filled with a glue material.
  • the glue can be an optical glue.
  • the optical glue is a kind of adhesive. It can bond transparent optical components. It is colorless and transparent, and its light transmittance is above 90%.
  • the optical adhesive may be an adhesive such as a silicone rubber, a polyurethane or an epoxy resin. The embodiment of the present application does not limit this, as long as the refractive index of the glue is greater than the refractive index of the first lens, but smaller than the refractive index of the second lens. Just fine.
  • the shapes of the first lens and the second lens may be as shown in FIGS. 7-9, and the details are not described herein.
  • a further embodiment of the present application provides a backlight module.
  • the backlight module includes at least one LED light emitting device 41.
  • the LED light emitting device 41 can be any one of the above LED light emitting devices.
  • the backlight module 4 includes an LED light emitting device 41, a diffusion plate 42 and a printed circuit board (PCB) 43.
  • the LED lighting device 41 includes an LED light source 411, a first lens 412, and a second lens 413.
  • the LED light source 411 is typically soldered to the PCB 43 by pads, and the first lens 412 and the second lens 413 can also be soldered to the PCB 43.
  • support legs 4131 may be provided on the support surface of the second lens 413, and the first lens 412 and the second lens 413 are welded to the PCB 43 through the support legs 4131.
  • three support legs are provided. Of course, more support legs can be provided. The number of support legs is not limited in the embodiment of the present application.
  • the backlight module provided by the embodiment of the present application includes at least one LED light emitting device, and the LED light emitting device may be any one of the above LED light emitting devices.
  • a further embodiment of the present application provides a display panel including any one of the above backlight modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)

Abstract

一种LED发光器件包括LED光源(101),第一透镜(102)和第二透镜(103)。第一透镜(102)的光轴(1021)和第二透镜(103)的光轴重合。LED光源(101)设置在第一透镜(102)远离第二透镜(103)一侧的光轴(1021)上。第一透镜(102)为凹透镜,第一透镜(102)的出光面(102b)为凸面。第二透镜(103)为凹透镜,第二透镜(103)的入光面为凹面。第一透镜(102)的出光面(102b)与第二透镜(103)的入光面的曲率相同,第一透镜(102)的出光面(102b)与第二透镜(103)的入光面紧贴,且第二透镜(103)的折射率大于第一透镜(102)的折射率。这种LED发光器件用于液晶显示器的背光模组,能够在保证背光模组薄形化的基础上,扩大LED光源发出光线的发散角度。还公开了一种背光模组(4)及显示面板。

Description

一种发光二极管LED发光器件、背光模组及显示面板
本申请要求在2014年9月24日提交中国专利局、申请号为201410494988.1、发明名称为“一种发光二极管LED发光器件、背光模组及显示面板”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及背光照明技术领域,尤其涉及一种LED(Light Emitting Diode,发光二极管)发光器件、背光模组及显示面板。
背景技术
目前,液晶显示器由于具有低功耗,低辐射,机身薄和画面柔和等优点,而成为显示技术领域的主流显示装置。液晶显示器内填充有液晶,但液晶本身并不发光,所以液晶显示器需要背光模组来提供光源。LED是一种可以把电能转换成光能的半导体光电器件,由于其响应快、寿命长、节能环保而常常被应用在液晶显示器的背光模组中,为液晶显示器提供光源。
现有技术中根据背光模组在液晶显示器中分布位置的不同,一般分为直下式背光模组和侧入式背光模组。下面以直下式背光模组为例进行说明,背光模组包括多个LED,透镜和扩散板。
但是随着显示器技术的不断发展,显示器的薄型化已经成为一种趋势,液晶显示器变薄,会导致扩散板上的光斑变小,使照射在扩散板上的光线不均匀,这样会出现扩散板上的光斑区域之内出现亮点,光斑区域之外出现暗点,即萤火虫现象,该现象会直接影响液晶显示器的显示效果。为了避免萤火虫现象的出现,可以通过设置较多的LED,减少LED的间距,使照射在扩散板上的光线均匀,但这样会增加背光模组的成本。
发明内容
本申请的实施例提供一种发光二极管LED发光器件、背光模组及显示面板,能够在保证背光模组薄形化的基础上,扩大LED光源发出光线的发散角度。
为达到上述目的,本申请的实施例采用如下技术方案:
本申请实施例一方面提供一种发光二极管LED发光器件,包括LED光源, 第一透镜和第二透镜,所述第一透镜的光轴和所述第二透镜的光轴重合;
所述LED光源设置在所述第一透镜远离所述第二透镜一侧的光轴上;
所述第一透镜为凹透镜,所述第一透镜的出光面为凸面;
所述第二透镜为凹透镜,所述第二透镜的入光面为凹面,其中,所述第一透镜的出光面与所述第二透镜的入光面的曲率相同,所述第一透镜的出光面与所述第二透镜的入光面紧贴,所述第二透镜的折射率大于所述第一透镜的折射率。
可选的,所述第一透镜和第二透镜中任意一个透镜内密封有量子点材料,所述LED光源为蓝光LED。
基于上述任意实施例,可选的,所述第二透镜的出光面为半球面、半椭球面或双球蝴蝶面中的任意一种。
基于上述任意实施例,可选的,所述第二透镜为平凹透镜,所述第二透镜的出光面为平面。
本申请实施例另一方面提供一种发光二极管LED发光器件,包括LED光源,第一透镜和第二透镜,所述第一透镜的光轴和所述第二透镜的光轴重合;
所述LED光源设置在所述第一透镜远离所述第二透镜一侧的光轴上;
所述第一透镜和所述第二透镜都为凹透镜;
所述第一透镜的出光面与所述第二透镜的入光面之间形成间隙,所述间隙的折射率小于所述第一透镜的折射率,并且小于所述第二透镜的折射率。
较佳地,所述间隙中填充胶合物质,所述胶合物质的折射率小于所述第一透镜的折射率,并且所述胶合物质的折射率小于所述第二透镜的折射率。
可选的,所述间隙中填充空气。
基于第一透镜的出光面与第二透镜的入光面之间形成间隙的任意实施例,可选的,所述第一透镜与所述第二透镜均为凸凹透镜,所述第一透镜的入光面为凹面,所述第一透镜的出光面为凸面,所述第二透镜入光面为凹面,所述第二透镜的出光面为凸面。
较佳地,所述第二透镜的出光面为半球面或半椭球面。
或者,所述第一透镜为凸凹透镜,所述第二透镜为平凹透镜,所述第一透镜的入光面为凹面,所述第一透镜的出光面为凸面,所述第二透镜的入光面为凹面,所述第二透镜的出光面为平面。
或者,所述第一透镜为平凹透镜,所述第二透镜为凸凹透镜,所述第一透镜的入光面为凹面,所述第一透镜的出光面为平面,所述第二透镜的入光面为凹面, 所述第二透镜的出光面为凸面。
基于第一透镜的出光面与第二透镜的入光面之间形成间隙的任意实施例,可选的,所述第一透镜和第二透镜中任意一个透镜内密封有量子点材料,所述LED光源为蓝光LED。
基于第一透镜的出光面与第二透镜的入光面之间形成间隙的任意实施例,可选的,所述间隙中填充量子点材料,所述LED光源为蓝光LED。
本申请实施例又一方面提供一种LED发光器件,包括LED光源,第一透镜和第二透镜,所述第一透镜的光轴和所述第二透镜的光轴重合;
所述LED光源设置在所述第一透镜远离所述第二透镜一侧的光轴上;
所述第一透镜和所述第二透镜都为凹透镜;
所述第一透镜的出光面与所述第二透镜的入光面之间形成间隙,所述间隙的折射率大于所述第一透镜的折射率,但小于所述第二透镜的折射率。
较佳地,所述间隙中填充胶合物质,所述胶合物质的折射率大于所述第一透镜的折射率,但所述胶合物质的折射率小于所述第二透镜的折射率。
本申请实施例又一方面提供一种背光模组,所述背光模组包括至少一个LED发光器件,所述LED发光器件为以上所述的任意一种LED发光器件。
本申请实施例再一方面提供一种显示面板,所述显示面板包括以上所述的任意一种背光模组。
本申请实施例提供一种发光二极管LED发光器件、背光模组及显示面板。所述发光二极管LED发光器件包括LED光源,第一透镜和第二透镜,第一透镜的光轴和第二透镜的光轴重合;LED光源设置在第一透镜远离第二透镜一侧的光轴上;第一透镜为凹透镜,第一透镜的出光面为凸面;第二透镜为凹透镜,第二透镜的入光面为凹面,其中,第一透镜的出光面与第二透镜的入光面的曲率相同,第一透镜的出光面与第二透镜的入光面紧贴,且第二透镜的折射率大于第一透镜的折射率。层叠设置两个凹透镜,并且由于第一透镜为凹透镜,且第一透镜的出光面为凸面,所以第一透镜的入光面为凹面,此时当光线照射在第一透镜的入光面时,由于空气的折射率小于第一透镜的折射率,光线从光疏介质到光密介质会靠近法线,且第一透镜的入光面为凹面,此时光线经历第一次发散;当光线照射在第一透镜的出光面时,即光线从第一透镜到第二透镜时,由于第一透镜的折射率小于第二透镜的折射率,且第一透镜的出光面与第二透镜的入光面紧贴,此时光线是从光疏介质到入射到光密介质,由于光线从光疏介质入射到光密介质会靠近法线,且第一透镜的出光面为凸面,此时光线经历第二次发散;当光线照射在 第二透镜的出光面时,第二透镜的折射率大于空气的折射率,光线从光密介质到光疏介质会远离法线,且第二透镜为凹透镜,此时光线经历第三次发散。这样较之现有技术单透镜的实现方式,使得原本经由两个面发散的光线,现在经由三个面进行发散,扩大了光线的发散角度,使得照射在扩散板上的光斑变大。只要根据LED到扩散板的距离,选择折射率、曲率能够满足扩散角度需要的第一透镜和第二透镜,就能够避免了萤火虫现象的出现,这样在保证了背光模组薄形化的基础上,提高了背光模组的发光均匀性。
或者,所述发光二极管LED发光器件可以包括LED光源,第一透镜和第二透镜,第一透镜的光轴和第二透镜的光轴重合,LED光源设置在第一透镜远离第二透镜一侧的光轴上,第一透镜和第二透镜都为凹透镜,第一透镜的出光面与第二透镜的入光面之间形成间隙,间隙的折射率小于第一透镜的折射率,并且小于第二透镜的折射率。层叠设置两个凹透镜,且由于第一透镜与第二透镜之间存在间隙,并且间隙的折射率小于第一透镜的折射率,同时小于第二透镜的折射率,这样光线在间隙两侧的透镜表面上均可以进行折射,较之现有的单透镜实现方案,使得原本经由两个面折射的光线,现在经由四个面进行折射,增加了光线被折射的次数,扩大了光线的发散角度,使得照射在扩散板上的光斑变大。只要根据LED到扩散板的距离,选择折射率、曲率能够满足扩散角度需要的第一透镜和第二透镜,就能够避免了萤火虫现象的出现,这样在保证了背光模组薄形化的基础上,提高了背光模组的发光均匀性。
或者,所述发光二极管LED发光器件可以包括LED光源,第一透镜和第二透镜,第一透镜的光轴和第二透镜的光轴重合,LED光源设置在第一透镜远离第二透镜一侧的光轴上,第一透镜和第二透镜都为凹透镜,第一透镜的出光面与第二透镜的入光面之间形成间隙,间隙的折射率大于第一透镜的折射率,但小于第二透镜的折射率。层叠设置两个凹透镜,且由于第一透镜与第二透镜之间存在间隙,并且间隙的折射率小于第一透镜的折射率,同时小于第二透镜的折射率,这样光线在间隙两侧的透镜表面上均可以进行折射,较之现有的单透镜实现方案,使得原本经由两个面折射的光线,现在经由四个面进行折射,增加了光线被折射的次数,扩大了光线的发散角度,使得照射在扩散板上的光斑变大。只要根据LED到扩散板的距离,选择折射率、曲率能够满足扩散角度需要的第一透镜和第二透镜,就能够避免了萤火虫现象的出现,这样在保证了背光模组薄形化的基础上,提高了背光模组的发光均匀性。另外,由于第一透镜的折射率小于间隙的折射率,间隙的折射率又小于第二透镜的折射率。光线在从第一透镜到达第二透镜的过程中,不会由光密介质进入光疏介质,从而不会造成光线的散射,提高了光斑的亮度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种LED发光器件的示意图;
图2为本申请实施例提供的另一种LED发光器件的示意图;
图3为本申请实施例提供的一种透镜的示意图;
图4为本申请实施例提供的又一种LED发光器件的示意图;
图5为本申请实施例提供的再一种LED发光器件的示意图;
图6为本申请实施例提供的另一种LED发光器件的示意图;
图7为本申请实施例提供的另一种透镜的示意图;
图8为本申请实施例提供的再一种LED发光器件的示意图;
图9为本申请实施例提供的另一种LED发光器件的示意图;
图10为本申请实施例提供的一种背光模组的示意图;
图11为本申请实施例提供的另一种背光模组的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种发光二极管LED发光器件,如图1所示,包括LED光源101,第一透镜102和第二透镜103,第一透镜1021的光轴1021和第二透镜103的光轴重合;LED光源101设置在第一透镜102远离第二透镜103一侧的光轴1021上;第一透镜102为凹透镜,第一透镜102的出光面102b为凸面;第二透镜103为凹透镜,第二透镜103的入光面为凹面,其中,第一透镜102的出光面102b与第二透镜103的入光面的曲率相同,第一透镜102的出光面102b与第二透镜103的入光面紧贴,并且第二透镜103的折射率大于第一透镜102的折射 率。
应当指出的是,本发明实施例提供的LED发光器件不仅限于层叠设置两个透镜,也可以层叠设置两个以上的凹透镜。只要保证:所有凹透镜的光轴重合,离LED光源越远,透镜的折射率越大。且相邻的两个凹透镜中,靠近LED光源的那个凹透镜的出光面为凸面,远离LED光源的那个凹透镜的入光面为凹面,且这两个面紧贴。
需要说明的是,由于第一透镜102的光轴和第二透镜103的光轴重合,所以图1中标识的第一透镜102的光轴1021也为第二透镜103的光轴。并且由于第一透镜102的出光面与第二透镜103的入光面的曲率相同,并且第一透镜102的出光面与第二透镜103的入光面紧贴,所以第一透镜102的出光面与第二透镜103的入光面重合,因此本申请实施例的附图中标识的102b为第一透镜102的出光面和第二透镜103的入光面的重合面。
第一透镜102和第二透镜103可以为多种材质的透镜,例如可以是玻璃、塑料或者硅胶等,只要第二透镜103的折射率大于第一透镜102的折射率即可。本申请实施例对此不做限定。
将LED光源101设置在第一透镜102远离第二透镜103一侧的光轴1021上,可以使LED光源101发出的光线均匀且充分的照射在第一透镜102上,有利于光线在第一透镜102上的均匀发散。
需要说明的是,所述凸面指的是该面上任意两点所连的线段都在该面所属的几何体的内部,所述凹面指的是该面上任意两点所连的线段都在该面所属的几何体的外部。
由于凹透镜具有能够使经过它的光线发散的性质,所以将第一透镜102和第二透镜103均设置为凹透镜,使得LED光源101发出的光线在经过第一透镜102和第二透镜103的折射之后,具有较大的发散角度。
这样一来,层叠设置两个凹透镜,并且由于第一透镜为凹透镜,且第一透镜的出光面为凸面,所以第一透镜的入光面为凹面,此时当光线照射在第一透镜的入光面时,由于第一透镜的入光面为凹面且空气的折射率小于第一透镜的折射率,光线从光疏介质到光密介质会靠近法线,此时光线经历第一次发散;当光线照射在第一透镜的出光面时,即光线从第一透镜到第二透镜时,由于第一透镜的折射率小于第二透镜的折射率,且第一透镜的出光面与第二透镜的入光面紧贴,此时光线是从光疏介质入射到光密介质,由于光线从光疏介质入射到光密介质会靠近法线,且第一透镜的出光面为凸面,此时光线经历第二次发散;当光线照射在第 二透镜的出光面时,由于第二透镜的折射率大于空气的折射率,光线从光密介质到光疏介质会远离法线,且第二透镜为凹透镜,此时光线经历第三次发散。这样较之现有技术单透镜的实现方式,使原本经由两个面发散的光线,现在经由三个面进行发散,扩大了光线的发散角度,使得照射在扩散板上的光斑变大。只要根据LED到扩散板的距离,选择折射率、曲率能够满足扩散角度需要的第一透镜和第二透镜,就能够避免了萤火虫现象的出现,提高了背光模组的发光均匀性。并且由于光线的发散角度变大,在不降低光斑亮度的情况下,只需设置较少数量的LED,也可使得相邻的发散光线在较近处就能够交汇,这样在保证了背光模组薄形化的基础上,减低了背光模组的成本。
需要说明的是,本申请实施例的附图中出现的箭头为LED发光器件发出光线的传播方向。
可选的,第一透镜102和第二透镜103中任意一个透镜内密封有量子点材料,LED光源101为蓝光LED。
色域作为一个衡量液晶显示器色彩表现能力的指标,越来越受到人们的关注。目前市面上常见的液晶显示器,它们能显示的色域范围一般都不大,其能够显示的色域一般在68%~72%左右,因而不能提供很好的色彩效果。随着消费者对液晶显示器的画质要求的提高,高色域背光技术正成为行业内研究的重点。
量子点(Quantum Dot,QD)又可以称为纳米晶体,是一种光致发光的晶体结构半导体,发光颜色由其尺寸决定,将量子点材料应用到液晶显示器中,可以提高液晶显示器能够显示的色域范围,实现方式是使用蓝光LED激发量子点材料,可以产生白光光源,这样可使液晶显示器的色域达到100%以上。然而量子点材料在受到高温及氧气的影响时会失效,所以现有技术中一般需要将量子点材料密封起来才可利用,主要实现方法有将量子点材料封装在透镜里,透镜设有空腔,将量子点材料注入透镜的空腔中即可,但蓝光LED激发量子点材料后产生的光线是散射的,打乱了光路,使得照射到扩散板上的光斑变小。
为了解决这一问题,优选的,将量子点材料密封在第一透镜102中,这样防止了量子点材料和氧气接触会失效的情况出现,由于透镜一般材质坚硬,也不存在激发量子点材料后产生的热量会使透镜变形,并且当蓝光LED发出的光线照射到第一透镜102的入光面时,蓝光光线经过了一次发散,发散后的蓝光光线照射在量子点材料上,会比较均匀的激发量子点材料产生白光,蓝光光线在激发量子点材料产生白光的同时,量子点材料还会对光线进行散射,散射后的光线再经过第一透镜102的出光面和第二透镜103的出光面的折射,这样经过两个面的折射 后的光线会具有较大的发散角度。
凹透镜可以分为双凹透镜、平凹透镜和凸凹透镜。优选的,如图2所示,第一透镜102与第二透镜103均为凸凹透镜,第一透镜102的入光面102a为凹面,第二透镜103的出光面103a为凸面。
第一透镜102的入光面102a为凹面,这样可以使LED光源101发出的光线尽可能多的照射在第一透镜102的入光面102a上,并且使LED光源101发出的光线在经过第一透镜102的入光面102a的折射后,光线发散的更加均匀,同理,第二透镜103的出光面103a为凸面,可以使照射在其上的光线得到较均匀的发散。
参考图2所示,LED光源101发出的光线分别经过了第一透镜102的入光面102a和出光面102b,以及第二透镜103的出光面103a的折射,假定LED光源101发出的光线与扩散板11的入光面的法线的夹角为r,经过第一透镜102折射后的光线与扩散板11的入光面的法线的夹角为θ,经过第二透镜103折射后的光线与扩散板11的入光面的法线的夹角为β,所述法线为垂直于扩散板11的入光面的直线。从图2中可以看出,β大于θ,θ大于r,则可知光线经过第一透镜102和第二透镜103后具有了较大的发散角度,相比于现有技术中光线只经过第一透镜102的折射后,在扩散板11上形成的较小光斑13,在本申请实施例中,光线分别经过第一透镜102和第二透镜103的三个面的折射,从LED光源101发出的光线可以得到三次发散,这样最终的出射光线会具有较大的发散角度,从而在扩散板上形成较大的光斑12。
参考图2所示,第一透镜102还可以包括支撑面102c,第一透镜102的入光面102a、出光面102b,以及支撑面102c组成第一透镜102的外表面;第二透镜103还可以包括支撑面103c,第二透镜103的入光面102b、出光面103a,以及支撑面103c组成第二透镜103的外表面。所述第一透镜102的支撑面102c和所述第二透镜103的支撑面103c可以在同一平面,也可以在不同的平面,本申请实施例对此不做限定。
可选的,第二透镜103的出光面103a为半球面、半椭球面或双球蝴蝶面中的任意一种。
如图3所示,第二透镜103的出光面103a为双球蝴蝶面时,入射到双球蝴蝶面中部的光线将会大部分折射到双球蝴蝶面的四周,这样使得经过第一透镜102和第二透镜103后照射到扩散板11上的光线分布更加均匀。
可选的,如图4所示,第一透镜102为凸凹透镜,第二透镜103为平凹透镜,第一透镜102的入光面102a为凹面,第二透镜103的出光面103a为平面。第二 透镜103的出光面103a也可以为凹面,这样也能保证经过两个透镜的光线得到了发散,但是这样的形状会使得一部分边缘光线无法照射到第二透镜103的出光面103a,影响光线发散的均匀性,所以优选的是第二透镜103的出光面103a为凸面。
本申请另一实施例提供一种发光二极管LED发光器件,如图5所示,包括LED光源201,第一透镜202和第二透镜203,第一透镜202的光轴2021和第二透镜203的光轴重合;LED光源201设置在第一透镜202远离第二透镜203一侧的光轴2021上;第一透镜202和第二透镜203都为凹透镜;第一透镜202的出光面202b与第二透镜203的入光面203a之间形成间隙204,所述间隙的折射率小于第一透镜202的折射率,并且小于第二透镜203的折射率。
应当指出的是,本申请实施例对第一透镜202的折射率、第二透镜203的折射率和间隙204的折射率之间的关系不作限定。无论第一透镜202的折射率、第二透镜203的折射率和间隙204的折射率取值多少,都能够达到扩大发散角度的目的。
应当指出的是,本发明实施例提供的LED发光器件不仅限于层叠设置两个透镜,也可以层叠设置两个以上的凹透镜。只要保证:所有凹透镜的光轴重合,至少两个相邻的凹透镜之间形成间隙。
需要说明的是,由于第一透镜202的光轴和第二透镜203的光轴重合,参考图5所示,第一透镜202的光轴2021也为第二透镜203的光轴。
第一透镜202和第二透镜203可以为多种材质的透镜,例如可以是玻璃、塑料或者硅胶等。第一透镜202和第二透镜203可以为同一材质的透镜,也可以为不同材质的透镜,本申请实施例对此不做限定。
这样一来,相较于现有技术,层叠设置两个凹透镜,由于第一透镜与第二透镜之间存在间隙,并且间隙的折射率小于第一透镜的折射率,同时小于第二透镜的折射率,这样光线在间隙两侧的透镜表面上均可以进行折射,使得原本经由两个面折射的光线,现在经由四个面进行折射,增加了光线被折射的次数,扩大了光线的发散角度,使得照射在扩散板上的光斑变大。只要根据LED到扩散板的距离,选择折射率、曲率能够满足扩散角度需要的第一透镜和第二透镜,就能够避免了萤火虫现象的出现,提高了背光模组的发光均匀性。并且由于光线的发散角度变大,在不降低光斑亮度的情况下,只需设置较少数量的LED,也可使得相邻的发散光线在较近处就能够交汇,这样在保证了背光模组薄形化的基础上,减低了背光模组的成本。
需要说明的是,第二透镜203的折射率可以大于第一透镜202的折射率,也 可以小于第一透镜202的折射率。优选的,第二透镜203的折射率大于第一透镜202的折射率时,光线在经过第二透镜203的折射后可以得到更大的发散角度。
凹透镜可以分为双凹透镜、平凹透镜和凸凹透镜,由于第一透镜202和第二透镜203均为凹透镜,所以第一透镜202和第二透镜203搭配使用时可以有九种组合方式。但在实际应用中,每一种组合方式对光线的扩散角度,对光线的扩散均匀性,以及其自身制作的难易程度等都是不同的。
优选的,在间隙204中填充胶合物质。胶合物质可以为光学胶,光学胶是一类胶粘剂,可以胶结透明光学元件,它无色透明,光透过率在90%以上。例如,光学胶可以是有机硅橡胶、聚氨酯或环氧树脂等胶粘剂,本申请实施例对此不做限定,只要胶合物质的折射率小于第一透镜的折射率,并且胶合物质的折射率小于第二透镜的折射率即可。
优选的,间隙204中也可以是空气,第一透镜与第二透镜通过其他方式固定。具体固定方式本申请不作限定。
基于图5所示的LED发光器件的任意实施例,可选的,可以在第一透镜202和第二透镜203中任意一个透镜内密封量子点材料,LED光源201为蓝光LED。
色域作为一个衡量液晶显示器色彩表现能力的指标,越来越受到人们的关注。目前市面上常见的液晶显示器,它们能显示的色域范围一般都不大,其能够显示的色域一般在68%~72%左右,因而不能提供很好的色彩效果。随着消费者对液晶显示器的画质要求的提高,高色域背光技术正成为行业内研究的重点。
量子点(Quantum Dot,QD)又可以称为纳米晶体,是一种光致发光的晶体结构半导体,发光颜色由其尺寸决定,将量子点材料应用到液晶显示器中,可以提高液晶显示器能够显示的色域范围,实现方式是使用蓝光LED激发量子点材料,可以产生白光光源,这样可使液晶显示器的色域达到100%以上。然而量子点材料在受到高温及氧气的影响时会失效,所以现有技术中一般需要将量子点材料密封起来才可利用,主要实现方法有,将量子点材料封装在透镜里,透镜设有空腔,将量子点材料注入透镜的空腔中即可,但蓝光LED激发量子点材料后产生的光线是散射的,打乱了光路,使得照射到扩散板上的光斑变小。
为解决这一问题,优选的,将量子点材料密封在第一透镜202中,这样防止了量子点材料和氧气接触会失效的情况出现,由于透镜一般材质坚硬,也不存在激发量子点材料后产生的热量会使透镜变形,并且当蓝光LED发出的光线照射到第一透镜202的入光面时,蓝光光线经过了一次发散,发散后的蓝光光线照射在量子点材料上,会比较均匀的激发量子点材料产生白光,蓝光光线在激发量子点 材料产生白光的同时,量子点材料还会对光线进行散射,散射后的光线再经过第一透镜202的出光面,第二透镜203的入光面和第二透镜203的出光面的折射,这样经过三个面的折射后的光线会具有较大的发散角度。
优选的,也可以在间隙204中填充量子点材料。
量子点材料需要密封填充。密封的具体实现方式本申请不作限定,仅以优选实施例举例说明。为了密封量子点材料,在第一透镜与第二透镜形成的间隙的边缘处填充密封胶,具体如图5中虚线框所示。
这样防止了量子点材料和氧气接触会失效的情况出现,由于透镜一般材质坚硬,也不存在激发量子点材料后产生的热量会使透镜变形,并且当蓝光LED发出的光线照射到第一透镜202的入光面时,蓝光光线经过了一次发散,发散后的蓝光光线照射在量子点材料上,会比较均匀的激发量子点材料产生白光,蓝光光线在激发量子点材料产生白光的同时,量子点材料还会对光线进行散射,散射后的光线再经过第一透镜202的出光面,第二透镜203的入光面和第二透镜203的出光面的折射,这样经过三个面的折射后的光线会具有较大的发散角度。
优选的,如图6所示,第一透镜202与第二透镜203均为凸凹透镜,第一透镜202的入光面202a为凹面,第一透镜202的出光面202b为凸面,第二透镜203的入光面203a为凹面,第二透镜203的出光面203b为凸面。
第一透镜202的入光面202a为凹面,这样可以使LED光源201发出的光线尽可能多的照射在第一透镜202的入光面202a上,并且使LED光源201发出的光线在经过第一透镜202的入光面202a的折射后,光线发散的更加均匀。
参考图6所示,LED光源201发出的光线经过第一透镜202后,由于间隙204的折射率小于第一透镜202的折射率,并且第一透镜202为凹透镜,所以光线经过第一透镜202后进行了发散;同理当发散了的光线经过第二透镜203后,由于胶合物质204的折射率小于第二透镜203的折射率,并且第二透镜203也为凹透镜,所以光线在经过第二透镜203的折射后,光线具有了更大的发散角度。假定LED光源201发出的光线与扩散板21的入光面的法线的夹角为r,经过第一透镜202折射后的光线与扩散板21的入光面的法线的夹角为θ,经过第二透镜203折射后的光线与扩散板21的入光面的法线的夹角为β,所述法线为垂直于扩散板21的入光面的直线。从图6中可以看出,β大于θ,θ大于r,则可知光线经过第一透镜202和第二透镜203后具有了较大的发散角度,相比于现有技术中光线只经过第一透镜202的折射后,在扩散板21上形成的光斑23,在本申请实施例中,光线分别经过第一透镜202和第二透镜203的折射,在经过多次发散后,光线可 以在扩散板21上形成更大的光斑22。
参考图6所示,第一透镜202还可以包括支撑面202c,第一透镜202的入光面202a、出光面202b,以及支撑面202c组成第一透镜202的外表面;第二透镜203还可以包括支撑面203c,第二透镜203的入光面203a、出光面203b,以及支撑面203c组成第二透镜203的外表面。所述第一透镜202的支撑面202c和所述第二透镜203的支撑面203c可以在同一平面,也可以在不同的平面,本申请实施例对此不做限定。
可选的,第二透镜203的出光面203b为半球面、半椭球面或双球蝴蝶面中的任意一种。
如图7所示,第二透镜203的出光面203b为双球蝴蝶面时,入射到双球蝴蝶面中部的光线将会大部分折射到双球蝴蝶面的四周,这样使得经过第一透镜202和第二透镜203后照射到扩散板21上的光线分布更加均匀。
可选的,如图8所示,第一透镜202为凸凹透镜,第二透镜203为平凹透镜,第一透镜202的入光面202a为凹面,第一透镜202的出光面202b为凸面,第二透镜203的入光面203a为凹面,第二透镜203的出光面203b为平面。第一透镜202和第二透镜203之间的间隙中填充有胶合物质204。这样也能保证经过两个透镜的光线得到了发散,但是这样的形状会使得一部分边缘光线无法照射到第二透镜203的出光面203b,影响光线发散的均匀性,所以优选的是第二透镜203的出光面203b为凸面。
可选的,如图9所示,第一透镜202为平凹透镜,第二透镜203为凸凹透镜,第一透镜202的入光面202a为凹面,第一透镜202的出光面202b为平面,第二透镜203的入光面203a为凹面,第二透镜203的出光面203b为凸面。第一透镜202和第二透镜203之间的间隙中填充有胶合物质204。
可选的,第一透镜202还可以为双凹透镜,第二透镜203为凸凹透镜,第一透镜202的入光面202a为凹面,第一透镜202的出光面202b为凹面,第二透镜203的入光面203a为凸面,第二透镜203的出光面203b为凹面。第一透镜202和第二透镜203之间的间隙中填充有胶合物质204。
本申请又一实施例提供一种LED发光器件,如图5所示,包括LED光源201,第一透镜202和第二透镜203,第一透镜202的光轴2021和第二透镜203的光轴重合;LED光源201设置在第一透镜202远离第二透镜203一侧的光轴2021上;第一透镜202和第二透镜203都为凹透镜;第一透镜202的出光面202b与第二透镜203的入光面203a之间形成间隙204,所述间隙的折射率大于第一透镜202的 折射率,但小于第二透镜203的折射率。
应当指出的是,本发明实施例提供的LED发光器件不仅限于层叠设置两个透镜,也可以层叠设置两个以上的凹透镜。只要保证:所有凹透镜的光轴重合,至少两个相邻的凹透镜之间形成间隙,且这两个凹透镜的折射率满足:靠近LED光源的凹透镜的折射率小于间隙的折射率,间隙的折射率小于远离LED光源的凹透镜的折射率。
需要说明的是,由于第一透镜202的光轴和第二透镜203的光轴重合,参考图5所示,第一透镜202的光轴2021也为第二透镜203的光轴。
第一透镜202和第二透镜203可以为多种材质的透镜,例如可以是玻璃、塑料或者硅胶等。第一透镜202和第二透镜203可以为同一材质的透镜,也可以为不同材质的透镜,本申请实施例对此不做限定。
这样一来,相较于现有技术,层叠设置两个凹透镜,由于第一透镜与第二透镜之间存在间隙,并且间隙的折射率大于第一透镜的折射率,但小于第二透镜的折射率,这样光线在间隙两侧的透镜表面上均可以进行折射,使得原本经由两个面折射的光线,现在经由四个面进行折射,增加了光线被折射的次数,扩大了光线的发散角度,使得照射在扩散板上的光斑变大。只要根据LED到扩散板的距离,选择折射率、曲率能够满足扩散角度需要的第一透镜和第二透镜,就能够避免了萤火虫现象的出现,提高了背光模组的发光均匀性。并且由于光线的发散角度变大,在不降低光斑亮度的情况下,只需设置较少数量的LED,也可使得相邻的发散光线在较近处就能够交汇,这样在保证了背光模组薄形化的基础上,减低了背光模组的成本。另外,由于第一透镜的折射率小于间隙的折射率,间隙的折射率又小于第二透镜的折射率。光线在从第一透镜到达第二透镜的过程中,不会由光密介质进入光疏介质,从而不会造成光线的散射,提高了光斑的亮度。
优选的,在间隙204中填充胶合物质。胶合物质可以为光学胶,光学胶是一类胶粘剂,可以胶结透明光学元件,它无色透明,光透过率在90%以上。例如,光学胶可以是有机硅橡胶、聚氨酯或环氧树脂等胶粘剂,本申请实施例对此不做限定,只要胶合物质的折射率大于第一透镜的折射率,但小于第二透镜的折射率即可。
图5所示的LED发光器件的各个实施例中,第一透镜和第二透镜的形状可以参照图7~9所示,本发明对此不再赘述。
本申请又一实施例提供一种背光模组,如图10所示,背光模组包括至少一个LED发光器件41,LED发光器件41可以为上述任意一种LED发光器件。
参考图10所示,背光模组4包括LED发光器件41,扩散板42和印刷电路板(Printed Circuit Board,PCB)43。LED发光器件41包括LED光源411,第一透镜412和第二透镜413。LED光源411一般通过焊盘焊接在PCB43上,第一透镜412和第二透镜413也可以焊接在PCB43上。如图11所示,可以在第二透镜413的支撑面上设置支撑腿4131,通过支撑腿4131将第一透镜412和第二透镜413焊接在PCB43上。一般设置3个支撑腿即可,当然也可以设置更多的支撑腿,本申请实施例对支撑腿的设置数量不做限定。
本申请实施例提供的背光模组,包括至少一个LED发光器件,LED发光器件可以为上述任意一种LED发光器件。
本申请再一实施例提供一种显示面板,显示面板包括上述任意一种背光模组。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种发光二极管LED发光器件,其特征在于,包括LED光源,第一透镜和第二透镜,所述第一透镜的光轴和所述第二透镜的光轴重合;
    所述LED光源设置在所述第一透镜远离所述第二透镜一侧的光轴上;
    所述第一透镜为凹透镜,所述第一透镜的出光面为凸面;
    所述第二透镜为凹透镜,所述第二透镜的入光面为凹面,其中,所述第一透镜的出光面与所述第二透镜的入光面的曲率相同,所述第一透镜的出光面与所述第二透镜的入光面紧贴,且所述第二透镜的折射率大于所述第一透镜的折射率。
  2. 根据权利要求1所述的LED发光器件,其特征在于,所述第一透镜和第二透镜中任意一个透镜内密封有量子点材料,所述LED光源为蓝光LED。
  3. 根据权利要求1或2所述的LED发光器件,其特征在于,
    所述第二透镜的出光面为半球面、半椭球面或双球蝴蝶面中的任意一种。
  4. 根据权利要求1或2所述的LED发光器件,其特征在于,
    所述第二透镜为平凹透镜,所述第二透镜的出光面为平面。
  5. 一种发光二极管LED发光器件,其特征在于,包括LED光源,第一透镜和第二透镜,所述第一透镜的光轴和所述第二透镜的光轴重合;
    所述LED光源设置在所述第一透镜远离所述第二透镜一侧的光轴上;
    所述第一透镜和所述第二透镜都为凹透镜;
    所述第一透镜的出光面与所述第二透镜的入光面之间形成间隙,所述间隙的折射率小于所述第一透镜的折射率,并且小于所述第二透镜的折射率。
  6. 根据权利要求5所述的LED发光器件,其特征在于,所述间隙中填充胶合物质,所述胶合物质的折射率小于所述第一透镜的折射率,并且所述胶合物质的折射率小于所述第二透镜的折射率。
  7. 根据权利要求5或6所述的LED发光器件,其特征在于,
    所述第一透镜与所述第二透镜均为凸凹透镜,所述第一透镜的入光面为凹面,所述第一透镜的出光面为凸面,所述第二透镜入光面为凹面,所述第二透镜的出光面为凸面。
  8. 根据权利要求7所述的LED发光器件,其特征在于,所述第二透镜的出光面为半球面或半椭球面。
  9. 根据权利要求5或6所述的LED发光器件,其特征在于,
    所述第一透镜为凸凹透镜,所述第二透镜为平凹透镜,所述第一透镜的入光面为凹面,所述第一透镜的出光面为凸面,所述第二透镜的入光面为凹面,所述 第二透镜的出光面为平面。
  10. 根据权利要求5或6所述的LED发光器件,其特征在于,所述第一透镜为平凹透镜,所述第二透镜为凸凹透镜,所述第一透镜的入光面为凹面,所述第一透镜的出光面为平面,所述第二透镜的入光面为凹面,所述第二透镜的出光面为凸面。
  11. 一种发光二极管LED发光器件,其特征在于,包括LED光源,第一透镜和第二透镜,所述第一透镜的光轴和所述第二透镜的光轴重合;
    所述LED光源设置在所述第一透镜远离所述第二透镜一侧的光轴上;
    所述第一透镜和所述第二透镜都为凹透镜;
    所述第一透镜的出光面与所述第二透镜的入光面之间形成间隙,所述间隙的折射率大于所述第一透镜的折射率,但小于所述第二透镜的折射率。
  12. 根据权利要求11所述的LED发光器件,其特征在于,所述间隙中填充胶合物质,所述胶合物质的折射率大于所述第一透镜的折射率,但所述胶合物质的折射率小于所述第二透镜的折射率。
  13. 一种背光模组,其特征在于,所述背光模组包括至少一个LED发光器件,所述LED发光器件为权利要求1至4任意一项权利要求所述的LED发光器件或权利要求5至10任意一项权利要求所述的LED发光器件。
  14. 一种显示面板,其特征在于,所述显示面板包括权利要求13所述的背光模组。
PCT/CN2014/088963 2014-09-24 2014-10-20 一种发光二极管led发光器件、背光模组及显示面板 WO2016045159A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410494988.1 2014-09-24
CN201410494988.1A CN105444045A (zh) 2014-09-24 2014-09-24 一种发光二极管led发光器件、背光模组及显示面板

Publications (1)

Publication Number Publication Date
WO2016045159A1 true WO2016045159A1 (zh) 2016-03-31

Family

ID=55554549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088963 WO2016045159A1 (zh) 2014-09-24 2014-10-20 一种发光二极管led发光器件、背光模组及显示面板

Country Status (2)

Country Link
CN (1) CN105444045A (zh)
WO (1) WO2016045159A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107246563A (zh) * 2017-07-26 2017-10-13 合肥惠科金扬科技有限公司 量子点背光模组、显示器及量子点透镜制作方法
CN108799904A (zh) * 2017-04-26 2018-11-13 上海广中电子电器配件有限公司 具有光线调整装置的投射光源结构
CN114627749A (zh) * 2022-03-16 2022-06-14 广州华星光电半导体显示技术有限公司 背光模组及显示装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106773289A (zh) * 2016-12-15 2017-05-31 青岛海信电器股份有限公司 一种量子点发光器件和背光模组以及液晶显示装置
KR20180087487A (ko) * 2017-01-23 2018-08-02 삼성디스플레이 주식회사 파장 변환 부재 및 이를 포함하는 백라이트 유닛
CN110262124B (zh) * 2019-05-29 2021-10-12 安徽赛迈特光电股份有限公司 量子点液晶显示装置
CN110473950A (zh) * 2019-07-26 2019-11-19 惠州市华星光电技术有限公司 背光模组及显示面板
CN112083520B (zh) * 2020-09-26 2021-08-10 南通惟怡新材料科技有限公司 量子点透镜、背光模组、显示装置及量子点透镜制作方法
CN112485945A (zh) * 2020-11-27 2021-03-12 广东长虹电子有限公司 一种液晶电视用新型量子点结构背光模组
CN112636152B (zh) * 2020-12-18 2022-10-25 北京科益虹源光电技术有限公司 一种波前可调的激光器光谱线宽压窄装置
CN114019720B (zh) * 2021-11-03 2024-01-19 惠州视维新技术有限公司 背光模组与显示装置
CN116540451A (zh) * 2023-05-24 2023-08-04 长沙惠科光电有限公司 背光模组、制作方法和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101211064A (zh) * 2006-12-29 2008-07-02 Lg.菲利浦Lcd株式会社 发光模块、平光单元和包括发光模块的液晶显示器
JP2010186142A (ja) * 2009-02-13 2010-08-26 Panasonic Corp 照明用レンズ、発光装置、面光源および液晶ディスプレイ装置
JP5302738B2 (ja) * 2009-04-06 2013-10-02 シャープ株式会社 発光装置及びバックライト装置
CN203784738U (zh) * 2013-09-30 2014-08-20 易美芯光(北京)科技有限公司 一种可实现高色域背光源的光学装置
CN103994354A (zh) * 2014-05-29 2014-08-20 杨传银 一种防眩目且光利用效率高的led灯

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101561085A (zh) * 2009-05-14 2009-10-21 上海广电光电子有限公司 广角led光源
CN101556023A (zh) * 2009-05-14 2009-10-14 上海广电光电子有限公司 带广角透镜的led光源
CN103672732A (zh) * 2013-12-11 2014-03-26 深圳市华星光电技术有限公司 一种量子点透镜及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101211064A (zh) * 2006-12-29 2008-07-02 Lg.菲利浦Lcd株式会社 发光模块、平光单元和包括发光模块的液晶显示器
JP2010186142A (ja) * 2009-02-13 2010-08-26 Panasonic Corp 照明用レンズ、発光装置、面光源および液晶ディスプレイ装置
JP5302738B2 (ja) * 2009-04-06 2013-10-02 シャープ株式会社 発光装置及びバックライト装置
CN203784738U (zh) * 2013-09-30 2014-08-20 易美芯光(北京)科技有限公司 一种可实现高色域背光源的光学装置
CN103994354A (zh) * 2014-05-29 2014-08-20 杨传银 一种防眩目且光利用效率高的led灯

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108799904A (zh) * 2017-04-26 2018-11-13 上海广中电子电器配件有限公司 具有光线调整装置的投射光源结构
CN107246563A (zh) * 2017-07-26 2017-10-13 合肥惠科金扬科技有限公司 量子点背光模组、显示器及量子点透镜制作方法
CN114627749A (zh) * 2022-03-16 2022-06-14 广州华星光电半导体显示技术有限公司 背光模组及显示装置
US11841524B2 (en) 2022-03-16 2023-12-12 Guangzhou China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Backlight module and display device

Also Published As

Publication number Publication date
CN105444045A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2016045159A1 (zh) 一种发光二极管led发光器件、背光模组及显示面板
CN104508364B (zh) 用于控制光通量的构件及其制造方法、显示装置以及发光装置
TWM445664U (zh) 發光裝置及其光束控制元件
CN105444044A (zh) 一种发光二极管led发光器件、背光模组及显示面板
US9329323B2 (en) Light source and backlight module having the same
TWI487983B (zh) 光學膜及使用光學膜之背光模組
US10302856B2 (en) Light-emitting unit, backlight module and display device
US10352530B2 (en) Lens, light emitting apparatus including the lens, and backlight unit including the apparatus
JPWO2011135627A1 (ja) 面状光源装置およびこれを用いた表示装置
JP2011014831A (ja) 発光装置、面光源および液晶ディスプレイ装置
US20200159071A1 (en) Back light unit and display device having the same
TWI404893B (zh) 無導光板之led發光構造
KR102005651B1 (ko) 도광판, 백라이트 모듈 및 디스플레이 장치
KR102257200B1 (ko) 프리즘시트 및 이를 구비한 액정표시장치
WO2020042525A1 (zh) 背光模组及液晶显示装置
WO2018214611A1 (zh) 背光模组及液晶显示装置
WO2013137161A1 (ja) 照明装置及びそれを備えた表示装置
US20190108786A1 (en) Backlight unit
US20140133184A1 (en) Light guide plate, backlight module and display device
TW201215965A (en) Edge lighting back light module
JP2008258146A (ja) 高輝度拡散板
KR101070686B1 (ko) 액정디스플레이용 복합시트 및 이를 이용한 백라이트 유닛
WO2016086534A1 (zh) 导光板及其制作方法
KR102047232B1 (ko) 확산용 도광필름, 백라이트부 및 이를 구비한 액정표시소자
WO2017177504A1 (zh) 双面显示装置及其导光板与背光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902453

Country of ref document: EP

Kind code of ref document: A1