WO2020063155A1 - 一种led显示屏 - Google Patents

一种led显示屏 Download PDF

Info

Publication number
WO2020063155A1
WO2020063155A1 PCT/CN2019/100482 CN2019100482W WO2020063155A1 WO 2020063155 A1 WO2020063155 A1 WO 2020063155A1 CN 2019100482 W CN2019100482 W CN 2019100482W WO 2020063155 A1 WO2020063155 A1 WO 2020063155A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
led
display screen
led display
light guide
Prior art date
Application number
PCT/CN2019/100482
Other languages
English (en)
French (fr)
Inventor
胡飞
王霖
孙微
徐梦梦
李士杰
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2020063155A1 publication Critical patent/WO2020063155A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes

Definitions

  • the invention relates to the field of display technology, in particular to an LED display screen.
  • An LED display is an active light-emitting display device.
  • LEDs consisting of red, green, and blue constitute a pixel.
  • the pixels in the LED display are distributed in an array to form a full-color LED display.
  • LED displays have the advantages of high brightness, wide color gamut, low energy consumption, long service life, etc., and are widely used in various occasions.
  • the inventor of the present application has found in the long-term research and development that there is a gap between the pixels of the existing LED display screen, resulting in a low pixel filling rate and a strong grainy display screen.
  • One of the current solutions is to increase the array filling density of the pixels of the LED display to reduce the distance between the pixels of the LED display, but it will greatly increase the cost of the LED display and also increase the thermal effect of the LED display. , Affecting the display effect and service life of the LED display.
  • Another method is to uniformize the light emitted by each pixel by setting a diffusion film in front of the LED display screen, but the diffusion film will increase the crosstalk of light between adjacent pixels, which will reduce the contrast of adjacent pixels and affect the image. Display quality.
  • the invention provides an LED display screen to solve the technical problems of uneven distribution of the emitted light of each pixel structure in the LED display screen in the prior art and reducing the light crosstalk between adjacent pixels.
  • an LED display screen which includes LED light sources distributed in an array, wherein the LED light sources include:
  • An LED chip and a light guide portion provided in the light emitting direction of the LED chip, the light guide portion is configured to process light incident from the LED chip so that light emitted from a light exit surface of the light guide portion is divergent The angle is smaller than the divergence angle of the light emitted from the LED chip.
  • the LED light source may include a single LED chip or multiple LED chips.
  • the plurality of LED chips are arranged in an array or a ring.
  • the light guiding portion includes a light emitting surface and a light incident surface, wherein the light guiding portion is a solid geometric body with an area of the light incident surface smaller than the area of the light emitting surface, preferably a circular truncated cone, prism, or compound parabolic surface.
  • Light device preferably a circular truncated cone, prism, or compound parabolic surface.
  • the height range of the light guide is 1mm-3mm.
  • the area ratio of the light exit surface and the light entrance surface of the light guide portion is k, where 1 ⁇ k ⁇ 3.75, preferably 1.5 ⁇ k ⁇ 2.5.
  • the light guiding portion includes light absorbing particles, and the concentration of the light absorbing particles is 1 to 200 mol / cm3.
  • the light-absorbing particles include at least one of colored glass particles and metal nanoparticles.
  • the light guide portion includes a reflection portion provided on a side wall, and the reflectance of the reflection portion ranges from 50% to 90%.
  • it further includes a coupling portion provided between the side wall of the light guiding portion and the reflection portion, and the refractive index of the coupling portion is smaller than the refractive index of the light guiding portion.
  • a light-shielding frame is provided between adjacent LED light sources, and a light-absorbing layer, a scattering layer, or a reflective layer is coated on a side wall of the light-shielding frame opposite to the LED light source.
  • the diffusion film disposed opposite to the LED light source, and the diffusion film is an integrally formed film or a splicing film.
  • the LED light source includes a connection portion, and the connection portion is used to connect the light guide portion and the LED chip.
  • the connecting portion includes an adhesive material, a buckle structure or a fixing member structure.
  • the light guiding part includes a light-concentrating member or a collimating member, and the light-condensing member or the collimating member is made of silica gel or an organic resin material.
  • the light-concentrating member can be formed by injection molding, heat curing or UV curing.
  • the light condensing member may have a hemispherical structure, the width of the LED chip is w1, and the radius of the hemispherical structure is r, where the length of r is in the range of 2w1 ⁇ r ⁇ 5w1.
  • the refractive index of the hemispherical structure is n, and the distance from the LED chip to the center of the circle of the hemispherical structure is d, where the range of d is 0 ⁇ d ⁇ r / (n-1).
  • the light guide section further includes a light guide rod disposed in a light emitting direction of the LED chip, a light incident surface of the light guide rod is close to the LED chip, and a light exit surface of the light guide rod and the collimator It is connected so that the light emitted by the LED chip enters the collimator after the light is uniformly emitted by the light guide rod, and the collimator emits the light by collimating.
  • the light guide portion is provided on the LED chip in the pixel structure, so that the divergence angle of the light emitted from the light exit surface of the light guide portion is smaller than the divergence angle of the light emitted from the light exit surface of the LED chip.
  • the uniformity of the emitted light ensures the uniform light intensity and color of the LED display screen, improves the graininess and color difference of the display screen, reduces the light crosstalk between adjacent pixels, and improves the quality of the display screen.
  • FIG. 1 is a schematic plan view of an LED display screen according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a pixel structure in an embodiment of an LED display screen according to the present invention.
  • 3 is a schematic diagram of the divergence angle distribution of the LED light source when the height of the light guide portion of the LED display screen of the present invention is 3 mm;
  • FIG. 4 is a schematic structural diagram of a light guide portion in an embodiment of an LED display screen according to the present invention.
  • FIG. 5 is a schematic structural diagram of a light guide portion in another embodiment of the LED display screen of the present invention.
  • FIG. 6 is a schematic structural diagram of a light guide portion in another embodiment of the LED display screen of the present invention.
  • FIG. 7 is a schematic diagram of an area ratio of a light-emitting surface and a light-incident surface of the LED display screen according to the present invention and a light-emitting angle distribution of the LED light source;
  • FIG. 8 is a schematic structural diagram of adding light absorbing particles to a light guide portion of an LED display screen according to the present invention.
  • FIG. 9 is a schematic diagram of a wavelength change after adding light absorbing particles to a light guide portion of an LED display screen according to the present invention.
  • FIG. 10 is a schematic front structural view of an embodiment of an LED display screen according to the present invention.
  • FIG. 11 is a schematic structural diagram of a pixel structure in another embodiment of an LED display screen according to the present invention.
  • FIG. 12 is a schematic structural diagram of a pixel structure in another embodiment of an LED display screen according to the present invention.
  • FIG. 13 is a schematic structural diagram of a pixel structure in another embodiment of an LED display screen according to the present invention.
  • FIG. 14 is a schematic structural diagram of a pixel structure in another embodiment of an LED display screen according to the present invention.
  • FIG. 15 is a schematic structural diagram of a pixel structure in another embodiment of an LED display screen according to the present invention.
  • 16 is a schematic plan view of another embodiment of the LED display screen of the present invention.
  • FIG. 17 is a schematic front structural view of another embodiment of the LED display screen of the present invention.
  • FIG. 18 is a schematic plan view of another embodiment of the LED display screen of the present invention.
  • FIG. 19 is a schematic structural diagram of a pixel structure in another embodiment of an LED display screen according to the present invention.
  • FIG. 20 is a schematic structural diagram of a pixel structure in another embodiment of an LED display screen according to the present invention.
  • 21 is a schematic structural diagram of a pixel structure in another embodiment of an LED display screen according to the present invention.
  • 22 is a schematic structural diagram of pixel structure distribution in another embodiment of the LED display screen of the present invention.
  • FIG. 23 is a schematic structural diagram of pixel structure distribution in another embodiment of the LED display screen of the present invention.
  • 24 is a schematic structural diagram of pixel structure distribution in another embodiment of the LED display screen of the present invention.
  • 25 is a schematic structural diagram of a light guide installation in another embodiment of the LED display screen of the present invention.
  • 26 is a schematic structural diagram of a light guide installation in another embodiment of the LED display screen of the present invention.
  • FIG. 27 is a schematic top plan view of another embodiment of an LED display screen according to the present invention.
  • FIG. 28 is a schematic front view structure diagram of another embodiment of the LED display screen of the present invention.
  • FIG. 29 is a schematic front structural view of another embodiment of the LED display screen of the present invention.
  • FIG. 30 is a schematic structural plan view of another embodiment of an LED display screen according to the present invention.
  • FIG. 31 is a schematic front view structure diagram of another embodiment of the LED display screen of the present invention.
  • FIG. 32 is a schematic front view structure diagram of another embodiment of the LED display screen of the present invention.
  • an embodiment of an LED display screen 10 includes LED light sources 100 arranged in an array.
  • the LED light source 100 includes a substrate 110, an LED chip 120, and a light guide 130.
  • the LED chip 120 is disposed on the substrate 110.
  • the light guide 130 is disposed on the upper side of the LED chip 120 and is used for processing light incident from the LED chip 120 so that the divergence angle of light emitted from the light exit surface 132 of the light guide 130 is smaller than the light exit surface 121 of the LED chip 120
  • the divergence angle of the emitted light wherein the height h of the light guide 130 ranges from 1 mm to 3 mm.
  • the height h of the light guide 130 is 2 mm.
  • FIG. 3 is a schematic diagram of the light divergence angle distribution of the LED light source 100 when the height of the light guide portion is 3 mm.
  • the height of the light guide portion 130 is increased, more large-angle light is reflected and emitted at a small angle, so that The light emitting angle of the LED light source 100 is reduced to within 50 °.
  • the light guide portion 130 is a light guide portion, and the light guide portion 130 is disposed on the LED chip 120.
  • the area of the light exit surface 132 of the light guide portion 130 is larger than the area of the light entrance surface 131 of the light guide portion 130. Conservation is such that the divergence angle of the light emitted from the light exit surface 132 of the light guide portion 130 is smaller than the divergence angle of the light incident from the light incident surface 131 of the light guide portion 130.
  • the area of the light incident surface 131 of the light guide portion 130 is larger than the area of the light exit surface 121 of the LED chip 120, so that the light emitted by the LED chip 120 is coupled into the light guide portion 130 with a higher light efficiency, so that the light from the light guide portion 130
  • the divergence angle of the light emitted from the light emitting surface 132 of the light emitting surface 132 is smaller than the divergence angle of the light emitted from the light emitting surface 121 of the LED chip 120.
  • the substrate 110 is an electrode substrate
  • the light guide section 130 is a solid geometric body.
  • the light guiding portion 130 is a conical structure such as a solid circular table body, as shown in FIG. 4.
  • the light guide 130 may be other geometric bodies with an area smaller than that of the light exit surface S1, such as a pyramid structure such as a pyramid, as shown in FIG. 5; or CPC (Compound Parabolic Concentrator, compound Parabolic condenser), as shown in Figure 6.
  • the area ratio of the light exit surface S1 to the light entrance surface S2 is k, where 1 ⁇ k ⁇ 3.75, preferably 1.5 ⁇ k ⁇ 2.5.
  • FIG. B is a schematic diagram of the illuminance of the LED light source 100 when the area ratio k between the light exit surface and the light entrance surface of the light guide 130 is 1.
  • the emitted light from the LED light source at this time is mainly concentrated in a relatively small area.
  • the illumination range of the LED light source in the corresponding pixel area is too small than the pixel area, which makes the LED light source have a large unlit area at the edge of the corresponding pixel area, resulting in low pixel filling efficiency of the LED display screen. , Strong graininess.
  • FIG. 1 is a schematic diagram of the illuminance of the LED light source 100 when the area ratio k between the light exit surface and the light entrance surface of the light guide 130 is 1.
  • the emitted light from the LED light source at this time is mainly concentrated in a relatively small area.
  • the illumination range of the LED light source in the corresponding pixel area is too small than the pixel area, which makes the LED light source have a large unlit area at the edge of
  • C is a schematic diagram of the illumination intensity of the LED light source when the area ratio k between the light-emitting surface and the light-receiving surface of the light guide 130 is 3.75.
  • the emitted light from the LED light source is relatively uniform.
  • the illumination of the LED light source in the corresponding pixel area The range is relatively uniform, so that the edge illuminance and the central point illuminance of the corresponding LED light source in the corresponding pixel area do not change much, which causes the light of more illuminance range of the LED light source to enter the adjacent pixel area, causing serious crosstalk of the LED display.
  • Figure a is a schematic diagram of the illumination intensity of an LED light source when the area ratio k between the light-emitting surface and the light-receiving surface of the light guide part 130 is 2.
  • the output light intensity of the LED light source changes relatively smoothly in the corresponding pixel area.
  • the central area gradually decreases towards the edge area, where the illuminance of the edge area is 10% of the illuminance of the central area, and because the illuminance of adjacent pixel edges is considered to overlap, the pixel edge of the LED display screen will not cause the LED light source to be unlit.
  • the problem of low pixel filling rate and strong graininess will not cause the problem of too much light crosstalk between adjacent pixels and affect the display effect.
  • the roughness of the side wall 133 of the light guide 130 is less than 1 micrometer, and more preferably less than 700 nanometers.
  • the refractive index of the light guide 130 is more than 1.5, and more preferably more than 1.6.
  • the sidewall 133 of the light guide 130 can be polished to achieve the target roughness.
  • the light guide 130 may be made of a material such as glass or sapphire.
  • the light guiding portion 130 may further contain scattering particle materials such as TiO 2 and / or Al 2 O 3 to further uniformize the incident light.
  • the LED light source in order to make the LED light source have a narrower wavelength range, light absorbing particles may be added to the light guide 130.
  • the LED light source includes an LED chip 120 and a light guide portion 130 disposed on a light emitting surface of the LED chip 120, wherein a height of the light guide portion 130 ranges from 1 mm to 3 mm.
  • light absorbing particles are added to the light guide portion 130.
  • the light absorbing particles will absorb light of some wavelengths but not light of other wavelengths. The choice is related to the wavelength of the absorbed light and can be deduced via Beer's Law.
  • the light absorbing particles are preferably at least one of colored glass particles and metal nanoparticles, wherein the concentration of the absorbing particles is 1 to 200 mol / cm 3 .
  • FIG. 9 is a schematic diagram of the wavelength change after adding light absorbing particles to the light guide 130.
  • the dotted line represents the wavelength of the light guide without adding light absorbing particles
  • the solid line represents the light guide after adding the light absorbing particles.
  • the LED light source 100 further includes a connection portion 141.
  • the connection portion 141 is disposed between the substrate 110 and the light guide portion 130 and is used to connect the LED chip 120 and the light guide portion 130.
  • connection part 141 is a diffusely reflective adhesive material containing scattering particles such as TiO 2 and / or Al 2 O 3 .
  • the connecting portion 141 may also be a transparent adhesive material.
  • the light emitted from the LED chip 120 is scattered by the scattering particles in the connection part 141 to achieve preliminary homogenization; the light that has been initially homogenized enters the light guide part 130 from the light entrance surface 131 of the light guide part 130, and a part of the light is emitted to the light guide
  • the side wall 133 of the light part 130 has a small roughness and a high refractive index of the light guide part 130, and light will be totally internally reflected on the side wall 133 to achieve the mixing and homogenization of the three primary colors of light.
  • the mixed and homogenized light is emitted from the light exit surface 132 of the light guide 130.
  • the LED display screen 10 includes a bottom plate 210, and the LED light source 100 is disposed on the bottom plate 210.
  • the base plate 210 is a PCB (Printed Circuit Board), and the LED light source 100 is soldered to the PCB board by means of a patch or the like.
  • the distance between adjacent LED light sources 100 is greater than 1 micrometer and less than 2.5 microns, this distance refers to the distance between the light emitting centers of adjacent LED light sources, and is more preferably greater than 1.5 microns and less than 2 microns.
  • a light guide portion 130 is provided on the light emitting surface of the LED chip 120, and the light guide portion 130 can uniformly process and emit the emitted light, so that the LED light source in each pixel area of the LED display screen has a large light emitting area.
  • the light guide portion 130 is provided on the light exit surface of the LED chip 120, the area of the light entrance surface of the light guide portion 130 is larger than the area of the light exit surface of the LED chip, and the area of the light exit surface of the light guide portion 130 is larger than the light guide portion.
  • the area of the light incident surface of 130 is conserved according to the optical expansion amount, so that the divergence angle of the light emitted from the light exit surface of the light guide 130 is smaller than the divergence angle of the light emitted from the light exit surface of the LED chip, thereby reducing adjacent pixels.
  • the light crosstalk between them improves the quality of the display.
  • the height range of the light guide portion 130 is 1mm-3mm.
  • LED display 10 of the present invention includes LED light sources 100 arranged in an array.
  • the LED light source 100 includes a substrate 110 and an LED chip. 120.
  • the light guide portion 130, the connection portion 141, and the reflection portion 151 are disposed on the side wall 133 of the light guide portion 130, and the reflection portion 151 is in optical contact with the side wall 133 of the light guide portion 130.
  • the reflection portion 151 may be a metal reflection layer and is disposed on the side wall 133 by means of vapor deposition; the reflection portion 151 may also be a diffuse reflection layer.
  • the material of the reflecting portion 151 is usually one or more of ceramic, metal, and resin. The reflectance of the reflecting portion of different materials is different. The reflectance of the reflecting portion 151 of the present application ranges from 50% to 90%.
  • another embodiment of the LED display screen 10 of the present invention includes LED light sources 100 arranged in an array.
  • the LED light source 100 includes a substrate 110, an LED chip 120, a light guide portion 130, a connection portion 141, and a reflection.
  • the structures of the portion 152 and the combining portion 153, wherein the structures of the substrate 110, the LED chip 120, the light guiding portion 130, and the connecting portion 141 are referred to the above-mentioned embodiment of the LED display screen, and are not repeated here.
  • the coupling portion 153 is disposed on the side wall 133 of the light guide portion 130, and the reflection portion 152 is disposed on the joint portion 153, so that the reflection portion 152 is spaced from the side wall 133 of the light guide portion 130, and the reflection portion 152 and the side wall 133 are disposed at a distance.
  • An air gap is formed between the light guides 130 because the refractive index of the light guide 130 is greater than the refractive index of the air.
  • the reflection portion 152 reflects and condenses the large-angle light of the LED chip effect.
  • the material of the reflective portion 152 is usually one or more of ceramic, metal, and resin. The reflectance of the reflective portion of different materials is different. The reflectance of the reflective portion 152 of the present application ranges from 50% to 90%.
  • the LED display screen 10 of the present invention includes LED light sources 100 arranged in an array.
  • the LED light source 100 includes a substrate 110, an LED chip 120, a light guide 130, a connection 141, and light coupling.
  • the light coupling portion 160 is disposed on a light emitting surface of the light guide portion 130.
  • the light coupling portion 160 is a surface roughened structure or a photonic crystal layer, which can further improve the uniformity of the emitted light.
  • the light coupling portion 160 may be integrally formed on the light exit surface of the light guide portion 130, and may be formed by roughening the light exit surface of the light guide portion 130.
  • another embodiment of the LED display screen 10 of the present invention includes LED light sources 100 arranged in an array.
  • the LED light source 100 includes a substrate 110, an LED chip 120, a light guide 130, and a connection portion 142, where the substrate 110
  • the connection portion 142 is located outside the LED chip 120, so that a gap is formed between the LED chip 120 and the light incident surface of the light guide portion 130, so that the light emitted by the LED chip 120 can directly enter the light guide portion through the air.
  • the loss caused by light propagation in the bonding material is reduced.
  • connection portion 142 is a diffusely reflective adhesive material containing scattering particles such as TiO 2 and / or Al 2 O 3 .
  • the connecting portion 142 may also be a transparent adhesive material or an adhesive material capable of absorbing visible light.
  • the LED display screen 10 of the present invention includes LED light sources 100 arranged in an array.
  • the LED light source 100 includes a substrate 110, a red LED chip 122, a green LED chip 123, a blue LED chip 124, Light guide 130 and connection 143, where light guide 130 includes three sets of light guides corresponding to red LED chip 122, green LED 123 chip, and blue LED chip, that is, LED chips of each color are provided with light guides.
  • the light parts 130 each form a sub-pixel.
  • a light guide portion is provided on each color LED chip to reduce the light emission angle of each sub-pixel of the LED display screen, thereby reducing the light crosstalk between adjacent pixels of the LED display screen.
  • another embodiment of the LED display screen 10 of the present invention includes a base plate 210, an LED light source 100, a shading frame 220, and a diffusion film 230.
  • the LED light sources 100 are distributed in an array on the bottom plate 210, and the shading frame 220 is disposed on the bottom plate.
  • 210 is located between a plurality of LED light sources 100, and a diffusion film 230 is disposed on a light emitting surface of the LED light sources 100.
  • the light-shielding frame 220 is used to absorb or reflect light emitted from the light-emitting surface of the pixel structure 100 to the side of the LED light source 100.
  • the material of the light shielding frame 220 is plastic such as polymethyl methacrylate, polyacrylonitrile, polypropylene, polyvinyl chloride, polyvinyl chloride, etc., and the light shielding frame 220 can be opposite to the LED light source 100 selectively.
  • a light absorbing layer is coated on the side wall, and a scattering layer such as titanium dioxide, barium sulfate and other white reflective scattering particles can also be coated to reflect and scatter light in each pixel, and a metallic reflective layer or diffuse reflective layer can also be coated. To reflect the light in each pixel.
  • the diffusion film 230 By providing the diffusion film 230, the light emitted from the light emitting surface of the pixel structure 100 can be further homogenized, the graininess of the display screen can be improved, and the viewing angle of the LED display screen can be increased.
  • the diffusion film 230 can be The integrally formed film of the LED display screen area can also be a film spliced by multiple diffusion films.
  • the diffusion angle of the light emitted from the LED light source by the diffusion film 230 can also be distributed in the area.
  • the diffusion film 230 emits light in the corresponding LED light source.
  • the central area has a larger diffusion angle, and the area corresponding to the light emitting edge of the LED light source has a smaller diffusion angle to achieve a more optimized illumination distribution.
  • the LED display screen 20 of the present invention includes an array-like image LED light source 300.
  • the LED light source 300 includes a substrate 310, an LED chip 320, and a light guide 330.
  • the LED chip 320 is disposed on the substrate 310.
  • the light guide portion 330 is disposed on the upper side of the LED chip 320 and is used to process light incident from the LED chip 320 so that the divergence angle of the light emitted from the light exit surface 332 of the light guide portion 330 is smaller than the light exit from the LED chip 320 The divergence angle of the light emitted from the surface 321.
  • the light guide portion 330 is a light condensing member
  • the light condensing member 330 is disposed on the LED chip 320
  • the light exiting surface 332 of the light condensing member 320 is a curved surface, so that light is on the light exiting surface 332 of the light condensing member 320. Refraction occurs so that the divergence angle of the light emitted from the light exit surface 332 of the light concentrating member 330 is smaller than the divergence angle of the light incident from the light entrance surface 331 of the condensing member 320, further reducing the light between adjacent pixels of the LED display screen. Crosstalk.
  • the light condensing member 330 may be a lens made of silicone or organic resin, such as PC (Polycarbonate, Polycarbonate), PMMA (Polymethyl Methacrylate, Polymethyl Methacrylate), and the like.
  • the light-concentrating member 330 can be prepared by methods such as injection molding, dispensing thermosetting molding, UV curing, or hot stamping molding.
  • the LED chip 320 needs to have a certain distance from the circle center O of the light collecting member 330. Referring to FIG. 15, the distance between the LED chip 320 and the circle center O of the light-concentrating member 330 is d.
  • the light emitting surface 332 includes a continuous first light emitting surface segment 3321 and a second light emitting surface segment 3322, wherein the first light emitting surface segment 3321 is a hemispherical surface and the second light emitting surface segment 3322 is a cylindrical surface.
  • the radius r of the hemispherical surface can be selected according to the width w1 of the LED chip 320, for example, the length of the radius r is 2w1 ⁇ r ⁇ 5w1.
  • the distance d between the LED chip 320 and the circle center O of the hemispherical surface may be 0 ⁇ d ⁇ r / (n-1).
  • the LED chip 320 is a single-color LED chip.
  • the red LED chip 321, the green LED chip 322, and the blue LED chip 323 may also be disposed in the same light condensing member 330.
  • the radius r of the hemispherical surface and the distance d between the LED chip and the center O of the hemispherical surface can be calculated by the total width w2 of the red LED chip 321, the green LED chip 322, and the blue LED chip 323. For the calculation method, refer to the above embodiment. This will not be repeated here.
  • the LED light source is a single-color LED chip, and one pixel is composed of sub-LED chips of at least three colors of red, green, and blue. Therefore, at least three LED chips 320 are required. As shown in FIG. 22, three The light emitted by the LED chip 320 constitutes one pixel.
  • the LED light source may further include a backup LED chip, for example, a backup LED chip including three colors of red, green, and blue.
  • the six LED chips 320 are arranged in an array or a ring, as shown in FIG. 23 and FIG. 24. By uniformly arranging the LED chips 320, the uniformity of pixel filling in the LED display screen 20 can be improved.
  • the driving current of the LED chip is half of the driving current of the three LED chips.
  • the driving current of the corresponding standby LED chip can be adjusted up to 1 times the normal current.
  • the spare LED chip can be activated when the LED chip is damaged, thereby reducing the replacement frequency of the pixel module.
  • one or two spare LED chips of three colors of red, green, and blue may also be provided, so that the LED light source includes 4 or 5 LED chips.
  • the LED light source 300 further includes a connecting portion 340.
  • the connecting portion 340 is disposed between the LED chip 320 and the light-concentrating member 330 and is used to connect the LED chip 320 and the light-concentrating member 330.
  • the connection portion 340 may be a diffusely reflective adhesive material containing scattering particles such as TiO 2 and / or Al 2 O 3 . In other embodiments, the connection portion 340 may also be a transparent adhesive material.
  • the LED display screen 20 further includes a bottom plate 410, and the LED light source 300 is disposed on the bottom plate 410.
  • the LED chip 320 can also be set on the base plate 410, the light collecting member 330 can be set on the connecting plate 420, and then the connecting plate 420 passes through the buckle 421 (as shown in FIG. 25) or the fixing member 422. (As shown in FIG. 26) is fixed on the bottom plate 410, so that the light collecting member 330 is fixed on the LED chip 320.
  • the light guide portion is provided on the LED chip in the LED light source, so that the divergence angle of light emitted from the light exit surface of the light guide portion is smaller than the divergence angle of light emitted from the light exit surface of the LED chip, thereby reducing Light crosstalk between adjacent pixels improves the quality of the displayed picture.
  • another embodiment of the LED display screen 20 of the present invention includes a bottom plate 410, an LED light source 300, a shading frame 430, and a diffusion film 440.
  • the LED light sources 300 are distributed in an array on the bottom plate 410, and the shading frame 430 is disposed on the bottom plate.
  • 410 is located between a plurality of LED light sources 300, and a diffusion film 440 is disposed on a light emitting surface of the LED light sources 300.
  • the specific structure of the LED light source 300 refer to the foregoing LED display screen embodiment, and details are not described herein again.
  • the light-shielding frame 430 is configured to absorb or reflect light emitted from the light-emitting surface of the pixel structure 300 to the side of the pixel structure 300.
  • each LED light source may form a circular illumination spot on the surface of the diffusion film 440 (indicated by a dotted line in the figure), and the illumination spots of multiple LED light sources may be superimposed on the surface of the diffusion film.
  • the light-shielding frame 430 may be a light-absorbing material or a light-reflecting material, which can further avoid light crosstalk between the plurality of LED light sources 300.
  • the diffusion film 440 By providing the diffusion film 440, the light emitted from the light emitting surface of the LED light source 300 can be further homogenized, the graininess of the display screen can be improved, and the viewing angle of the display panel can be increased.
  • a plurality of LED light sources 300 of different colors may be disposed between two brackets of the light shielding frame 430, for example, LED light sources of three colors of red, green, and blue are disposed on the light shielding frame.
  • a pixel is formed between the two brackets of 430, so that the shading frame 430 divides the array of pixels of the LED display screen.
  • another embodiment of the LED display screen 30 of the present invention includes an LED light source 600 arranged in an array, a base plate 710, a shading frame 720, and a diffusion film 730.
  • the LED light source 600 is disposed on the bottom plate 710 and the shading frame 720 is provided.
  • the bottom plate 710 is located between a plurality of LED light sources 600, and a diffusion film 730 is disposed on a light emitting surface of the LED light sources 600.
  • the LED light source 600 includes a substrate, an LED chip 610, and a light guide portion 620.
  • the LED chip 610 is disposed on the substrate.
  • the light guide portion 620 is disposed on the upper side of the LED chip 610 and is used to process light incident from the LED chip 610.
  • the divergence angle of the light emitted from the light emitting surface 622 of the light guide portion 620 is made smaller than the divergence angle of the light emitted from the light emitting surface 611 of the LED chip 610.
  • the substrate may be a bottom plate 710.
  • the light guide portion 620 is a collimator, and the collimator 620 is disposed on the light shielding frame 720.
  • the axis of the collimator 620 and the axis of the LED chip 610 are on the same straight line.
  • the collimator 620 is a lens, and its light incident surface 621 is a curved surface protruding toward the LED chip 610.
  • the light incident from the light incident surface 621 of the collimator 620 is straightened by the collimator 620 and exits from the light exit surface 622.
  • the direction of the emitted light is perpendicular to the surface of the base plate 710, so that the The divergence angle of light is smaller than the divergence angle of light incident from the light incident surface 621 of the collimator 620.
  • the collimator 620 is made of silicone or organic resin, such as PC (Polycarbonate, Polycarbonate), PMMA (Polymethyl Methacrylate, Polymethyl Methacrylate), and the like.
  • the collimator 620 can be prepared by methods such as injection molding, dispensing thermosetting molding, or hot stamping molding.
  • the LED display screen 30 further includes a transparent substrate 740, which is disposed on the light-shielding frame 720.
  • the collimator 620 is fixedly connected to the transparent substrate 740 or is formed integrally with the transparent substrate 740 directly.
  • the light-shielding frame 720 may be a light-absorbing material or a light-reflecting material, which can further avoid light crosstalk between the plurality of LED light sources 600.
  • the diffusion film 720 By providing the diffusion film 720, the light emitted from the light emitting surface of the LED light source 600 can be further homogenized, the graininess of the display screen can be improved, and the viewing angle of the display panel can be increased.
  • the LED display screen 30, in which the light guide portion may include both a light guide rod 640 and a collimator 650, wherein the light guide rod 640 is fixedly disposed on the collimator 650 and is located at Close to one side of the LED chip 610.
  • the light incident from the light incident surface of the light guide rod 640 enters the collimator 650 after being reflected multiple times in the light guide rod 640, and after being aligned by the collimator 650, exits from the light exit surface of the collimator 650.
  • the structures of the light guide rod 640 and the collimator 650 refer to the foregoing embodiments, and details are not described herein again.
  • a divergence angle of light emitted from a light exit surface of the light guide portion can be made smaller than a divergence angle of light emitted from a light exit surface of the LED chip, so that the pixel
  • the output light of the structure is homogenized to ensure uniform light intensity and color of the LED display screen, improve the graininess and color difference of the display screen, reduce light crosstalk between adjacent pixels, and improve the quality of the display screen.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种LED显示屏,该LED显示屏包括呈阵列分布的LED光源(100),LED光源(100)包括:LED芯片(120);以及设置于LED芯片(120)出光方向上的导光部(130),导光部(130)用于对LED芯片(120)入射的光进行处理;使得从导光部(130)的出光面出射的光的发散角小于从LED芯片(120)出射的光的发散角。LED显示屏能使LED光源(100)的出射光匀化,保证LED显示屏的光强和颜色均匀,改善显示画面的颗粒感和色差问题,减少相邻像素之间的光串扰,提高显示画面的质量。

Description

一种LED显示屏 技术领域
本发明涉及显示技术领域,特别涉及一种LED显示屏。
背景技术
LED显示屏是一种主动发光的显示器件,一般由红、绿、蓝组成的LED发光二极管构成一个像素,LED显示屏中的像素呈阵列分布,以形成全彩LED显示屏。相比于传统显示装置,LED显示屏具有亮度高、色域广、耗能低、使用寿命长等优点,被广泛应用于各种场合。
本申请的发明人在长期的研发中发现,现有的LED显示屏的像素之间存在间隙,造成像素填充率较低,显示画面的颗粒感较强。目前解决的一种方法是通过增大LED显示屏的像素的阵列填充密度,以缩小LED显示屏的像素之间的距离,但是会大幅增加LED显示屏的成本,也会加重LED显示屏的热效应,影响LED显示屏的显示效果和使用寿命。另一种方法是通过在LED显示屏前设置扩散膜来对各像素出射的光进行匀光,但是扩散膜会增加相邻像素之间的光线串扰,使得相邻像素的对比度降低,影响图像的显示质量。
发明内容
本发明提供一种LED显示屏,以解决现有技术中LED显示屏中各像素结构的出射光分布不均匀及减小相邻像素间的光线串扰的技术问题。
为解决上述技术问题,本发明采用的一个技术方案是提供一种LED显示屏,包括呈阵列分布的LED光源,其特征在于,所述LED光源包括:
LED芯片;以及设置于LED芯片出光方向上的导光部,所述导光 部用于对从所述LED芯片入射的光进行处理,使得从所述导光部的出光面出射的光的发散角小于从所述LED芯片出射的光的发散角。
其中,所述LED光源可包括单个LED芯片或多个LED芯片。
其中,所述多个LED芯片呈阵列或环状排列。
其中,所述导光部包括出光面和入光面,其中所述导光部为所述入光面面积小于所述出光面面积的实心几何体,优选为圆台体、棱台体或复合抛物面聚光器。
其中,所述导光部的高度范围为1mm-3mm。
其中,所述导光部的所述出光面和所述入光面的面积比为k,其中1<k<3.75,优选1.5<k<2.5。
其中,所述导光部包含光吸收粒子,其中所述光吸收粒子的浓度为1~200mol/cm3。
其中,所述光吸收粒子包括有色玻璃粒子以及金属纳米颗粒中的至少一种。
其中,所述导光部包含设置在侧壁上的反射部,所述反射部的反射率范围为50%~90%。
其中,还包括设置于所述导光部侧壁和所述反射部之间的结合部,所述结合部的折射率小于所述导光部的折射率。
其中,相邻所述LED光源之间设置有遮光架,所述遮光架相对于所述LED光源的侧壁上涂覆有光吸收层、散射层或反射层。
其中,包括与所述LED光源相对设置的扩散膜,所述扩散膜为一体成型膜或拼接膜。
其中,所述LED光源包括连接部,所述连接部用于连接所述导光部和所述LED芯片。
其中,所述连接部包括粘接材料、卡扣结构或固定件结构。
其中,所述导光部包括聚光件或准直件,所述聚光件或所述准直件由硅胶或有机树脂材料制成。
其中,所述聚光件可通过注塑、热固化或UV固化成型。
其中,所述聚光件可为半球面结构,所述LED芯片的宽度为w1, 所述半球面结构的半径为r,其中r的长度范围为2w1<r<5w1。
其中,所述半球面结构的折射率为n,所述LED芯片到所述半球面结构的圆心的距离为d,其中d的范围为0<d<r/(n-1)。
其中,所述导光部还包括设置于LED芯片出光方向上的导光棒,所述导光棒的入光面靠近所述LED芯片,所述导光棒的出光面与所述准直件连接,使得LED芯片出射的光经所述导光棒匀光后进入所述准直件,所述准直件对光线进行准直出射。
本发明通过在像素结构中的LED芯片上设置导光部,能够使得从导光部的出光面出射的光的发散角小于从LED芯片的出光面出射的光的发散角,从而使得像素结构的出射光匀化,保证LED显示屏的光强和颜色均匀,改善显示画面的颗粒感和色差问题,减小相邻像素之间的光串扰,提高显示画面的质量。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1是本发明LED显示屏一实施例的俯视结构示意图;
图2是本发明LED显示屏一实施例中像素结构的结构示意图;
图3是本发明LED显示屏导光部高度为3mm时的LED光源发散角分布示意图;
图4是本发明LED显示屏一实施例中导光部的结构示意图;
图5是本发明LED显示屏另一实施例中导光部的结构示意图;
图6是本发明LED显示屏另一实施例中导光部的结构示意图;
图7是本发明LED显示屏的出光面与入光面的面积比与LED光源出光角分布示意图;
图8是本发明LED显示屏导光部加入光吸收粒子的结构示意图;
图9是本发明LED显示屏导光部加入光吸收粒子后波长变化示意图;
图10是本发明LED显示屏一实施例的主视结构示意图;
图11是本发明LED显示屏另一实施例中像素结构的结构示意图;
图12是本发明LED显示屏另一实施例中像素结构的结构示意图;
图13是本发明LED显示屏另一实施例中像素结构的结构示意图;
图14是本发明LED显示屏另一实施例中像素结构的结构示意图;
图15是本发明LED显示屏另一实施例中像素结构的结构示意图;
图16是本发明LED显示屏另一实施例的俯视结构示意图;
图17是本发明LED显示屏另一实施例的主视结构示意图;
图18是本发明LED显示屏另一实施例的俯视结构示意图;
图19是本发明LED显示屏另一实施例中像素结构的结构示意图;
图20是本发明LED显示屏另一实施例中像素结构的结构示意图;
图21是本发明LED显示屏另一实施例中像素结构的结构示意图;
图22是本发明LED显示屏另一实施例中像素结构分布的结构示意图;
图23是本发明LED显示屏另一实施例中像素结构分布的结构示意图;
图24是本发明LED显示屏另一实施例中像素结构分布的结构示意图;
图25是本发明LED显示屏另一实施例中导光部安装的结构示意图;
图26是本发明LED显示屏另一实施例中导光部安装的结构示意图;
图27是本发明LED显示屏另一实施例的俯视结构示意图;
图28是本发明LED显示屏另一实施例的主视结构示意图;
图29是本发明LED显示屏另一实施例的主视结构示意图;
图30是本发明LED显示屏另一实施例的俯视结构示意图;
图31是本发明LED显示屏另一实施例的主视结构示意图;
图32是本发明LED显示屏另一实施例的主视结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案 进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,均属于本发明保护的范围。
参见图1和图2,本发明LED显示屏10一实施例包括呈阵列分布的LED光源100,LED光源100包括基板110、LED芯片120和导光部130,LED芯片120设置于基板110上,导光部130设置于LED芯片120上侧,用于对从LED芯片120入射的光进行处理,使得从导光部130的出光面132出射的光的发散角小于从LED芯片120的出光面121出射的光的发散角,其中,导光部130的高度h范围为1mm-3mm。优选的,导光部130的高度h为2mm。
进一步如图3所示,图3是导光部的高度为3mm时的LED光源100光发散角分布示意图,当导光部130的高度提高时,较多大角度光线被反射以小角度出射,使得LED光源100的发光角度缩小到50°以内。
进一步的,导光部130为导光部,导光部130设置于LED芯片120上,导光部130的出光面132的面积大于导光部130的入光面131的面积,根据光学扩展量守恒,使得从导光部130的出光面132出射的光的发散角小于从导光部130的入光面131入射的光的发散角。而导光部130的入光面131的面积大于LED芯片120的出光面121的面积,使得LED芯片120出射的光以较高的光效耦合进入导光部130,从而使得从导光部130的出光面132出射的光的发散角小于从LED芯片120的出光面121出射的光的发散角。
导光部导光部其中,基板110为电极衬底,导光部130为实心几何体。在本实施例中,导光部130为实心圆台体等圆锥结构,如图4所示。在其他实施例中,导光部130还可以为入光面S2的面积小于出光面S1的面积的其他几何体,例如棱台等棱锥结构,如图5所示;或CPC(Compound Parabolic Concentrator,复合抛物面聚光器),如图6所示。其中出光面S1与入光面S2的面积比为k,其中1<k<3.75,优选1.5<k<2.5。
进一步的,如图7所示,图b为导光部130的出光面与入光面的面 积比k为1时的LED光源100照度示意图,此时的LED光源的出射光主要聚集在一个较小的角度范围内,对应的,LED光源在对应像素区域的照度范围过于小于像素区域,使得LED光源在对应像素区域的边缘存在较大的未照到区域,导致LED显示屏的像素填充效率低,颗粒感强。图c为导光部130的出光面和入光面的面积比k为3.75时的LED光源照度示意图,此时的LED光源的出射光相对比较均匀,对应的,LED光源在对应像素区域的照度范围较为均匀,使得LED光源在对应像素区域的边缘照度与中心点照度变化不大,导致LED光源较多照度范围的光射入相邻的像素区域,造成LED显示屏的光线串扰严重。图a为导光部130的出光面与入光面的面积比k为2时的LED光源照度示意图,此时的LED光源的出射光照度在对应像素区域的变化较为平稳,像素范围内的照度从中心区域向边缘区域逐渐递减,其中边缘区域的照度为中心区域照度的10%,又因为考虑到相邻像素边缘之间的照度叠加,即不会造成LED显示屏的像素边缘因LED光源未照到引起的像素填充率低,颗粒感强的问题,又不会造成相邻像素之间的光线串扰过于严重,影响显示效果的问题。
在本实施例中,导光部130的侧壁133的粗糙度小于1微米,进一步优选为小于700纳米。导光部130的折射率大于1.5,进一步优选为大于1.6。其中,导光部130的侧壁133可以通过抛光的方式达到目标粗糙度。导光部130可以由玻璃或蓝宝石等材料制成。
可以理解的是,导光部130还可以含有TiO 2和/或Al 2O 3等散射颗粒材料,以进一步对入射光进行匀光处理。
在一变更实施例中,为了使LED光源有更窄的波长范围,可在导光部130加入光吸收粒子。如图8所示,在本实施例中,该LED光源包括LED芯片120以及设置在LED芯片120出光面的导光部130,其中,导光部130的高度范围为1mm-3mm。
在本实施例中,为使LED光源有更窄的波长范围,导光部130中添加有光吸收粒子,光吸收粒子会吸收某些波长的光而不吸收另一些波长的光,吸收粒子的选择与所吸收的光的波长有关,可以经由比尔兰伯特 定律推算。在本实施例中,光吸收粒子优选有色玻璃粒子以及金属纳米颗粒中的至少一种,其中所述吸收粒子的浓度为1~200mol/cm 3
如图9所示,图9是导光部130中加入光吸收粒子后波长变化示意图,其中虚线代表导光部未添加光吸收粒子的波长示意图,实线代表导光部加入光吸收粒子后的波长示意图,加入光吸收粒子后,光吸收粒子只吸收对应LED芯片出射光的窄带光谱,不吸收LED芯片出射光的主要发光光谱,使得LED芯片111的出射光有更窄的波长范围,有助于扩大LED显示屏的色域。
在本实施例中,LED光源100还包括连接部141,连接部141设置于基板110与导光部130之间,用于连接LED芯片120和导光部130。
导光部可以理解的是,连接部141为为含有TiO 2和/或Al 2O 3等散射颗粒的漫反射性粘结材料。在其他实施例中,连接部141还可以为透明粘结材料。
从LED芯片120出射的光经过连接部141中的散射颗粒散射实现初步匀化;经初步匀化的光从导光部130的入光面131进入导光部130中,其中一部分光发射至导光部130的侧壁133,由于侧壁133的粗糙度较小且导光部130的折射率较高,光会在侧壁133发生全内反射,以实现三基色光的混合和匀化,混合匀化后的光从导光部130的出光面132出射。由于导光部130的出光面132的面积大于匀光件130的入光面131的面积,根据光学扩展量守恒原理,从导光部130的出光面132出射的光的发散角小于从导光部130的入光面131入射的光的发散角,减小相邻的LED显示屏的像素之间的串扰。进一步,如图10所示,LED显示屏10包括底板210,LED光源100设置于底板210上。在本实施例中,底板210为PCB(Printed Circuit Board,印制电路板),LED光源100通过贴片等方式焊接在PCB板上,相邻的LED光源100之间的距离大于1微米且小于2.5微米,此距离指相邻的LED光源发光中心之间的距离,进一步优选为大于1.5微米且小于2微米等。
本发明通过在LED芯片120的出光面设置导光部130,其中导光部130可对出射的光进行匀光处理出射,使得LED显示屏的每个像素区域 的LED光源具有较大的发光面积,以实现在维持现有LED芯片填充率不变的情况下增大LED显示屏的像素填充率,减小显示画面的颗粒感。又因为,通过在LED芯片120的出光面设置导光部130,其中导光部130的入光面的面积大于LED芯片的出光面的面积,导光部130的出光面的面积大于导光部130的入光面的面积,根据光学扩展量守恒,能够使得从导光部130的出光面出射的光的发散角小于从LED芯片的出光面出射的光的发散角,从而减小相邻像素之间的光串扰,提高显示画面的质量。
进一步的,导光部130的高度范围为1mm-3mm,通过增加导光部130的高度,对LED光源出射的大角度光进行反射,以压缩LED光源的光出射角,进而减小各像素间的光线串扰。
导光部导光部导光部导光部参见图1、图2和图11,本发明LED显示屏10另一实施例包括呈阵列分布的LED光源100,LED光源100包括基板110、LED芯片120、导光部130、连接部141和反射部151,其中,基板110、LED芯片120、导光部130、连接部141的结构参见上述LED显示屏实施例,在此不再赘述。反射部151设置于导光部130的侧壁133上,反射部151与导光部130的侧壁133光学接触。
在本实施例中,反射部151可以为金属反射层,通过蒸镀的方式设置于侧壁133上;反射部151还可以为漫反射层。通过设置反射部151可以将部分从侧壁133漏出的光反射回导光部130中,从而减小相邻的LED显示屏的像素之间的光串扰,提高光利用率;其中反射部151对LED芯片大角度光线起到反射汇聚作用。反射部151材料通常为陶瓷、金属和树脂中的一种或多种等,不同材料的的反射部的反射率不同,本申请反射部151的反射率范围为50%~90%。
参见图1、图2和图12,本发明LED显示屏10另一实施例包括呈阵列分布的LED光源100,LED光源100包括基板110、LED芯片120、导光部130、连接部141、反射部152和结合部153,其中,基板110、LED芯片120、导光部130、连接部141的结构参见上述LED显示屏实施例,在此不再赘述。结合部153设置于导光部130的侧壁133上,反射部152设置于结合部153上,以使得反射部152与导光部130的侧壁 133间隔设置,在反射部152和侧壁133之间形成空气间隙,由于导光部130的折射率大于空气的折射率,光由光密介质射入光疏介质时,折射角大于入射角,因此能够减小从侧壁133出射的光,增加从导光部130的出光面132出射的光,从而减小相邻的LED显示屏的像素之间的光串扰,提高光利用率;其中反射部152对LED芯片大角度光线起到反射汇聚作用。反射部152材料通常为陶瓷、金属和树脂中的一种或多种等,不同材料的的反射部的反射率不同,本申请反射部152的反射率范围为50%~90%。
参见图1、图2和图13,本发明LED显示屏10另一实施例包括呈阵列分布的LED光源100,LED光源100包括基板110、LED芯片120、导光部130、连接部141和光耦合部160,其中,基板110、LED芯片120、导光部130、连接部141的结构参见上述LED显示屏实施例,在此不再赘述。光耦合部160设置于导光部130的出光面上。在本实施例中,光耦合部160为表面粗化结构或光子晶体层等,可进一步改善出射光的均匀性。在其他实施例中,光耦合部160还可以一体成形于导光部130的出光面,可以通过对导光部130的出光面进行粗化处理形成。
参见图1和图14,本发明LED显示屏10另一实施例包括呈阵列分布的LED光源100,LED光源100包括基板110、LED芯片120、导光部130和连接部142,其中,基板110、LED芯片120、导光部130的结构参见上述LED显示屏实施例,在此不再赘述。在本实施例中,连接部142位于LED芯片120外侧,以使得LED芯片120与导光部130的入光面之间形成间隙,能够使得LED芯片120发射的光直接经过空气入射至导光部130中,减小光在粘结材料中传播造成的损失。
在本实施例中,连接部142为含有TiO 2和/或Al 2O 3等散射颗粒的漫反射性粘结材料。在其他实施例中,连接部142还可以为透明粘结材料、可吸收可见光的粘结材料。
参见图1和图15,本发明LED显示屏10另一实施例包括呈阵列分布的LED光源100,LED光源100包括基板110、红光LED芯片122、绿光LED芯片123、蓝光LED芯片124、导光部130和连接部143,其 中,导光部130包括红光LED芯片122、绿光LED123芯片、蓝光LED芯片对应的3组导光部,即每个颜色的LED芯片上都设有导光部130,以各自形成子像素,具体的,基板110、各个颜色的LED芯片、导光部130和连接部143的结构参见上述LED显示屏实施例,在此不再赘述。本发明实施例通过在每个颜色的LED芯片上设置导光部,以减少LED显示屏各子像素的光出射角度,进而能够减小LED显示屏的相邻像素之间的光串扰。
参见图16和图17,本发明LED显示屏10另一实施例包括底板210、LED光源100、遮光架220和扩散膜230,LED光源100呈阵列分布于底板210上,遮光架220设置于底板210上且位于多个LED光源100之间,扩散膜230设置于LED光源100的出光面上。其中,LED光源100的具体结构参见上述LED显示屏实施例,在此不再赘述。遮光架220用于吸收或反射从像素结构100的出光面出射至LED光源100侧边的光。
在本实施例中,遮光架220材质为塑料如聚甲基丙烯酸甲酯、聚丙烯腈、聚丙烯、聚氯乙烯、聚氯乙烯等,且可选择性的在遮光架220与LED光源100相对的侧壁上涂覆光吸收层,也可以涂覆散射层例如二氧化钛,硫酸钡等白色反射散射颗粒,对每个像素内的光线进行反射和散射,也可以涂覆金属反射层或漫反射层,对每个像素内的光线进行反射。通过设置扩散膜230可进一步对从像素结构100的出光面出射的光进行匀化,改善显示画面的颗粒感,同时,还可以增大LED显示屏的可视角,其中,扩散膜230可以是与LED显示屏面积相当的一体成型膜,也可以是通过多个扩散膜拼接起来的膜,其中扩散膜230对LED光源出射的光的扩散角度也可以区域分布,例如扩散膜230在对应LED光源发光中心的区域扩散角度较大,在对应LED光源发光边缘的区域扩散角度较小,以实现更优化的照度分布。
参见图18和图19,本发明LED显示屏20另一实施例包括呈阵列分布的像LED光源300,LED光源300包括基板310、LED芯片320和导光部330,LED芯片320设置于基板310上,导光部330设置于LED芯片320上侧,用于对从LED芯片320入射的光进行处理,使得从导光 部330的出光面332出射的光的发散角小于从LED芯片320的出光面321出射的光的发散角。
在本实施例中,导光部330为聚光件,聚光件330设置于LED芯片320上,聚光件320的出光面332为曲面,以使得光在聚光件320的出光面332上发生折射,从而使得从聚光件330的出光面332出射的光的发散角小于从聚光件320的入光面331入射的光的发散角,进一步减少LED显示屏相邻像素之间的光串扰。
在本实施例中,聚光件330可以为由硅胶或有机树脂制成的透镜,例如PC(Polycarbonate,聚碳酸酯)、PMMA(Polymethyl Methacrylate,聚甲基丙烯酸甲酯)等。聚光件330可以通过注塑成型、点胶热固成型、UV固化或热压印成型等方法进行制备。
具体的,一并参见图20,若将聚光件330制成半球体,半球体的圆心O位于芯片320的出光面321上,则从半球体的圆心O入射至聚光件330的光角度垂直经过聚光件330的表面,光的出射方向没有改变,像素结构300的光强分布也没有改变。因此,LED芯片320需要与聚光件330的圆心O有一定间距。参见图15,LED芯片320与聚光件330的圆心O之间的间距为d。
在本实施例中,出光面332包括连续的第一出光面段3321和第二出光面段3322,其中,第一出光面段3321为半球面,第二出光面段3322为圆柱面。
在本实施例中,半球面的半径r可以根据LED芯片320的宽度w1进行选择,例如半径r的长度2w1<r<5w1。设定聚光件330的折射率为n,则聚光件330的焦距f=(n*r)/(n-1)。当聚光件330的入射光经过聚光件330的焦点时,大部分出射光为准直平行光线。因此,根据出射光强半角的要求,LED芯片320与半球面的圆心O的间距d可以为0<d<r/(n-1)。
在本实施例中,LED芯片320为单个颜色的LED芯片。参见图21,在另一实施例中,还可以将红光LED芯片321、绿光LED芯片322和蓝光LED芯片323设置于同一个聚光件330中。其半球面的半径r、LED芯片与半球面的圆心O的间距d可通过红光LED芯片321、绿光LED 芯片322和蓝光LED芯片323的总宽度w2计算,计算方法参见上述实施例,在此不再赘述。
在本实施例中,LED光源为单个颜色的LED芯片,一个像素由红、绿、蓝至少三个颜色的子LED芯片构成,因而需要至少三个LED芯片320,如图22所示,三个LED芯片320发射的光构成一个像素。在其他实施例中,LED光源还可以包括备用LED芯片,例如包括红、绿、蓝三个颜色的备用LED芯片,6个LED芯片320呈阵列或环状排列,如图23和图24所示,通过将LED芯片320均匀排布,可以提高LED显示屏20中像素填充的均匀性。具体的,当LED芯片320正常通过时,LED芯片的驱动电流为3颗LED芯片的驱动电流的一半。当有一颗LED芯片损坏时,相应的备用LED芯片的驱动电流最高可调节至正常电流的1倍。通过设置备用LED芯片,能够在LED芯片发生损坏时,启动备用LED芯片,从而降低像素模块的更换频率。在其他实施例中,也可以设置红、绿、蓝三个颜色中的某一个或两个的备用LED芯片,使得LED光源包括4个或5个LED芯片。
在本实施例中,LED光源300还包括连接部340,连接部340设置于LED芯片320和聚光件330之间,用于连接LED芯片320和聚光件330。其中,连接部340可以为含有TiO 2和/或Al 2O 3等散射颗粒的漫反射性粘结材料。在其他实施例中,连接部340还可以为透明粘结材料。
在本实施例中,LED显示屏20还包括底板410,LED光源300设置于底板410上。
在其他实施例中,还可以将LED芯片320设置于底板410上,将聚光件330设置于连接板420上,然后将连接板420通过卡扣421(如图25所示)或固定件422(如图26所示)固定于底板410上,从而使得聚光件330固定于LED芯片320上。
本发明实施例通过在LED光源中的LED芯片上设置导光部,能够使得从导光部的出光面出射的光的发散角小于从LED芯片的出光面出射的光的发散角,从而减小相邻像素之间的光串扰,提高显示画面的质量。
参见图27和图28,本发明LED显示屏20另一实施例包括底板410、LED光源300、遮光架430和扩散膜440,LED光源300呈阵列分布于底板410上,遮光架430设置于底板410上且位于多个LED光源300之间,扩散膜440设置于LED光源300的出光面上。其中,LED光源300的具体结构参见上述LED显示屏实施例,在此不再赘述。遮光架430用于吸收或反射从像素结构300的出光面出射至像素结构300侧边的光。一并参见图22至图24,每一颗LED光源在扩散膜440表面可以形成一个圆形的照明光斑(图中虚线所示),多颗LED光源的照明光斑会在扩散膜表面进行叠加。
在本实施例中,遮光架430可以为吸光材料或反光材料,可进一步避免多个LED光源300之间的光串扰。通过设置扩散膜440可进一步对从LED光源300的出光面出射的光进行匀化,改善显示画面的颗粒感,同时,还可以增大显示面板的可视角。
参见图29,在其他实施例中,还可以将多个不同颜色的LED光源300设置于遮光架430的两个支架之间,例如将红、绿、蓝三种颜色的LED光源设置于遮光架430的两个支架之间,形成一个像素,从而使得遮光架430划分出LED显示屏的像素的阵列排布。
参见图30和图31,本发明LED显示屏30另一实施例包括呈阵列分布的LED光源600、底板710、遮光架720和扩散膜730,LED光源600设置于底板710上,遮光架720设置于底板710上且位于多个LED光源600之间,扩散膜730设置于LED光源600的出光面上。其中,LED光源600包括基板、LED芯片610和导光部620,LED芯片610设置于基板上,导光部620设置于LED芯片610上侧,用于对从LED芯片610入射的光进行处理,使得从导光部620的出光面622出射的光的发散角小于从LED芯片610的出光面611出射的光的发散角。
在本实施例中,基板可以为底板710。
在本实施例中,导光部620为准直件,准直件620设置于遮光架720上,准直件620的轴线与LED芯片610的轴线位于同一直线上。在本实施例中,准直件620为透镜,其入光面621为朝向LED芯片610凸起的 曲面。从准直件620的入光面621入射的光经准直件620调直后从出光面622出射,出射光的方向垂直于底板710的表面,使得从准直件620的出光面622出射的光的发散角小于从准直件620的入光面621入射的光的发散角。
在本实施例中,准直件620硅胶或有机树脂制成,例如PC(Polycarbonate,聚碳酸酯)、PMMA(Polymethyl Methacrylate,聚甲基丙烯酸甲酯)等。准直件620可以通过注塑成型、点胶热固成型或热压印成型等方法进行制备。
在本实施例中,LED显示屏30还包括透明基板740,透明基板740设置于遮光架720上,准直件620与透明基板740固定连接或直接由透明基板740一体形成。
在本实施例中,遮光架720可以为吸光材料或反光材料,可进一步避免多个LED光源600之间的光串扰。通过设置扩散膜720可进一步对从LED光源600的出光面出射的光进行匀化,改善显示画面的颗粒感,同时,还可以增大显示面板的可视角。
参见图32,在另一实施例中,LED显示屏30,其中导光部可以同时包括导光棒640和准直件650,其中,导光棒640固定设置于准直件650上,且位于靠近LED芯片610的一侧。从导光棒640的入光面入射的光在导光棒640内经过多次反射后进入准直件650,经过准直件650调直后从准直件650的出光面出射。具体的,导光棒640和准直件650的结构参见上述实施例,在此不再赘述。
本发明实施例通过在像素结构中的LED芯片上设置导光部,能够使得从导光部的出光面出射的光的发散角小于从LED芯片的出光面出射的光的发散角,从而使得像素结构的出射光匀化,保证LED显示屏的光强和颜色均匀,改善显示画面的颗粒感和色差问题,减小相邻像素之间的光串扰,提高显示画面的质量。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保 护范围内。

Claims (19)

  1. 一种LED显示屏,包括呈阵列分布的LED光源,其特征在于,所述LED光源包括:
    LED芯片;以及设置于LED芯片出光方向上的导光部,所述导光部用于对从所述LED芯片入射的光进行处理,使得从所述导光部的出光面出射的光的发散角小于从所述LED芯片出射的光的发散角。
  2. 根据权利要求1所述的LED显示屏,其特征在于,所述LED光源包括单个LED芯片或多个LED芯片。
  3. 根据权利要求2所述的LED显示屏,其特征在于,所述多个LED芯片呈阵列或环状排列。
  4. 根据权利要求1所述的LED显示屏,其特征在于,所述导光部包括出光面和入光面,其中所述导光部为所述入光面面积小于所述出光面面积的实心几何体,优选为圆台体、棱台体或复合抛物面聚光器。
  5. 根据权利要求4所述的LED显示屏,其特征在于,所述导光部的高度范围为1mm-3mm。
  6. 根据权利要求4所述的LED显示屏,其特征在于,所述导光部的所述出光面和所述入光面的面积比为k,其中1<k<3.75,优选1.5<k<2.5。
  7. 根据权利要求1~6任一项所述的LED显示屏,其特征在于,所述导光部包含光吸收粒子,其中所述光吸收粒子的浓度为1~200mol/cm 3
  8. 根据权利要求7所述的LED显示屏,其特征在于,所述光吸收粒子包括有色玻璃粒子以及金属纳米颗粒中的至少一种。
  9. 根据权利要求1~6任一项所述的LED显示屏,其特征在于,所述导光部包含设置在侧壁上的反射部,所述反射部的反射率范围为50%~90%。
  10. 根据权利要求9所述的LED显示屏,其特征在于,还包括设置于所述导光部侧壁和所述反射部之间的结合部,所述结合部的折射率小于所述导光部的折射率。
  11. 根据权利要求1所述的LED显示屏,其特征在于,相邻所述LED 光源之间设置有遮光架,所述遮光架相对于所述LED光源的侧壁上涂覆有光吸收层、散射层或反射层。
  12. 根据权利要求11所述的LED显示屏,其特征在于,包括与所述LED光源相对设置的扩散膜,所述扩散膜为一体成型膜或拼接膜。
  13. 根据权利要求1所述的LED显示屏,其特征在于,所述LED光源包括连接部,所述连接部用于连接所述导光部和所述LED芯片。
  14. 根据权利要求13所述的LED显示屏,其特征在于,所述连接部包括粘接材料、卡扣结构或固定件结构。
  15. 根据权利要求1所述的LED显示屏,其特征在于,所述导光部包括聚光件或准直件,所述聚光件或所述准直件由硅胶或有机树脂材料制成。
  16. 根据权利要求15所述的LED显示屏,其特征在于,所述聚光件可通过注塑、热固化或UV固化成型。
  17. 根据权利要求15所述的LED显示屏,其特征在于,所述聚光件可为半球面结构,所述LED芯片的宽度为w1,所述半球面结构的半径为r,其中r的长度范围为2w1<r<5w1。
  18. 根据权利要求17所述的LED显示屏,其特征在于,所述半球面结构的折射率为n,所述LED芯片到所述半球面结构的圆心的距离为d,其中d的范围为0<d<r/(n-1)。
  19. 根据权利要求15所述的LED显示屏,其特征在于,所述导光部还包括设置于LED芯片出光方向上的导光棒,所述导光棒的入光面靠近所述LED芯片,所述导光棒的出光面与所述准直件连接,使得LED芯片出射的光经所述导光棒匀光后进入所述准直件,所述准直件对光线进行准直出射。
PCT/CN2019/100482 2018-09-28 2019-08-14 一种led显示屏 WO2020063155A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811140769.8 2018-09-28
CN201811140769.8A CN110969958B (zh) 2018-09-28 2018-09-28 一种led显示屏

Publications (1)

Publication Number Publication Date
WO2020063155A1 true WO2020063155A1 (zh) 2020-04-02

Family

ID=69953283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100482 WO2020063155A1 (zh) 2018-09-28 2019-08-14 一种led显示屏

Country Status (2)

Country Link
CN (1) CN110969958B (zh)
WO (1) WO2020063155A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534537A (zh) * 2021-07-28 2021-10-22 南京京东方显示技术有限公司 背光模组及显示装置
CN113540054A (zh) * 2021-07-20 2021-10-22 京东方科技集团股份有限公司 一种显示面板及其制备方法和显示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2593910B (en) * 2020-04-08 2022-09-28 Plessey Semiconductors Ltd Micro-lightguide for micro-LED
CN115731814A (zh) * 2022-11-01 2023-03-03 深圳市时代华影科技股份有限公司 Led光源类型转换结构及led显示屏

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198571A (ja) * 2008-02-19 2009-09-03 Chino Corp Led表示機構
CN104050886A (zh) * 2013-03-13 2014-09-17 兆光科技有限公司 发光二极管面板以及具有挡光板的显示器及其方法和用途
CN203950512U (zh) * 2014-06-24 2014-11-19 佛山市青松科技有限公司 Led灯串显示屏
CN204117516U (zh) * 2014-08-18 2015-01-21 深圳市大象视界科技有限公司 高清led显示屏
CN205003416U (zh) * 2015-09-14 2016-01-27 方维行 液晶显示屏背光源装置
CN107078148A (zh) * 2014-07-31 2017-08-18 欧库勒斯虚拟现实有限责任公司 用于具有高像素数的显示装置的彩色无机led显示器
CN207799122U (zh) * 2017-12-21 2018-08-31 深圳市光科全息技术有限公司 一种led画质增强薄膜

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101887666B (zh) * 2010-05-31 2012-07-04 广东威创视讯科技股份有限公司 一种led显示装置
CN102402907B (zh) * 2011-12-05 2013-08-21 广东威创视讯科技股份有限公司 一种提高led显示屏显示效果的装置
CN102767751B (zh) * 2012-06-18 2015-03-18 创维液晶器件(深圳)有限公司 一种背光模组及包括该背光模组的显示装置
CN103017024A (zh) * 2012-11-29 2013-04-03 冠捷显示科技(厦门)有限公司 背光模组
US20140176859A1 (en) * 2012-12-20 2014-06-26 Extend Optronics Corp. Wide-color gamut film, display apparatus with the wide-color gamut film, and method for manufacturing the film
CN107357084A (zh) * 2017-08-09 2017-11-17 青岛海信电器股份有限公司 一种液晶显示装置
CN207486718U (zh) * 2017-12-14 2018-06-12 赣州光联电子科技有限公司 一种led准直聚光组件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198571A (ja) * 2008-02-19 2009-09-03 Chino Corp Led表示機構
CN104050886A (zh) * 2013-03-13 2014-09-17 兆光科技有限公司 发光二极管面板以及具有挡光板的显示器及其方法和用途
CN203950512U (zh) * 2014-06-24 2014-11-19 佛山市青松科技有限公司 Led灯串显示屏
CN107078148A (zh) * 2014-07-31 2017-08-18 欧库勒斯虚拟现实有限责任公司 用于具有高像素数的显示装置的彩色无机led显示器
CN204117516U (zh) * 2014-08-18 2015-01-21 深圳市大象视界科技有限公司 高清led显示屏
CN205003416U (zh) * 2015-09-14 2016-01-27 方维行 液晶显示屏背光源装置
CN207799122U (zh) * 2017-12-21 2018-08-31 深圳市光科全息技术有限公司 一种led画质增强薄膜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540054A (zh) * 2021-07-20 2021-10-22 京东方科技集团股份有限公司 一种显示面板及其制备方法和显示装置
CN113534537A (zh) * 2021-07-28 2021-10-22 南京京东方显示技术有限公司 背光模组及显示装置

Also Published As

Publication number Publication date
CN110969958B (zh) 2022-05-13
CN110969958A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2020063155A1 (zh) 一种led显示屏
US9182538B2 (en) Planar light source device and display apparatus incorporating same
US7163331B2 (en) Lighting unit and display device
TWI494655B (zh) 具有結構性薄膜之空孔背光裝置及具有該空孔背光裝置之顯示器
US9091408B2 (en) Recycling backlights with semi-specular components
TWI235807B (en) Light guiding board, and lighting device, plane light source device and display device using the light guiding board
US8523419B2 (en) Thin hollow backlights with beneficial design characteristics
US7543965B2 (en) Side light-emitting device, backlight unit having the side light-emitting device, and liquid crystal display apparatus employing the backlight unit
WO2016045159A1 (zh) 一种发光二极管led发光器件、背光模组及显示面板
JP2006148036A (ja) 発光光源及び発光光源アレイ
US20140153286A1 (en) Light guide plate, backlight module and display device
CN109765725B (zh) 一种准直膜、准直背光模组、显示模组及显示装置
TW200537128A (en) A light-guiding plate having a resembled triangular prism
US11320696B2 (en) Backlight module, display, and mobile terminal
WO2021078154A1 (zh) 背光模组及显示装置
WO2020042525A1 (zh) 背光模组及液晶显示装置
WO2018214611A1 (zh) 背光模组及液晶显示装置
KR102047232B1 (ko) 확산용 도광필름, 백라이트부 및 이를 구비한 액정표시소자
KR100989167B1 (ko) 백라이트 유닛
TWI414835B (zh) 導光板及背光模組
KR20110043864A (ko) 색 혼합 렌즈 및 이를 가지는 액정 표시 장치
KR100738111B1 (ko) 고출력 도광판, 이를 채용한 백라이트 유닛 및 디스플레이
CN209946427U (zh) 一种增亮扩散膜
KR20090084446A (ko) 백라이트 유닛 및 이를 이용한 액정 표시장치
KR20170143352A (ko) 액정표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864591

Country of ref document: EP

Kind code of ref document: A1