WO2023071239A1 - 气溶胶发生系统、装置、无线充电电路及充电方法 - Google Patents

气溶胶发生系统、装置、无线充电电路及充电方法 Download PDF

Info

Publication number
WO2023071239A1
WO2023071239A1 PCT/CN2022/100434 CN2022100434W WO2023071239A1 WO 2023071239 A1 WO2023071239 A1 WO 2023071239A1 CN 2022100434 W CN2022100434 W CN 2022100434W WO 2023071239 A1 WO2023071239 A1 WO 2023071239A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol generating
field effect
effect transistor
induction coil
resonance
Prior art date
Application number
PCT/CN2022/100434
Other languages
English (en)
French (fr)
Inventor
张越海
廖振龙
朱旦
牛彦明
Original Assignee
深圳市吉迩科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市吉迩科技有限公司 filed Critical 深圳市吉迩科技有限公司
Publication of WO2023071239A1 publication Critical patent/WO2023071239A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/90Arrangements or methods specially adapted for charging batteries thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Definitions

  • the present application relates to the technical field of wireless charging, and more specifically, to an aerosol generating system, device, wireless charging circuit and charging method.
  • the aerosol generating device is inserted into the charging stand, and a magnetic field is applied to the induction coil through electromagnetic induction, and then the receptor is charged or discharged, so that the aerosol generating device can realize the functions of wireless charging and wireless discharging.
  • the working states of the aerosol generating device and the charging stand are relatively independent, so it is impossible to predict the working state of the other party to regulate the energy of the electromagnetic induction.
  • an aerosol generating device capable of wireless charging requires a separate induction coil for wireless charging, which cannot be used for other functions.
  • the aerosol generating device adopts the heating method of eddy current heating, there are two induction coils at the same time - one induction coil is used for wireless charging and the other induction coil is used for heating.
  • the structure is complex, the cost is high, and the size is also large.
  • the technical problem to be solved by the embodiments of the present application is to solve the state that the aerosol generating device and the charging stand work independently.
  • the embodiment of the present application provides a wireless charging circuit for an aerosol generating system, which adopts the following technical solutions:
  • the wireless charging circuit for the aerosol generating system includes:
  • the aerosol generating module includes a first induction coil, receives power through electromagnetic induction of the first induction coil, and the output terminal of the aerosol generating module is used to charge the battery, and the aerosol generating module also includes a first The capacitor, the resonance control switch and the adjustment capacitor, the first capacitor and the first induction coil form a resonance circuit, the resonance control switch and the adjustment capacitor form a resonance parameter adjustment unit, and the resonance parameter adjustment unit and the Resonant tank connection;
  • the charging module includes a transformer, a second capacitor, and a second induction coil, the transformer converts the mains voltage into an operating voltage; the second capacitor and the second induction coil form a resonant circuit, and are connected to the transformer, Wherein, the first induction coil is electromagnetically induced by the second induction coil;
  • a control module the output of the control module is connected to the control terminal of the resonance control switch, and the control module controls the on-off of the resonance control switch to adjust the resonance of the resonance circuit formed by the first induction coil parameter.
  • the first capacitor is connected in series with the first induction coil
  • the aerosol generating module further includes a first field effect transistor and a second field effect transistor; wherein, the source of the first field effect transistor The pole is connected with the drain of the second field effect transistor and connected with the first capacitor; the gate of the first field effect transistor and the gate of the second field effect transistor are respectively connected with the aerosol
  • the control module of the generation module the source of the second field effect transistor is grounded and connected to the first induction coil; the drain of the first field effect transistor is connected to the battery; the drain of the first field effect transistor is connected to the battery;
  • the gate and the gate of the second field effect transistor are respectively connected to the control module of the aerosol generating module.
  • the charging module also includes a resonant circuit and a rectifier circuit, wherein the rectifier circuit is connected in series between the resonant circuit and the transformer to rectify the AC voltage into a DC current; the resonant circuit and the The second induction coil is connected to receive the direct current of the rectification circuit and output the resonant current to the second induction coil.
  • the resonant circuit includes a second resistor, a third field effect transistor and a fourth field effect transistor, wherein the second capacitor, the second induction coil, the second resistor, the third field The effect transistors are connected in series in sequence, the source of the fourth field effect transistor is connected to the drain of the third field effect transistor, the drain of the fourth field effect transistor is connected to the output end of the rectification circuit, and the fourth field effect transistor is connected to the output end of the rectification circuit.
  • the rectification circuit is a bridge rectification circuit.
  • the first induction coil is used for wireless charging and magnetic induction heating.
  • An embodiment of the present application also discloses an aerosol generating system, including the aforementioned wireless charging circuit, and the aerosol generating system further includes:
  • An aerosol generating device the aerosol generating device includes a battery, the aerosol generating module is arranged in the aerosol generating device and is used to charge the battery; one end of the aerosol generating device is provided with a first Induction coil, the aerosol generating device includes a control module of the aerosol generating module, the control module of the aerosol generating module is connected to the control terminal of the resonance control switch in the aerosol generating module, and the aerosol generating module The control module of the sol generating module controls the on-off of the resonance control switch to adjust the resonance parameters of the resonance circuit composed of the first induction coil;
  • the charging stand the charging module is set on the charging stand, the charging stand includes an insertion part, and a second induction coil is arranged inside the insertion part, when the aerosol generating module is inserted into the insertion part, the The second induction coil generates electromagnetic induction with the first induction coil and transmits current to charge the battery.
  • the embodiment of the present application also provides an aerosol generating device, the aerosol generating device has a built-in battery and an aerosol generating module, and the aerosol generating module is used to charge the battery and heat the aerosol matrix, wherein , the aerosol generating module includes:
  • the first induction coil receives power through electromagnetic induction of the first induction coil
  • Adjusting the capacitor, the resonance control switch and the adjusting capacitor form a resonance parameter adjustment unit, and the resonance parameter adjustment unit is connected to the resonance circuit;
  • the control module of the aerosol generation module is connected to the control terminal of the resonance control switch, and the control module of the aerosol generation module controls the disconnection of the resonance control switch and then Adjusting the resonance parameters of the resonance circuit formed by the first induction coil.
  • the first capacitor is connected in series with the first induction coil
  • the aerosol generating module further includes a first field effect transistor and a second field effect transistor; wherein, the source of the first field effect transistor The pole is connected with the drain of the second field effect transistor and connected with the first capacitor; the gate of the first field effect transistor and the gate of the second field effect transistor are respectively connected with the aerosol
  • the control module of the generation module the source of the second field effect transistor is grounded and connected to the first induction coil; the drain of the first field effect transistor is connected to the battery; the drain of the first field effect transistor is connected to the battery;
  • the gate and the gate of the second field effect transistor are respectively connected to the control module of the aerosol generating module.
  • the present application also proposes a charging method using the above-mentioned aerosol generating system, the aerosol generating system includes an aerosol generating device and a charging stand, the aerosol generating device is provided with a battery, and the resonant circuit of the charging stand is provided with With a second resistor, the charging method includes the steps of:
  • the charging stand is in a low-power standby mode, and the voltage value at both ends of the second resistor in the charging stand is monitored;
  • the charging stand monitors that the voltage value across the second resistor is greater than the first preset threshold, it is determined that an aerosol generating device is inserted into the charging stand;
  • the charging stand increases the resonant current
  • the aerosol generating device generates an induced current to charge the battery
  • the resonance control switch of the aerosol generating device is controlled to be turned on according to the preset frequency
  • the charging stand monitors that the voltage across the second resistor is less than the second preset threshold, the charging stand reduces the magnitude of the resonant current, and the charging stand becomes a low-power standby mode;
  • the aerosol generating device controls the resonance control switch to cut off.
  • the embodiment of the present application mainly has the following beneficial effects: by controlling the intermittent on-off of the resonance control switch, the resonance parameter of the first induction coil is changed, and the charging module is fully charged when the battery is fully charged. Feedback, thereby reducing the resonant current of the second induction coil, reducing power consumption and saving electric energy.
  • Fig. 1 is a schematic circuit diagram of an aerosol generating module
  • FIG. 2 is a schematic circuit diagram of the charging module
  • Fig. 3 is a timing diagram of a wireless charging circuit for an aerosol generating system
  • Fig. 4 is the overall structural diagram of aerosol generating device
  • Figure 5 is a vertical sectional view of the aerosol generating device
  • FIG. 6 is a flowchart of a charging method using an aerosol generating system.
  • Aerosol generating device R1 first resistor 2 charging stand R2 Second resistor 11 first induction coil Q1 first field effect transistor twenty one Second induction coil Q2 second field effect transistor
  • An embodiment of the present application provides a wireless charging circuit for an aerosol generating system.
  • the wireless charging circuit includes:
  • the aerosol generating module includes a first induction coil, receives power through electromagnetic induction of the first induction coil, and the output terminal of the aerosol generating module is used to charge the battery, and the aerosol generating module also includes a first The capacitor, the resonance control switch and the adjustment capacitor, the first capacitor and the first induction coil form a resonance circuit, the resonance control switch and the adjustment capacitor form a resonance parameter adjustment unit, and the resonance parameter adjustment unit and the The resonant circuit formed by the first induction coil is connected;
  • the charging module includes a transformer, a second capacitor, and a second induction coil.
  • the transformer converts the mains voltage into an operating voltage.
  • the second capacitor and the second induction coil form a resonant circuit.
  • the transformer and the A resonant circuit composed of a second induction coil is connected, wherein the first induction coil is electromagnetically induced with the second induction coil;
  • a control module the output of the control module is connected to the control terminal of the resonance control switch, and the control module controls the on-off of the resonance control switch to adjust the resonance of the resonance circuit composed of the first induction coil parameter.
  • the aerosol generating module can also be used to receive power from the battery to heat the aerosol matrix to generate aerosol.
  • the first capacitor is connected in series with the first induction coil
  • the second capacitor is connected in series with the second induction coil to respectively form a series resonant circuit as an example for illustration. It can be understood that in the resonant circuit, the capacitor can also be connected in parallel with the induction coil to form a parallel resonant circuit.
  • the first induction coil in the aerosol generating module By stepping down the input mains voltage by the charging module, the first induction coil in the aerosol generating module combines with the second induction coil in the charging module to perform electromagnetic induction charging, so that the working voltage after the step-down is changed from the charging
  • the electromagnetic induction of the second induction coil in the module is transmitted to the first induction coil in the aerosol generating module, so that the first induction coil generates an induced current
  • the control module controls the resonance control switch to turn off, and the current can flow through the battery for further processing.
  • the control module obtains the signal that the battery is fully charged, controls the resonant control switch to be turned on, and can connect the adjusting capacitor in parallel to the resonant circuit composed of the first induction coil, thereby making the first induction coil
  • the resonant frequency of the formed resonant circuit becomes smaller, and the circuit presents capacitive impedance, which causes the charging current in the circuit to become smaller, so that the resonant current of the resonant circuit in the charging module decreases at the same time, and the intermittent conduction of the control resonance control switch is realized.
  • Turn off to change the resonance parameter of the first induction coil realize the feedback to the charging module when the battery is fully charged, thereby reducing the resonance current of the second induction coil, reducing power consumption and saving electric energy.
  • the adjusting capacitor can also be connected in series with the first induction coil, and in this case, the resonance control switch is connected in parallel with the adjusting capacitor.
  • the resonance control switch When the resonance control switch is turned off, the adjustment capacitor is connected to the resonance circuit formed by the first induction coil.
  • the resonance control switch When the resonance control switch is turned on, the adjustment capacitor is not connected to the resonance circuit formed by the first induction coil. Therefore, before and after the resonance control switch is turned on, the capacitance in the resonance circuit formed by the first induction coil can be changed, thereby realizing the adjustment of the resonance parameters of the resonance circuit to which it belongs.
  • connection form of the resonance control switch and the adjustment capacitor, and the on-off control mode of the resonance control switch can be specifically adapted according to the different forms of the resonance circuit formed by the first induction coil and the first capacitor. As long as the resonance control switch is in the ON state and the OFF state, the capacitance in the resonance circuit formed by the first induction coil can be changed.
  • an embodiment of the present application further provides an aerosol generating system.
  • the aerosol generating system includes:
  • An aerosol generating device the aerosol generating module is arranged in the aerosol generating device, the charging end of the aerosol generating device is provided with a first induction coil, and the aerosol generating device includes a battery and an aerosol generating module control module, the aerosol generating module is used to charge the battery, and the control module of the aerosol generating module controls the opening and closing of the resonance control switch according to whether the battery is fully charged, and then adjusts the Describe the resonance parameters of the resonant circuit formed by the first induction coil;
  • the charging stand the charging module is set on the charging stand, the charging stand includes an insertion part, the insertion part is provided with a second induction coil, when the aerosol generating device is inserted into the insertion part, the first The second induction coil generates electromagnetic induction with the first induction coil and transmits current, that is, charges the battery;
  • the first induction coil and the second induction coil are charged by electromagnetic induction.
  • the intermittent on-off of the resonance control switch is controlled to change the first
  • the resonance parameter of the induction coil realizes the feedback to the charging module when the battery is fully charged, thereby reducing the resonance current of the second induction coil, reducing power consumption and saving electric energy.
  • the embodiment of the present application also provides the aerosol generating device, the aerosol generating device has a built-in charging circuit and battery of the aerosol generating module; wherein, the charging circuit of the aerosol generating module is used to charge the to charge the above-mentioned batteries, including:
  • the first induction coil receives power through electromagnetic induction of the first induction coil
  • Adjusting the capacitor, the resonance control switch and the adjusting capacitor form a resonance parameter adjustment unit, and the resonance parameter adjustment unit is connected to the resonance circuit;
  • the control module of the aerosol generating module is connected to the control terminal of the resonance control switch, and the control module of the aerosol generating module depends on whether the battery is fully charged, Controlling the on-off of the resonance control switch, and then adjusting the resonance parameters of the resonance circuit formed by the first induction coil.
  • the aerosol generating system includes an aerosol generating device and a charging stand, the aerosol generating device is provided with a battery, and the resonant circuit of the charging stand is provided with a first Two resistors, the embodiment of the present application also provides a charging method for the wireless charging circuit of the aerosol generating system, and the charging method for the wireless charging circuit of the aerosol generating system includes the following steps:
  • the charging stand is in a low-power standby mode, and the voltage value at both ends of the second resistor in the charging stand is monitored;
  • the charging stand monitors that the voltage value across the second resistor is greater than the first preset threshold, it is determined that an aerosol generating device is inserted into the charging stand;
  • the charging stand increases the resonant current
  • the aerosol generating device generates an induced current to charge the battery
  • the resonance control switch of the aerosol generating device is controlled to be turned on according to the preset frequency
  • the charging stand monitors that the voltage across the second resistor is less than the second preset threshold, the charging stand reduces the magnitude of the resonant current, and the charging stand becomes a low-power standby mode;
  • the aerosol generating device controls the resonance control switch to cut off.
  • the circuit voltage difference in the charging module is triggered to increase, and the frequency of the charging module is increased according to the increased circuit voltage difference and the charging current is increased.
  • the aerosol generating device When fully charged, change the resonance parameters and send out a fully charged signal, control the resonance control switch to conduct according to the fully charged signal, and continue until the charging module is in a low-frequency standby state. Realize the intermittent on-off of the control resonance control switch to change the resonance parameters of the first induction coil, and realize the feedback to the charging module when the battery is fully charged, thereby reducing the resonance current of the second induction coil and reducing power consumption , save electricity.
  • the wireless charging circuit used for the aerosol generating system of this application includes:
  • the aerosol generating module includes a first induction coil L1, receives power through the electromagnetic induction of the first induction coil L1, the output end of the aerosol generating module is connected to the battery for charging, and the aerosol generating module also Including a first capacitor C1, a resonance control switch Q5 and an adjustment capacitor C3, the first capacitor C1 and the first induction coil L1 are connected in series to form a resonance circuit, and the resonance control switch Q5 and the adjustment capacitor C3 are connected in series to form a resonance parameter an adjustment unit, the resonance parameter adjustment unit is connected in parallel with the first induction coil;
  • the charging module includes a transformer T1, a second capacitor C2, and a second induction coil L2.
  • the transformer T1 converts the mains voltage into an operating voltage.
  • the transformer T1, the second capacitor C2, and the second induction coil L2 is connected in series, wherein the first induction coil L1 and the second induction coil L2 are electromagnetically induced;
  • Control module the output of the control module is connected to the control terminal of the resonance control switch Q5, and the control module controls the switching of the resonance control switch Q5 to adjust the resonance circuit composed of the first induction coil L1 resonance parameters.
  • the first induction coil L1 in the aerosol generating module By stepping down the input mains voltage by the charging module, the first induction coil L1 in the aerosol generating module combines with the second induction coil L2 in the charging module to perform electromagnetic induction charging, so that the working voltage after the step-down Electromagnetic induction is transmitted from the second induction coil L2 in the charging module to the first induction coil L1 in the aerosol generation module, so that the current in the aerosol generation module increases, and the control module controls the resonance control switch Q5 to turn off , the current can flow to the battery for charging.
  • the control module obtains the signal that the battery is fully charged, and controls the resonant control switch Q5 to turn on, thereby adjusting the parallel connection between the capacitor C3 and the first induction coil L1, thereby making The resonant frequency of the resonant circuit formed by the first induction coil L1 becomes smaller, and the circuit presents capacitive impedance, so that the charging current in the circuit becomes smaller, so that the resonant current flowing through the second induction coil in the charging module decreases at the same time.
  • control module may specifically include the control module of the aerosol generating module and the control module of the charging module, the control module of the aerosol generating module controls the components in the aerosol generating module, and the charging module The control module controls the components in the charging module.
  • the first induction coil L1 of the aerosol generating module may be in a vertical spiral shape, wherein the first induction coil L1 may spiral up around the aerosol generating module.
  • the first induction coil L1 may also be in a planar spiral shape.
  • a magnetic spacer can be added to gather magnetic energy, so as to improve the energy conversion efficiency from the second induction coil L2 to the first induction coil L1 of the aerosol generating module.
  • the number of turns of the first induction coil L1 of the aerosol generating module is 9-10 turns
  • the wire diameter is 1.2mm
  • the inductance is 10 From microhenry to about 10 henry, the winding diameter is about 15mm.
  • the number of turns of the second induction coil L2 of the charging module is greater than the number of turns of the first induction coil L1, wherein the number of turns of the second induction coil L2 of the charging module is mainly 13-14 turns, and the wire diameter is 1.2mm.
  • the aerosol generating module may further include a first field effect transistor Q1 and a second field effect transistor Q2, wherein the source of the first field effect transistor Q1 is connected to the second field effect transistor Q2.
  • the drain of the transistor Q2 is connected to the first capacitor C1; the source of the second field effect transistor Q2 is grounded and connected to the first induction coil L1; the first field effect transistor Q1
  • the drain is connected to the battery, the gate of the first field effect transistor Q1 and the gate of the second field effect transistor Q2 are respectively connected to the control module of the aerosol generation module;
  • the control modules of the aerosol generation module are respectively Connect the gate of the first field effect transistor Q1 to the gate of the second field effect transistor Q2 and the base of the resonant control switch Q5, and then the control module of the aerosol generating module controls the first field effect transistor Q1 and the second field effect transistor.
  • the effect transistor Q2 and the resonance control switch Q5 are turned off, wherein the resonance parameters of the resonance circuit composed of the first induction coil are adjusted by controlling
  • the aerosol generating module can have a heating mode and a wireless charging mode, which are used for heating the aerosol matrix and wireless charging respectively.
  • the first field effect transistor Q1, the second field effect transistor Q2, the first induction coil L1 and the first capacitor C1 form a half-bridge resonant electromagnetic heating circuit.
  • the wireless charging mode the battery is powered, and the aerosol matrix can be heated by controlling the cutoff and conduction of the first field effect transistor Q1 and the second field effect transistor Q2 through the control module of the aerosol generating module.
  • the half-bridge resonant electromagnetic heating circuit On the basis of the half-bridge resonant electromagnetic heating circuit, by adding the adjustment capacitor C3 and the resonant control switch Q5, in cooperation with the control module of the aerosol generating module, the first field effect transistor Q1 and the second field effect transistor Q2 are turned off and on. Control, wireless charging of the battery can be realized.
  • the number of components used can be reduced, the cost can be reduced, and the size can be reduced; it can also reduce the setting of the charging interface, which is convenient for the aerosol generator to carry out Waterproof and dustproof design.
  • the resonant frequency of the resonant circuit formed by the first induction coil L1 and the first capacitor C1 may be 200Khz.
  • the control module of the aerosol generating module can provide a complementary PWM pulse control signal of 200Khz frequency to the gates of the first field effect transistor Q1 and the second field effect transistor Q2, so that The first field effect transistor Q1 and the second field effect transistor Q2 conduct complementary conduction at a frequency of 200 Khz to generate a high-speed changing high-frequency current flowing through the first induction coil L1 to generate a fast-changing alternating magnetic field.
  • the heating element is placed in an alternating magnetic field, which can induce eddy currents to generate heat, and then heat the aerosol matrix to generate aerosols. It can be understood that the resonant frequency of the resonant circuit formed by the first induction coil L1 and the first capacitor C1 can also be other values.
  • the heating element can be made of any material that can generate an induced current in an alternating magnetic field, and the most common one is metal, such as iron. It can be understood that the heating element can be used as a part of the aerosol generating device, and can be arranged at the center of the first induction coil L1. The heating element may also not belong to the aerosol generating device, but be built in the aerosol matrix; when the aerosol matrix is inserted into the aerosol generating device, the heating element is located at the center of the first induction coil L1.
  • the resonant current of the second induction coil L2 can be configured to be low (for example, the resonant current can be 500mA in the wireless charging mode, and the current flowing through the first induction coil when the heating element works normally is generally 1A-4A) , the induced eddy current energy is not enough to make the heating element generate too much heat.
  • a magnetic isolation ring can be set at the center of the charging stand.
  • the heating element is inserted into the magnetic isolation ring, so the heating element will not be affected by the magnetic field of wireless charging.
  • the operating frequency of the first induction coil L1 in the heating mode of the aerosol generating device can also be set to be different from the first induction coil L1 during wireless charging.
  • the operating frequency of the induction coil L1 may even be quite different from the two.
  • the first induction coil L1, the second field effect transistor Q2, and the first capacitor C1 are connected in parallel to each other and connected to the source of the first field effect transistor Q1, wherein the first induction coil L1 and the second field effect transistor Q1 A capacitor C1 forms a parallel resonant circuit.
  • the induced current (ie charging current) on the first induction coil L1 may have a positive half cycle and a negative half cycle.
  • the control module of the aerosol generating module controls the first field effect transistor Q1 to be turned on, and the second field effect transistor is turned off Q2, the induced current charges the battery through the first capacitor C1 and the first field effect transistor Q1.
  • the induced current is a negative half cycle (take the current direction on the first induction coil L1 downward as an example)
  • the first field effect transistor Q1 is controlled to be cut off, and the second field effect transistor Q2 is turned on, and the induced current passes through the second field effect transistor Q2.
  • the effect transistor Q2 forms a loop with the first capacitor C1.
  • the aerosol generating module further includes a first resistor R1, and the first resistor R1 is connected to the control terminal of the resonance control switch Q5.
  • the first resistor R1 mainly limits the magnitude of the current between the source of the resonant control switch Q5 and the control module.
  • One end of the adjustment capacitor C3 is connected to the collector of the resonance control switch Q5, the emitter of the resonance control switch Q5 is grounded, one end of the first induction coil L1 is connected to the other end of the adjustment capacitor C3, and the L1 of the first induction coil The other end of is connected to the emitter of the resonant control switch Q5.
  • the circuit of the present application has a resonance parameter adjustment unit composed of a first resistor R1, an adjustment capacitor C3, and a resonance control switch Q5. During heating, or during wireless charging and when the battery is not fully charged, the resonance control switch Q5 is turned off.
  • the resonance control switch Q5 When the control module in the aerosol generating device detects that the battery is fully charged, the resonance control switch Q5 is intermittently turned on and off according to a self-defined protocol to change the resonance parameters of the resonance circuit formed by the first induction coil L1: resonance control switch
  • the adjustment capacitor C3 When Q5 is turned on, the adjustment capacitor C3 is connected in parallel with both ends of the first induction coil L1; from the formula It can be seen that when the capacitance C becomes larger, the resonant frequency F becomes smaller and deviates from the original operating frequency, and the circuit presents capacitive impedance, causing the charging current in the circuit to become smaller, so that the resonant current of the resonant circuit in the charging module decreases at the same time .
  • the resonant circuit of the charging module can include a second resistor R2, and the charging module detects that the voltage across the second resistor R2 becomes larger or smaller as the protocol becomes larger or smaller to form a pulse signal (as shown in Figure 3), thereby synchronously receiving the aerosol generation
  • the full power signal of the device will then reduce the frequency of the resonant current flowing through the second induction coil to 1/10 of the resonant frequency of the second induction coil L2 and the second capacitor C2, reducing the size of the resonant current and achieving the goal of reducing power consumption
  • the role that is, low power consumption mode.
  • the second resistor R2 is used to monitor the magnitude of the resonant current flowing through the second induction coil L2 to determine whether the aerosol generating device is inserted into the charging stand and whether the aerosol generating device is fully charged.
  • the second resistor The voltages at both ends of R2 are respectively connected to the control module of the charging module.
  • the charging module includes a resonant circuit A2 and a rectifier circuit A1, wherein the rectifier circuit A1 is connected in series between the resonant circuit A2 and the transformer T1, and the input end of the rectifier circuit A1
  • the output end of the transformer T1 is connected, the output end of the rectification circuit A1 is connected to the input end of the resonant circuit A2, the transformer T1 is used to rectify the AC voltage into a DC voltage, and the resonant circuit A2 is connected to the first
  • the two induction coils L2 are connected to receive the DC voltage of the rectification circuit A1 and output the resonant current to the second induction coil L2.
  • the resonant circuit A2 includes a second capacitor C2, a third field effect transistor Q3 and a fourth field effect transistor Q4, wherein the second capacitor C2, the second induction coil L2, the second resistor R2 , the third field effect transistor Q3 is connected in series in sequence, the source of the fourth field effect transistor Q4 is connected to the drain of the third field effect transistor Q3, and the drain of the fourth field effect transistor Q4 is connected to the The output end of the rectification circuit A1, the fourth field effect transistor Q4 is connected in series with the third field effect transistor Q3, the source of the third field effect transistor Q3 is grounded, and the second capacitor C2 is connected to the first The sources of the four field effect transistors Q4, the gates of the third field effect transistor Q3 and the gates of the fourth field effect transistor Q4 are respectively connected to the control module of the charging module, and the control module of the charging module controls The third field effect transistor Q3 and the fourth field effect transistor Q4 are turned on and off.
  • the rectification circuit A1 may be a half-wave rectification circuit, a full-wave rectification circuit or a bridge rectification circuit.
  • the rectification circuit A1 may specifically be a bridge rectification circuit, including a first diode D1, a second diode D2, a third diode D3 and a fourth diode D4, wherein the first two The diode D1 is connected in series with the second diode D2, the third diode D3 is connected in series with the fourth diode D4, and the first output terminal of the transformer T1 is connected to the first diode
  • the anode of the tube D1, the second output terminal of the transformer T1 is connected to the anode of the fourth diode D4, the anode of the second diode D2 and the anode of the third diode D3 are simultaneously grounded,
  • the cathode of the first diode D1 and the cathode of the fourth diode D4 are simultaneously connected to the drain of the fourth field
  • the function of the transformer T1 is to convert the mains voltage with an AC voltage of 220V into a working voltage with an AC voltage of 5V, through the first diode D1, the second diode D2, the third diode D3 and The rectifier bridge of the fourth diode D4 rectifies and outputs a direct current.
  • the second capacitor C2, the second resistor R2, the third field effect transistor Q3 and the fourth field effect transistor Q4 form a resonant circuit A2, which converts the DC current into a resonant output resonant current, and outputs it to the second induction coil L2 for electromagnetic heating.
  • the aerosol is charged after being induced by the module.
  • the gate of the third field effect transistor Q3 and the gate of the fourth field effect transistor Q4 are respectively connected to the control module of the charging module, and the control module of the charging module is for charging the output of the charging module.
  • the current control signal is specifically a complementary PWM pulse signal in this embodiment.
  • the third field effect transistor Q3 and the fourth field effect transistor Q4 are driven by a complementary PWM pulse signal output by the control module of the charging stand.
  • the PWM pulse The signal has a fixed duty cycle of 50%, and the frequency of the WM pulse signal in the standby state is 1/10 of the resonant frequency of the second induction coil L2 and the second capacitor C2, aiming at reducing power consumption; when the aerosol generation module is plugged in for charging
  • the current flowing through the second induction coil L2 and the second resistor R2 becomes larger, and the voltage value at both ends of the second resistor R2 becomes larger, and the voltage at both ends of the second resistor R2 (MCU_AD1, MCU_AD2) is collected and output to the charging module
  • the control module of the group can recognize that the aerosol generating module is plugged in for charging.
  • the control module of the charging module gradually increases the frequency of the charging current control signal, so that the frequency of the resonant current flowing through the second induction coil L2 is increased. , until the resonance frequency of the second induction coil L2 and the second capacitor C2 is approached, and the magnitude of the resonance current reaches the set charging current, and the magnitude of the resonance current can still be judged by collecting the voltage across the second resistor R2.
  • the mains voltage is stepped down by the charging module, and the first induction coil L1 in the aerosol generating module is combined with the second induction coil L2 in the charging module to perform electromagnetic induction charging, so that after the step-down
  • the operating voltage is electromagnetically transmitted from the second induction coil L2 in the charging module to the first induction coil L1 in the aerosol generating module, so that the current in the aerosol generating module increases, and the control of the aerosol generating module
  • the module controls the resonance control switch Q5 to turn off, and the current can flow to the battery for charging.
  • the control module of the aerosol generating module obtains the signal that the battery is fully charged, controls the resonance control switch Q5 to turn on, and the resonance control
  • the switch Q5 is connected in parallel with the first induction coil L1 to make the frequency smaller, and the circuit presents capacitive impedance, so that the charging current in the circuit becomes smaller, so that the resonant current of the resonant circuit in the charging module decreases at the same time, realizing the control of the resonance control switch
  • the intermittent on-off of Q5 changes the resonance parameters of the first induction coil L1 to realize the feedback to the charging module when the battery is fully charged, thereby reducing the resonance current of the second induction coil L2 to reduce power consumption and save electrical energy.
  • the aerosol generating system includes an aerosol generating device 1 and a charging stand 2:
  • the aerosol generating device 1 is provided with a battery and the aerosol generating module, and the aerosol generating module is used to charge the battery and heat the aerosol matrix; the aerosol generating module includes:
  • the first induction coil L1 receives power through electromagnetic induction of the first induction coil L1;
  • the first capacitor C1 is connected with the first induction coil L1 to form a resonant circuit
  • a resonance control switch Q5 and an adjustment capacitor C3, the resonance control switch Q5 and the adjustment capacitor C3 are connected in series to form a resonance parameter adjustment unit, and the resonance parameter adjustment unit is connected to the resonance circuit formed by the first induction coil L1;
  • the control module of the aerosol generating module is connected to the control terminal of the resonance control switch Q5, and the control module controls the opening and closing of the resonance control switch Q5, and controls the connection or disconnection of the adjustment capacitor with the first connection of the induction coil L1, and then adjust the resonance parameters of the resonant circuit formed by the first induction coil L1;
  • the charging base 2 is provided with a charging module, and the charging base 2 is provided with an insertion part, and the insertion part is provided with a second induction coil 21.
  • the aerosol generating module 2 is inserted into the insertion part, the The second induction coil 21 generates electromagnetic induction with the first induction coil 11 and transmits current to charge the battery.
  • the aerosol generating device 1 may also be provided with a heating element for generating heat by inducing the magnetic field generated by the first induction coil L1.
  • a heating chamber can be provided, the first induction coil L1 can be arranged around the heating chamber, and the heating element can be arranged in the heating chamber and located at the center of the first induction coil L1.
  • the aerosol matrix can be inserted into the heating cavity, and the heating element extends into the aerosol matrix; when the heating element generates heat, the aerosol matrix can be heated to generate aerosol.
  • one end of the first induction coil L1 can be inserted into the insertion part of the charging stand 2, and the aerosol generating device can be realized through the induction of the first induction coil L1 and the second induction coil L2. charging of the battery.
  • the input mains voltage is stepped down by the charging module, and the first induction coil 11 in the aerosol generating device 1 is combined with the second induction coil 21 in the charging module to perform electromagnetic induction charging, so that after the step-down
  • the operating voltage is electromagnetically transmitted from the second induction coil 21 in the charging module to the first induction coil 11, so that the first induction coil 11 generates an induced current
  • the control module of the aerosol generation module controls the resonance control switch to turn off, and the current It can flow through to the battery for charging.
  • the control module of the aerosol generating module when the battery is fully charged, when the control module of the aerosol generating module obtains the signal that the battery is fully charged, it controls the resonance control switch to conduct, and the adjustment capacitor is connected in parallel with the first induction coil and the first induction coil.
  • the resonant circuit composed of capacitors in series, the resonant frequency of the resonant circuit becomes smaller, and the circuit presents capacitive impedance, which causes the charging current in the circuit to become smaller, so that the resonant current in the charging module decreases at the same time, realizing the control of the resonance control switch.
  • the resonance parameters of the first induction coil 11 are changed by intermittently turning on and off to realize the feedback to the charging module when the battery is fully charged, thereby reducing the resonance current of the second induction coil 21 to reduce power consumption and save electric energy.
  • the charging method for the wireless charging circuit of the aerosol generating system includes the following steps:
  • Step S101 the charging stand is in a low-power standby mode, and the voltage value at both ends of the second resistor in the charging stand is monitored;
  • Step S102 when the charging stand monitors that the voltage across the second resistor is greater than the first preset threshold, it is determined that an aerosol generating device is inserted into the charging stand;
  • Step S103 the charging stand increases the resonant current
  • Step S104 the aerosol generating device generates an induced current to charge the battery
  • Step S105 when the aerosol generating device detects that the battery is fully charged, control the resonance control switch of the aerosol generating device to be turned on according to the preset frequency;
  • Step S106 when the charging stand monitors that the voltage across the second resistor is less than a second preset threshold, the charging stand reduces the magnitude of the resonant current, and the charging stand becomes a low-power standby mode;
  • Step S107 the aerosol generating device controls the resonance control switch to be turned off.
  • the resonance control switch may be turned off after the resonance control switch is turned on for a preset time; or the resonance control switch may be turned off after it is detected that the resonance current of the charging stand becomes smaller.
  • the input mains voltage is stepped down by the charging module, and the first induction coil in the aerosol generating module combines with the second induction coil in the charging module to perform electromagnetic induction charging, so that the working voltage after the step-down is obtained from the charging module.
  • the electromagnetic induction of the second induction coil in the group is transmitted to the first induction coil in the aerosol generating module, so that the first induction coil generates an induced current, the control module controls the resonance control switch to turn off, and the current can flow to the battery for charging .
  • the control module obtains the signal that the battery is fully charged, controls the resonant control switch to turn on, and changes the resonant frequency of the resonant circuit where the first induction coil is located.
  • the circuit presents capacitive impedance, causing the charging current in the circuit to become smaller. Therefore, the resonant current of the resonant circuit in the charging module is reduced at the same time, and the intermittent on-off of the resonance control switch is realized to change the resonance parameter of the first induction coil, so as to realize the feedback to the charging module when the battery is fully charged. , thereby reducing the resonant current of the second induction coil, reducing power consumption and saving electric energy.
  • the adjusting capacitor can also be connected in series with the first induction coil, and in this case, the resonance control switch is connected in parallel with the adjusting capacitor.
  • the circuit voltage difference in the charging module is triggered to increase, and the frequency of the charging module is increased according to the increased circuit voltage difference and the charging current is increased.
  • the aerosol generating device When fully charged, change the resonance parameters and send out a fully charged signal, control the resonance control switch to conduct according to the fully charged signal, and continue until the charging module is in a low-frequency standby state. Realize the intermittent on-off of the control resonance control switch to change the resonance parameters of the first induction coil, and realize the feedback to the charging module when the battery is fully charged, thereby reducing the resonance current of the second induction coil and reducing power consumption , save electricity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例属于无线充电技术领域,涉及一种气溶胶发生系统、装置、无线充电电路及充电方法,其中,所述用于气溶胶发生系统的无线充电电路包括:气溶胶发生模组,包括第一感应线圈、第一电容与谐振控制开关以及调节电容,通过所述第一感应线圈电磁感应接收电源,气溶胶发生模组的输出端接入电池进行充电;充电模组包括变压器、第二电容以及第二感应线圈,变压器将市电电压转换为工作电压,变压器的输出端串联接入第二感应线圈;控制模组的输出连接谐振控制开关的控制端。本申请通过控制谐振控制开关的间歇性导通关断而改变第一感应线圈所处的谐振参数,影响电磁感应的频率及第二感应线圈的充电电流,达到降低功耗,节约电能。

Description

气溶胶发生系统、装置、无线充电电路及充电方法 技术领域
本申请涉及无线充电技术领域,更具体地,涉及一种气溶胶发生系统、装置、无线充电电路及充电方法。
背景技术
现有技术中,气溶胶发生装置插入充电座内,通过电磁感应将磁场施加到感应线圈,进而使感受体进行充电或放电,便于气溶胶发生装置能够实现无线充电与无线放电的功能,然而,气溶胶发生装置与充电座各自的工作状态相对独立,因而无法预知对方的工作状态进行调控电磁感应的能量。
同时,在现有技术中能够实现无线充电的气溶胶发生装置,其需要单独设置用于无线充电的感应线圈,这个感应线圈不能用于其他功能。当气溶胶发生装置采用涡流加热的加热方式时,就同时存在2个感应线圈——一个感应线圈用于无线充电和另一个感应线圈用于发热,结构复杂,成本较高,尺寸也较大。
发明内容
本申请实施例所要解决的技术问题是解决气溶胶发生装置与充电座独立工作的状态。为了解决上述技术问题,本申请实施例提供一种用于气溶胶发生系统的无线充电电路,采用了如下所述的技术方案:
所述用于气溶胶发生系统的无线充电电路包括:
气溶胶发生模组,包括第一感应线圈,通过所述第一感应线圈电磁感应接收电源,所述气溶胶发生模组的输出端输出为电池充电,所述气溶胶发生模组还包括第一电容与谐振控制开关以及调节电容,所述第一电容与所述第一感应线圈组成谐振回路,所述谐振控制开关与所述调节电容组成谐振参数调节单元,所述谐振参数调节单元与所述谐振回路连接;
充电模组,包括变压器、第二电容以及第二感应线圈,所述变压器将市电电压转换为工作电压;所述第二电容与所述第二感应线圈组成谐振回路,并所述变压器连接,其中,所述第一感应线圈与所述第二感应线圈电磁感应;
控制模组,所述控制模组的输出连接所述谐振控制开关的控制端,由所述控制模组控制所述谐振控制开关的开断进而调节所述第一感应线圈所组成谐振回路的谐振参数。
进一步地,所述第一电容和所述第一感应线圈串联连接,所述气溶胶发生模组还包括第一场效应晶体管及第二场效应晶体管;其中,所述第一场效应晶体管的源极与所述第二场效应晶体管的漏极连接,并与所述第一电容连接;所述第一场效应晶体管的栅极与所述第二场效应晶体管的栅极分别连接所述气溶胶发生模组的控制模块;所述第二场效应晶体管的源极接地,并与所述第一感应线圈连接;所述第一场效应晶体管的漏极连接电池;所述第一场效应 晶体管的栅极与所述第二场效应晶体管的栅极分别连接所述气溶胶发生模组的控制模块。
进一步地,所述充电模组还包括谐振电路与整流电路,其中,所述整流电路串联在所述谐振电路与所述变压器之间,将交流电压整流为直流电流;所述谐振电路与所述第二感应线圈连接,用于接收所述整流电路的直流电流,并输出谐振电流给所述第二感应线圈。
进一步地,所述谐振电路包括第二电阻、第三场效应晶体管以及第四场效应晶体管,其中,所述第二电容、所述第二感应线圈、所述第二电阻、所述第三场效应晶体管依次串联,所述第四场效应晶体管的源极与所述第三场效应晶体管的漏极连接,所述第四场效应晶体管的漏极连接所述整流电路的输出端,所述第四场效应晶体管与所述第三场效应晶体管串联,所述第三场效应晶体管的栅极与所述第四场效应晶体管的栅极分别连接所述控制模组,所述第三场效应晶体管的源极接地,所述第二电容连接所述第四场效应晶体管的源极,其中,所述第二电阻的两端电压分别与所述控制模组连接。
进一步地,所述整流电路为桥式整流电路。
进一步地,所述第一感应线圈用于无线充电和磁感应加热。
本申请一实施例还公开了一种气溶胶发生系统,包括前述的无线充电电路,所述气溶胶发生系统还包括:
气溶胶发生装置,所述气溶胶发生装置包括电池,所述气溶胶发生模组设置在所述气溶胶发生装置中并用于给所述电池进行充电;所述气溶胶发生装置的一端设置第一感应线圈,所述气溶胶发生装置包括气溶胶发生模组的控制模块,所述气溶胶发生模组的控制模块连接所述气溶胶发生模组中的谐振控制开关的控制端,由所述气溶胶发生模组的控制模块控制所述谐振控制开关的开断进而调节所述第一感应线圈组成的谐振回路的谐振参数;
充电座,所述充电模组设置于所述充电座,所述充电座包括插入部,所述插入部的内侧设置有第二感应线圈,所述气溶胶发生模块插入所述插入部时,所述第二感应线圈与所述第一感应线圈产生电磁感应并传输电流,以对电池进行充电。
本申请实施例还提供一种气溶胶发生装置,所述气溶胶发生装置内置有电池和气溶胶发生模组,所述气溶胶发生模组用于给所述电池进行充电和加热气溶胶基质,其中,所述气溶胶发生模组包括:
第一感应线圈,通过所述第一感应线圈电磁感应接收电源;
第一电容,所述第一电容与所述第一感应线圈组成谐振回路;
谐振控制开关;
调节电容,所述谐振控制开关与所述调节电容组成谐振参数调节单元,所述谐振参数调节单元与所述谐振回路连接;
气溶胶发生模组的控制模块,所述气溶胶发生模组的控制模块连接所述谐振控制开关的控制端,由所述气溶胶发生模组的控制模块控制所述谐振控制开关的开断进而调节所述第一感应线圈所组成谐振回路的谐振参数。
进一步地,所述第一电容和所述第一感应线圈串联连接,所述气溶胶发生模组还包括第一场效应晶体管及第二场效应晶体管;其中,所述第一场效应晶体管的源极与所述第二场效 应晶体管的漏极连接,并与所述第一电容连接;所述第一场效应晶体管的栅极与所述第二场效应晶体管的栅极分别连接所述气溶胶发生模组的控制模块;所述第二场效应晶体管的源极接地,并与所述第一感应线圈连接;所述第一场效应晶体管的漏极连接电池;所述第一场效应晶体管的栅极与所述第二场效应晶体管的栅极分别连接所述气溶胶发生模组的控制模块。
本申请还提出一种利用上述气溶胶发生系统的充电方法,所述气溶胶发生系统包括气溶胶发生装置和充电座,所述气溶胶发生装置设置有电池,所述充电座的谐振回路中设置有第二电阻,所述充电方法包括以下步骤:
充电座处于低功耗待机模式,监测充电座中第二电阻两端的电压值;
当充电座监测到第二电阻两端的电压值大于第一预设阈值时,判断有气溶胶发生装置插入到充电座中;
充电座增大谐振电流;
气溶胶发生装置产生感应电流,给电池进行充电;
当气溶胶发生装置检测到电池充满电时,按照预设频率控制气溶胶发生装置的谐振控制开关导通;
当充电座监测到第二电阻两端的电压值小于第二预设阈值时,充电座降低谐振电流的大小,充电座变为低功耗待机模式;
气溶胶发生装置控制谐振控制开关截止。
与现有技术相比,本申请实施例主要有以下有益效果:通过控制谐振控制开关的间歇性导通关断而改变第一感应线圈所处的谐振参数,实现电池充满电时对充电模组的反馈,从而降低第二感应线圈的谐振电流,达到降低功耗,节约电能。
附图说明
为了更清楚地说明本申请的方案,下面将对实施例描述中所需要使用的附图作一个简单介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为气溶胶发生模组的电路示意图;
图2为充电模组的电路示意图;
图3为用于气溶胶发生系统的无线充电电路的时序图;
图4为气溶胶发生装置的整体结构图;
图5为气溶胶发生装置的竖向截面图;
图6为利用气溶胶发生系统的充电方法的流程图。
附图标记:
1 气溶胶发生装置 R1 第一电阻
2 充电座 R2 第二电阻
11 第一感应线圈 Q1 第一场效应晶体管
21 第二感应线圈 Q2 第二场效应晶体管
L1 第一感应线圈 Q3 第三场效应晶体管
L2 第二感应线圈 Q4 第四场效应晶体管
C1 第一电容 Q5 谐振控制开关
C2 第二电容 D1 第一二极管
C3 调节电容 D2 第二二极管
T1 变压器 D3 第三二极管
A1 整流电路 D4 第四二极管
A2 谐振电路    
具体实施方式
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例提供一种用于气溶胶发生系统的无线充电电路。
所述无线充电电路包括:
气溶胶发生模组,包括第一感应线圈,通过所述第一感应线圈电磁感应接收电源,所述气溶胶发生模组的输出端输出为电池充电,所述气溶胶发生模组还包括第一电容与谐振控制开关以及调节电容,所述第一电容与所述第一感应线圈组成谐振回路,所述谐振控制开关与所述调节电容组成谐振参数调节单元,所述谐振参数调节单元与所述第一感应线圈组成的谐振回路连接;
充电模组,包括变压器、第二电容以及第二感应线圈,所述变压器将市电电压转换为工作电压,所述第二电容以及所述第二感应线圈组成谐振回路,所述变压器与所述第二感应线圈组成的谐振回路连接,其中,所述第一感应线圈与所述第二感应线圈电磁感应;
控制模组,所述控制模组的输出连接所述谐振控制开关的控制端,由所述控制模组控制所述谐振控制开关的开断进而调节所述第一感应线圈组成的谐振回路的谐振参数。
气溶胶发生模组,还可以用于接收电池的供电,对气溶胶基质进行加热,以产生气溶胶。
下面以第一电容与第一感应线圈串联连接,第二电容与第二感应线圈串联连接,分别组成串联的谐振回路为例,进行说明。可以理解的是,谐振回路中,电容也可以和感应线圈并联连接,组成并联的谐振回路。
通过由充电模组对输入的市电电压进行降压,气溶胶发生模组中的第一感应线圈结合充电模组中的第二感应线圈进行电磁感应充电,使得降压后的工作电压从充电模组中的第二感应线圈电磁感应传输至气溶胶发生模组中的第一感应线圈,使得第一感应线圈产生感应电流,控制模组控制谐振控制开关关断,电流能够流经至电池进行充电;当电池充满电时,控制模组获得电池充满电的信号,控制谐振控制开关导通,可以将调节电容并联接入到第一感应线圈组成的谐振回路中,进而使得第一感应线圈所组成的谐振回路的谐振频率变小,回路呈现容性阻抗,致其回路中充电电流变小,从而充电模组内的谐振回路的谐振电流同时减小,实现控制谐振控制开关的间歇性导通关断而改变第一感应线圈所处的谐振参数,实现电池充满电时对充电模组的反馈,从而降低第二感应线圈的谐振电流,达到降低功耗,节约电能。
当然,调节电容也可以与第一感应线圈串联连接,此时,谐振控制开关与调节电容并联。当谐振控制开关截止时,调节电容接入到第一感应线圈组成的谐振回路中。当谐振控制开关导通时,调节电容未接入到第一感应线圈组成的谐振回路中。因此,谐振控制开关导通前后,第一感应线圈所组成的谐振回路中,电容大小可以得到改变,进而实现其所属谐振回路的谐振参数的调节。
可以理解的是,谐振控制开关与调节电容的连接形式,以及谐振控制开关的导通截止的控制方式,可以根据第一感应线圈与第一电容组成谐振回路的形式不同,而具体适配。只要谐振控制开关的导通和截止两种状态中,可以改变第一感应线圈所组成的谐振回路中的电容的大小即可。
基于上述的用于气溶胶发生系统的无线充电电路,本申请实施例还提供一种气溶胶发生系统。
所述气溶胶发生系统包括:
气溶胶发生装置,所述气溶胶发生装置内设置所述气溶胶发生模组,所述气溶胶发生装置的充电端设置第一感应线圈,所述气溶胶发生装置包括电池和气溶胶发生模组的控制模块,所述气溶胶发生模组用于给所述电池进行充电,所述气溶胶发生模组的控制模块根据电池是否充满电的状态,控制所述谐振控制开关的开断,进而调节所述第一感应线圈组成的谐振回路的谐振参数;
充电座,所述充电模组设置于所述充电座,所述充电座包括插入部,所述插入部设置有第二感应线圈,所述气溶胶发生装置插入所述插入部时,所述第二感应线圈与所述第一感应线圈产生电磁感应并传输电流,即对电池进行充电;
其中,所述第一感应线圈与所述第二感应线圈电磁感应充电。
通过在结构上实现气溶胶发生装置与充电座的电磁感应,并由控制模块调节第一感应线圈组成的谐振回路的谐振参数,进而达到控制谐振控制开关的间歇性导通关断而改变第一感应线圈所处的谐振参数,实现电池充满电时对充电模组的反馈,从而降低第二感应线圈的谐振电流,达到降低功耗,节约电能。
本申请实施例还提供一种所述气溶胶发生装置,所述气溶胶发生装置内置有气溶胶发生模组的充电电路和电池;其中,所述气溶胶发生模组的充电电路用于对所述电池进行充电, 包括:
第一感应线圈,通过所述第一感应线圈电磁感应接收电源;
第一电容,所述第一电容与所述第一感应线圈组成谐振回路;
谐振控制开关;
调节电容,所述谐振控制开关与所述调节电容组成谐振参数调节单元,所述谐振参数调节单元与所述谐振回路连接;
气溶胶发生模组的控制模块,所述气溶胶发生模组的控制模块连接所述谐振控制开关的控制端,由所述气溶胶发生模组的控制模块根据所述电池是否充满电的状态,控制所述谐振控制开关的开断,进而调节所述第一感应线圈组成的谐振回路的谐振参数。
基于上述的用于气溶胶发生系统的无线充电电路,所述气溶胶发生系统包括气溶胶发生装置和充电座,所述气溶胶发生装置设置有电池,所述充电座的谐振回路中设置有第二电阻,本申请实施例还提供一种用于气溶胶发生系统的无线充电电路的充电方法,所述用于气溶胶发生系统的无线充电电路的充电方法包括以下步骤:
充电座处于低功耗待机模式,监测充电座中第二电阻两端的电压值;
当充电座监测到第二电阻两端的电压值大于第一预设阈值时,判断有气溶胶发生装置插入到充电座中;
充电座增大谐振电流;
气溶胶发生装置产生感应电流,给电池进行充电;
当气溶胶发生装置检测到电池充满电时,按照预设频率控制气溶胶发生装置的谐振控制开关导通;
当充电座监测到第二电阻两端的电压值小于第二预设阈值时,充电座降低谐振电流的大小,充电座变为低功耗待机模式;
气溶胶发生装置控制谐振控制开关截止。
本实施例通过在气溶胶发生装置插入时,触发所述充电模组中的回路电压差增大,根据增大的回路电压差调高充电模组的频率并增加充电电流,当气溶胶发生装置充满电时,改变谐振参数并发出已充满电信号,根据已充满电信号控制谐振控制开关导通,持续至充电模组处于低频率待机状态为止。实现控制谐振控制开关的间歇性导通关断而改变第一感应线圈所处的谐振参数,实现电池充满电时对充电模组的反馈,从而降低第二感应线圈的谐振电流,达到降低功耗,节约电能。
为了使本技术领域的人员更好地理解本申请方案,下面将结合附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请用于气溶胶发生系统的无线充电电路的实施例一
请参照图1至图3所示,本申请用于气溶胶发生系统的无线充电电路包括:
气溶胶发生模组,包括第一感应线圈L1,通过所述第一感应线圈L1电磁感应接收电源,所述气溶胶发生模组的输出端接入电池进行充电,所述气溶胶发生模组还包括第一电容C1与谐振控制开关Q5以及调节电容C3,所述第一电容C1与所述第一感应线圈L1串联组成谐 振回路,所述谐振控制开关Q5与所述调节电容C3串联组成谐振参数调节单元,所述谐振参数调节单元与所述第一感应线圈并联连接;
充电模组,包括变压器T1、第二电容C2以及第二感应线圈L2,所述变压器T1将市电电压转换为工作电压,所述变压器T1与所述第二电容C2、所述第二感应线圈L2串联连接,其中,所述第一感应线圈L1与所述第二感应线圈L2电磁感应;
控制模组,所述控制模组的输出连接所述谐振控制开关Q5的控制端,由控制模组控制所述谐振控制开关Q5的开断进而调节所述第一感应线圈L1组成的谐振回路的谐振参数。
通过由充电模组对输入的市电电压进行降压,气溶胶发生模组中的第一感应线圈L1结合充电模组中的第二感应线圈L2进行电磁感应充电,使得降压后的工作电压从充电模组中的第二感应线圈L2电磁感应传输至气溶胶发生模组中的第一感应线圈L1,使得气溶胶发生模组中的电流增大,控制模组控制谐振控制开关Q5关断,电流能够流经至电池进行充电,反之,当电池充满电时,控制模组获得电池充满电的信号,控制谐振控制开关Q5导通,从而调节电容C3与第一感应线圈L1并联,进而使得第一感应线圈L1所构成的谐振回路的谐振频率变小,回路呈现容性阻抗,致其回路中充电电流变小,从而充电模组内的流经第二感应线圈的谐振电流同时减小。
在本实施例中,控制模组可以具体包括气溶胶发生模组的控制模块与充电模组的控制模块,气溶胶发生模组的控制模块控制气溶胶发生模组中的元器件,充电模组的控制模块控制充电模组中的元器件。
气溶胶发生模组的第一感应线圈L1可以呈竖形螺旋状,其中,第一感应线圈L1可以围绕着气溶胶发生模组螺旋上升。第一感应线圈L1也可以是平面螺旋状。利用第一感应线圈L1与第二感应线圈L2之间互感,使得充电模组内的电能转化成磁能传递至气溶胶发生模组的第一感应线圈L1,气溶胶发生模组的第一感应线圈L1再把磁能转化成电能,储存至电池,完成充电。在第二感应线圈L2的外围,可以增加隔磁片以聚集磁能,使第二感应线圈L2至气溶胶发生模组的第一感应线圈L1的能量的转化效率提升。在本实施例中,气溶胶发生模组的第一感应线圈L1的圈数为9-10圈,线径1.2mm,内含单股外表绝缘铜丝,共约200股左右,电感量在10微亨至10亨左右,绕线直径为15mm左右。充电模组的第二感应线圈L2的圈数大于第一感应线圈L1的圈数,其中,充电模组的第二感应线圈L2的圈数以13-14圈为主,线径1.2mm,内含单股外表绝缘铜丝,共约200股左右,电感量在10微亨至10亨左右,绕线直径为25mm左右。
在本实施例中,所述气溶胶发生模组还可以包括第一场效应晶体管Q1与第二场效应晶体管Q2,其中,所述第一场效应晶体管Q1的源极与所述第二场效应晶体管Q2的漏极连接,并与所述第一电容C1连接;所述第二场效应晶体管Q2的源极接地,并与所述第一感应线圈L1连接;所述第一场效应晶体管Q1的漏极连接电池,所述第一场效应晶体管Q1的栅极与所述第二场效应晶体管Q2的栅极分别连接所述气溶胶发生模组的控制模块;气溶胶发生模组的控制模块分别连接第一场效应晶体管Q1的栅极与第二场效应晶体管Q2的栅极以及谐振控制开关Q5的基极,进而由气溶胶发生模组的控制模块控制第一场效应晶体管Q1与第二场 效应晶体管Q2以及谐振控制开关Q5关断,其中,通过控制所述谐振控制开关Q5的开断进而调节所述第一感应线圈组成的谐振回路的谐振参数。
气溶胶发生模组可以具有加热工作模式和无线充电模式,分别用于加热气溶胶基质和无线充电。第一场效应晶体管Q1、第二场效应晶体管Q2、第一感应线圈L1以及第一电容C1组成半桥谐振电磁加热电路。在无线充电模式中对电池进行供电,通过气溶胶发生模组的控制模块对第一场效应晶体管Q1、第二场效应晶体管Q2截止与导通的控制,可以实现对气溶胶基质的加热。在半桥谐振电磁加热电路的基础上,通过增加调节电容C3以及谐振控制开关Q5,配合气溶胶发生模组的控制模块对第一场效应晶体管Q1、第二场效应晶体管Q2截止与导通的控制,可以实现对电池的无线充电。通过复用第一感应线圈L1以及半桥谐振电磁加热电路来构建无线充电电路,可以减少元器件的使用数量,降低成本,减小尺寸;还能减少充电接口的设置,便于气溶胶发生装置进行防水防尘的设计。
示例的,第一感应线圈L1以及第一电容C1组成的谐振回路的谐振频率可以为200Khz。当气溶胶发生模组处于加热工作模式时,气溶胶发生模组的控制模块可以向第一场效应晶体管Q1与第二场效应晶体管Q2的栅极提供200Khz频率的互补的PWM脉冲控制信号,让第一场效应晶体管Q1与第二场效应晶体管Q2进行200Khz频率互补导通,产生高速变化的高频电流流过第一感应线圈L1,以产生高速变化的交变磁场。发热体置于交变磁场中,可以感应产生涡流而发热,进而加热气溶胶基质,产生气溶胶。可以理解的是,第一感应线圈L1以及第一电容C1组成的谐振回路的谐振频率也可以为其他数值。
发热体可以采用任意可以在交变磁场中产生感应电流的材质,最常见的为金属,比如铁。可以理解的是,发热体可以作为气溶胶发生装置的一个部件,可以设置于第一感应线圈L1的中心位置。发热体也可以不属于气溶胶发生装置,而内置于气溶胶基质中;当将气溶胶基质插入于气溶胶发生装置内时,发热体位于第一感应线圈L1的中心位置。
当气溶胶发生装置插入充电座,气溶胶发生装置处于无线充电模式时,第二感应线圈L2的交流电压感应至第一感应线圈L1,感应电流通过第一场效应晶体管Q1、第二场效应晶体管Q2整流后输出至电池VBAT,完成无线充电。其中,第二感应线圈L2的谐振电流可以配置得较低(比如,无线充电模式下谐振电流可以为500mA,而让发热体正常发热工作时流经第一感应线圈的电流一般为1A-4A),其感应涡流能量就不足以让发热体产生太多的热量。
在本实施例中,为了降低无线充电时发热体受到磁感应发热的温度,降低由此带来的电能浪费的问题,可以在充电座中心位置处可以设置一个隔磁环,当气溶胶发生装置插入到充电座时,发热体插入到隔磁环中,因而发热体就不会受到无线充电的磁场的影响。
在其他实施例中,为了减少无线充电时发热体感应发热带来的电能损耗,还可以让气溶胶发生装置加热工作模式时的第一感应线圈L1的工作频率,不等于无线充电时的第一感应线圈L1工作频率,甚至,二者之间可以相差较大。
当然,在另一实施例中,第一感应线圈L1、第二场效应晶体管Q2以及第一电容C1相互并联并接入第一场效应晶体管Q1的源极,其中,第一感应线圈L1与第一电容C1组成并联谐振电路。
充电过程:第一感应线圈L1上的感应电流(即充电电流)可以具有正半周期和负半周期。当感应电流为正半周期时(以第一感应线圈L1上的电流方向朝上为例),气溶胶发生模组的控制模块控制第一场效应晶体管Q1导通,并截止第二场效应晶体管Q2,感应电流经第一电容C1、第一场效应晶体管Q1,给电池进行充电。当感应电流为负半周期时(以第一感应线圈L1上的电流方向朝下为例),控制第一场效应晶体管Q1截止,并导通第二场效应晶体管Q2,感应电流经第二场效应晶体管Q2,并与第一电容C1形成回路。
在本实施例中,所述气溶胶发生模组还包括第一电阻R1,所述第一电阻R1连接于所述谐振控制开关Q5的控制端。第一电阻R1主要是限定所述谐振控制开关Q5的源极与控制模块之间的电流的大小。调节电容C3的一端连接于所述谐振控制开关Q5的集电极,所述谐振控制开关Q5的发射极接地,第一感应线圈L1的一端连接与调节电容C3的另一端,第一感应线圈的L1的另一端连接于谐振控制开关Q5的发射极。
具体地,相对于原来的电磁加热的电路,本申请回路多了第一电阻R1、调节电容C3、谐振控制开关Q5组成的谐振参数调节单元。在加热时,或者无线充电过程中、且电池未充满电时,谐振控制开关Q5截止。当气溶胶发生装置内的控制模块检测到电池充满时,通过谐振控制开关Q5按照自定协议进行间歇性导通关断,来改变第一感应线圈L1所组成谐振回路的谐振参数:谐振控制开关Q5导通时,调节电容C3并联于第一感应线圈L1两端;从公式
Figure PCTCN2022100434-appb-000001
可知,当电容C变大时,谐振频率F变小而偏离原来的工作频率,回路呈现容性阻抗,致其回路中充电电流变小,从而充电模组内的谐振回路的谐振电流同时减小。充电模组的谐振回路可以包括第二电阻R2,充电模组检测第二电阻R2两端电压随着协议变大或变小形成脉冲信号(如图3所示),从而同步接收到气溶胶发生装置的满电信号,随之将流经第二感应线圈的谐振电流的频率降低到第二感应线圈L2与第二电容C2谐振频率的1/10,降低谐振电流的大小,达到降功耗的作用,即低功耗模式。所述第二电阻R2用于监测流经所述第二感应线圈L2的谐振电流大小,用来判断气溶胶发生装置是否插入充电座中,以及气溶胶发生装置是否充满电,所述第二电阻R2的两端电压分别接入充电模组的控制模块。
在本实施例中,所述充电模组包括谐振电路A2与整流电路A1,其中,所述整流电路A1串联在所述谐振电路A2与所述变压器T1之间,所述整流电路A1的输入端连接所述变压器T1的输出端,所述整流电路A1的输出端连接所述谐振电路A2的输入端,所述变压器T1用于将交流电压整流为直流电压,所述谐振电路A2与所述第二感应线圈L2连接,用于接收所述整流电路A1的直流电压,并输出谐振电流给所述第二感应线圈L2。其中,所述谐振电路A2包括第二电容C2、第三场效应晶体管Q3以及第四场效应晶体管Q4,其中,所述第二电容C2、所述第二感应线圈L2、所述第二电阻R2、所述第三场效应晶体管Q3依次串联,所述第四场效应晶体管Q4的源极与所述第三场效应晶体管Q3的漏极连接,所述第四场效应晶体管Q4的漏极连接所述整流电路A1的输出端,所述第四场效应晶体管Q4与所述第三场效应晶体管Q3串联,所述第三场效应晶体管Q3的源极接地,所述第二电容C2连接所述第四场效应晶体管Q4的源极,所述第三场效应晶体管Q3的栅极与所述第四场效应晶体管Q4的栅极分别连接所述充电模组的控制模块,充电模组的控制模块控制第三场效应晶体管Q3 与第四场效应晶体管Q4的导通与截止。
所述整流电路A1可以为半波整流电路、全波整流电路或者桥式整流电路。示例的,整流电路A1可以具体为桥式整流电路,包括第一二极管D1、第二二极管D2、第三二极管D3以及第四二极管D4,其中,所述第一二极管D1与所述第二二极管D2串联,所述第三二极管D3与所述第四二极管D4串联,所述变压器T1的的第一输出端连接所述第一二极管D1的正极,所述变压器T1的第二输出端连接所述第四二极管D4的正极,所述第二二极管D2的正极与所述第三二极管D3的正极同时接地,所述第一二极管D1的负极与所述第四二极管D4的负极同时连接所述第四场效应晶体管Q4的漏极。
需要说明的是,变压器T1的作用将交流电压为220V的市电电压转换为交流电压为5V的工作电压,经过第一二极管D1、第二二极管D2、第三二极管D3以及第四二极管D4的整流桥整流输出直流电流。第二电容C2、第二电阻R2、第三场效应晶体管Q3以及第四场效应晶体管Q4组成谐振电路A2,将直流电流转换成谐振输出的谐振电流,输出给第二感应线圈L2,电磁加热的气溶胶发生模组感应后进行充电。
其中,所述第三场效应晶体管Q3的栅极与所述第四场效应晶体管Q4的栅极分别连接所述充电模组的控制模块,所述充电模组的控制模块为充电模组输出充电电流控制信号,在本实施例中具体为互补PWM脉冲信号,所述第三场效应晶体管Q3与所述第四场效应晶体管Q4由充电座的控制模块输出互补PWM脉冲信号进行驱动,该PWM脉冲信号固定50%占空比,待机状态时所述WM脉冲信号的频率为第二感应线圈L2与第二电容C2谐振频率的1/10,旨在降低功耗;当气溶胶发生模组插入充电模组时,流经第二感应线圈L2、第二电阻R2电流变大,第二电阻R2两端的电压值变大,经过采集第二电阻R2两端的电压(MCU_AD1,MCU_AD2)并输出至充电模组的控制模块,即可识别到气溶胶发生模组插入充电,此时充电模组的控制模块将充电电流控制信号的频率逐步提高,使得流经第二感应线圈L2的谐振电流的频率得到提高,直到接近第二感应线圈L2与第二电容C2的谐振频率,谐振电流的大小也达到设定充电电流为止,且谐振电流的大小仍可以通过采集第二电阻R2两端电压进行判断。
在本实施例中,由充电模组对市电电压进行降压,气溶胶发生模组中的第一感应线圈L1结合充电模组中的第二感应线圈L2进行电磁感应充电,使得降压后的工作电压从充电模组中的第二感应线圈L2电磁感应传输至气溶胶发生模组中的第一感应线圈L1,使得气溶胶发生模组中的电流增大,气溶胶发生模组的控制模块控制谐振控制开关Q5关断,电流能够流经至电池进行充电,反之,电池充满电,气溶胶发生模组的控制模块获得电池充满电的信号,控制谐振控制开关Q5导通,而谐振控制开关Q5与第一感应线圈L1并联进而使得频率变小,回路呈现容性阻抗,致其回路中充电电流变小,从而充电模组内的谐振回路的谐振电流同时减小,实现控制谐振控制开关Q5的间歇性导通关断而改变第一感应线圈L1所处的谐振参数,实现电池充满电时对充电模组的反馈,从而降低第二感应线圈L2的谐振电流,达到降低功耗,节约电能。
本申请气溶胶发生系统的实施例二
请参照图4至图5所示,所述气溶胶发生系统包括气溶胶发生装置1和充电座2:
所述气溶胶发生装置1设置有电池和所述气溶胶发生模组,所述气溶胶发生模块用于给电池进行充电和加热气溶胶基质;所述气溶胶发生模块包括:
第一感应线圈L1,通过所述第一感应线圈L1电磁感应接收电源;
第一电容C1,与所述第一感应线圈L1连接组成谐振回路;
谐振控制开关Q5以及调节电容C3,所述谐振控制开关Q5与所述调节电容C3串联组成谐振参数调节单元,所述谐振参数调节单元与所述第一感应线圈L1组成的谐振回路连接;
气溶胶发生模块的控制模块,连接所述谐振控制开关Q5的控制端,由所述控制模块控制所述谐振控制开关Q5的开断,控制所述调节电容接入或者断开与所述第一感应线圈L1的连接,进而调节所述第一感应线圈L1组成的谐振回路的谐振参数;
所述充电座2内设置有充电模组,所述充电座2设有插入部,所述插入部的设置有第二感应线圈21,所述气溶胶发生模块2插入所述插入部时,所述第二感应线圈21与所述第一感应线圈11产生电磁感应并传输电流,以对电池进行充电。
气溶胶发生装置中的气溶胶发生模块,以及充电座中的充电模组,其具体构成以及工作方式,可以参见前面实施例所述,在此不再赘述。
在一些实施例中,气溶胶发生装置1还可以设置有发热体,用于感应所述第一感应线圈L1产生的磁场而发热。在气溶胶发生装置1的一端,可以设置有加热腔,第一感应线圈L1可以环绕加热腔设置,发热体可以设置与加热腔中且位于第一感应线圈L1的中心位置。气溶胶基质可以插入到加热腔中,发热体伸入到气溶胶基质中;当发热体发热时,可以对气溶胶基质进行加热,以产生气溶胶。当需要进行无线充电时,设置有第一感应线圈L1的一端,可以插入到充电座2的插入部中,通过第一感应线圈L1和第二感应线圈L2的感应,从而实现对气溶胶发生装置的电池的充电。
本实施例通过由充电模组对输入的市电电压进行降压,气溶胶发生装置1中的第一感应线圈11结合充电模组中的第二感应线圈21进行电磁感应充电,使得降压后的工作电压从充电模组中的第二感应线圈21电磁感应传输至第一感应线圈11,使得第一感应线圈11产生感应电流,气溶胶发生模组的控制模块控制谐振控制开关关断,电流能够流经至电池进行充电,反之,电池充满电,气溶胶发生模组的控制模块获得电池充满电的信号时,控制谐振控制开关导通,而调节电容并联于第一感应线圈与与第一电容串联组成的谐振回路中,使得谐振回路的谐振频率变小,回路呈现容性阻抗,致其回路中充电电流变小,从而充电模组内的谐振电流同时减小,实现控制谐振控制开关的间歇性导通关断而改变第一感应线圈11所处的谐振参数,实现电池充满电时对充电模组的反馈,从而降低第二感应线圈21的谐振电流,达到降低功耗,节约电能。
本申请用于气溶胶发生系统的无线充电电路的充电方法的实施例三
请参照6所示,所述用于气溶胶发生系统的无线充电电路的充电方法包括以下步骤:
步骤S101,充电座处于低功耗待机模式,监测充电座中第二电阻两端的电压值;
步骤S102,当充电座监测到第二电阻两端的电压值大于第一预设阈值时,判断有气溶胶 发生装置插入到充电座中;
步骤S103,充电座增大谐振电流;
步骤S104,气溶胶发生装置产生感应电流,给电池进行充电;
步骤S105,当气溶胶发生装置检测到电池充满电时,按照预设频率控制气溶胶发生装置的谐振控制开关导通;
步骤S106,当充电座监测到第二电阻两端的电压值小于第二预设阈值时,充电座降低谐振电流的大小,充电座变为低功耗待机模式;
步骤S107,气溶胶发生装置控制谐振控制开关截止。
在步骤S107中,可以在谐振控制开关导通预设时间之后,即关闭谐振控制开关;也可以在检测到充电座的谐振电流变小之后,即关闭谐振控制开关。
由充电模组对输入的市电电压进行降压,气溶胶发生模组中的第一感应线圈结合充电模组中的第二感应线圈进行电磁感应充电,使得降压后的工作电压从充电模组中的第二感应线圈电磁感应传输至气溶胶发生模组中的第一感应线圈,使得第一感应线圈产生感应电流,控制模组控制谐振控制开关关断,电流能够流经至电池进行充电。当电池充满电时,控制模组获得电池充满电的信号,控制谐振控制开关导通,改变第一感应线圈所在谐振回路的谐振频率,回路呈现容性阻抗,致其回路中充电电流变小,从而充电模组内的谐振回路的谐振电流同时减小,实现控制谐振控制开关的间歇性导通关断而改变第一感应线圈所处的谐振参数,实现电池充满电时对充电模组的反馈,从而降低第二感应线圈的谐振电流,达到降低功耗,节约电能。
当然,调节电容也可以与第一感应线圈串联连接,此时,谐振控制开关与调节电容并联。
气溶胶发生装置以及充电座的具体工作方式,可以参见前面实施例的描述,在此不再赘述。
本实施例通过在气溶胶发生装置插入时,触发所述充电模组中的回路电压差增大,根据增大的回路电压差调高充电模组的频率并增加充电电流,当气溶胶发生装置充满电时,改变谐振参数并发出已充满电信号,根据已充满电信号控制谐振控制开关导通,持续至充电模组处于低频率待机状态为止。实现控制谐振控制开关的间歇性导通关断而改变第一感应线圈所处的谐振参数,实现电池充满电时对充电模组的反馈,从而降低第二感应线圈的谐振电流,达到降低功耗,节约电能。
显然,以上所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例,附图中给出了本申请的较佳实施例,但并不限制本申请的专利范围。本申请可以以许多不同的形式来实现,相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。尽管参照前述实施例对本申请进行了详细的说明,对于本领域的技术人员来而言,其依然可以对前述各具体实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等效替换。凡是利用本申请说明书及附图内容所做的等效结构,直接或间接运用在其他相关的技术领域,均同理在本申请专利保护范围之内。

Claims (20)

  1. 一种用于气溶胶发生系统的无线充电电路,其中,所述用于气溶胶发生系统的无线充电电路包括:
    气溶胶发生模组,包括第一感应线圈,通过所述第一感应线圈电磁感应接收电源,所述气溶胶发生模组的输出端输出为电池充电,所述气溶胶发生模组还包括第一电容与谐振控制开关以及调节电容,所述第一电容与所述第一感应线圈组成谐振回路,所述谐振控制开关与所述调节电容组成谐振参数调节单元,所述谐振参数调节单元与所述谐振回路连接;
    充电模组,包括变压器、第二电容以及第二感应线圈,所述变压器将市电电压转换为工作电压;所述第二电容与所述第二感应线圈组成谐振回路,并所述变压器连接,其中,所述第一感应线圈与所述第二感应线圈电磁感应;
    控制模组,所述控制模组的输出连接所述谐振控制开关的控制端,由所述控制模组控制所述谐振控制开关的开断进而调节所述第一感应线圈所组成谐振回路的谐振参数。
  2. 根据权利要求1所述的用于气溶胶发生系统的无线充电电路,其中,所述第一电容和所述第一感应线圈串联连接,所述气溶胶发生模组还包括第一场效应晶体管及第二场效应晶体管;其中,所述第一场效应晶体管的源极与所述第二场效应晶体管的漏极连接,并与所述第一电容连接;所述第一场效应晶体管的栅极与所述第二场效应晶体管的栅极分别连接所述气溶胶发生模组的控制模块;所述第二场效应晶体管的源极接地,并与所述第一感应线圈连接;所述第一场效应晶体管的漏极连接电池;所述第一场效应晶体管的栅极与所述第二场效应晶体管的栅极分别连接所述气溶胶发生模组的控制模块。
  3. 根据权利要求1所述的用于气溶胶发生系统的无线充电电路,其中,所述充电模组还包括谐振电路与整流电路,其中,所述整流电路串联在所述谐振电路与所述变压器之间,将交流电压整流为直流电流;所述谐振电路与所述第二感应线圈连接,用于接收所述整流电路的直流电流,并输出谐振电流给所述第二感应线圈。
  4. 根据权利要求3所述的用于气溶胶发生系统的无线充电电路,其中,所述谐振电路包括第二电阻、第三场效应晶体管以及第四场效应晶体管,其中,所述第二电容、所述第二感应线圈、所述第二电阻、所述第三场效应晶体管依次串联,所述第四场效应晶体管的源极与所述第三场效应晶体管的漏极连接,所述第四场效应晶体管的漏极连接所述整流电路的输出端,所述第四场效应晶体管与所述第三场效应晶体管串联,所述第三场效应晶体管的栅极与所述第四场效应晶体管的栅极分别连接所述控制模组,所述第三场效应晶体管的源极接地,所述第二电容连接所述第四场效应晶体管的源极,其中,所述第二电阻的两端分别与所述控制模组连接。
  5. 根据权利要求4所述的用于气溶胶发生系统的无线充电电路,其中,所述整流电路为桥式整流电路。
  6. 根据权利要求1所述的用于气溶胶发生系统的无线充电电路,其中,所述第一感应线圈用于无线充电和磁感应加热。
  7. 一种气溶胶发生系统,其中,所述气溶胶发生系统包括无线充电电路,所述气溶胶发 生系统还包括:
    气溶胶发生装置,所述气溶胶发生装置包括电池,所述气溶胶发生模组设置在所述气溶胶发生装置中并用于给所述电池进行充电;所述气溶胶发生装置的一端设置第一感应线圈,所述气溶胶发生装置包括气溶胶发生模组的控制模块,所述气溶胶发生模组的控制模块连接所述气溶胶发生模组中的谐振控制开关的控制端,由所述气溶胶发生模组的控制模块控制所述谐振控制开关的开断进而调节所述第一感应线圈组成的谐振回路的谐振参数;
    充电座,所述充电模组设置于所述充电座,所述充电座包括插入部,所述插入部的设置有第二感应线圈,所述气溶胶发生模块插入所述插入部时,所述第二感应线圈与所述第一感应线圈产生电磁感应并传输电流,以对电池进行充电;
    所述无线充电电路包括:
    气溶胶发生模组,包括第一感应线圈,通过所述第一感应线圈电磁感应接收电源,所述气溶胶发生模组的输出端输出为电池充电,所述气溶胶发生模组还包括第一电容与谐振控制开关以及调节电容,所述第一电容与所述第一感应线圈组成谐振回路,所述谐振控制开关与所述调节电容组成谐振参数调节单元,所述谐振参数调节单元与所述谐振回路连接;
    充电模组,包括变压器、第二电容以及第二感应线圈,所述变压器将市电电压转换为工作电压;所述第二电容与所述第二感应线圈组成谐振回路,并所述变压器连接,其中,所述第一感应线圈与所述第二感应线圈电磁感应;
    控制模组,所述控制模组的输出连接所述谐振控制开关的控制端,由所述控制模组控制所述谐振控制开关的开断进而调节所述第一感应线圈所组成谐振回路的谐振参数。
  8. 根据权利要求7所述的气溶胶发生系统,其中,所述第一电容和所述第一感应线圈串联连接,所述气溶胶发生模组还包括第一场效应晶体管及第二场效应晶体管;其中,所述第一场效应晶体管的源极与所述第二场效应晶体管的漏极连接,并与所述第一电容连接;所述第一场效应晶体管的栅极与所述第二场效应晶体管的栅极分别连接所述气溶胶发生模组的控制模块;所述第二场效应晶体管的源极接地,并与所述第一感应线圈连接;所述第一场效应晶体管的漏极连接电池;所述第一场效应晶体管的栅极与所述第二场效应晶体管的栅极分别连接所述气溶胶发生模组的控制模块。
  9. 根据权利要求7所述的气溶胶发生系统,其中,所述充电模组还包括谐振电路与整流电路,其中,所述整流电路串联在所述谐振电路与所述变压器之间,将交流电压整流为直流电流;所述谐振电路与所述第二感应线圈连接,用于接收所述整流电路的直流电流,并输出谐振电流给所述第二感应线圈。
  10. 根据权利要求9所述的气溶胶发生系统,其中,所述谐振电路包括第二电阻、第三场效应晶体管以及第四场效应晶体管,其中,所述第二电容、所述第二感应线圈、所述第二电阻、所述第三场效应晶体管依次串联,所述第四场效应晶体管的源极与所述第三场效应晶体管的漏极连接,所述第四场效应晶体管的漏极连接所述整流电路的输出端,所述第四场效应晶体管与所述第三场效应晶体管串联,所述第三场效应晶体管的栅极与所述第四场效应晶体管的栅极分别连接所述控制模组,所述第三场效应晶体管的源极接地,所述第二电容连接所 述第四场效应晶体管的源极,其中,所述第二电阻的两端分别与所述控制模组连接。
  11. 根据权利要求10所述的气溶胶发生系统,其中,所述整流电路为桥式整流电路。
  12. 根据权利要求7所述的气溶胶发生系统,其中,所述第一感应线圈用于无线充电和磁感应加热。
  13. 一种气溶胶发生装置,其中,所述气溶胶发生装置内置有电池和气溶胶发生模组,所述气溶胶发生模组用于给所述电池进行充电和加热气溶胶基质,其中,所述气溶胶发生模组包括:
    第一感应线圈,通过所述第一感应线圈电磁感应接收电源;
    第一电容,所述第一电容与所述第一感应线圈组成谐振回路;
    谐振控制开关;
    调节电容,所述谐振控制开关与所述调节电容组成谐振参数调节单元,所述谐振参数调节单元与所述谐振回路连接;
    气溶胶发生模组的控制模块,所述气溶胶发生模组的控制模块连接所述谐振控制开关的控制端,由所述气溶胶发生模组的控制模块控制所述谐振控制开关的开断进而调节所述第一感应线圈所组成谐振回路的谐振参数。
  14. 根据权利要求13所述的气溶胶发生装置,其中,所述第一电容和所述第一感应线圈串联连接,所述气溶胶发生模组还包括第一场效应晶体管及第二场效应晶体管;其中,所述第一场效应晶体管的源极与所述第二场效应晶体管的漏极连接,并与所述第一电容连接;所述第一场效应晶体管的栅极与所述第二场效应晶体管的栅极分别连接所述气溶胶发生模组的控制模块;所述第二场效应晶体管的源极接地,并与所述第一感应线圈连接;所述第一场效应晶体管的漏极连接电池;所述第一场效应晶体管的栅极与所述第二场效应晶体管的栅极分别连接所述气溶胶发生模组的控制模块。
  15. 一种利用气溶胶发生系统的充电方法,其中,所述气溶胶发生系统包括无线充电电路,所述气溶胶发生系统还包括:
    气溶胶发生装置,所述气溶胶发生装置包括电池,所述气溶胶发生模组设置在所述气溶胶发生装置中并用于给所述电池进行充电;所述气溶胶发生装置的一端设置第一感应线圈,所述气溶胶发生装置包括气溶胶发生模组的控制模块,所述气溶胶发生模组的控制模块连接所述气溶胶发生模组中的谐振控制开关的控制端,由所述气溶胶发生模组的控制模块控制所述谐振控制开关的开断进而调节所述第一感应线圈组成的谐振回路的谐振参数;
    充电座,所述充电模组设置于所述充电座,所述充电座包括插入部,所述插入部的设置有第二感应线圈,所述气溶胶发生模块插入所述插入部时,所述第二感应线圈与所述第一感应线圈产生电磁感应并传输电流,以对电池进行充电;
    所述无线充电电路包括:
    气溶胶发生模组,包括第一感应线圈,通过所述第一感应线圈电磁感应接收电源,所述气溶胶发生模组的输出端输出为电池充电,所述气溶胶发生模组还包括第一电容与谐振控制开关以及调节电容,所述第一电容与所述第一感应线圈组成谐振回路,所述谐振控制开关与 所述调节电容组成谐振参数调节单元,所述谐振参数调节单元与所述谐振回路连接;
    充电模组,包括变压器、第二电容以及第二感应线圈,所述变压器将市电电压转换为工作电压;所述第二电容与所述第二感应线圈组成谐振回路,并所述变压器连接,其中,所述第一感应线圈与所述第二感应线圈电磁感应;
    控制模组,所述控制模组的输出连接所述谐振控制开关的控制端,由所述控制模组控制所述谐振控制开关的开断进而调节所述第一感应线圈所组成谐振回路的谐振参数;
    所述充电座的谐振回路中设置有第二电阻,所述充电方法包括以下步骤:
    充电座处于低功耗待机模式,监测充电座中第二电阻两端的电压值;
    当充电座监测到第二电阻两端的电压值大于第一预设阈值时,判断有气溶胶发生装置插入到充电座中;
    充电座增大谐振电流;
    气溶胶发生装置产生感应电流,给电池进行充电;
    当气溶胶发生装置检测到电池充满电时,按照预设频率控制气溶胶发生装置的谐振控制开关导通;
    当充电座监测到第二电阻两端的电压值小于第二预设阈值时,充电座降低谐振电流的大小,充电座变为低功耗待机模式;
    气溶胶发生装置控制谐振控制开关截止。
  16. 根据权利要求15所述的利用气溶胶发生系统的充电方法,其中,所述第一电容和所述第一感应线圈串联连接,所述气溶胶发生模组还包括第一场效应晶体管及第二场效应晶体管;其中,所述第一场效应晶体管的源极与所述第二场效应晶体管的漏极连接,并与所述第一电容连接;所述第一场效应晶体管的栅极与所述第二场效应晶体管的栅极分别连接所述气溶胶发生模组的控制模块;所述第二场效应晶体管的源极接地,并与所述第一感应线圈连接;所述第一场效应晶体管的漏极连接电池;所述第一场效应晶体管的栅极与所述第二场效应晶体管的栅极分别连接所述气溶胶发生模组的控制模块。
  17. 根据权利要求15所述的利用气溶胶发生系统的充电方法,其中,所述充电模组还包括谐振电路与整流电路,其中,所述整流电路串联在所述谐振电路与所述变压器之间,将交流电压整流为直流电流;所述谐振电路与所述第二感应线圈连接,用于接收所述整流电路的直流电流,并输出谐振电流给所述第二感应线圈。
  18. 根据权利要求17所述的利用气溶胶发生系统的充电方法,其中,所述谐振电路包括第二电阻、第三场效应晶体管以及第四场效应晶体管,其中,所述第二电容、所述第二感应线圈、所述第二电阻、所述第三场效应晶体管依次串联,所述第四场效应晶体管的源极与所述第三场效应晶体管的漏极连接,所述第四场效应晶体管的漏极连接所述整流电路的输出端,所述第四场效应晶体管与所述第三场效应晶体管串联,所述第三场效应晶体管的栅极与所述第四场效应晶体管的栅极分别连接所述控制模组,所述第三场效应晶体管的源极接地,所述第二电容连接所述第四场效应晶体管的源极,其中,所述第二电阻的两端分别与所述控制模组连接。
  19. 根据权利要求18所述的利用气溶胶发生系统的充电方法,其中,所述整流电路为桥式整流电路。
  20. 根据权利要求15所述的利用气溶胶发生系统的充电方法,其中,所述第一感应线圈用于无线充电和磁感应加热。
PCT/CN2022/100434 2021-10-27 2022-06-22 气溶胶发生系统、装置、无线充电电路及充电方法 WO2023071239A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111254209.7 2021-10-27
CN202111254209.7A CN114069806A (zh) 2021-10-27 2021-10-27 气溶胶发生系统、装置、无线充电电路及充电方法

Publications (1)

Publication Number Publication Date
WO2023071239A1 true WO2023071239A1 (zh) 2023-05-04

Family

ID=80235864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100434 WO2023071239A1 (zh) 2021-10-27 2022-06-22 气溶胶发生系统、装置、无线充电电路及充电方法

Country Status (2)

Country Link
CN (1) CN114069806A (zh)
WO (1) WO2023071239A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114069806A (zh) * 2021-10-27 2022-02-18 深圳市吉迩科技有限公司 气溶胶发生系统、装置、无线充电电路及充电方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201887495U (zh) * 2010-10-14 2011-06-29 朱斯忠 一种感应充电装置
CN102457090A (zh) * 2010-10-14 2012-05-16 朱斯忠 一种感应充电装置
CN204089230U (zh) * 2014-06-30 2015-01-07 深圳市合元科技有限公司 电子烟无线充电系统和可无线充电的电子烟及电池组件
CN211185875U (zh) * 2019-07-31 2020-08-07 深圳瀚星翔科技有限公司 电子烟
CN114069806A (zh) * 2021-10-27 2022-02-18 深圳市吉迩科技有限公司 气溶胶发生系统、装置、无线充电电路及充电方法
CN217240390U (zh) * 2021-10-27 2022-08-19 深圳市吉迩科技有限公司 气溶胶发生系统、装置及无线充电电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201887495U (zh) * 2010-10-14 2011-06-29 朱斯忠 一种感应充电装置
CN102457090A (zh) * 2010-10-14 2012-05-16 朱斯忠 一种感应充电装置
CN204089230U (zh) * 2014-06-30 2015-01-07 深圳市合元科技有限公司 电子烟无线充电系统和可无线充电的电子烟及电池组件
CN211185875U (zh) * 2019-07-31 2020-08-07 深圳瀚星翔科技有限公司 电子烟
CN114069806A (zh) * 2021-10-27 2022-02-18 深圳市吉迩科技有限公司 气溶胶发生系统、装置、无线充电电路及充电方法
CN217240390U (zh) * 2021-10-27 2022-08-19 深圳市吉迩科技有限公司 气溶胶发生系统、装置及无线充电电路

Also Published As

Publication number Publication date
CN114069806A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2017167225A1 (zh) 一种多手机可移动三维无线充电装置
CN103346686B (zh) 一种基于电流互感器谐振取电的直流源
CN108521223B (zh) 开关电源电路
CN108964474A (zh) 一种基于llc谐振变换器的三模态整流拓扑结构
WO2023071239A1 (zh) 气溶胶发生系统、装置、无线充电电路及充电方法
CN110635545A (zh) 一种基于单管电路实现恒流恒压无线充电的装置及方法
WO2022166420A1 (zh) 一种充电控制方法、电子设备、无线充电系统
CN201319677Y (zh) 一种微波炉磁控管用开关电源
CN217240390U (zh) 气溶胶发生系统、装置及无线充电电路
CN208924445U (zh) 一种蓝牙耳机充电电路
WO2023226162A1 (zh) 一种高压输电线路在线监测设备可持续无线供电系统
CN207426995U (zh) 小功率高频双向ac-dc双管变换器
CN210092946U (zh) 一种充电电路
CN210809315U (zh) 感应加热电路、感应加热装置及气雾递送装置
CN208986675U (zh) Ups装置
WO2022155898A1 (zh) 电源电路及电源装置
CN208596959U (zh) 一种动力电池的无线充电电路
CN208782738U (zh) 一种基于磁开关控制的分布式电源装置、充电桩、充电器、保护电路装置
WO2016155268A1 (zh) 无线供电接收装置和显示设备
CN111278208A (zh) 一种灯丝供电装置及低能电子加速器
CN203554042U (zh) 一种电源变压器
CN211702517U (zh) 一种灯丝供电装置及低能电子加速器
CN109510460B (zh) 微波炉电源电路以及微波炉
CN103973141A (zh) 一种应用开关电源电路供电的全直流变频空调
CN212210576U (zh) 一种低功耗的蓄电池充电器的供电电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885145

Country of ref document: EP

Kind code of ref document: A1