WO2017167225A1 - 一种多手机可移动三维无线充电装置 - Google Patents

一种多手机可移动三维无线充电装置 Download PDF

Info

Publication number
WO2017167225A1
WO2017167225A1 PCT/CN2017/078791 CN2017078791W WO2017167225A1 WO 2017167225 A1 WO2017167225 A1 WO 2017167225A1 CN 2017078791 W CN2017078791 W CN 2017078791W WO 2017167225 A1 WO2017167225 A1 WO 2017167225A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
output
coil
inverter
voltage
Prior art date
Application number
PCT/CN2017/078791
Other languages
English (en)
French (fr)
Inventor
杨军
张伟
张腾元
郭秋泉
Original Assignee
杨军
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨军 filed Critical 杨军
Publication of WO2017167225A1 publication Critical patent/WO2017167225A1/zh

Links

Images

Classifications

    • H02J7/025
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters

Definitions

  • the invention provides a multi-mobile phone movable three-dimensional wireless charging device, relating to a wireless mobile phone charging device, in particular to a three-dimensional uniform magnetic field wireless charging device suitable for multiple mobile phones and moving conditions.
  • This technology belongs to the field of wireless power transmission technology.
  • the new contactless inductively coupled power transfer technology utilizes the principle of electromagnetic induction coupling to transmit electrical energy.
  • the power supply can transmit power to portable mobile devices through a large air gap, eliminating the direct metal conductor connection between the power supply and the electrical load, eliminating the need for a direct metal conductor connection between the power supply and the electrical load.
  • the traditional wire direct connection method produces device wear, short circuit, etc., which increases the flexibility of the device to obtain electrical energy.
  • the wireless charging devices involved use a planar combination coil to form a charging tablet to wirelessly charge a mobile phone or a battery. Since the charging platform designed in the prior art adopts a planar coil structure, the electromagnetic field distribution is uneven, especially after the electromagnetic field is rapidly weakened after leaving the surface, so most of the mobile phones or batteries are required to be placed on the wireless charging plate or the charging pad at a specified position, and must be Close to the charging plate.
  • the invention is based on the working principle of Helmholtz, combined with power inverter technology, automatic frequency tracking technology, multi-load decoupling and control technology to design a multi-mobile mobile three-dimensional wireless charging device.
  • the object of the present invention is to provide a multi-mobile phone movable three-dimensional wireless charging device, which is capable of providing a uniform electromagnetic field in a three-dimensional space inside a coil, and simultaneously can be applied to a plurality of mobile phones or batteries at any position within the coil.
  • a device that performs wireless charging It is different from the existing wireless charging tablet or wireless charging pad, which can provide a uniform electromagnetic field in the three-dimensional space inside the coil, and can wirelessly charge multiple mobile phones or batteries at any position in the coil at the same time, which is especially suitable for mobile phones under the condition of vehicle moving. Charging.
  • the multi-mobile phone movable three-dimensional wireless charging device of the present invention refers to wireless charging of a mobile phone or a battery by the principle of electromagnetic induction coupling.
  • the multi-mobile phone movable three-dimensional wireless charging device comprises: a power input, an inverter DC power supply, a high-frequency inverter circuit, a primary compensation network, and is composed of a primary coil (transmitting coil) and a secondary coil (receiving coil).
  • Loose coupling transformer, secondary compensation network, output regulation circuit Location connection relationship between them Yes:
  • the power input is connected to the inverter DC power supply, and the output of the inverter DC power supply is connected to the high frequency inverter circuit.
  • the output of the high frequency inverter circuit is connected to the primary compensation network, and then connected to the original of the loosely coupled transformer.
  • the side coil is placed in the primary coil, the output of which is connected to the secondary compensation network, and then to the output regulation circuit, and the output of the output regulation circuit is connected to the load.
  • the power input may be an AC220V AC input, or a +12V vehicle DC power supply or a +5V mobile DC power input;
  • the inverter DC power supply includes a rectification and filtering circuit A, a MOSFET half-bridge inverter circuit, an isolation transformer TR1, a secondary rectification and filtering circuit B, a driving circuit 1, a multi-load decoupling and a control circuit, and the like.
  • AC220V AC input rectification filter circuit A AC220V AC input rectification filter circuit A
  • the output end of the rectification filter circuit A is connected to the input end of the MOSFET half bridge inverter circuit
  • the output of the MOSFET half bridge inverter circuit is connected to the isolation transformer TR1
  • the primary side coil, the secondary side coil of the isolation transformer TR1 is connected to the secondary rectification filter circuit B
  • the output voltage of the inverter DC power supply is connected to the multi-load decoupling and control circuit through the voltage sensor U df , the multi-load decoupling and control circuit
  • the output PWM signal is connected to the MOSFET gate drive input terminal of the half-bridge inverter circuit through the drive circuit 1, and the current output by the high-frequency inverter circuit connects the current signal I f to the multi-load decoupling and control circuit through the current sensor. Adjust the output voltage of the inverter DC power supply.
  • the rectifying and filtering circuit A is a full bridge rectifying and filtering circuit
  • the MOSFET half-bridge inverter circuit is composed of high-frequency capacitors C1 and C2 and MOSFET tubes Q1 and Q2; the relationship between them is: the source of Q1 is connected in series with the drain of Q2, and then connected in parallel with C1 and C2 after series connection.
  • the half-bridge inverter circuit, then one end of the Q1 drain in the half-bridge inverter circuit is connected to the positive pole of the output of the rectifying and filtering circuit A, and one end of the Q2 source is connected to the negative pole of the output of the rectifying and filtering circuit A;
  • the high-frequency capacitor C1 C2 is a high frequency film capacitor;
  • the MOSFET tubes Q1, Q2 are N-channel MOSFETs, such as FQA11N90C;
  • the isolation transformer TR1 is a high frequency step-down transformer formed by winding a nanocrystalline iron core
  • the secondary rectification and filtering circuit B includes a full-wave rectification circuit B composed of a fast recovery diode, a filter inductor L1, a capacitor C3, and the like.
  • the relationship between them is: the output of the isolation transformer TR1 is connected to the full-wave rectification circuit B and converted into a direct current output, and the output is connected to the filter inductor L1 and the capacitor C3 for filtering to obtain a stable DC voltage output;
  • the full-wave rectifier circuit B adopts a fast recovery diode module; the filter inductor L1 high frequency inductor; the capacitor C3 high frequency film capacitor;
  • the driving circuit 1 uses an integrated optocoupler to isolate the driving circuit, such as FOD3182;
  • the voltage sensor uses a Hall voltage sensor (such as LEM's LV25-P);
  • the current sensor uses a current transformer (such as CHG-200);
  • the multi-load decoupling and control circuit comprises a PWM generating circuit, an inner loop PID adjusting circuit, an outer loop PID adjusting circuit and a rectifying and filtering circuit C.
  • the relationship between the two is that the current signal I f outputted by the high-frequency inverter circuit is connected to the rectifying and filtering circuit C, and the output I df of the rectifying and filtering circuit C and the output current value I dg of the set high-frequency inverter circuit are connected to the outer ring.
  • the output signal U dg of the outer loop PID adjustment circuit is connected to the inner loop PID adjustment circuit as the output voltage of the inverter DC power supply, and the feedback signal U df of the output voltage of the inverter DC power supply is also connected to the inner loop PID
  • the adjusting circuit, the output of the inner loop PID adjusting circuit is connected to the PWM generating circuit, and the output of the PWM generating circuit is connected to the power switching MOSFET of the inverter DC power source through the driving circuit 1, and the output voltage of the inverter DC power source is adjusted to ensure the primary side coil
  • the input current is constant, which ensures that the electromagnetic field inside the primary coil is constant, so that the load quantity and its charging current change will not affect the charging state of each load.
  • the PWM generating circuit uses a PWM waveform generating integrated circuit SG2525A;
  • the inner loop PID adjusting circuit is a proportional, integral and differential closed-loop negative feedback regulating circuit composed of an operational amplifier, a capacitor and a resistor, and is used for adjusting an output voltage of the inverter DC power supply;
  • the outer loop PID adjusting circuit is a proportional, integral and differential closed-loop negative feedback regulating circuit composed of an operational amplifier, a capacitor and a resistor, and is used for adjusting an output current of the high-frequency inverter circuit;
  • the rectifying and filtering circuit C is composed of a fast recovery diode and a high-frequency capacitor to form a rectifying and filtering circuit, which is used for rectifying and filtering the current feedback signal I f outputted by the high-frequency inverter circuit into a DC current signal I df ;
  • the high frequency inverter circuit is composed of a MOSFET full bridge inverter circuit, a drive circuit 2, and a resonant frequency automatic tracking circuit.
  • the positional connection relationship between them is: the output of the inverter DC power supply is connected to the input end of the full-bridge inverter circuit of the high-frequency inverter circuit, and the output of the full-bridge inverter circuit is connected to the primary side compensation network;
  • the current signal I f outputted by the circuit is connected to the resonant frequency automatic tracking circuit together with the voltage signal U f , and the output of the resonant frequency automatic tracking circuit is connected to the gate input terminal of the MOSFET power switch tube of the full bridge inverter circuit through the driving circuit 2 . .
  • the resonant frequency automatic tracking circuit comprises a current shaping circuit A, a voltage shaping circuit B, a phase difference detecting circuit, a phase relationship detecting circuit, a delay circuit, a phase post processing circuit, a PID adjusting circuit and an SG2525A PWM generating circuit.
  • the relationship between the current signal I f and the voltage signal U f outputted by the full-bridge inverter circuit is respectively connected to the current shaping circuit A and the voltage shaping circuit B, and the output signal I a of the current shaping circuit A is connected to the phase difference detecting circuit and a phase relationship detecting circuit, wherein the output signal U a of the voltage shaping circuit B is connected to the phase difference detecting circuit and the delay circuit, and the delay circuit output signal is connected to the phase relationship detecting circuit; the phase difference detecting circuit outputs the phase difference signal ⁇ and
  • the phase selection signal outputted by the phase relationship detecting circuit is connected to the phase post processing circuit, and the output of the phase post processing circuit is connected to the PID adjusting circuit, and the output of the PID adjusting circuit is connected to the frequency adjusting input end of the PWM generating circuit SG2525A,
  • the frequency of the PWM pulse outputted is adjusted to achieve automatic tracking of the resonant frequency of the high frequency inverter circuit.
  • the driving circuit 2 uses an integrated optocoupler to isolate the driving circuit, such as FOD3182;
  • the current shaping circuit A is composed of a voltage comparator (such as LM293), and converts the current signal I f into a square wave signal of the same frequency;
  • the voltage shaping circuit B is composed of a voltage comparator (such as LM293), and converts the voltage signal U f into a square wave signal of the same frequency;
  • the phase difference detecting circuit by the NAND gate logic circuit (for example of CD4011) composed of the detected phase difference signal between a signal current I a and the voltage signal U a is determined by the logic;
  • the phase relationship detecting circuit is composed of a NAND gate logic circuit (such as CD4013) for detecting a lead or lag relationship between the current signal I a and the voltage signal U a ;
  • the delay circuit is composed of a resistor and a capacitor to realize a delay of the voltage signal U a ;
  • the phase post-processing circuit is mainly composed of a multi-path selection switch circuit (such as CD4053), and a phase selection signal is selected to input a positive or negative phase error signal into the PID adjustment circuit;
  • the PID adjustment circuit mainly comprises an operational amplifier forming a proportional, integral and differential adjustment circuit, according to the phase of the input
  • the error signal is proportional, integral and differential, and its output is connected to the SG2525A PWM generation circuit to adjust the frequency of the output PWM waveform;
  • the SG2525A PWM generation circuit uses a PWM waveform generation integrated circuit SG2525A to generate a frequency-adjustable PWM waveform.
  • the primary side compensation network is composed of a plurality of CBB high frequency capacitors connected in series and in parallel.
  • Said loosely coupled transformer comprising a primary coil and a plurality of secondary coil; the coil assembly by a pair of the primary coil and a plurality of turns, side length, the same height and thickness coaxially disposed parallel rectangular shapes and other from inside the coils to provide a uniform three-dimensional electromagnetic field; primary coil mounted externally with a thin layer of ferromagnetic material, the electromagnetic field effective shielding of the primary coil leak, reducing external radiation electromagnetic field; the secondary coil is a rectangular shape and any The complex turns of the coil, or a combination of a plurality of coils in series or in parallel.
  • the thin layer of ferromagnetic material externally mounted on the primary coil is pressed by ferrite powder, has high magnetic permeability, and effectively shields the electromagnetic field radiated by the primary coil.
  • the secondary side compensation network is composed of a plurality of CBB high frequency capacitors connected in series and in parallel.
  • the output adjustment circuit includes a rectification filter circuit D, a Buck chopper circuit, a drive circuit 3, an output characteristic control circuit, and the like.
  • the positional connection relationship between them is: the output of the secondary side coil is connected to the secondary side compensation network and then connected to the rectifying and filtering circuit D, the output of the rectifying and filtering circuit D is connected to the Buck Chopper circuit, and the output of the Buck Chopper circuit is reconnected.
  • the voltage and current signals output by the Buck Chopper circuit are connected to the output characteristic control circuit, and the output is connected to the gate input terminal of the MOSFET power switch tube of the Buck Chopper circuit via the drive circuit 3.
  • the rectifying and filtering circuit D is a full-bridge rectifying and filtering circuit, and rectifies an alternating current voltage inductively coupled to the secondary side coil into a direct current voltage;
  • the Buck chopper circuit is composed of a MOSFET switch tube Q7, a fast recovery diode D5, an inductor L2 and a filter capacitor C7, and is used to adjust the output characteristics of the output circuit, such as an output characteristic of constant voltage current limiting; the relationship between them is: rectification filtering
  • the anode of the circuit D output is connected to the drain of the MOSFET switch Q7, the source of Q7 is connected to the inductor L2 and the filter capacitor C7 for filtering, and the other end of the capacitor C7 is connected to the cathode of the rectifier filter circuit D;
  • the fast recovery diode The cathode of D5 is connected to the source of Q7, the anode of D5 is connected to the negative pole of the rectifier filter circuit D;
  • the MOSFET switch transistor Q7 is an N-channel MOSFET, such as IRF640; the fast recovery diode D5 is output when Q7 is turned off.
  • the circuit performs freewheeling; the inductor
  • the drive circuit 3 uses an integrated optocoupler to isolate the drive circuit, such as the FOD3182.
  • the output characteristic control circuit is composed of a PWM generating circuit and a PID adjusting circuit for adjusting the output voltage U outf and the output current I outf ; the relationship between the output voltage signal U outf and the output current signal I out is connected to the PID adjustment
  • the circuit performs error calculation and amplification, and its output is connected to the PWM generation circuit to adjust the pulse width of the PWM waveform, thereby realizing adjustment of the output voltage and the output current.
  • the PWM generating circuit uses a PWM waveform to generate an integrated circuit SG2525A; the PID adjusting circuit is composed of a proportional, integral and differential closed-loop negative feedback regulating circuit composed of an operational amplifier, a capacitor and a resistor.
  • the dynamic three-dimensional wireless charging device is composed of a power input, an inverter DC power supply, a high frequency inverter circuit, a primary side compensation network, a primary side coil, a secondary side coil, a secondary side compensation network, an output adjustment circuit, and a mobile phone or a mobile phone battery load. It can provide a uniform electromagnetic field in the three-dimensional space inside the primary coil, and can wirelessly charge multiple mobile phones at any position in the coil at the same time, which is especially suitable for charging mobile phones under the condition of vehicle movement, and is also suitable for various types of Pads and electric toys driven by rechargeable batteries. Charging.
  • FIG. 1 is a schematic diagram showing the system configuration of a multi-mobile phone mobile three-dimensional wireless charging device according to the present invention
  • FIG. 2 is a working circuit diagram of a driving circuit and a control circuit of a primary side coil according to the present invention
  • FIG. 3 is a schematic structural view of a primary coil in the present invention.
  • FIG. 4 is a working circuit diagram of a secondary side coil output main circuit and an output characteristic control circuit in the present invention
  • FIG. 5 is a block diagram of a working circuit of a multi-load decoupling and control circuit according to the present invention.
  • FIG. 6 is a block diagram of a working circuit of a resonant frequency automatic tracking circuit of a high frequency inverter circuit according to the present invention
  • Figure 7 is a schematic diagram showing the output characteristics of the present invention.
  • 101 is an inverter DC power supply
  • 102 is a high frequency inverter circuit
  • 104 is the primary coil of the loosely coupled transformer
  • 105 is a secondary winding of the loosely coupled transformer
  • 106 is the secondary side compensation network
  • 107 is an output adjustment circuit
  • 108 is the battery load of the mobile phone or mobile phone
  • 201 is a rectifying and filtering circuit A
  • 202 is a MOSFET half bridge inverter circuit
  • 205 is a driving circuit 1;
  • 206 is a multi-load decoupling and control circuit
  • 207 is a full bridge inverter main circuit
  • 401 is a rectifying and filtering circuit D
  • 501 is a PWM generating circuit
  • 502 is an inner loop PID adjustment circuit
  • 503 is an outer loop PID adjustment circuit
  • 601 is a current shaping circuit A
  • 602 is a phase difference detecting circuit
  • 603 is a phase post processing circuit
  • 604 is a PID adjustment circuit
  • 605 is a phase relationship detecting circuit
  • 606 is a voltage shaping circuit B
  • 607 is a delay circuit
  • 608 is SG2525A
  • the MOSFET is a metal oxide semiconductor field effect crystal
  • PWM pulse width adjustment
  • TR1 is the serial number of the high frequency transformer
  • Q is the serial number of the MOSFET.
  • the invention provides a multi-mobile phone movable three-dimensional wireless charging device, and the specific embodiment thereof is:
  • the multi-mobile phone movable three-dimensional wireless charging device comprises:
  • the multi-mobile mobile 3D wireless charging device comprises a power input 100, an inverter DC power supply 101, a high frequency inverter circuit 102, a primary compensation network 103, a primary winding 104 of a loosely coupled transformer, The secondary winding 105 of the loosely coupled transformer, the secondary compensation network 106, the output adjustment circuit 107, the handset or the mobile phone battery load 108 are connected, wherein the secondary coil 105 is placed in the primary coil 104 to pick up energy by electromagnetic coupling.
  • the driving circuit and the control circuit of the primary coil are mainly composed of a rectifying and filtering circuit A201, a MOSFET half-bridge inverter circuit 202, an isolation transformer 203, a secondary rectification and filtering circuit B204, a driving circuit 1205, and a multi-load.
  • the decoupling and control circuit 206, the full bridge inverter main circuit 207, the drive circuit 2 208, and the resonant frequency automatic tracking circuit 209 are connected.
  • the primary coil is composed of a pair of coaxial coils placed in parallel with a common number of turns, sides, heights and thicknesses based on the working principle of the Helmholtz coil; the primary coil is externally mounted by a ferromagnetic material.
  • the thin layer, the thin layer of the ferromagnetic material is pressed by the ferrite powder, has high magnetic permeability, effectively shields the electromagnetic field of the primary coil, and reduces the external radiation of the electromagnetic field.
  • the output adjustment circuit is connected by a rectification filter circuit D 401, a Buck chopper circuit 402, a drive circuit 3 403, and an output characteristic control circuit 404.
  • the multi-load decoupling and control circuit 206 is mainly connected by a PWM generating circuit 501, an inner loop PID adjusting circuit 502, an outer loop PID adjusting circuit 503, and a rectifying and filtering circuit C 504.
  • the resonant frequency automatic tracking circuit 209 is composed of a current shaping circuit A 601, a phase difference detecting circuit 602, a phase post processing circuit 603, a PID adjusting circuit 604, a phase relationship detecting circuit 605, a voltage shaping circuit B606,
  • the delay circuit 607, the SG2525A 608, and the like are connected.
  • the output characteristics of the device are constant voltage current limiting output characteristics.
  • the multi-mobile mobile 3D wireless charging device can provide a uniform electromagnetic field in a three-dimensional space inside the primary coil, and the mobile phone or the battery can be charged at any position inside the coil, which is particularly suitable for charging the mobile phone or the battery under the condition of vehicle movement.
  • the multi-mobile phone movable three-dimensional wireless charging device can simultaneously wirelessly charge a plurality of mobile phones or batteries at any position within the coil.
  • the multi-mobile mobile 3D wireless charging device adopts a main circuit topology in which an inverter DC power supply and a high-frequency inverter circuit are connected in series, and designs a multi-load decoupling and control circuit by adjusting an output voltage of the inverter DC power supply.
  • the input current of the primary coil is kept constant, thereby ensuring that the electromagnetic field in the primary coil is constant, so that the number of mobile phones or mobile phone batteries and their charging current changes will not affect the charging state of each load.
  • the multi-mobile mobile 3D wireless charging device is designed with a resonant frequency automatic tracking technology, which can realize automatic tracking of the primary side coil and its compensation network resonant frequency, and can realize efficient wireless transmission of the primary side coil output power.
  • the multi-mobile mobile 3D wireless charging device is provided with a thin layer of ferromagnetic material outside the primary coil, which can effectively shield the electromagnetic field of the coil and reduce the external radiation of the electromagnetic field.
  • the invention provides a mobile phone three-dimensional wireless charging device for wireless charging of a mobile phone or a battery, which can provide a uniform electromagnetic field in a three-dimensional space inside the primary coil, and can wirelessly charge multiple mobile phones at any position in the coil at the same time. It is especially suitable for mobile phone charging under the condition of vehicle movement; it also has multi-load decoupling and control, automatic tracking of resonant frequency, and electromagnetic shielding.
  • the power supply input 100, the inverter DC power supply 101, the high frequency inverter circuit 102, the primary side compensation network 103, the primary side coil 104 of the loosely coupled transformer, the secondary side coil 105 of the loosely coupled transformer, and the secondary side are included.
  • the power input 100 is passed through the inverter DC power supply 101, it becomes a voltage-adjustable DC voltage source output, and then the input high-frequency inverter circuit 102 is again converted into a high-frequency inverter AC square wave, and the high-frequency inverter AC square wave is further
  • a series resonant circuit composed of the primary side compensation network 103 and the primary side coil 104 is input to generate resonance, and a uniform alternating electromagnetic field is generated inside the primary side coil 104.
  • the secondary winding 105 and the secondary compensation network are connected in series to form a secondary resonant circuit, and have the same resonant frequency as the primary resonant circuit; when the secondary coil 105 is placed in the primary coil 104, the energy is extracted by electromagnetic resonance coupling, and the induced electrical energy is generated.
  • the input/output adjustment circuit 107 realizes the output of the constant voltage current limiting characteristic, thereby realizing safe and reliable charging of the mobile phone or mobile phone battery load.
  • the power input 100 can be an AC 220V AC input or a +12V vehicle power supply.
  • the inverter DC power supply 101 includes a rectification and filtering circuit A 201, a MOSFET half-bridge inverter circuit 202, an isolation transformer 203, a secondary rectification and filtering circuit B 204, a driving circuit 1 205, a multi-load decoupling and control circuit 206, and the like.
  • the multi-load decoupling and control circuit 206 includes a PWM generating circuit 501, an inner loop PID adjusting circuit 502, an outer loop PID adjusting circuit 503, a rectifying and filtering circuit 504, and the like.
  • the AC220V AC power input rectification and filtering circuit A 201 is converted into a DC power of about 310V, and then converted into an AC square wave of about 20 kHz by a half bridge inverter circuit 202 formed by a MOSFET, and the AC square wave is input to the isolation transformer 203 to be stepped down.
  • the low-frequency AC square wave of the same frequency is converted into a voltage-adjustable DC voltage output by the secondary rectification and filtering circuit B 204.
  • the output voltage of the inverter DC power supply 101 can be changed by adjusting the on and off times of the MOSFET power switch of the half bridge inverter circuit 202.
  • multi-load decoupling and control can be realized: when the number of mobile phones or mobile phone batteries is loaded or charged
  • the output current of the inverter DC power supply 101 is adjusted to ensure that the input current of the primary coil 104 is constant, thereby ensuring that the electromagnetic field inside the primary coil 104 is constant, so that the load quantity and its charging current change do not affect each.
  • the state of charge of the load is adjusted to ensure that the input current of the primary coil 104 is constant, thereby ensuring that the electromagnetic field inside the primary coil 104 is constant, so that the load quantity and its charging current change do not affect each. The state of charge of the load.
  • the current signal I f output from the high-frequency inverter circuit 102 is input to the rectifying and filtering circuit C 504, and is rectified and filtered to become an average current signal I df , and then input together with the output current value I dg of the set high-frequency inverter circuit.
  • the outer loop PID adjusting circuit 503, the output signal U dg of the outer loop PID adjusting circuit 503 is connected to the inner loop PID adjusting circuit 502 as the voltage of the inverter DC power source, and the feedback signal U df of the output voltage of the inverter DC power source is also connected.
  • the output of the inner loop PID adjusting circuit 502 is connected to the PWM generating circuit 501 to adjust the pulse width of the PWM waveform, and then the adjusted PWM waveform is passed through the driving circuit 1 and then connected to the MOSFET of the inverter DC power supply.
  • the half-bridge inverter circuit 202 adjusts the turn-on and turn-off times of the switch tube to realize the output voltage adjustment of the inverter DC power source. In this way, by adjusting the output voltage of the inverter DC power supply to ensure that the input current of the primary coil is constant, the electromagnetic field inside the primary coil is kept constant, so that the load quantity and the charging current change do not affect the charging state of each load.
  • the high frequency inverter circuit 102 is composed of a full bridge inverter main circuit 207, a drive circuit 2 208, a resonance frequency automatic tracking circuit 209, and the like.
  • the resonant frequency automatic tracking circuit 209 includes a current shaping circuit A 601, a phase difference detecting circuit 602, a phase post processing circuit 603, a PID adjusting circuit 604, a phase relationship detecting circuit 605, a voltage shaping circuit B606, a delay circuit 607, and an SG2525A. 608 and so on.
  • the main function of the high frequency inverter circuit 102 is to convert the DC power input from the inverter DC power supply 101 into a high frequency AC square wave output through the full bridge inverter main circuit 207; meanwhile, the resonant frequency automatic tracking circuit 209 adjusts the full bridge inverse.
  • the operating frequency of the variable circuit is slightly higher than the resonant frequency of the series circuit composed of the primary side compensation network 103 and the primary side coil 104, so that the resonant circuit formed by the primary side coil 104 and the primary side compensation network 103 operates in a slightly biased manner.
  • the resonant working state not only realizes the output of the resonant large current, but also enables the full-bridge inverter main circuit to work safely and reliably.
  • the current signal I f and the voltage signal U f outputted by the high frequency inverter circuit 102 are respectively converted into a square wave signal I a of the same frequency by the current shaping circuit A 601 and the voltage shaping circuit B 606 .
  • U a which are input to the phase difference detecting circuit 602 to obtain a phase difference ⁇ between the current and the voltage.
  • U a obtains the delayed voltage square wave signal U aa after the delay circuit 607 , and then U aa and I a re-input the phase relationship detection circuit to determine whether the current is ahead or the voltage is advanced.
  • phase difference ⁇ and the phase difference selection signal are re-inputted into the phase post-processing circuit 603 to perform phase error signal discrimination, and the result (+ ⁇ or - ⁇ ) is input to the PID adjustment circuit 604, and the adjusted voltage signal U out is output to the SG2525A.
  • the frequency of the output PWM pulse waveform is dynamically adjusted to achieve automatic tracking of the resonant frequency of the high frequency inverter circuit.
  • the resonant circuit formed by the primary winding 104 and the primary compensation network 103 operates in a slightly biased quasi-resonant state, not only can a large primary coil excitation current be output, but also a MOSFET switching transistor in the full bridge inverter circuit. It can achieve zero voltage turn-on and reduce its turn-off loss. Therefore, in order to improve the operational reliability and transmission efficiency of the full-bridge inverter circuit 207, it should be ensured that the full-bridge inverter circuit in the high-frequency inverter circuit 102 always operates in an inductive state.
  • the phase advance is determined (lagging) with the current signal I a, so that the actual delay is tracked Voltage signal U aa . Therefore, when the frequency tracking circuit enters the locked state, there is no phase difference between the delayed voltage signal U aa and the current signal I a , but in fact the voltage signal across the inverter load is slightly ahead of the current signal. Thus, a slightly biased quasi-resonant frequency automatic tracking is achieved.
  • the primary side compensation network 103 is formed by connecting a plurality of CBB high frequency capacitors in series and then in series with the primary side coil 104 to form a series resonant circuit, which is connected to the output end of the high frequency inverter circuit 102 as its series resonant load.
  • the primary coil 104 is based on the basic principle of the Helmholtz coil, consisting of a pair of square coils with parallel axes, side lengths, heights and thicknesses placed in parallel, and numerical calculations of the turns, height and thickness of the coils. Optimized to achieve the most uniform state of the electromagnetic field distribution inside the coil.
  • An optimized embodiment of the coil parameters is that the side length a is 200 mm, the single layer coil, the number of turns of each coil is 65 ⁇ , the coil height h is 50 mm, and the center distance d of the coil is 100 mm.
  • the outer side coil is externally mounted with a thin layer of ferromagnetic material, which can effectively shield the electromagnetic field of the coil and reduce the external radiation of the electromagnetic field.
  • the secondary coil 105 is a 60 mm ⁇ 60 mm rectangular coil having a number of turns of 65 ⁇ , and is placed in the primary coil 104 to pick up electromagnetic energy and convert it into an inductive power output.
  • the secondary side compensation network 106 is also formed by connecting a plurality of CBB high frequency capacitors in series and then in series with the secondary side coil 105 to form a series resonant circuit having the same resonant frequency as the primary side series resonant circuit.
  • the output of the secondary side series resonant circuit is coupled to an output regulation circuit 107 for providing electrical energy input thereto.
  • the output adjustment circuit 107 is connected by a rectification filter circuit D 401, a Buck chopper circuit 402, a drive circuit 3 403, and an output characteristic control circuit 404.
  • the secondary side compensation network 106 and the secondary side coil 105 form the electromagnetic energy picked up by the series resonant circuit and are connected to the rectifying and filtering circuit D 401 of the output adjusting circuit 107 to become a DC voltage, which is then input to the Buck Chopper circuit 402 for adjustment. Constant voltage current limiting output characteristics.
  • the constant voltage current limiting output characteristic is realized in that the voltage signal U outf and the current signal I outf outputted by the output adjusting circuit 107 are connected to the output characteristic adjusting circuit 404 to realize closed loop negative feedback adjustment of the output voltage and current, and the adjusted PWM signal.
  • the driving circuit 3 403 controls the turn-on and turn-off time of the MOSFET power switch of the Buck Chopper circuit 402 the constant voltage current limiting characteristic output can be realized.
  • FIG. 1 is a schematic diagram of a system configuration of a mobile phone three-dimensional wireless charging device, mainly comprising a power input 100, an inverter DC power supply 101, a high frequency inverter circuit 102, a primary compensation network 103, a primary winding 104 of a loosely coupled transformer, The secondary winding 105 of the loosely coupled transformer, the secondary compensation network 106, the output adjustment circuit 107, the mobile phone or the mobile phone battery 108 are connected.
  • the power input 100 is inverted by the DC power supply 101, it becomes a voltage-adjustable DC voltage source output, and then the input high-frequency inverter circuit 102 is again converted into a high-frequency inverter AC square wave, and the high-frequency inverter
  • the AC square wave is re-introduced into a series resonant circuit composed of the primary side compensation network 103 and the primary side coil 104 to generate resonance, and a uniform alternating electromagnetic field is generated inside the primary side coil 104.
  • the secondary coil 105 and the secondary compensation network are connected in series to form a secondary resonant circuit, and have the same resonant frequency as the primary resonant circuit.
  • the secondary coil 105 is placed in the primary coil 104 to pick up energy through electromagnetic resonance coupling, and the induced electrical energy is input.
  • the output adjustment circuit 107 realizes the output of the constant voltage current limiting characteristic, thereby realizing safe and reliable charging of the mobile phone or mobile phone battery load.
  • FIG. 2 is a schematic diagram showing the operation of the driving circuit of the primary winding 104.
  • the drive circuit of the primary coil 104 is connected by a power supply input 100, an inverter DC power supply 101, a high frequency inverter circuit 102, a primary compensation network 103, and a primary winding 104 of a loosely coupled transformer.
  • the inverter DC power supply 101 includes a rectification and filtering circuit A 201, a MOSFET half-bridge inverter circuit 202, an isolation transformer 203, a secondary rectification and filtering circuit B 204, a driving circuit 1 205, a multi-load decoupling and control circuit 206, and the like.
  • the high frequency inverter circuit 102 is composed of a full bridge inverter main circuit 207, a drive circuit 2 208, a resonance frequency automatic tracking circuit 209, and the like.
  • the AC 220V AC power input rectification filter circuit A 201 is converted into a DC power of about 310 V, and then converted into an AC square wave of about 20 kHz by a half bridge inverter circuit 202 formed by a MOSFET, and the AC square wave is input to an isolation transformer.
  • the 203 step-down obtains a low-voltage AC square wave of the same frequency, and the low-voltage AC square wave is converted into a voltage-adjustable DC voltage output through the secondary rectification and filtering circuit B 204.
  • the output of the inverter DC power supply 101 is connected to the input of the high frequency inverter circuit 102, and is again converted into a high frequency AC square wave output by the full bridge inverter main circuit 207, and the output current and voltage signal input of the high frequency inverter circuit 102 are input.
  • the resonant frequency automatic tracking circuit 209 performs automatic adjustment of the resonant frequency, and its output adjusts the operating frequency of the full-bridge inverter circuit through the driving circuit 3 208 to be slightly higher than the series circuit resonance composed of the primary side compensation network 103 and the primary side coil 104.
  • the frequency such that the resonant circuit formed by the primary side coil 104 and the primary side compensation network 103 operates in a slightly biased resonant operating state.
  • FIG. 3 is a schematic structural view of the primary side coil 104.
  • the primary coil 104 is based on the basic principle of a Helmholtz coil, and is composed of a pair of square coils with parallel axes, side lengths, heights, and thicknesses arranged in parallel, and the number, height, and thickness of the coils are performed.
  • the numerical calculation and optimization make the electromagnetic field distribution inside the coil reach the most uniform state.
  • An optimized embodiment of the coil parameters is that the side length a is 200 mm, the single layer coil, the number of turns of each coil is 65 ⁇ , the coil height h is 50 mm, and the center distance d of the coil is 100 mm.
  • the outer side coil is externally mounted with a thin layer of ferromagnetic material, which can effectively shield the electromagnetic field of the coil and reduce the external radiation of the electromagnetic field.
  • the output characteristic adjustment circuit 107 is connected by a rectification and filtering circuit D401, a Buck chopper circuit 402, a drive circuit 3 403, an output characteristic control circuit 404, and the like.
  • the secondary side compensation network 106 and the secondary side coil 105 form the electromagnetic energy picked up by the series resonant circuit and are connected to the rectifying and filtering circuit D 401 of the output adjusting circuit 107 to become a DC voltage, which is then input to the Buck Chopper circuit 402. Adjust to achieve constant voltage current limiting output characteristics.
  • the constant voltage current limiting output characteristic is realized in that the voltage signal U outf and the current signal I outf outputted by the output adjusting circuit 107 are connected to the output characteristic adjusting circuit 404 to realize closed loop negative feedback adjustment of the output voltage and current, and the adjusted PWM signal.
  • the driving circuit 3 403 controls the turn-on and turn-off time of the MOSFET power switch of the Buck Chopper circuit 402
  • the constant voltage current limiting characteristic output can be realized.
  • FIG. 5 is a schematic diagram of the operation of the multi-load decoupling and control circuit.
  • the multi-load decoupling and control circuit 206 includes a PWM generating circuit 501, an inner loop PID adjusting circuit 502, an outer loop PID adjusting circuit 503, a rectifying and filtering circuit 504, and the like.
  • the current signal I f output from the high frequency inverter circuit 102 is input to the rectifying and filtering circuit C 504, and is rectified and filtered to become an average current signal I df , and then output current value of the set high frequency inverter circuit.
  • I dg is input together with the outer loop PID adjusting circuit 503, and the output signal U dg of the outer loop PID adjusting circuit 503 is connected as a voltage of the inverter DC power source to the inner loop PID adjusting circuit 502, and the feedback signal of the output voltage of the inverter DC power source is simultaneously outputted.
  • U df is also connected to the inner loop PID adjusting circuit 502.
  • the output of the inner loop PID adjusting circuit 502 is connected to the PWM generating circuit 501 to adjust the pulse width of the PWM waveform, and then the adjusted PWM waveform is then connected to the inverter through the driving circuit 1.
  • the MOSFET half-bridge inverter circuit 202 of the DC power supply regulates the turn-on and turn-off times of the switch tube, thereby realizing the output voltage regulation of the inverter DC power source.
  • FIG. 6 is a diagram showing the operation of the resonant frequency automatic tracking circuit 209.
  • the resonant frequency automatic tracking circuit 209 includes a current shaping circuit A 601, a phase difference detecting circuit 602, a phase post processing circuit 603, a PID adjusting circuit 604, a phase relationship detecting circuit 605, a voltage shaping circuit B 606, a delay circuit 607, and an SG2525A 608. Wait.
  • the current signal I f and the voltage signal U f outputted by the high frequency inverter circuit 102 are respectively converted into square wave signals I a and U a of the same frequency by the current shaping circuit A 601 and the voltage shaping circuit B 606, respectively.
  • the phase difference detecting circuit 602 is further input to obtain a phase difference ⁇ between the current and the voltage.
  • U a obtains the delayed voltage square wave signal U aa after the delay circuit 607 , and then U aa and I a re-input the phase relationship detection circuit to determine whether the current is ahead or the voltage is advanced.
  • phase difference ⁇ and the phase difference selection signal are re-inputted into the phase post-processing circuit 603 to perform phase error signal discrimination, and the result (+ ⁇ or - ⁇ ) is input to the PID adjustment circuit 604, and the adjusted voltage signal U out is output to the SG2525A.
  • the frequency of the output PWM pulse waveform is dynamically adjusted to achieve automatic tracking of the resonant frequency.
  • FIG. 7 is a schematic diagram showing the output characteristics of the output adjustment circuit 107.
  • the output of the constant voltage current limiting characteristic of the output regulating circuit is realized by the closed loop negative feedback adjustment of the output voltage and the output current of the regulating circuit 107.
  • the multi-mobile phone movable three-dimensional wireless charging device of the present invention comprises a power input 100, an inverter DC power supply 101, a high-frequency inverter circuit 102, a primary compensation network 103, a primary winding 104 of a loosely coupled transformer, and a loosely coupled transformer.
  • the secondary coil 105, the secondary compensation network 106, the output adjustment circuit 107, the mobile phone or the mobile phone battery load 108, etc. can provide a uniform electromagnetic field in the three-dimensional space inside the primary coil, and can simultaneously be applied to multiple mobile phones at any position within the coil.
  • Wireless charging is especially suitable for mobile phone charging in the case of vehicle movement; it also has multi-load decoupling and control, automatic tracking of resonant frequency, and electromagnetic shielding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种多手机可移动三维无线充电装置,它包括:电源输入、逆变直流电源、高频逆变电路、原边补偿网络、由原边线圈即发射线圈和副边线圈即接收线圈组成的松耦合变压器、副边补偿网络、输出调节电路;该电源输入连接至逆变直流电源,逆变直流电源的输出再连接至高频逆变电路,高频逆变电路的输出连接至原边补偿网络,然后再连接至松耦合变压器的原边线圈;该松耦合变压器的副边线圈放置在原边线圈中,其输出连接至副边补偿网络,然后再连接至输出调节电路,而输出调节电路的输出再连接至负载;本发明能够在原边线圈内部的三维空间提供均匀电磁场,可同时向线圈内任意位置的多个手机进行无线充电,特别适合车载移动情况下手机充电。

Description

一种多手机可移动三维无线充电装置 技术领域
本发明提供一种多手机可移动三维无线充电装置,它涉及一种无线手机充电装置,尤其涉及一种适合多手机、移动条件下的三维均匀磁场无线充电装置。该技术属于无线功率传输技术领域。
背景技术
目前,笔记本电脑、手机、平板电脑等便携式移动设备,大都需要装入电池或把电源适配器插入到市电中获取电能,而电池则需要通过充电器插入到市电对其进行充电。这种传统的有线供电或充电方式存在许多问题,比如器件磨损、接触电火花、线路老化短路,导线裸露而产生的不安全因素,以及影响美观等。
新型无接触感应耦合电能传输技术利用电磁感应耦合原理传输电能,供电电源可以通过较大的气隙向便携式移动设备传输电能,免除了供电电源与用电负载之间的直接金属导体连接,消除了传统的导线直接连接方式向移动设备供电时所产生的器件磨损、短路等,提高了设备获得电能的灵活性。
现有技术中,所涉及的无线充电装置大都采用平面组合线圈构成充电平板向手机或电池进行无线充电。由于现有技术中所设计充电平台采用平面线圈结构,存在电磁场分布不均匀,尤其是在离开表面后电磁场迅速减弱,因此大都要求手机或电池放置在无线充电平板或充电垫上指定的位置,并且必须靠近充电平板。本发明基于Helmholtz的工作原理,结合电源逆变技术、谐振频率自动跟踪技术,以及多负载解耦及控制技术设计了一种多手机可移动三维无线充电装置。
发明内容
1、目的:本发明的目的是提供一种多手机可移动三维无线充电装置,它是一种可以在线圈内部的三维空间提供均匀电磁场,可同时向线圈内任意位置的多个手机或电池等进行无线充电的装置。它不同于现有的无线充电平板或无线充电垫,可在线圈内部的三维空间提供均匀电磁场,可同时向线圈内任意位置的多个手机或电池进行无线充电,特别适合车载移动条件下手机的充电。
2、技术方案:本发明的目的是通过以下技术方案实现的。
本发明所述的多手机可移动三维无线充电装置是指通过电磁感应耦合原理实现手机或电池的无线充电。本发明一种多手机可移动三维无线充电装置包括:电源输入、逆变直流电源、高频逆变电路、原边补偿网络、由原边线圈(发射线圈)和副边线圈(接收线圈)组成的松耦合变压器、副边补偿网络、输出调节电路。它们之间的位置连接关系 是:该电源输入连接至逆变直流电源,逆变直流电源的输出再连接至高频逆变电路,高频逆变电路的输出连接至原边补偿网络,然后再连接至松耦合变压器的原边线圈;该松耦合变压器的副边线圈放置在原边线圈中,其输出连接至副边补偿网络,然后再连接至输出调节电路,而输出调节电路的输出再连接至负载。
所述的电源输入可以是AC220V交流电输入,也可以是+12V车载直流电源或+5V移动直流电源输入;
所述的逆变直流电源包括整流滤波电路A、MOSFET半桥逆变电路、隔离变压器TR1、二次整流滤波电路B、驱动电路1和多负载解耦及控制电路等。它们之间的位置连接关系是:AC220V交流电输入整流滤波电路A,整流滤波电路A的输出端连接至MOSFET半桥逆变电路的输入端,MOSFET半桥逆变电路的输出连接至隔离变压器TR1的原边线圈,隔离变压器TR1的副边线圈连接二次整流滤波电路B;逆变直流电源的输出电压通过电压传感器将电压信号Udf连接至多负载解耦及控制电路,多负载解耦及控制电路输出的PWM信号再通过驱动电路1连接至半桥逆变电路的MOSFET门极驱动输入端,同时高频逆变电路输出的电流通过电流传感器将电流信号If连接至多负载解耦及控制电路,对逆变直流电源的输出电压进行调节。
该整流滤波电路A为全桥整流滤波电路;
该MOSFET半桥逆变电路由高频电容C1、C2和MOSFET管Q1、Q2组成;它们之间的关系是:Q1的源极与Q2的漏极串联,再与串联后的C1和C2并联组成半桥逆变电路,然后半桥逆变电路中的Q1漏极的一端连接至整流滤波电路A输出的正极,Q2源极的一端在连接至整流滤波电路A输出的负极;该高频电容C1、C2为高频薄膜电容;该MOSFET管Q1、Q2为N沟道MOSFET,比如FQA11N90C;
该隔离变压器TR1由纳米晶铁芯绕制成的高频降压变压器;
该二次整流滤波电路B包括快恢复二极管组成的全波整流电路B、滤波电感L1和电容C3等。它们之间的关系是:隔离变压器TR1的输出连接至全波整流电路B变换成直流电输出,该输出再连接至滤波电感L1和电容C3进行滤波,得到稳定的直流电压输出;该全波整流电路B采用快恢复二极管模块;该滤波电感L1高频电感;该电容C3高频薄膜电容;
该驱动电路1采用集成光耦隔离驱动电路,比如FOD3182;
该电压传感器采用的是霍尔电压传感器(比如LEM公司的LV25-P);
该电流传感器采用的是电流互感器(比如CHG-200);
该多负载解耦及控制电路包括PWM发生电路、内环PID调节电路、外环PID调节电路和整流滤波电路C。其间关系是:高频逆变电路输出的电流信号If连接至整流滤波电路C,整流滤波电路C的输出Idf与设定的高频逆变电路的输出电流值Idg再连接至外环PID调节电路,外环PID调节电路的输出信号Udg作为逆变直流电源输出电压给定值连接至内环PID调节电路,同时逆变直流电源输出电压的反馈信号Udf也连接至内环PID调节电路,内环PID调节电路的输出连接至PWM发生电路,PWM发生电路的输出通过驱动电路1后连接至逆变直流电源的功率开关MOSFET,调节逆变直流电源的输出电压来保证原边线圈的输入 电流不变,从而保证了原边线圈内部的电磁场恒定,使得负载数量及其充电电流变化不会影响各个负载的充电状态。
该PWM发生电路采用的是PWM波形产生集成电路SG2525A;
该内环PID调节电路是由运算放大器、电容和电阻等构成的比例、积分和微分闭环负反馈调节路,用来调节逆变直流电源的输出电压;
该外环PID调节电路是由运算放大器、电容和电阻等构成的比例、积分和微分闭环负反馈调节路,用来调节高频逆变电路的输出电流;
该整流滤波电路C是由快恢复二极管、高频电容构成整流滤波电路,用来将高频逆变电路输出的电流反馈信号If整流滤波变换成直流电流信号Idf
所述的高频逆变电路由MOSFET全桥逆变电路、驱动电路2和谐振频率自动跟踪电路等组成。它们之间的位置连接关系是:逆变直流电源的输出连接至高频逆变电路的全桥逆变电路的输入端,全桥逆变电路的输出连接至原边补偿网络;高频逆变电路输出的电流信号If与电压信号Uf一起连接至谐振频率自动跟踪电路,谐振频率自动跟踪电路的输出再通过驱动电路2连接至全桥逆变电路的MOSFET功率开关管的门极输入端。该谐振频率自动跟踪电路包括电流整形电路A、电压整形电路B、相位差检测电路、相位关系检测电路、延时电路、相位后置处理电路、PID调节电路和SG2525A PWM产生电路。其间关系是:全桥逆变电路输出的电流信号If与电压信号Uf分别连接至电流整形电路A和电压整形电路B,电流整形电路A的输出信号Ia再连接至相位差检测电路和相位关系检测电路,同时电压整形电路B的输出信号Ua连接至相位差检测电路和延时电路,延时电路输出信号再连接至相位关系检测电路;相位差检测电路输出的相位差信号Δθ与相位关系检测电路输出的相位选择信号一起连接至相位后置处理电路,相位后置处理电路的输出再连接至PID调节电路,PID调节电路的输出再连接PWM产生电路SG2525A的频率调节输入端,对其输出的PWM脉冲的频率进行调节,从而实现高频逆变电路谐振频率的自动跟踪。
该驱动电路2采用集成光耦隔离驱动电路,比如FOD3182;
该电流整形电路A由电压比较器(比如LM293)组成,将电流信号If变换成同频率的方波信号;
该电压整形电路B由电压比较器(比如LM293)组成,将电压信号Uf变换成同频率的方波信号;
该相位差检测电路由与非门逻辑电路(比如CD4011)组成,通过逻辑判断检测出电流信号Ia和电压信号Ua之间的相位差信号;
该相位关系检测电路由与非门逻辑电路(比如CD4013)组成,用来检测电流信号Ia和电压信号Ua之间的超前或滞后关系;
该延时电路由电阻和电容组成,实现对电压信号Ua的延时;
该相位后置处理电路主要由多路选择开关电路(比如CD4053)组成,通过相位选择信号选择正或负的相位误差信号输入PID调节电路;
该PID调节电路主要由运算放大器构成比例、积分和微分调节电路,根据输入的相位 误差信号进行比例、积分和微分运算,其输出连接至SG2525A PWM产生电路,调节输出PWM波形的频率;
该SG2525A PWM产生电路采用PWM波形产生集成电路SG2525A,用来产生频率可调节的PWM波形。
所述的原边补偿网络由多个CBB高频电容串并联构成。
所述的松耦合变压器包括原边线圈和复数个副边线圈;该原边线圈由一对复数匝数、边长、高度和厚度相同的共轴平行放置的矩形及其他形状的线圈组合而成,在线 圈内部提供三维均匀的电磁场;原边线圈外部安装有铁磁材料薄层,有效屏蔽原边线圈泄漏的电磁场,减小电磁场的对外辐射;该副边线圈为一个矩形及任意形状的复数匝线圈,或者由复数个线圈串联或并联组合而成。
所述的原边线圈外部安装的铁磁材料薄层由铁氧体粉末压制而成,具有高导磁性能,有效屏蔽原边线圈对外辐射的电磁场。
所述的副边补偿网络由多个CBB高频电容串并联构成。
所述的输出调节电路包括整流滤波电路D、Buck斩波电路、驱动电路3和输出特性控制电路等。它们之间的位置连接关系是:副边线圈的输出连接至副边补偿网络后再连接至整流滤波电路D,整流滤波电路D的输出连接至Buck斩波电路,Buck斩波电路的输出再连接至负载;Buck斩波电路输出的电压和电流信号连接至输出特性控制电路,其输出再经驱动电路3后连接至Buck斩波电路的MOSFET功率开关管的门极输入端。
该整流滤波电路D为全桥整流滤波电路,将副边线圈感应耦合的交流电压整流为直流电压;
该Buck斩波电路由MOSFET开关管Q7、快恢复二极管D5、电感L2和滤波电容C7组成,用来调节输出电路的输出特性,比如实现恒压限流的输出特性;其间的关系是:整流滤波电路D输出的正极连接至MOSFET开关管Q7的漏极,Q7的源极再依次连接至电感L2和滤波电容C7进行滤波,电容C7的另一端连接在整流滤波电路D输出的负极;快恢复二极管D5的阴极连接在Q7的源极,D5的阳极连接至整流滤波电路D输出的负极;该MOSFET开关管Q7为N沟道MOSFET,比如IRF640;该快恢复二极管D5在Q7关断时,对输出回路进行续流;该电感L2和滤波电容C7组成滤波电路,对输出的电压进行滤波。
该驱动电路3采用集成光耦隔离驱动电路,比如FOD3182。
该输出特性控制电路由PWM产生电路、PID调节电路组成,用来对输出电压Uoutf和输出电流Ioutf的调节;其间的关系是:输出电压信号Uoutf和输出电流信号Iout连接至PID调节电路进行误差计算放大,其输出再连接至PWM产生电路对PWM波形的脉冲宽度进行调节,从而实现输出电压和输出电流的调节。该PWM产生电路采用PWM波形产生集成电路SG2525A;该PID调节电路由运算放大器、电容和电阻等构成的比例、积分和微分闭环负反馈调节路。
3、优点及功效:由本发明提供的上述技术方案可以看出,本发明所述的多手机可移 动三维无线充电装置由电源输入、逆变直流电源、高频逆变电路、原边补偿网络、原边线圈、副边线圈、副边补偿网络、输出调节电路和手机或手机电池负载等组成,能够在原边线圈内部的三维空间提供均匀电磁场,可同时向线圈内任意位置的多个手机进行无线充电,特别适合车载移动情况下手机充电,也适合各类Pad及由充电电池驱动的电动玩具的充电。
附图说明
图1为本发明的多手机可移动三维无线充电装置的系统构成示意图;
图2为本发明中原边线圈的驱动电路及控制电路的工作线路图;
图3为本发明中原边线圈的结构示意图;
图4为本发明中副边线圈输出主电路及输出特性控制电路的工作线路图;
图5为本发明中多负载解耦及控制电路的工作线路框图;
图6为本发明中高频逆变电路谐振频率自动跟踪电路的工作线路框图;
图7为本发明中输出特性示意图。
图中序号代号符号说明如下:
100为电源输入;
101为逆变直流电源;
102为高频逆变电路;
103为原边补偿网络;
104为松耦合变压器的原边线圈;
105为松耦合变压器的副边线圈;
106为副边补偿网络;
107为输出调节电路;
108为手机或手机电池负载;
201为整流滤波电路A;
202为MOSFET半桥逆变电路;
203为隔离变压器;
204为二次整流滤波电路B;
205为驱动电路1;
206为多负载解耦及控制电路;
207为全桥逆变主电路;
208为驱动电路2;
209为谐振频率自动跟踪电路;
401为整流滤波电路D;
402为Buck斩波电路;
403为驱动电路3;
404为输出特性控制电路;
501为PWM发生电路;
502为内环PID调节电路;
503为外环PID调节电路;
504为整流滤波电路C;
601为电流整形电路A;
602为相位差检测电路;
603为相位后置处理电路;
604为PID调节电路;
605为相位关系检测电路;
606为电压整形电路B;
607为延时电路;
608为SG2525A;
MOSFET为金属氧化物半导体场效应晶体;
PWM为脉冲宽度调节;
TR1为高频变压器的序号;
Q为MOSFET管的序号。
具体实施方式
本发明一种多手机可移动三维无线充电装置,其具体实施方式是:
所述的一种多手机可移动三维无线充电装置包括:
参见图1所示,所述的多手机可移动三维无线充电装置由电源输入100、逆变直流电源101、高频逆变电路102、原边补偿网络103、松耦合变压器的原边线圈104、松耦合变压器的副边线圈105、副边补偿网络106、输出调节电路107、手机或手机电池负载108连接而成,其中,副边线圈105放置在原边线圈104中通过电磁耦合拾取能量。
参见图2所示,所述原边线圈的驱动电路及控制电路主要由整流滤波电路A201、MOSFET半桥逆变电路202、隔离变压器203、二次整流滤波电路B204、驱动电路1 205、多负载解耦及控制电路206、全桥逆变主电路207、驱动电路2 208、谐振频率自动跟踪电路209连接而成。
参见图3所示,所述原边线圈基于Helmholtz线圈的工作原理,由一对匝数、边长、高度和厚度相同的共轴平行放置的正方形线圈组成;原边线圈外部安装由铁磁材料薄层,该铁磁材料薄层由铁氧体粉末压制而成,具有高导磁性能,有效屏蔽原边线圈的电磁场,减小电磁场的对外辐射。
参见图4所示,所述输出调节电路由整流滤波电路D 401、Buck斩波电路402、驱动电路3 403、输出特性控制电路404连接而成。
参见图5所示,所述的多负载解耦及控制电路206主要由PWM发生电路501、内环PID调节电路502、外环PID调节电路503、整流滤波电路C 504连接而成。
参见图6所示,所述谐振频率自动跟踪电路209由电流整形电路A 601、相位差检测电路602、相位后置处理电路603、PID调节电路604、相位关系检测电路605、电压整形电路B606、延时电路607、SG2525A 608等连接而成。
参见图7所示,所述装置的输出特性为恒压限流输出特性。
所述的多手机可移动三维无线充电装置可在原边线圈内部的三维空间提供均匀电磁场,手机或电池可以放在线圈内部任意位置充电,特别适合车载移动情况下手机或电池充电。
所述的多手机可移动三维无线充电装置能够同时向线圈内任意位置的多个手机或电池进行无线充电。
所述的多手机可移动三维无线充电装置采用逆变直流电源与高频逆变电路串联的主电路拓扑结构,并设计了多负载解耦及控制电路,通过调节逆变直流电源的输出电压来保证原边线圈的输入电流不变,从而保证了原边线圈内的电磁场恒定,使得手机或手机电池的数量及其充电电流变化不会影响各个负载的充电状态。
所述的多手机可移动三维无线充电装置设计了一种谐振频率自动跟踪技术,能够实现原边线圈及其补偿网络谐振频率的自动跟踪,可以实现原边线圈输出功率的高效无线传输。
所述的多手机可移动三维无线充电装置在原边线圈外部安装由铁磁材料薄层,可以有效屏蔽线圈的电磁场,减小电磁场的对外辐射。
本发明针对手机或电池无线充电的需要,提供了一种多手机可移动三维无线充电装置,能够在原边线圈内部的三维空间提供均匀电磁场,可同时向线圈内任意位置的多个手机进行无线充电,特别适合车载移动情况下手机充电;而且具有多负载解耦及控制、谐振频率自动跟踪,以及电磁屏蔽等功能。
就本发明而言,包括电源输入100、逆变直流电源101、高频逆变电路102、原边补偿网络103、松耦合变压器的原边线圈104、松耦合变压器的副边线圈105、副边补偿网络106、输出调节电路107、手机或手机电池负载108等。电源输入100经逆变直流电源101后,变成电压可调的直流电压源输出,然后输入高频逆变电路102再次变换成高频逆变交流方波,该高频逆变交流方波再输入由原边补偿网络103和原边线圈104组成的串联谐振电路产生谐振,在原边线圈104内部产生均匀的交变电磁场。副边线圈105与副边补偿网络串联构成副边谐振电路,且具有与原边谐振电路相同的谐振频率;当副边线圈105放置在原边线圈104中通过电磁谐振耦合拾取能量,并将感应电能输入输出调节电路107,实现恒压限流特性的输出,从而实现手机或手机电池负载的安全可靠地充电。
电源输入100可以为AC220V交流电输入,也可以是+12V车载电源。
逆变直流电源101包括整流滤波电路A 201、MOSFET半桥逆变电路202、隔离变压器203、二次整流滤波电路B 204、驱动电路1 205和多负载解耦及控制电路206等。其中,多负载解耦及控制电路206包括PWM发生电路501、内环PID调节电路502、外环PID调节电路503和整流滤波电路504等。
AC220V交流电源输入整流滤波电路A 201后变换成约310V的直流电,然后再经由MOSFET构成的半桥逆变电路202变换成约20kHz的交流方波,该交流方波再输入隔离变压器203降压得到同频率的低压交流方波,该低压交流方波再经二次整流滤波电路B 204后变换成电压可调的直流电压输出。调节半桥逆变电路202的MOSFET功率开关的导通和关断时间就可以改变逆变直流电源101输出电压的大小。
通过内环PID调节电路502和外环PID调节电路503结合的双闭环调节电路来控制逆变直流电源101的输出电压,可以实现多负载解耦和控制:当手机或手机电池负载的数目或充电电流变化时,通过调节逆变直流电源101的输出电压来保证原边线圈104的输入电流不变,从而保证了原边线圈104内部的电磁场恒定,使得负载数量及其充电电流变化不会影响各个负载的充电状态。高频逆变电路102输出的电流信号If输入整流滤波电路C 504,经整流滤波后变成平均电流信号Idf,然后再与设定的高频逆变电路的输出电流值Idg一起输入外环PID调节电路503,外环PID调节电路503的输出信号Udg作为逆变直流电源的电压给定连接至内环PID调节电路502,同时逆变直流电源输出电压的反馈信号Udf也连接至内环PID调节电路502,内环PID调节电路502的输出连接至PWM发生电路501,调节PWM波形的脉冲宽度,然后调节后的PWM波形再通过驱动电路1后连接至逆变直流电源的MOSFET半桥逆变电路202,对开关管的开通和关断时间进行调节,从而实现逆变直流电源输出电压调节。这样,通过调节逆变直流电源的输出电压来保证原边线圈的输入电流不变,从而保证了原边线圈内部的电磁场恒定,使得负载数量及其充电电流变化不会影响各个负载的充电状态。
高频逆变电路102由全桥逆变主电路207、驱动电路2 208、谐振频率自动跟踪电路209等组成。其中,谐振频率自动跟踪电路209包括电流整形电路A 601、相位差检测电路602、相位后置处理电路603、PID调节电路604、相位关系检测电路605、电压整形电路B606、延时电路607、SG2525A 608等。
高频逆变电路102的主要功能是将逆变直流电源101输入的直流电源通过全桥逆变主电路207再次变换成高频交流方波输出;同时,谐振频率自动跟踪电路209调节全桥逆变电路的工作频率,使其略高于原边补偿网络103与原边线圈104组成的串联电路谐振频率,这样原边线圈104和原边补偿网络103构成的谐振电路就工作在略偏感性的谐振工作状态,不仅实现了谐振大电流的输出,而且使全桥逆变主电路可以安全可靠地工作。
在谐振频率自动跟踪电路209中,高频逆变电路102输出的电流信号If与电压信号Uf分别经电流整形电路A 601和电压整形电路B 606后变换成同频率的方波信号Ia和Ua,二者再输入相位差检测电路602得到电流和电压之间的相位差Δθ。同时,Ua经延时电路607后得到延时后的电压方波信号Uaa,然后Uaa与Ia再输入相位关系检测电路判别是电流超前,还是电压超前。然后,相位差Δθ和相位差选择信号再输入相位后置处理电路603进行相位误差信号判别,其结果(+Δθ或-Δθ)输入PID调节电路604,经调节后输出的电压信号Uout对SG2525A输出的PWM脉冲波形的频率进行动态调节,从而实现高频逆变电路谐振 频率的自动跟踪。
当原边线圈104与原边补偿网络103构成的谐振回路工作在略偏感性的准谐振状态时,不仅能够输出较大的原边线圈励磁电流,而且全桥逆变电路中的MOSFET开关管既能实现零电压开通,又能减小其关断损耗。因此,为了提高全桥逆变电路207工作可靠性及传输效率,应确保高频逆变电路102中的全桥逆变电路始终工作在感性状态。在谐振频率自动跟踪电路209中,电压信号Ua通过延时电路607延时一段时间后,再与电流信号Ia进行相位超前(滞后)的判断,这样就使得实际跟踪的是延时后的电压信号Uaa。因此,当频率跟踪电路进入锁定状态时,延时后的电压信号Uaa与电流信号Ia之间就不存在相位差了,然而实际上逆变器负载两端的电压信号则略超前于电流信号,从而实现了略偏感性的准谐振频率自动跟踪。
原边补偿网络103采用多个CBB高频电容串并联而成,然后与原边线圈104串联组成串联谐振电路,连接在高频逆变电路102的输出端,作为其串联谐振负载。
原边线圈104是基于Helmholtz线圈的基本原理,由一对匝数、边长、高度和厚度相同的共轴平行放置的正方形线圈组成,并对线圈的匝数、高度和厚度进行了数值计算和优化,使得线圈内部的电磁场分布达到最均匀的状态。一种优化的具体实施例的线圈参数为:边长a为200mm,单层线圈,每个线圈的匝数为65匝,线圈高度h为50mm,线圈的中心距d为100mm。此外,原边线圈外部安装由铁磁材料薄层,可以有效屏蔽线圈的电磁场,减小电磁场的对外辐射。
副边线圈105为60mm×60mm矩形线圈,匝数为65匝,放置在原边线圈104中拾取电磁能量,转化为感应电能输出。
副边补偿网络106同样采用多个CBB高频电容串并联而成,然后与副边线圈105串联组成串联谐振电路,其谐振频率与原边串联谐振电路相同。副边串联谐振电路的输出连接至输出调节电路107,为其提供电能输入。
输出调节电路107由整流滤波电路D 401、Buck斩波电路402、驱动电路3 403、输出特性控制电路404连接而成。副边补偿网络106与副边线圈105组成串联谐振电路拾取的电磁能量连接至输出调节电路107的整流滤波电路D 401后变成直流电压,该直流电源再输入Buck斩波电路402进行调节,实现恒压限流输出特性。恒压限流输出特性是这样实现的:输出调节电路107输出的电压信号Uoutf和电流信号Ioutf连接至输出特性调节电路404,实现输出电压和电流的闭环负反馈调节,调节后的PWM信号再经驱动电路3 403控制Buck斩波电路402的MOSFET功率开关管开通和关断的时间,就可以实现恒压限流特性输出。
下面结合附图对本发明作进一步说明。
图1是多手机可移动三维无线充电装置的系统构成示意图,主要由电源输入100、逆变直流电源101、高频逆变电路102、原边补偿网络103、松耦合变压器的原边线圈104、松耦合变压器的副边线圈105、副边补偿网络106、输出调节电路107、手机或手机电池108等连接而成。
参考图1,电源输入100经逆变直流电源101后,变成电压可调的直流电压源输出,然后输入高频逆变电路102再次变换成高频逆变交流方波,该高频逆变交流方波再输入由原边补偿网络103和原边线圈104组成的串联谐振电路产生谐振,在原边线圈104内部产生均匀的交变电磁场。副边线圈105与副边补偿网络串联构成副边谐振电路,且具有与原边谐振电路相同的谐振频率,副边线圈105放置在原边线圈104中通过电磁谐振耦合拾取能量,并将感应电能输入输出调节电路107,实现恒压限流特性的输出,从而实现手机或手机电池负载的安全可靠地充电。
图2是原边线圈104的驱动电路工作原理图。原边线圈104的驱动电路由电源输入100、逆变直流电源101、高频逆变电路102、原边补偿网络103、松耦合变压器的原边线圈104连接而成。逆变直流电源101包括整流滤波电路A 201、MOSFET半桥逆变电路202、隔离变压器203、二次整流滤波电路B 204、驱动电路1 205和多负载解耦及控制电路206等。高频逆变电路102由全桥逆变主电路207、驱动电路2 208、谐振频率自动跟踪电路209等组成。
参考图2,AC220V交流电源输入整流滤波电路A 201后变换成约310V的直流电,然后再经由MOSFET构成的半桥逆变电路202变换成约20kHz的交流方波,该交流方波再输入隔离变压器203降压得到同频率的低压交流方波,该低压交流方波再经二次整流滤波电路B 204后变换成电压可调的直流电压输出。逆变直流电源101的输出连接至高频逆变电路102的输入,通过全桥逆变主电路207再次变换成高频交流方波输出,同时高频逆变电路102的输出电流和电压信号输入谐振频率自动跟踪电路209进行谐振频率的自动调节,其输出通过驱动电路3 208调节全桥逆变电路的工作频率,使其略高于原边补偿网络103与原边线圈104组成的串联电路谐振频率,这样原边线圈104和原边补偿网络103构成的谐振电路就工作在略偏感性的谐振工作状态。
图3是原边线圈104的结构示意图。
参考图3,原边线圈104是基于Helmholtz线圈的基本原理,由一对匝数、边长、高度和厚度相同的共轴平行放置的正方形线圈组成,并对线圈的匝数、高度和厚度进行了数值计算和优化,使得线圈内部的电磁场分布达到最均匀的状态。一种优化的具体实施例的线圈参数为:边长a为200mm,单层线圈,每个线圈的匝数为65匝,线圈高度h为50mm,线圈的中心距d为100mm。原边线圈外部安装由铁磁材料薄层,可以有效屏蔽线圈的电磁场,减小电磁场的对外辐射。
图4是输出特性调节电路107的工作原理图。输出特性调节电路107由整流滤波电路D401、Buck斩波电路402、驱动电路3 403、输出特性控制电路404等连接而成。
参考图4,副边补偿网络106与副边线圈105组成串联谐振电路拾取的电磁能量连接至输出调节电路107的整流滤波电路D 401后变成直流电压,该直流电源再输入Buck斩波电路402进行调节,实现恒压限流输出特性。恒压限流输出特性是这样实现的:输出调节电路107输出的电压信号Uoutf和电流信号Ioutf连接至输出特性调节电路404,实现输出电压和电流的闭环负反馈调节,调节后的PWM信号再经驱动电路3 403控制Buck斩波电路402的 MOSFET功率开关管开通和关断的时间,就可以实现恒压限流特性输出。
图5是多负载解耦及控制电路的工作原理图。多负载解耦及控制电路206包括PWM发生电路501、内环PID调节电路502、外环PID调节电路503和整流滤波电路504等。
参考图5,高频逆变电路102输出的电流信号If输入整流滤波电路C 504,经整流滤波后变成平均电流信号Idf,然后再与设定的高频逆变电路的输出电流值Idg一起输入外环PID调节电路503,外环PID调节电路503的输出信号Udg作为逆变直流电源的电压给定连接至内环PID调节电路502,同时逆变直流电源输出电压的反馈信号Udf也连接至内环PID调节电路502,内环PID调节电路502的输出连接至PWM发生电路501,调节PWM波形的脉冲宽度,然后调节后的PWM波形再通过驱动电路1后连接至逆变直流电源的MOSFET半桥逆变电路202,对开关管的开通和关断时间进行调节,从而实现逆变直流电源输出电压调节。
图6是谐振频率自动跟踪电路209的工作原理图。谐振频率自动跟踪电路209包括电流整形电路A 601、相位差检测电路602、相位后置处理电路603、PID调节电路604、相位关系检测电路605、电压整形电路B 606、延时电路607、SG2525A 608等。
参考图6,高频逆变电路102输出的电流信号If与电压信号Uf分别经电流整形电路A601和电压整形电路B 606后变换成同频率的方波信号Ia和Ua,二者再输入相位差检测电路602得到电流和电压之间的相位差Δθ。同时,Ua经延时电路607后得到延时后的电压方波信号Uaa,然后Uaa与Ia再输入相位关系检测电路判别是电流超前,还是电压超前。然后,相位差Δθ和相位差选择信号再输入相位后置处理电路603进行相位误差信号判别,其结果(+Δθ或-Δθ)输入PID调节电路604,经调节后输出的电压信号Uout对SG2525A输出的PWM脉冲波形的频率进行动态调节,从而实现谐振频率的自动跟踪。
图7是输出调节电路107的输出特性示意图。
参考图7,通过调节电路107的输出电压和输出电流的闭环负反馈调节,实现了输出调节电路的恒压限流特性的输出。
本发明所述的多手机可移动三维无线充电装置由电源输入100、逆变直流电源101、高频逆变电路102、原边补偿网络103、松耦合变压器的原边线圈104、松耦合变压器的副边线圈105、副边补偿网络106、输出调节电路107、手机或手机手机电池负载108等组成,能够在原边线圈内部的三维空间提供均匀电磁场,可同时向线圈内任意位置的多个手机进行无线充电,特别适合车载移动情况下手机充电;而且具有多负载解耦及控制、谐振频率自动跟踪,以及电磁屏蔽等功能。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (6)

  1. 一种多手机可移动三维无线充电装置,其特征在于:它包括:电源输入、逆变直流电源、高频逆变电路、原边补偿网络、由原边线圈即发射线圈和副边线圈即接收线圈组成的松耦合变压器、副边补偿网络、输出调节电路;它们之间的位置连接关系是:该电源输入连接至逆变直流电源,逆变直流电源的输出再连接至高频逆变电路,高频逆变电路的输出连接至原边补偿网络,然后再连接至松耦合变压器的原边线圈;该松耦合变压器的副边线圈放置在原边线圈中,其输出连接至副边补偿网络,然后再连接至输出调节电路,而输出调节电路的输出再连接至负载;
    所述的逆变直流电源包括整流滤波电路A、MOSFET半桥逆变电路、隔离变压器TR1、二次整流滤波电路B、驱动电路1和多负载解耦及控制电路;它们之间的位置连接关系是:AC220V交流电输入整流滤波电路A,整流滤波电路A的输出端连接至MOSFET半桥逆变电路的输入端,MOSFET半桥逆变电路的输出连接至隔离变压器TR1的原边线圈,隔离变压器TR1的副边线圈连接二次整流滤波电路B;逆变直流电源的输出电压通过电压传感器将电压信号Udf连接至多负载解耦及控制电路,多负载解耦及控制电路输出的PWM信号再通过驱动电路1连接至半桥逆变电路的MOSFET门极驱动输入端,同时高频逆变电路输出的电流通过电流传感器将电流信号If连接至多负载解耦及控制电路,对逆变直流电源的输出电压进行调节;
    所述的多负载解耦及控制电路包括PWM发生电路、内环PID调节电路、外环PID调节电路和整流滤波电路C;该高频逆变电路输出的电流信号If连接至整流滤波电路C,整流滤波电路C的输出Idf与设定的高频逆变电路的输出电流值Idg再连接至外环PID调节电路,外环PID调节电路的输出信号Udg作为逆变直流电源输出电压给定值连接至内环PID调节电路,同时逆变直流电源输出电压的反馈信号Udf也连接至内环PID调节电路,内环PID调节电路的输出连接至PWM发生电路,PWM发生电路的输出通过驱动电路1后连接至逆变直流电源的功率开关MOSFET,调节逆变直流电源的输出电压来保证原边线圈的输入电流不变,从而保证了原边线圈内部的电磁场恒定,使得负载数量及其充电电流变化不会影响各个负载的充电状态;
    所述的高频逆变电路由MOSFET全桥逆变电路、驱动电路2和谐振频率自动跟踪 电路组成;该逆变直流电源的输出连接至高频逆变电路的全桥逆变电路的输入端,全桥逆变电路的输出连接至原边补偿网络;高频逆变电路输出的电流信号If与电压信号Uf一起连接至谐振频率自动跟踪电路,谐振频率自动跟踪电路的输出再通过驱动电路2连接至全桥逆变电路的MOSFET功率开关管的门极输入端;该谐振频率自动跟踪电路包括电流整形电路A、电压整形电路B、相位差检测电路、相位关系检测电路、延时电路、相位后置处理电路、PID调节电路和SG2525A PWM产生电路;该全桥逆变电路输出的电流信号If与电压信号Uf分别连接至电流整形电路A和电压整形电路B,电流整形电路A的输出信号Ia再连接至相位差检测电路和相位关系检测电路,同时电压整形电路B的输出信号Ua连接至相位差检测电路和延时电路,延时电路输出信号再连接至相位关系检测电路;相位差检测电路输出的相位差信号Δθ与相位关系检测电路输出的相位选择信号一起连接至相位后置处理电路,相位后置处理电路的输出再连接至PID调节电路,PID调节电路的输出再连接PWM产生电路SG2525A的频率调节输入端,对其输出的PWM脉冲的频率进行调节,从而实现高频逆变电路谐振频率的自动跟踪;
    所述的松耦合变压器包括原边线圈和复数个副边线圈;该原边线圈由一对复数匝数、边长、高度和厚度相同的共轴平行放置的矩形及其他形状的线圈组合而成,在线圈内部提供三维均匀的电磁场;原边线圈外部安装有铁磁材料薄层,有效屏蔽原边线圈泄漏的电磁场,减小电磁场的对外辐射;该副边线圈为一个矩形及任意形状的复数匝线圈,及由复数个线圈串联及并联组合而成;
    所述的输出调节电路包括整流滤波电路D、Buck斩波电路、驱动电路3和输出特性控制电路;该副边线圈的输出连接至副边补偿网络后再连接至整流滤波电路D,整流滤波电路D的输出连接至Buck斩波电路,Buck斩波电路的输出再连接至负载;Buck斩波电路输出的电压和电流信号连接至输出特性控制电路,其输出再经驱动电路3后连接至Buck斩波电路的MOSFET功率开关管的门极输入端;
    所述的输出特性控制电路由PWM产生电路、PID调节电路组成,用来对输出电压Uoutf和输出电流Ioutf的调节;该输出电压信号Uoutf和输出电流信号Iout连接至PID调节电路进行误差计算放大,其输出再连接至PWM产生电路对PWM波形的脉冲宽度进行调节,从而实现输出电压和输出电流的调节。
  2. 根据权利要求1所述的一种多手机可移动三维无线充电装置,其特征在于:所述 的原边线圈外部安装的铁磁材料薄层由铁氧体粉末压制而成,具有高导磁性能,有效屏蔽原边线圈对外辐射的电磁场。
  3. 根据权利要求1所述的一种多手机可移动三维无线充电装置,其特征在于:所述的电源输入是AC220V交流电输入、+12V车载直流电源和+5V移动直流电源输入中的一种。
  4. 根据权利要求1所述的一种多手机可移动三维无线充电装置,其特征在于:所述的原边补偿网络和副边补偿网络均由复数个CBB高频电容串并联构成。
  5. 根据权利要求1所述的一种多手机可移动三维无线充电装置,其特征在于:所述的逆变直流电源中的隔离变压器TR1是由纳米晶铁芯绕制成的高频降压变压器。
  6. 根据权利要求1所述的一种多手机可移动三维无线充电装置,其特征在于:该PWM发生电路均采用PWM波形发生集成电路SG2525A。
PCT/CN2017/078791 2016-04-01 2017-03-30 一种多手机可移动三维无线充电装置 WO2017167225A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610205889.6 2016-04-01
CN201610205889.6A CN105634093B (zh) 2016-04-01 2016-04-01 一种多手机可移动三维无线充电装置

Publications (1)

Publication Number Publication Date
WO2017167225A1 true WO2017167225A1 (zh) 2017-10-05

Family

ID=56048754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078791 WO2017167225A1 (zh) 2016-04-01 2017-03-30 一种多手机可移动三维无线充电装置

Country Status (2)

Country Link
CN (1) CN105634093B (zh)
WO (1) WO2017167225A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108462396A (zh) * 2018-03-29 2018-08-28 青岛华电高压电气有限公司 35kV振荡波系统的可控高压直流电源
CN109888929A (zh) * 2019-03-06 2019-06-14 大连理工大学 一种对随物体旋转运动电气设备的无线供电系统
CN110049607A (zh) * 2019-05-16 2019-07-23 徐州凯思特机电科技有限公司 一种煤矿井下长距离智能无线照明系统
CN110401267A (zh) * 2019-08-14 2019-11-01 东莞市钜大电子有限公司 一种半桥谐振逆变型磁耦合谐振式无线充电电源
CN111682658A (zh) * 2020-05-28 2020-09-18 哈尔滨工业大学 一种用于无线电能传输lpe位置检测的谐振腔恒流控制系统及其控制方法
CN112564307A (zh) * 2020-11-27 2021-03-26 哈尔滨工业大学 一种电动汽车大功率动态无线供电系统多模块磁并联发射端电路拓扑及其控制方法
CN112737141A (zh) * 2020-12-23 2021-04-30 中兴新能源科技有限公司 原副边控制量的约束方法、装置及无线充电系统
CN113541329A (zh) * 2021-07-12 2021-10-22 清华大学深圳国际研究生院 一种具备全局功率控制功能的无线能量传输系统
CN113726188A (zh) * 2020-05-25 2021-11-30 中国石油化工股份有限公司 多工作模式的高频高压交流电源
CN114079325A (zh) * 2021-12-01 2022-02-22 Oppo广东移动通信有限公司 无线充电方法、装置、电子设备、系统和可读存储介质
CN114243945A (zh) * 2021-11-12 2022-03-25 深圳供电局有限公司 无线充电系统及其谐振网络匹配方法
CN114374252A (zh) * 2022-01-17 2022-04-19 天津工业大学 一种能量信号同步传输的无线充电电路
CN114448107A (zh) * 2022-01-18 2022-05-06 厦门大学 一种基于三线圈的恒压恒流式无线电能传输装置
CN115664054A (zh) * 2022-12-29 2023-01-31 成都西交轨道交通技术服务有限公司 一种基于中继极板的车地多负载同步无线供电系统
CN116260485A (zh) * 2023-02-24 2023-06-13 广西电网有限责任公司电力科学研究院 一种两级式无线能信同传系统及方法
CN116667888A (zh) * 2023-08-02 2023-08-29 沈阳仪表科学研究院有限公司 一种极低频电磁信号发射机

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105634093B (zh) * 2016-04-01 2018-01-09 杨军 一种多手机可移动三维无线充电装置
CN106160086B (zh) * 2016-07-14 2019-10-15 深圳市禾家欢科技有限公司 一种无线充电输出装置
CN108336831B (zh) * 2017-01-20 2020-03-31 立锜科技股份有限公司 无线电源发送电路及其控制电路与控制方法
CN107508389B (zh) * 2017-09-27 2020-01-14 福州大学 一种全方向无线电能传输系统及其寻优控制方法
CN107872100A (zh) * 2017-11-29 2018-04-03 西北农林科技大学 一种可移动式无线充电系统及其调相算法优化方法
CN108183537A (zh) * 2018-01-18 2018-06-19 深圳市集芯源电子科技有限公司 大功率电动车电池充电器
CN108695995B (zh) * 2018-06-15 2021-09-10 哈尔滨工业大学深圳研究生院 一种高效率谐振型无线电能传输系统
CN109660008A (zh) * 2019-02-21 2019-04-19 南京达斯琪数字科技有限公司 一种无线供电装置及电子设备
CN111770597A (zh) * 2019-04-01 2020-10-13 无锡物华电子科技有限公司 一种调频调功中的频率跟踪方法
CN112751428A (zh) * 2021-01-21 2021-05-04 武汉大学 工况适应型多通道互联无线供电系统及方法
CN115056660A (zh) * 2022-06-22 2022-09-16 深圳威迈斯新能源股份有限公司 无线充电系统及其控制方法
US11855464B1 (en) 2022-08-16 2023-12-26 Zhejiang University Wireless synchronous transmission system of energy and signal based on integrated magnetic circuit coupling structure
CN115967192A (zh) * 2022-08-16 2023-04-14 浙江大学 基于集成式磁路耦合结构的能量与信号同步无线传输系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202206194U (zh) * 2011-06-09 2012-04-25 东南大学 一种无线能量传输装置
CN104184218A (zh) * 2013-05-27 2014-12-03 Lg电子株式会社 无线电力发射器及其无线电力传送方法
CN104718682A (zh) * 2012-10-11 2015-06-17 株式会社村田制作所 无线供电装置
CN105634093A (zh) * 2016-04-01 2016-06-01 杨军 一种多手机可移动三维无线充电装置
CN205646956U (zh) * 2016-04-01 2016-10-12 杨军 一种多手机可移动三维无线充电装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053369A2 (en) * 2006-08-23 2008-05-08 Bio Aim Technologies Holding Ltd. Three-dimensional electromagnetic flux field generation
US20130271069A1 (en) * 2012-03-21 2013-10-17 Mojo Mobility, Inc. Systems and methods for wireless power transfer
CN103779951B (zh) * 2014-01-03 2015-12-30 无锡市产品质量监督检验中心 电动自行车磁耦合谐振式无线充电器
CN103956836A (zh) * 2014-04-11 2014-07-30 陕西科技大学 一种高效率远距离无线传电装置
CN104218687A (zh) * 2014-08-14 2014-12-17 陈业军 无线充电发射端的频率跟踪装置、方法及系统
CN104821641B (zh) * 2015-04-20 2018-01-09 深圳市天微电子股份有限公司 一种无线充电装置
CN204928321U (zh) * 2015-09-11 2015-12-30 浙江大学 基于电磁谐振的无线充电电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202206194U (zh) * 2011-06-09 2012-04-25 东南大学 一种无线能量传输装置
CN104718682A (zh) * 2012-10-11 2015-06-17 株式会社村田制作所 无线供电装置
CN104184218A (zh) * 2013-05-27 2014-12-03 Lg电子株式会社 无线电力发射器及其无线电力传送方法
CN105634093A (zh) * 2016-04-01 2016-06-01 杨军 一种多手机可移动三维无线充电装置
CN205646956U (zh) * 2016-04-01 2016-10-12 杨军 一种多手机可移动三维无线充电装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108462396B (zh) * 2018-03-29 2024-02-23 青岛华电高压电气有限公司 35kV振荡波系统的可控高压直流电源
CN108462396A (zh) * 2018-03-29 2018-08-28 青岛华电高压电气有限公司 35kV振荡波系统的可控高压直流电源
CN109888929A (zh) * 2019-03-06 2019-06-14 大连理工大学 一种对随物体旋转运动电气设备的无线供电系统
CN110049607A (zh) * 2019-05-16 2019-07-23 徐州凯思特机电科技有限公司 一种煤矿井下长距离智能无线照明系统
CN110401267A (zh) * 2019-08-14 2019-11-01 东莞市钜大电子有限公司 一种半桥谐振逆变型磁耦合谐振式无线充电电源
CN113726188A (zh) * 2020-05-25 2021-11-30 中国石油化工股份有限公司 多工作模式的高频高压交流电源
CN113726188B (zh) * 2020-05-25 2023-07-25 中国石油化工股份有限公司 多工作模式的高频高压交流电源
CN111682658B (zh) * 2020-05-28 2022-12-16 哈尔滨工业大学 一种用于无线电能传输lpe位置检测的谐振腔恒流控制系统及其控制方法
CN111682658A (zh) * 2020-05-28 2020-09-18 哈尔滨工业大学 一种用于无线电能传输lpe位置检测的谐振腔恒流控制系统及其控制方法
CN112564307A (zh) * 2020-11-27 2021-03-26 哈尔滨工业大学 一种电动汽车大功率动态无线供电系统多模块磁并联发射端电路拓扑及其控制方法
CN112737141A (zh) * 2020-12-23 2021-04-30 中兴新能源科技有限公司 原副边控制量的约束方法、装置及无线充电系统
CN113541329B (zh) * 2021-07-12 2023-05-26 清华大学深圳国际研究生院 一种具备全局功率控制功能的无线能量传输系统
CN113541329A (zh) * 2021-07-12 2021-10-22 清华大学深圳国际研究生院 一种具备全局功率控制功能的无线能量传输系统
CN114243945A (zh) * 2021-11-12 2022-03-25 深圳供电局有限公司 无线充电系统及其谐振网络匹配方法
CN114079325A (zh) * 2021-12-01 2022-02-22 Oppo广东移动通信有限公司 无线充电方法、装置、电子设备、系统和可读存储介质
CN114374252A (zh) * 2022-01-17 2022-04-19 天津工业大学 一种能量信号同步传输的无线充电电路
CN114448107A (zh) * 2022-01-18 2022-05-06 厦门大学 一种基于三线圈的恒压恒流式无线电能传输装置
CN115664054A (zh) * 2022-12-29 2023-01-31 成都西交轨道交通技术服务有限公司 一种基于中继极板的车地多负载同步无线供电系统
CN116260485A (zh) * 2023-02-24 2023-06-13 广西电网有限责任公司电力科学研究院 一种两级式无线能信同传系统及方法
CN116667888A (zh) * 2023-08-02 2023-08-29 沈阳仪表科学研究院有限公司 一种极低频电磁信号发射机
CN116667888B (zh) * 2023-08-02 2023-10-20 沈阳仪表科学研究院有限公司 一种极低频电磁信号发射机

Also Published As

Publication number Publication date
CN105634093B (zh) 2018-01-09
CN105634093A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2017167225A1 (zh) 一种多手机可移动三维无线充电装置
USRE45651E1 (en) Electronic control method for a planar inductive battery charging apparatus
US9231424B2 (en) Charging system
JP6111139B2 (ja) 双方向非接触給電装置
CN107579564B (zh) 一种三线圈结构的恒流恒压感应式无线充电系统
US20150311724A1 (en) Ac inductive power transfer system
US20150311723A1 (en) Parallel series dc inductive power transfer system
WO2014199691A1 (ja) 給電装置、および非接触給電システム
US11043845B2 (en) Power feeding device and wireless power transmission device
CN202817865U (zh) 智能型非接触充电系统
CN205646956U (zh) 一种多手机可移动三维无线充电装置
US20150061402A1 (en) Power reception device, power transmission device and power transfer system
JP5888468B2 (ja) 給電装置及び非接触給電システム
TWI565187B (zh) Llc充電器及其控制方法與發射-接收變壓器
US10218186B2 (en) Power feeding device and non-contact power transmission device
JP2013229988A (ja) アンテナ
CN112491149A (zh) 一种箱式多角度无线充电器及使用方法
JP2015228739A (ja) 送電装置
KR101393707B1 (ko) 자가충전·스트레칭운동이 가능한 웰빙형 무선마우스
CN217240390U (zh) 气溶胶发生系统、装置及无线充电电路
CN210092946U (zh) 一种充电电路
CN208142937U (zh) 一种自动导引运输车无接触供电取电装置
US10084351B2 (en) Power feeding device
Fukuoka et al. A new resonant IPT wireless V2H system with bidirectional single-ended inverter
CN202384989U (zh) 一种无线电能传输系统的整流滤波电路

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773255

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/02/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17773255

Country of ref document: EP

Kind code of ref document: A1