WO2024092953A1 - 电流反馈电路及电火灶 - Google Patents

电流反馈电路及电火灶 Download PDF

Info

Publication number
WO2024092953A1
WO2024092953A1 PCT/CN2022/136875 CN2022136875W WO2024092953A1 WO 2024092953 A1 WO2024092953 A1 WO 2024092953A1 CN 2022136875 W CN2022136875 W CN 2022136875W WO 2024092953 A1 WO2024092953 A1 WO 2024092953A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power supply
capacitor
signal
current feedback
Prior art date
Application number
PCT/CN2022/136875
Other languages
English (en)
French (fr)
Inventor
谭刚
Original Assignee
深圳国爱全电化智慧科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳国爱全电化智慧科技有限公司 filed Critical 深圳国爱全电化智慧科技有限公司
Publication of WO2024092953A1 publication Critical patent/WO2024092953A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/08Arrangement or mounting of control or safety devices
    • F24C7/082Arrangement or mounting of control or safety devices on ranges, e.g. control panels, illumination
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load

Definitions

  • the present application relates to the technical field of electric stoves, and in particular to a current feedback circuit and an electric stove.
  • the electric stove is a new type of stove that converts electrical energy into heat energy through plasma technology and generates flames by ionizing air, thus achieving open flame cooking.
  • the electric stove is free from dependence on raw materials such as gas, and instead uses electrical energy to convert flames. It has changed the traditional combustion method. Because it does not require coal gas, it solves the problem of gas explosion accidents from the root. Compared with gas stoves, electric stoves are safer and more convenient.
  • an overcurrent protection circuit is usually set in the electric stove circuit.
  • the overcurrent protection method used is single, which can easily lead to overcurrent false protection and low accuracy of overcurrent protection, which affects users' use of the electric stove and reduces the reliability of the electric stove circuit.
  • an embodiment of the present invention provides a current feedback circuit, including:
  • the arc-starting circuit of the electric stove comprises a switching power supply circuit, a booster and an ion needle assembly; the booster is connected between the output end of the switching power supply circuit and the input end of the ion needle assembly;
  • a current feedback circuit is coupled to the output end of the switching power supply circuit; the current feedback circuit is configured to collect a power supply signal at the output end of the switching power supply circuit to obtain a sampling signal;
  • the processing module is connected to the control end of the current feedback circuit and the switching power supply circuit respectively.
  • the processing module is configured to receive a sampling signal and transmit a power adjustment signal to the control end of the switching power supply circuit according to the sampling signal, so that the switching power supply circuit adjusts the power amplitude of the power signal according to the power adjustment signal.
  • the current feedback circuit includes a current transformer and a signal conditioning circuit
  • a first end of the primary winding of the current transformer is coupled to the output end of the switching power supply circuit, and a second end of the primary winding of the current transformer is coupled to the input end of the ion needle assembly;
  • the first end of the secondary winding of the current transformer is connected to the first input end of the signal conditioning circuit, and the second end of the secondary winding of the current transformer is connected to the second input end of the signal conditioning circuit; the output end of the signal conditioning circuit is connected to the processing module.
  • the signal conditioning circuit includes a rectifier module and a filter module
  • the filter module is connected between the rectifier module and the processing module, and the rectifier module is connected between the secondary winding of the current transformer and the filter module;
  • the rectifier module is used to receive the power signal collected by the current transformer, rectify the power signal, and output the rectified signal;
  • the filter module is used to receive the rectified signal, filter the rectified signal, and transmit the output sampling signal to the processing module.
  • the rectifier module includes a first diode and a first resistor
  • the anode of the first diode is connected to the first end of the secondary winding of the current transformer, and the cathode of the first diode is connected to the filter module; the first end of the first resistor is connected to the anode of the first diode, and the second end of the first resistor is respectively connected to the ground wire, the filter module, and the second end of the secondary winding of the current transformer.
  • the filtering module includes a first capacitor and a second capacitor
  • the positive electrode of the first capacitor is respectively connected to the cathode of the first diode and the processing module, and the negative electrode of the first capacitor is connected to the second end of the first resistor;
  • the positive electrode of the second capacitor is respectively connected to the cathode of the first diode and the processing module, and the negative electrode of the second capacitor is connected to the second end of the first resistor.
  • the switching power supply circuit includes a power drive circuit and a power amplifier circuit
  • the input end of the power drive circuit is connected to the processing module; the output end of the power drive circuit is connected to the input end of the power amplifier circuit; the output end of the power amplifier circuit is connected to the booster; and the current feedback circuit is coupled and connected to the output end of the power amplifier circuit.
  • the power amplifier circuit includes a first switch tube and a second switch tube;
  • the gate of the first switch tube is connected to the first output end of the power drive circuit, the source of the first switch tube is connected to the power supply, and the drain of the first switch tube is respectively connected to the second output end of the power drive circuit, the source of the second switch tube, and the first input end of the booster; the gate of the second switch tube is connected to the third output end of the power drive circuit, and the drain of the second switch tube is respectively connected to the ground wire and the second input end of the booster.
  • the power amplifier circuit further includes a third capacitor, a fourth capacitor, a fifth capacitor, a sixth capacitor and a seventh capacitor;
  • the positive electrode of the third capacitor is connected to the source of the first switch tube, and the negative electrode of the third capacitor is respectively connected to the positive electrode of the fourth capacitor, the drain of the first switch tube, and the first input end of the booster; the positive electrode of the fourth capacitor is respectively connected to the source of the second switch tube and the first input end of the booster; the negative electrode of the fourth capacitor is respectively connected to the drain of the second switch tube and the first end of the seventh capacitor; the positive electrode of the fifth capacitor is connected to the source of the first switch tube, and the negative electrode of the fifth capacitor is respectively connected to the positive electrode of the sixth capacitor, the drain of the first switch tube, and the first input end of the booster; the positive electrode of the sixth capacitor is respectively connected to the source of the second switch tube and the first input end of the booster; the negative electrode of the sixth capacitor is respectively connected to the drain of the second switch tube and the first end of the seventh capacitor, and the second end of the seventh capacitor is connected to the second input end of the booster; the current feedback circuit is respectively coupled and connected to the negative electrode of the fifth capacitor
  • the processing module includes a processing chip connected to the current feedback circuit and the control end of the switching power supply circuit, or a switching power supply chip connected to the current feedback circuit and the control end of the switching power supply circuit.
  • an embodiment of the present invention further provides an electric stove, comprising any one of the above-mentioned current feedback circuits.
  • the current feedback circuit includes an electric stove arc starting circuit, a current feedback circuit and a processing module;
  • the electric stove arc starting circuit includes a switching power supply circuit, a booster and an ion needle assembly; the booster is connected between the output end of the switching power supply circuit and the input end of the ion needle assembly;
  • the current feedback circuit is coupled and connected to the output end of the switching power supply circuit;
  • the current feedback circuit is configured to collect the power supply signal at the output end of the switching power supply circuit to obtain a sampling signal;
  • the processing module is respectively connected to the current feedback circuit and the control end of the switching power supply circuit, and the processing module is configured to receive the sampling signal and transmit a power supply adjustment signal to the control end of the switching power supply circuit according to the sampling signal, so that the switching power supply circuit adjusts the power supply amplitude of the power supply signal according to the power supply adjustment signal, thereby realizing real-time adjustment of the power supply signal output by the switching power supply circuit according to the numerical value of the sampling signal, and
  • FIG1 is a first circuit diagram of a current feedback circuit in one embodiment
  • FIG2 is a second circuit diagram of a current feedback circuit in one embodiment
  • FIG3 is a third circuit diagram of a current feedback circuit in one embodiment
  • FIG4 is a circuit diagram of a current feedback circuit in one embodiment
  • FIG. 5 is a fourth circuit diagram of a current feedback circuit in one embodiment.
  • a current feedback circuit including an electric stove arc starting circuit, a current feedback circuit 200 and a processing module 300 .
  • the arc starting circuit of an electric stove includes a switching power supply circuit 110, a booster 120 and an ion needle assembly 130; the booster 120 is connected between the output end of the switching power supply circuit 110 and the input end of the ion needle assembly 130; the current feedback circuit 200 is coupled and connected to the output end of the switching power supply circuit 110; the current feedback circuit 200 is configured to collect the power supply signal at the output end of the switching power supply circuit 110 to obtain a sampling signal; the processing module 300 is respectively connected to the control end of the current feedback circuit 200 and the switching power supply circuit 110, and the processing module 300 is configured to receive the sampling signal and transmit a power supply adjustment signal to the control end of the switching power supply circuit 110 according to the sampling signal, so that the switching power supply circuit 110 adjusts the power supply amplitude of the power supply signal according to the power supply adjustment signal.
  • the arc ignition circuit of the electric stove can control the ion needle assembly 130 to generate a plasma gas flow to achieve electric arc ignition, thereby achieving electric fire to heat the pot.
  • the switching power supply circuit 110 can be used to perform voltage stabilization, filtering and conversion on the power supply signal input by the external power supply, and output a stable power supply signal.
  • the external power supply can be used to provide 220V AC power to the switching power supply.
  • the booster 120 can be used to convert a low-value alternating voltage into another higher-value alternating voltage of the same frequency.
  • the booster 120 is a step-up transformer.
  • the first output terminal of the booster 120 is the same-name terminal of the booster 120.
  • the ion needle assembly 130 may include an ion needle module and an arc-starting ion head.
  • the output end of the ion needle module is arranged close to the arc-starting ion head, and the arc-starting ion head is used to form an ionization point pair with the output end of the ion needle module, so that electric fire arcing can be achieved when the ion needle module is working, thereby forming a flame to provide heat to the pot to be used.
  • the ion needle module can ionize the air according to the boost power signal output by the booster 120 to generate a plasma gas flow, so as to achieve arcing when electric fire occurs.
  • the ion needle assembly 130 may include at least one ion needle module.
  • the ion needle assembly 130 includes multiple ion needle modules.
  • Each ion needle module can be connected in parallel to the first output end of the booster 120.
  • the output end of each ion needle module is respectively arranged close to the arc-starting ion head, so that the arc-starting ion head and the output end of each ion needle module form an arc-starting loop.
  • each ion needle module can ionize the air according to the boost power signal output by the booster 120 to generate a plasma airflow, so as to achieve arcing during electric fire, thereby forming a flame to provide heat to the cookware.
  • the current feedback circuit 200 can be used to sample the power signal output by the switching power supply circuit 110.
  • the current feedback circuit 200 can be used to collect the power signal at the output end of the switching power supply circuit 110 to obtain a sampling signal, so that the sampling signal can be transmitted to the processing module 300.
  • the processing module 300 generates a power adjustment signal according to the size of the sampling signal, and transmits the power adjustment signal to the switching power supply circuit 110, so that the switching power supply circuit 110 adjusts the power amplitude of the power signal according to the power adjustment signal, thereby achieving real-time control of the output of the switching power supply circuit 110 and achieving real-time feedback control.
  • the booster 120 is connected between the output end of the switching power supply circuit 110 and the input end of the ion needle assembly 130; the current feedback circuit 200 is coupled and connected to the output end of the switching power supply circuit 110; the current feedback circuit 200 is configured to collect the power signal at the output end of the switching power supply circuit 110 to obtain a sampling signal; the processing module 300 is respectively connected to the current feedback circuit 200 and the control end of the switching power supply circuit 110, and the processing module 300 is configured to receive the sampling signal, and transmit a power adjustment signal to the control end of the switching power supply circuit 110 according to the sampling signal, so that the switching power supply circuit 110 adjusts the power amplitude of the power signal according to the power adjustment signal, and then realizes real-time adjustment of the power signal output by the switching power supply circuit 110 according to the numerical value of the sampling signal, and realizes real-time feedback control according to the current, so that the power output can be controlled in real time through current feedback, the accuracy of overcurrent protection is improved, and the reliability of the electric stove circuit is improved.
  • the current feedback circuit 200 includes a current transformer 210 and a signal conditioning circuit 220.
  • the first end of the primary winding of the current transformer 210 is coupled to the output end of the switching power supply circuit 110, and the second end of the primary winding of the current transformer 210 is coupled to the input end of the ion needle assembly 130; the first end of the secondary winding of the current transformer 210 is connected to the first input end of the signal conditioning circuit 220, and the second end of the secondary winding of the current transformer 210 is connected to the second input end of the signal conditioning circuit 220; the output end of the signal conditioning circuit 220 is connected to the processing module 300.
  • the current transformer 210 may include a primary winding and a secondary winding.
  • the signal conditioning circuit 220 may be used to perform signal conditioning processing such as rectification and filtering on the power signal sampled by the current transformer 210.
  • the current transformer 210 can collect the power signal at the output end of the switching power supply circuit 110 in real time, and transmit the sampled power signal to the signal conditioning circuit 220.
  • the signal conditioning circuit 220 performs signal conditioning processing on the sampled power signal to obtain a sampling signal, which can be transmitted to the processing module 300.
  • the processing module 300 generates a power adjustment signal according to the size of the sampling signal, and transmits the power adjustment signal to the switching power supply circuit 110, so that the switching power supply circuit 110 adjusts the power amplitude of the power signal according to the power adjustment signal, thereby achieving real-time control of the output of the switching power supply circuit 110 and achieving real-time feedback control, so that the power output can be controlled in real time through current feedback, the accuracy of overcurrent protection is improved, and the reliability of the electric stove circuit is improved.
  • the primary winding is also called the primary winding or the primary winding
  • the secondary winding is also called the secondary winding or the secondary winding.
  • the signal conditioning circuit 220 includes a rectifier module 222 and a filter module 224.
  • the filter module 224 is connected between the rectifier module 222 and the processing module 300, and the rectifier module 222 is connected between the secondary winding of the current transformer 210 and the filter module 224; the rectifier module 222 is used to receive the power signal collected by the current transformer 210, rectify the power signal, and output the rectified signal; the filter module 224 is used to receive the rectified signal, filter the rectified signal, and transmit the output sampled signal to the processing module 300.
  • the rectifying module 222 may be used to rectify the power signal sampled by the current transformer 210 .
  • the filtering module 224 may be used to filter the rectified signal, and then output a sampling signal that meets the sampling requirements of the processing module 300 .
  • the rectifying module 222 is connected between the secondary winding of the current transformer 210 and the filtering module 224; the rectifying module 222 receives the power signal collected by the current transformer 210, rectifies the power signal, and outputs the rectified signal; the filtering module 224 receives the rectified signal transmitted by the rectifying module 222, filters the rectified signal, and transmits the output sampling signal to the processing module 300, and then the processing module 300 generates a power regulating signal according to the size of the sampling signal, and transmits the power regulating signal to the switching power supply circuit 110, so that the switching power supply circuit 110 adjusts the power amplitude of the power signal according to the power regulating signal, and then realizes real-time control of the output of the switching power supply circuit 110, realizes real-time feedback control, so that the power output can be controlled in real time through current feedback, the accuracy of overcurrent protection is improved, and the reliability of the electric stove circuit is improved.
  • the rectifier module 222 includes a first diode D1 and a first resistor R1; the anode of the first diode D1 is connected to the first end (i.e., the TR1 end) of the secondary winding of the current transformer 210, and the cathode of the first diode D1 is connected to the filter module 224; the first end of the first resistor R1 is connected to the anode of the first diode D1, and the second end of the first resistor R1 is respectively connected to the ground wire, the filter module 224, and the second end (i.e., the TR2 end) of the secondary winding of the current transformer 210.
  • the filtering module 224 includes a first capacitor C1 and a second capacitor C2; the positive electrode of the first capacitor C1 is respectively connected to the cathode of the first diode D1 and the processing module 300 (ADC end), and the negative electrode of the first capacitor C1 is connected to the second end of the first resistor R1; the positive electrode of the second capacitor C2 is respectively connected to the cathode of the first diode D1 and the processing module 300 (ADC end), and the negative electrode of the second capacitor C2 is connected to the second end of the first resistor R1.
  • the power signal sampled by the current transformer 210 is conditioned and processed by the rectifier module 222 and the filter module 224 in turn, and a sampling signal that meets the sampling requirements of the processing module 300 is output.
  • the processing module 300 receives the sampling signal, and transmits a power adjustment signal to the control end of the switching power supply circuit 110 according to the sampling signal, so that the switching power supply circuit 110 adjusts the power amplitude of the power signal according to the power adjustment signal, and adjusts the power signal output by the switching power supply circuit 110 in real time according to the numerical value of the sampling signal, and realizes real-time feedback control according to the current, so that the power output can be controlled in real time through current feedback, the accuracy of overcurrent protection is improved, and the reliability of the electric stove circuit is improved.
  • the switching power supply circuit 110 includes a power driving circuit 112 and a power amplifier circuit 114; the input end of the power driving circuit 112 is connected to the processing module 300; the output end of the power driving circuit 112 is connected to the input end of the power amplifier circuit 114; the output end of the power amplifier circuit 114 is connected to the booster 120; and the current feedback circuit 200 is coupled and connected to the output end of the power amplifier circuit 114.
  • the power driving circuit 112 can be used to drive the power amplifier circuit 114 on and off.
  • the power driving circuit 112 can receive the control signal transmitted by the processing module 300, and drive the power amplifier circuit 114 to work according to the control signal.
  • the power amplifier circuit 114 can increase the output power of the power signal according to the drive of the power driving circuit 112.
  • the processing module 300 is connected to the input end of the power driving circuit 112; the output end of the power driving circuit 112 is connected to the input end of the power amplifier circuit 114; the output end of the power amplifier circuit 114 is connected to the booster 120; the current feedback circuit 200 is coupled to the output end of the power amplifier circuit 114 so that the processing module 300 can transmit a control signal to the power driving circuit 112, the power driving circuit 112 receives the control signal, and drives the power amplifier circuit 114 to work according to the control signal, so that the power amplifier circuit 114 outputs a power signal with increased power to the booster 120; the booster 120 receives the power signal, and transmits a boost power signal to the ion needle assembly 130 according to the received power signal, so that the ion needle assembly 130 controls the ionization point pair to ionize and ignite the arc according to the boost power signal, so as to realize the electric fire, thereby forming a flame to provide heat to the cookware, and realize the size of the output power of the adjustment circuit, that is, to realize the
  • the power amplifier circuit 114 includes a first switch tube G1 and a second switch tube G2; the gate of the first switch tube G1 is connected to the first output end of the power drive circuit 112, the source of the first switch tube G1 is connected to the power supply, and the drain of the first switch tube G1 is respectively connected to the second output end of the power drive circuit 112, the source of the second switch tube G2, and the first input end of the booster 120; the gate of the second switch tube G2 is connected to the third output end of the power drive circuit 112, and the drain of the second switch tube G2 is respectively connected to the ground wire and the second input end of the booster 120.
  • the first switch tube G1 and the second switch tube G2 can be PMOS tubes respectively.
  • the processing module 300 can transmit a control signal to the power drive circuit 112, the power drive circuit 112 receives the control signal,
  • the on-off of the first switch tube G1 and the second switch tube G2 is controlled by the on-off control of the first switch tube G1 and the second switch tube G2, so as to realize power amplification of the input power signal, and then transmit the power signal with amplified power to the booster 120; the booster 120 receives the power signal, and transmits the boost power signal to the ion needle assembly 130 according to the received power signal, so that the ion needle assembly 130 controls the ionization point pair to ionize and strike an arc according to the boost power signal, so as to realize electric fire, thereby forming a flame to provide heat to the cookware, and realize the size of the output power of the adjustment circuit, that is, to adjust the size of the flame generated by the ionization point pair.
  • the power amplifier circuit 114 further includes a third capacitor C3, a fourth capacitor C4, a fifth capacitor C5, a sixth capacitor C6 and a seventh capacitor C7;
  • the positive electrode of the third capacitor C3 is connected to the source of the first switch tube G1, and the negative electrode of the third capacitor C3 is respectively connected to the positive electrode of the fourth capacitor C4, the drain of the first switch tube G1, and the first input terminal of the booster 120;
  • the positive electrode of the fourth capacitor C4 is respectively connected to the source of the second switch tube G2 and the first input terminal of the booster 120;
  • the negative electrode of the fourth capacitor C4 is respectively connected to the drain of the second switch tube G2 and the first terminal of the seventh capacitor C7;
  • the positive electrode of the fifth capacitor C5 is connected to the source of the first switch tube G1, and the negative electrode of the fifth capacitor C5 is respectively connected to the positive electrode of the sixth capacitor C6, the drain of the first switch tube G1, and the first input terminal of the booster 120;
  • the positive electrode of the sixth capacitor C6 is respectively connected to
  • the positive electrode of the third capacitor C3 is connected to the source of the first switch tube G1, and the negative electrode of the third capacitor C3 is respectively connected to the positive electrode of the fourth capacitor C4, the drain of the first switch tube G1, and the first input end (i.e., the TL1 end) of the booster 120;
  • the positive electrode of the fourth capacitor C4 is respectively connected to the source of the second switch tube G2 and the first input end (i.e., the TL1 end) of the booster 120;
  • the negative electrode of the fourth capacitor C4 is respectively connected to the drain of the second switch tube G2 and the first end of the seventh capacitor C7;
  • the positive electrode of the fifth capacitor C5 is connected to the first switch tube G1
  • the source of the fifth capacitor C5, the negative electrode of the fifth capacitor C5 is respectively connected to the positive electrode of the sixth capacitor C6, the drain of the first switch tube G1, and the first input terminal (i.e., the TL1 terminal) of the booster 120;
  • the positive electrode of the sixth capacitor C6 is respectively connected to
  • the processing module includes a processing chip connected to the current feedback circuit and the control end of the switching power supply circuit, or a switching power supply chip connected to the current feedback circuit and the control end of the switching power supply circuit.
  • the processing chip is respectively connected to the control end of the current feedback circuit and the switching power supply circuit.
  • the processing chip can be a single-chip microcomputer (MCU).
  • the processing chip receives the sampling signal and transmits a power adjustment signal to the control end of the switching power supply circuit according to the sampling signal, so that the switching power supply circuit adjusts the power amplitude of the power signal according to the power adjustment signal, thereby realizing real-time adjustment of the power signal output by the switching power supply circuit according to the numerical value of the sampling signal, thereby realizing real-time feedback control based on the current.
  • the switching power supply chip is respectively connected to the current feedback circuit and the control end of the switching power supply circuit.
  • the switching power supply chip receives the sampling signal and transmits the power adjustment signal to the control end of the switching power supply circuit according to the sampling signal, so that the switching power supply circuit adjusts the power amplitude of the power signal according to the power adjustment signal, thereby achieving real-time adjustment of the power signal output by the switching power supply circuit according to the numerical value of the sampling signal, and achieving real-time feedback control according to the current, so that the power output can be controlled in real time through current feedback, thereby improving the accuracy of overcurrent protection and the reliability of the electric stove circuit.
  • the arc-starting ion head is arranged on the pot ring of the electric fire stove; the pot ring of the electric fire stove is used to support the standby pot and fits with the bottom of the standby pot.
  • the ion needle assembly also includes a support mechanism; the ion needle module is arranged on the support mechanism; the pot ring of the electric fire stove is arranged above the support mechanism and surrounds the ion needle module; the output end of the ion needle module is located below the arc-starting ion head.
  • the electric stove pot ring can be a ring-shaped pot ring.
  • the electric stove pot ring can be a pot ring made of metal.
  • the electric stove pot ring can be used to support the standby pot, wherein the standby pot can be but is not limited to a frying pan, a soup pot and other pots used for cooking.
  • the standby pot When the standby pot is placed on the electric stove pot ring, the electric stove pot ring fits with the bottom of the standby pot.
  • the arc-starting ion head is arranged on the electric stove pot ring, and the arc-starting ion head is used to form an ionization point pair with the output end of the ion needle module, so that electric arc can be achieved when the ion needle module is working, thereby forming a flame to provide heat to the standby pot.
  • the ion needle module can ionize the air according to the boost signal output by the booster to generate a plasma airflow, so as to achieve arcing during electric fire.
  • an embodiment of the present invention further provides an electric stove, comprising any one of the above-mentioned current feedback circuits.
  • the current feedback circuit includes an electric stove arc starting circuit, a current feedback circuit and a processing module;
  • the electric stove arc starting circuit includes a switching power supply circuit, a booster and an ion needle assembly; the booster is connected between the output end of the switching power supply circuit and the input end of the ion needle assembly;
  • the current feedback circuit is coupled and connected to the output end of the switching power supply circuit;
  • the current feedback circuit is configured to collect the power signal at the output end of the switching power supply circuit to obtain a sampling signal;
  • the processing module is respectively connected to the current feedback circuit and the control end of the switching power supply circuit, and the processing module is configured to receive the sampling signal, and transmit a power adjustment signal to the control end of the switching power supply circuit according to the sampling signal, so that the switching power supply circuit adjusts the power amplitude of the power signal according to the power adjustment signal, and then realizes real-time adjustment of the power signal output by the switching power supply circuit according to the numerical value of the sampling signal, and realizes real-time feedback control according to the current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请涉及一种电流反馈电路及电火灶,所述电路包括电火灶引弧电路、电流反馈电路和处理模块;升压器连接在开关电源电路的输出端和离子针组件的输入端之间;电流反馈电路耦合连接在开关电源电路的输出端;电流反馈电路被配置为采集开关电源电路的输出端的电源信号,得到采样信号;处理模块分别连接电流反馈电路、开关电源电路的控制端,处理模块被配置为接收采样信号,并根据采样信号,向开关电源电路的控制端传输电源调节信号,以使开关电源电路根据电源调节信号,调整电源信号的电源幅值,进而实现根据采样信号的数值大小,实时调节开关电源电路输出电源信号大小,实现根据电流实时反馈控制,提高过流保护准确度,提高电火灶电路的可靠性。

Description

电流反馈电路及电火灶
本申请要求于2022年11月01日提交中国专利局、申请号为202211353092.2、申请名称为“电流反馈电路及电火灶”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电火灶技术领域,特别是涉及电流反馈电路及电火灶。
背景技术
电火灶是通过等离子技术将电能转化为热能,通过电离空气产生火焰,从而实现明火烹饪的一种新型炉灶。电火灶摆脱了对燃气等原料的依赖,而是用电能转换火焰。改变了传统的燃烧方式。因为不需要煤气燃气,所以从根源上解决了燃气爆炸的事故发生,比起燃气灶,电火灶更加安全、便捷。
为了提高电火灶的使用安全性,通常会在电火灶电路中设置过流保护电路,现有的电火灶电路中,采用的过流保护方式单一,容易导致过流误保护,过流保护准确度低,影响用户使用电火灶,降低了电火灶电路的可靠性。
发明内容
基于此,有必要针对上述现有的电火灶电路中,采用的过流保护方式单一,容易导致过流误保护,过流保护准确度低,影响用户使用电火灶,降低了电火灶电路的可靠性的问题,提供一种能够通过电流反馈实时控制电源输出,提高过流保护准确度,提高电火灶电路的可靠性的电流反馈电路及电火灶。
为了实现上述目的,本发明实施例提供了一种电流反馈电路,包括:
电火灶引弧电路,电火灶引弧电路包括开关电源电路、升压器和离子针组件;升压器连接在开关电源电路的输出端和离子针组件的输入端之间;
电流反馈电路,电流反馈电路耦合连接在开关电源电路的输出端;电流反馈电路被配置为采集开关电源电路的输出端的电源信号,得到采样信号;
处理模块,处理模块分别连接电流反馈电路、开关电源电路的控制端,处理模块被配置为接收采样信号,并根据采样信号,向开关电源电路的控制端传输电源调节信号,以使开关电源电路根据电源调节信号,调整电源信号的电源幅值。
在其中一个实施例中,电流反馈电路包括电流互感器和信号调理电路;
电流互感器的初级绕组的第一端耦合连接开关电源电路的输出端,电流互感器的初级绕组的第二端耦合连接离子针组件的输入端;
电流互感器的次级绕组的第一端连接信号调理电路的第一输入端,电流互感器的次级绕组的第二端连接信号调理电路的第二输入端;信号调理电路的输出端连接处理模块。
在其中一个实施例中,信号调理电路包括整流模块和滤波模块;
滤波模块连接在整流模块和处理模块之间,整流模块连接在电流互感器的次级绕组和滤波模块之间;
整流模块用于接收电流互感器采集到的电源信号,并对电源信号进行整流处理,输出整流信号;滤波模块用于接收整流信号,并对整流信号进行滤波处理,将输出的采样信号传输给处理模块。
在其中一个实施例中,整流模块包括第一二极管和第一电阻;
第一二极管的阳极连接电流互感器的次级绕组的第一端,第一二极管的阴极连接滤波模块;第一电阻的第一端连接第一二极管的阳极,第一电阻的第二 端分别连接地线、滤波模块、电流互感器的次级绕组的第二端。
在其中一个实施例中,滤波模块包括第一电容和第二电容;
第一电容正极分别连接第一二极管的阴极、处理模块,第一电容的负极连接第一电阻的第二端;第二电容的正极分别连接第一二极管的阴极、处理模块,第二电容的负极连接第一电阻的第二端。
在其中一个实施例中,开关电源电路包括电源驱动电路和功率放大电路;
电源驱动电路的输入端连接处理模块;电源驱动电路的输出端连接功率放大电路的输入端;功率放大电路的输出端连接升压器;电流反馈电路耦合连接在功率放大电路的输出端。
在其中一个实施例中,功率放大电路包括第一开关管和第二开关管;
第一开关管的栅极连接电源驱动电路的第一输出端,第一开关管的源极连接供电电源,第一开关管的漏极分别连接电源驱动电路的第二输出端、第二开关管的源极、升压器的第一输入端;第二开关管的栅极连接电源驱动电路的第三输出端,第二开关管的漏极分别连接地线、升压器的第二输入端。
在其中一个实施例中,功率放大电路还包括第三电容、第四电容、第五电容、第六电容和第七电容;
第三电容的正极连接第一开关管的源极,第三电容的负极分别连接第四电容的正极、第一开关管的漏极、升压器的第一输入端;第四电容的正极分别连接第二开关管的源极、升压器的第一输入端;第四电容的负极分别连接第二开关管的漏极、第七电容的第一端;第五电容的正极连接第一开关管的源极,第五电容的负极分别连接第六电容的正极、第一开关管的漏极、升压器的第一输入端;第六电容的正极分别连接第二开关管的源极、升压器的第一输入端;第六电容的负极分别连接第二开关管的漏极、第七电容的第一端,第七电容的第 二端连接升压器的第二输入端;电流反馈电路分别耦合连接在第五电容的负极、第六电容的正极。
在其中一个实施例中,处理模块包括连接电流反馈电路和开关电源电路的控制端的处理芯片,或连接电流反馈电路和开关电源电路的控制端的开关电源芯片。
另一方面,本发明实施例还提供了一种电火灶,包括上述任意一项的电流反馈电路。
上述技术方案中的一个技术方案具有如下优点和有益效果:
上述电流反馈电路的各实施例中,电流反馈电路包括电火灶引弧电路、电流反馈电路和处理模块;电火灶引弧电路包括开关电源电路、升压器和离子针组件;升压器连接在开关电源电路的输出端和离子针组件的输入端之间;电流反馈电路耦合连接在开关电源电路的输出端;电流反馈电路被配置为采集开关电源电路的输出端的电源信号,得到采样信号;处理模块分别连接电流反馈电路、开关电源电路的控制端,处理模块被配置为接收采样信号,并根据采样信号,向开关电源电路的控制端传输电源调节信号,以使开关电源电路根据电源调节信号,调整电源信号的电源幅值,进而实现根据采样信号的数值大小,实时调节开关电源电路输出的电源信号大小,实现根据电流实时反馈控制,从而能够通过电流反馈实时控制电源输出,提高过流保护准确度,提高电火灶电路的可靠性。
附图说明
图1为一个实施例中电流反馈电路的第一电路示意图;
图2为一个实施例中电流反馈电路的第二电路示意图;
图3为一个实施例中电流反馈电路的第三电路示意图;
图4为一个实施例中电流反馈电路的电路示意图;
图5为一个实施例中电流反馈电路的第四电路示意图。
附图标记:
110、开关电源电路;112、电源驱动电路;114、功率放大电路;120、升压器;130、离子针组件;200、电流反馈电路;210、电流互感器;220、信号调理电路;222、整流模块;224、滤波模块;300、处理模块;第一开关管G1;第二开关管G2;第一电容C1;第二电容C2;第三电容C3;第四电容C4;第五电容C5;第六电容C6;第七电容C7;第一电阻R1;第一二极管D1。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
另外,术语“多个”的含义应为两个以及两个以上。
为了解决现有的电火灶中,电路结构复杂、电路可靠性低的问题,在一个实施例中,如图1所示,提供了一种电流反馈电路,包括电火灶引弧电路、电流反馈电路200和处理模块300。
电火灶引弧电路包括开关电源电路110、升压器120和离子针组件130;升压器120连接在开关电源电路110的输出端和离子针组件130的输入端之间;电流反馈电路200耦合连接在开关电源电路110的输出端;电流反馈电路200被配置为采集开关电源电路110的输出端的电源信号,得到采样信号;处理模块300分别连接电流反馈电路200、开关电源电路110的控制端,处理模块300被配置为接收采样信号,并根据采样信号,向开关电源电路110的控制端传输电源调节信号,以使开关电源电路110根据电源调节信号,调整电源信号的电源幅值。
其中,电火灶引弧电路可控制离子针组件130产生等离子气流,以实现电火引弧,进而实现电生火对锅进行加热。
开关电源电路110可用来对外部电源输入的电源信号进行稳压、滤波和转换等处理,并输出稳定的电源信号。外部电源可用来向开关电源提供220V的交流电源。升压器120可用来把低数值的交变电压变换为同频率的另一较高数值交变电压的变压电路。例如,升压器120为升压变压器。在一个示例中,升压器120的第一输出端为升压器120的同名端。
离子针组件130可包括离子针模块和引弧离子头。离子针模块的输出端靠近引弧离子头设置,引弧离子头用来与离子针模块的输出端形成电离点对,进而在离子针模块工作时能够实现电火引弧,从而形成火焰对待用锅提供热量。示例性的,电路上电工作时,基于引弧离子头用来与离子针模块的输出端形成 电离点对,离子针模块可根据升压器120输出的升压电源信号对空气进行电离以生成等离子气流,以实现电火时起弧。
示例性的,离子针组件130可包括至少一个离子针模块,例如离子针组件130包括多个离子针模块,各个离子针模块可并联连接在升压器120的第一输出端,将各离子针模块的输出端分别靠近引弧离子头设置,使得引弧离子头与各路离子针模块的输出端形成引弧回路,进而在电路上电工作时,各路离子针模块可根据升压器120输出的升压电源信号对空气进行电离以生成等离子气流,以实现电火时起弧,从而形成火焰对锅具提供热量。
电流反馈电路200可用来对开关电源电路110输出的电源信号进行采样。示例性的,电路工作过程中,电流反馈电路200可用来采集开关电源电路110输出端的电源信号,得到采样信号,从而可将采样信号传输给处理模块300。通过处理模块300根据采样信号的大小,生成电源调节信号,并将电源调节信号传输给开关电源电路110,使得开关电源电路110根据电源调节信号,调整电源信号的电源幅值,进而实现实时控制开关电源电路110的输出,实现实时反馈控制。
上述实施例中,基于升压器120连接在开关电源电路110的输出端和离子针组件130的输入端之间;电流反馈电路200耦合连接在开关电源电路110的输出端;电流反馈电路200被配置为采集开关电源电路110的输出端的电源信号,得到采样信号;处理模块300分别连接电流反馈电路200、开关电源电路110的控制端,处理模块300被配置为接收采样信号,并根据采样信号,向开关电源电路110的控制端传输电源调节信号,以使开关电源电路110根据电源调节信号,调整电源信号的电源幅值,进而实现根据采样信号的数值大小,实时调节开关电源电路110输出的电源信号大小,实现根据电流实时反馈控制,从 而能够通过电流反馈实时控制电源输出,提高过流保护准确度,提高电火灶电路的可靠性。
在一个实施例中,如图2所示,电流反馈电路200包括电流互感器210和信号调理电路220。电流互感器210的初级绕组的第一端耦合连接开关电源电路110的输出端,电流互感器210的初级绕组的第二端耦合连接离子针组件130的输入端;电流互感器210的次级绕组的第一端连接信号调理电路220的第一输入端,电流互感器210的次级绕组的第二端连接信号调理电路220的第二输入端;信号调理电路220的输出端连接处理模块300。
其中,电流互感器210可包括初级绕组和次级绕组。信号调理电路220可用来对电流互感器210采样到的电源信号进行整流和滤波等信号调理处理。通过将电流互感器210的初级绕组的第一端耦合连接开关电源电路110的输出端,电流互感器210的初级绕组的第二端耦合连接离子针组件130的输入端,即使得电流互感器210的初级绕组耦合连接在开关电源电路110的输出端与升压器120之间线路上。通过将电流互感器210的次级绕组的第一端连接信号调理电路220的第一输入端,电流互感器210的次级绕组的第二端连接信号调理电路220的第二输入端,进而电流互感器210可实时采集开关电源电路110输出端的电源信号,并将采样到的电源信号传输给信号调理电路220,通过信号调理电路220对采样到的电源信号进行信号调理处理,进而得到采样信号,从而可将采样信号传输给处理模块300。通过处理模块300根据采样信号的大小,生成电源调节信号,并将电源调节信号传输给开关电源电路110,使得开关电源电路110根据电源调节信号,调整电源信号的电源幅值,进而实现实时控制开关电源电路110的输出,实现实时反馈控制,从而能够通过电流反馈实时控制电源输出,提高过流保护准确度,提高电火灶电路的可靠性。
需要说明的是,初级绕组又称为原边绕组或一次绕组;次级绕组又称为副边绕组或二次绕组。
在一个实施例中,如图3所示,信号调理电路220包括整流模块222和滤波模块224。滤波模块224连接在整流模块222和处理模块300之间,整流模块222连接在电流互感器210的次级绕组和滤波模块224之间;整流模块222用于接收电流互感器210采集到的电源信号,并对电源信号进行整流处理,输出整流信号;滤波模块224用于接收整流信号,并对整流信号进行滤波处理,将输出的采样信号传输给处理模块300。
其中,整流模块222可用来对电流互感器210采样的电源信号进行整流。滤波模块224可用来对整流后的信号进行滤波,进而输出满足处理模块300采样要求的采样信号。
基于滤波模块224连接在整流模块222和处理模块300之间,整流模块222连接在电流互感器210的次级绕组和滤波模块224之间;整流模块222接收电流互感器210采集到的电源信号,并对电源信号进行整流处理,输出整流信号;滤波模块224接收整流模块222传输的整流信号,并对整流信号进行滤波处理,将输出的采样信号传输给处理模块300,进而处理模块300根据采样信号的大小,生成电源调节信号,并将电源调节信号传输给开关电源电路110,使得开关电源电路110根据电源调节信号,调整电源信号的电源幅值,进而实现实时控制开关电源电路110的输出,实现实时反馈控制,从而能够通过电流反馈实时控制电源输出,提高过流保护准确度,提高电火灶电路的可靠性。
示例性的,如图4所示,整流模块222包括第一二极管D1和第一电阻R1;第一二极管D1的阳极连接电流互感器210的次级绕组的第一端(即TR1端),第一二极管D1的阴极连接滤波模块224;第一电阻R1的第一端连接第一二极 管D1的阳极,第一电阻R1的第二端分别连接地线、滤波模块224、电流互感器210的次级绕组的第二端(即TR2端)。
示例性的,如图4所示,滤波模块224包括第一电容C1和第二电容C2;第一电容C1正极分别连接第一二极管D1的阴极、处理模块300(ADC端),第一电容C1的负极连接第一电阻R1的第二端;第二电容C2的正极分别连接第一二极管D1的阴极、处理模块300(ADC端),第二电容C2的负极连接第一电阻R1的第二端。
上述实施例中,电流互感器210采样到的电源信号依次通过整流模块222和滤波模块224进行调理处理,输出满足处理模块300采样要求的采样信号。进而处理模块300接收采样信号,并根据采样信号,向开关电源电路110的控制端传输电源调节信号,使得开关电源电路110根据电源调节信号,调整电源信号的电源幅值,实现根据采样信号的数值大小,实时调节开关电源电路110输出的电源信号大小,实现根据电流实时反馈控制,从而能够通过电流反馈实时控制电源输出,提高过流保护准确度,提高电火灶电路的可靠性。
在一个实施例中,如图5所示,开关电源电路110包括电源驱动电路112和功率放大电路114;电源驱动电路112的输入端连接处理模块300;电源驱动电路112的输出端连接功率放大电路114的输入端;功率放大电路114的输出端连接升压器120;电流反馈电路200耦合连接在功率放大电路114的输出端。
其中,电源驱动电路112可用来驱动功率放大电路114的通断。电源驱动电路112可接收处理模块300传输的控制信号,并根据控制信号,来驱动功率放大电路114工作。功率放大电路114可根据电源驱动电路112的驱动,增大电源信号的输出功率。
基于电源驱动电路112的输入端连接处理模块300;电源驱动电路112的输 出端连接功率放大电路114的输入端;功率放大电路114的输出端连接升压器120;电流反馈电路200耦合连接在功率放大电路114的输出端进而处理模块300可向电源驱动电路112传输控制信号,电源驱动电路112接收控制信号,并根据控制信号,驱动功率放大电路114工作,使得功率放大电路114向升压器120输出功率增大后的电源信号;升压器120接收电源信号,并根据接收到的电源信号,向离子针组件130传输升压电源信号,使得离子针组件130根据升压电源信号,控制电离点对进行电离引弧,实现以电生火,从而形成火焰对锅具提供热量,实现对调节电路输出功率的大小,即实现调节电离点对产生的火焰大小。
示例性的,如图4所示,功率放大电路114包括第一开关管G1和第二开关管G2;第一开关管G1的栅极连接电源驱动电路112的第一输出端,第一开关管G1的源极连接供电电源,第一开关管G1的漏极分别连接电源驱动电路112的第二输出端、第二开关管G2的源极、升压器120的第一输入端;第二开关管G2的栅极连接电源驱动电路112的第三输出端,第二开关管G2的漏极分别连接地线、升压器120的第二输入端。
其中,第一开关管G1和第二开关管G2分别可以是PMOS管。基于第一开关管G1的栅极连接电源驱动电路112的第一输出端(即CA端),第一开关管G1的源极连接供电电源(即KV+端),第一开关管G1的漏极分别连接电源驱动电路112的第二输出端(即CAB端)、第二开关管G2的源极、升压器120的第一输入端(即TL1端);第二开关管G2的栅极连接电源驱动电路112的第三输出端(即CB端),第二开关管G2的漏极分别连接地线(即GND)、升压器120的第二输入端(即TL2端),进而处理模块300可向电源驱动电路112传输控制信号,电源驱动电路112接收控制信号,并根据控制信号,驱动第一开关 管G1和第二开关管G2的通断,通过对第一开关管G1和第二开关管G2的通断控制,实现对输入的电源信号进行功率放大,进而将功率增大后的电源信号传输给升压器120;升压器120接收电源信号,并根据接收到的电源信号,向离子针组件130传输升压电源信号,使得离子针组件130根据升压电源信号,控制电离点对进行电离引弧,实现以电生火,从而形成火焰对锅具提供热量,实现对调节电路输出功率的大小,即实现调节电离点对产生的火焰大小。
示例性的,如图4所示,功率放大电路114还包括第三电容C3、第四电容C4、第五电容C5、第六电容C6和第七电容C7;第三电容C3的正极连接第一开关管G1的源极,第三电容C3的负极分别连接第四电容C4的正极、第一开关管G1的漏极、升压器120的第一输入端;第四电容C4的正极分别连接第二开关管G2的源极、升压器120的第一输入端;第四电容C4的负极分别连接第二开关管G2的漏极、第七电容C7的第一端;第五电容C5的正极连接第一开关管G1的源极,第五电容C5的负极分别连接第六电容C6的正极、第一开关管G1的漏极、升压器120的第一输入端;第六电容C6的正极分别连接第二开关管G2的源极、升压器120的第一输入端;第六电容C6的负极分别连接第二开关管G2的漏极、第七电容C7的第一端,第七电容C7的第二端连接升压器120的第二输入端;电流反馈电路200分别耦合连接在第五电容C5的负极、第六电容C6的正极。
其中,基于第三电容C3的正极连接第一开关管G1的源极,第三电容C3的负极分别连接第四电容C4的正极、第一开关管G1的漏极、升压器120的第一输入端(即TL1端);第四电容C4的正极分别连接第二开关管G2的源极、升压器120的第一输入端(即TL1端);第四电容C4的负极分别连接第二开关管G2的漏极、第七电容C7的第一端;第五电容C5的正极连接第一开关管G1 的源极,第五电容C5的负极分别连接第六电容C6的正极、第一开关管G1的漏极、升压器120的第一输入端(即TL1端);第六电容C6的正极分别连接第二开关管G2的源极、升压器120的第一输入端(即TL1端);第六电容C6的负极分别连接第二开关管G2的漏极、第七电容C7的第一端,第七电容C7的第二端连接升压器120的第二输入端(即TL2端);电流反馈电路200分别耦合连接在第五电容C5的负极、第六电容C6的正极,进而通过对第一开关管G1和第二开关管G2的通断控制,使得对第三电容C3、第四电容C4、第五电容C5和第六电容C6进行充放电控制,进而实现对输入的电源信号进行功率放大,进而将功率增大后的电源信号传输给升压器120;升压器120接收电源信号,并根据接收到的电源信号,向离子针组件130传输升压电源信号,使得离子针组件130根据升压电源信号,控制电离点对进行电离引弧,实现以电生火,从而形成火焰对锅具提供热量,实现对调节电路输出功率的大小,即实现调节电离点对产生的火焰大小。
在一个实施例中,处理模块包括连接电流反馈电路和开关电源电路的控制端的处理芯片,或连接电流反馈电路和开关电源电路的控制端的开关电源芯片。
例如,处理芯片分别连接电流反馈电路和开关电源电路的控制端,处理芯片可以是单片机(MCU),处理芯片接收采样信号,并根据采样信号,向开关电源电路的控制端传输电源调节信号,使得开关电源电路根据电源调节信号,调整电源信号的电源幅值,进而实现根据采样信号的数值大小,实时调节开关电源电路输出的电源信号大小,实现根据电流实时反馈控制。
又如,开关电源芯片分别连接电流反馈电路和开关电源电路的控制端,开关电源芯片接收采样信号,并根据采样信号,向开关电源电路的控制端传输电源调节信号,使得开关电源电路根据电源调节信号,调整电源信号的电源幅值, 进而实现根据采样信号的数值大小,实时调节开关电源电路输出的电源信号大小,实现根据电流实时反馈控制,从而能够通过电流反馈实时控制电源输出,提高过流保护准确度,提高电火灶电路的可靠性。
在一个实施例中,引弧离子头设置在电火灶锅圈上;电火灶锅圈用于支撑待用锅,且与待用锅的锅底贴合。离子针组件还包括支撑机构;离子针模块设置在支撑机构上;电火灶锅圈设在支撑机构的上方,且环绕离子针模块设置;离子针模块的输出端位于引弧离子头的下方。
其中,电火灶锅圈可以是环形锅圈。示例性的,电火灶锅圈可以是金属材质的锅圈。电火灶锅圈可用来支撑待用锅,其中待用锅可以但不限于是炒菜锅、汤锅等用于烹饪的锅。当待用锅放置在电火灶锅圈上时,电火灶锅圈与待用锅的锅底贴合。引弧离子头设置在电火灶锅圈上,引弧离子头用来与离子针模块的输出端形成电离点对,进而在离子针模块工作时能够实现电火引弧,从而形成火焰对待用锅提供热量。示例性的,电路上电工作时,基于引弧离子头用来与离子针模块的输出端形成电离点对,离子针模块可根据升压器输出的升压信号对空气进行电离以生成等离子气流,以实现电火时起弧。
另一方面,本发明实施例还提供了一种电火灶,包括上述任意一项的电流反馈电路。
关于电流反馈电路的具体内容可参考上述实施例中的电流反馈电路的描述,在次不再赘述。
具体而言,电流反馈电路包括电火灶引弧电路、电流反馈电路和处理模块;电火灶引弧电路包括开关电源电路、升压器和离子针组件;升压器连接在开关电源电路的输出端和离子针组件的输入端之间;电流反馈电路耦合连接在开关电源电路的输出端;电流反馈电路被配置为采集开关电源电路的输出端的电源 信号,得到采样信号;处理模块分别连接电流反馈电路、开关电源电路的控制端,处理模块被配置为接收采样信号,并根据采样信号,向开关电源电路的控制端传输电源调节信号,以使开关电源电路根据电源调节信号,调整电源信号的电源幅值,进而实现根据采样信号的数值大小,实时调节开关电源电路输出的电源信号大小,实现根据电流实时反馈控制,从而能够通过电流反馈实时控制电源输出,提高过流保护准确度,提高电火灶电路的可靠性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种电流反馈电路,其特征在于,包括:
    电火灶引弧电路,所述电火灶引弧电路包括开关电源电路、升压器和离子针组件;所述升压器连接在所述开关电源电路的输出端和所述离子针组件的输入端之间;
    电流反馈电路,所述电流反馈电路耦合连接在所述开关电源电路的输出端;所述电流反馈电路被配置为采集所述开关电源电路的输出端的电源信号,得到采样信号;
    处理模块,所述处理模块分别连接所述电流反馈电路、所述开关电源电路的控制端,所述处理模块被配置为接收所述采样信号,并根据所述采样信号,向所述开关电源电路的控制端传输电源调节信号,以使所述开关电源电路根据所述电源调节信号,调整所述电源信号的电源幅值。
  2. 根据权利要求1所述的电流反馈电路,其特征在于,所述电流反馈电路包括电流互感器和信号调理电路;
    所述电流互感器的初级绕组的第一端耦合连接所述开关电源电路的输出端,所述电流互感器的初级绕组的第二端耦合连接所述离子针组件的输入端;
    所述电流互感器的次级绕组的第一端连接所述信号调理电路的第一输入端,所述电流互感器的次级绕组的第二端连接所述信号调理电路的第二输入端;所述信号调理电路的输出端连接所述处理模块。
  3. 根据权利要求2所述的电流反馈电路,其特征在于,所述信号调理电路包括整流模块和滤波模块;
    所述滤波模块连接在所述整流模块和所述处理模块之间,所述整流模块连接在所述电流互感器的次级绕组和所述滤波模块之间;
    所述整流模块用于接收所述电流互感器采集到的电源信号,并对所述电源 信号进行整流处理,输出整流信号;所述滤波模块用于接收所述整流信号,并对所述整流信号进行滤波处理,将输出的采样信号传输给所述处理模块。
  4. 根据权利要求3所述的电流反馈电路,其特征在于,所述整流模块包括第一二极管和第一电阻;
    所述第一二极管的阳极连接所述电流互感器的次级绕组的第一端,所述第一二极管的阴极连接所述滤波模块;所述第一电阻的第一端连接所述第一二极管的阳极,所述第一电阻的第二端分别连接地线、所述滤波模块、所述电流互感器的次级绕组的第二端。
  5. 根据权利要求4所述的电流反馈电路,其特征在于,所述滤波模块包括第一电容和第二电容;
    所述第一电容正极分别连接所述第一二极管的阴极、所述处理模块,所述第一电容的负极连接所述第一电阻的第二端;所述第二电容的正极分别连接所述第一二极管的阴极、所述处理模块,所述第二电容的负极连接所述第一电阻的第二端。
  6. 根据权利要求1所述的电流反馈电路,其特征在于,所述开关电源电路包括电源驱动电路和功率放大电路;
    所述电源驱动电路的输入端连接所述处理模块;所述电源驱动电路的输出端连接所述功率放大电路的输入端;所述功率放大电路的输出端连接所述升压器;所述电流反馈电路耦合连接在所述功率放大电路的输出端。
  7. 根据权利要求6所述的电流反馈电路,其特征在于,所述功率放大电路包括第一开关管和第二开关管;
    所述第一开关管的栅极连接所述电源驱动电路的第一输出端,所述第一开关管的源极连接供电电源,所述第一开关管的漏极分别连接所述电源驱动电路 的第二输出端、所述第二开关管的源极、所述升压器的第一输入端;所述第二开关管的栅极连接所述电源驱动电路的第三输出端,所述第二开关管的漏极分别连接地线、所述升压器的第二输入端。
  8. 根据权利要求7所述的电流反馈电路,其特征在于,所述功率放大电路还包括第三电容、第四电容、第五电容、第六电容和第七电容;
    所述第三电容的正极连接所述第一开关管的源极,所述第三电容的负极分别连接所述第四电容的正极、所述第一开关管的漏极、所述升压器的第一输入端;所述第四电容的正极分别连接所述第二开关管的源极、所述升压器的第一输入端;所述第四电容的负极分别连接所述第二开关管的漏极、所述第七电容的第一端;所述第五电容的正极连接所述第一开关管的源极,所述第五电容的负极分别连接所述第六电容的正极、所述第一开关管的漏极、所述升压器的第一输入端;所述第六电容的正极分别连接所述第二开关管的源极、所述升压器的第一输入端;所述第六电容的负极分别连接所述第二开关管的漏极、所述第七电容的第一端,所述第七电容的第二端连接所述升压器的第二输入端;所述电流反馈电路分别耦合连接在所述第五电容的负极、所述第六电容的正极。
  9. 根据权利要求1所述的电流反馈电路,其特征在于,所述处理模块包括连接所述电流反馈电路和所述开关电源电路的控制端的处理芯片,或连接所述电流反馈电路和所述开关电源电路的控制端的开关电源芯片。
  10. 一种电火灶,其特征在于,包括权利要求1至9任意一项所述的电流反馈电路。
PCT/CN2022/136875 2022-11-01 2022-12-06 电流反馈电路及电火灶 WO2024092953A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211353092.2A CN115622397A (zh) 2022-11-01 2022-11-01 电流反馈电路及电火灶
CN202211353092.2 2022-11-01

Publications (1)

Publication Number Publication Date
WO2024092953A1 true WO2024092953A1 (zh) 2024-05-10

Family

ID=84875829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136875 WO2024092953A1 (zh) 2022-11-01 2022-12-06 电流反馈电路及电火灶

Country Status (2)

Country Link
CN (1) CN115622397A (zh)
WO (1) WO2024092953A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002050987A1 (en) * 2000-12-18 2002-06-27 Joon-Ho Park Switching mode power supply with high efficiency
JP2007325394A (ja) * 2006-05-31 2007-12-13 Sony Corp スイッチング電源回路
CN103546021A (zh) * 2013-10-31 2014-01-29 矽力杰半导体技术(杭州)有限公司 电流反馈方法及电流反馈电路及驱动电路及开关电源
CN205753993U (zh) * 2016-03-22 2016-11-30 深圳Tcl数字技术有限公司 开关电源及电子装置
CN112097293A (zh) * 2020-09-24 2020-12-18 深圳驭龙电焰科技有限公司 电生明火电路和电焰灶
CN216384282U (zh) * 2020-09-24 2022-04-26 电生火高科技(苏州)有限公司 电生明火电路和电焰灶
CN114825951A (zh) * 2022-02-26 2022-07-29 浙江雷培德科技有限公司 一种开关电源的模块化多路输出电路及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002050987A1 (en) * 2000-12-18 2002-06-27 Joon-Ho Park Switching mode power supply with high efficiency
JP2007325394A (ja) * 2006-05-31 2007-12-13 Sony Corp スイッチング電源回路
CN103546021A (zh) * 2013-10-31 2014-01-29 矽力杰半导体技术(杭州)有限公司 电流反馈方法及电流反馈电路及驱动电路及开关电源
CN205753993U (zh) * 2016-03-22 2016-11-30 深圳Tcl数字技术有限公司 开关电源及电子装置
CN112097293A (zh) * 2020-09-24 2020-12-18 深圳驭龙电焰科技有限公司 电生明火电路和电焰灶
CN216384282U (zh) * 2020-09-24 2022-04-26 电生火高科技(苏州)有限公司 电生明火电路和电焰灶
CN114825951A (zh) * 2022-02-26 2022-07-29 浙江雷培德科技有限公司 一种开关电源的模块化多路输出电路及其控制方法

Also Published As

Publication number Publication date
CN115622397A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
US20210336545A1 (en) Power Supply Device and Charging Control Method
WO2024077762A1 (zh) 电生火电路及电火灶
CN217984858U (zh) 电生火电源电路及电火灶
WO2021068587A1 (zh) 一种电离燃烧电路和电焰灶
CN210578289U (zh) 一种电离燃烧电路和电焰灶
WO2024092953A1 (zh) 电流反馈电路及电火灶
WO2020010969A1 (zh) 整流电路、无线充电装置、电源提供设备及无线充电系统
CN205505078U (zh) 燃气壁挂炉新型点火装置
CN216384282U (zh) 电生明火电路和电焰灶
CN201860500U (zh) 一种荧光灯电子镇流器
CN218102953U (zh) 电火灶平压引弧电路及电火灶
CN112097293A (zh) 电生明火电路和电焰灶
CN218096060U (zh) 电火灶烟机联动电路及系统
CN217875969U (zh) 电火灶复位电路及电火灶
CN201309041Y (zh) 一种电焊机
CN108607689B (zh) 一种基于倍压电路技术的静电油烟净化设备专用高压电源
CN110285586A (zh) 高压点火控制电路和燃气热水器
WO2023071239A1 (zh) 气溶胶发生系统、装置、无线充电电路及充电方法
WO2024027075A1 (zh) 新型电火灶引弧电路及电火灶
CN201742603U (zh) 一种恒流控制led驱动电路
CN110572903B (zh) 一种定电流输出的led供电电源
CN207638553U (zh) 一种反激式开关电源电路
CN112689351B (zh) 一种用于激光焊接电源的氙灯预燃板
CN219181418U (zh) 智能家电及其高压发生电路
CN218102952U (zh) 电火电路及安全隔离型相位悬浮电火灶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964248

Country of ref document: EP

Kind code of ref document: A1