WO2024092560A1 - 多坐标系标定与设备对位方法、巨量转移设备 - Google Patents

多坐标系标定与设备对位方法、巨量转移设备 Download PDF

Info

Publication number
WO2024092560A1
WO2024092560A1 PCT/CN2022/129297 CN2022129297W WO2024092560A1 WO 2024092560 A1 WO2024092560 A1 WO 2024092560A1 CN 2022129297 W CN2022129297 W CN 2022129297W WO 2024092560 A1 WO2024092560 A1 WO 2024092560A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate system
carrier
backplane
coordinates
image
Prior art date
Application number
PCT/CN2022/129297
Other languages
English (en)
French (fr)
Inventor
王成飞
闫俊伟
陈仲林
周韧
安金鑫
任泽
裴光辉
王大军
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/129297 priority Critical patent/WO2024092560A1/zh
Priority to CN202280003991.1A priority patent/CN118451559A/zh
Publication of WO2024092560A1 publication Critical patent/WO2024092560A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a multi-coordinate system calibration and device alignment method, a non-transitory computer-readable storage medium, and a mass transfer device.
  • Mini-LED Mini Light Emitting Diode
  • Micro-LED Micro Light Emitting Diode
  • a multi-coordinate system calibration and equipment alignment method comprises: determining a first mapping relationship between a first image pixel coordinate system of a mid-carrying substrate carrier and a world coordinate system through a mid-carrying substrate carrier and a visual hand-eye calibration. Determining a second mapping relationship between a second image pixel coordinate system of a backplane carrier and a world coordinate system through a backplane carrier and a visual hand-eye calibration. Determining that a galvanometer starting point of a laser is located at the galvanometer starting point coordinates in the world coordinate system.
  • the mid-carrying substrate is aligned based on the actual coordinates of the mid-carrying substrate carrier and the first template calibration coordinates.
  • the backplane is aligned based on the actual coordinates of the backplane carrier and the second template calibration coordinates.
  • the step of determining the first mapping relationship between the first image pixel coordinate system of the medium substrate carrier stage and the world coordinate system through the medium substrate carrier stage and the visual hand-eye calibration includes: (1-1) to (1-3). (1-1) Place the first target on the medium substrate carrier stage, and the camera of the medium substrate carrier stage acquires a first image. The first image includes the first target and the first image pixel coordinate system. (1-2) Establish a fourth mapping relationship between the first camera coordinate system of the medium substrate carrier stage and the first image pixel coordinate system through the camera intrinsic parameters of the medium substrate carrier stage. Establish a fifth mapping relationship between the first camera coordinate system of the medium substrate carrier stage and the world coordinate system through the camera extrinsic parameters of the medium substrate carrier stage. (1-3) Determine the first mapping relationship between the first image pixel coordinate system and the world coordinate system based on the fourth mapping relationship and the fifth mapping relationship.
  • the camera of the intermediate substrate carrier stage includes: a first coarse alignment camera and a first fine alignment camera, wherein the first coarse alignment camera is used to acquire a first sub-image, wherein the first sub-image includes a first sub-image pixel coordinate system.
  • the first fine alignment camera is used to acquire a second sub-image, wherein the second sub-image includes a second sub-image pixel coordinate system.
  • the first image pixel coordinate system includes: the first sub-image pixel coordinate system and the second sub-image pixel coordinate system.
  • the step of determining a first mapping relationship between the first image pixel coordinate system of the intermediate substrate carrier and the world coordinate system comprises: determining a first sub-mapping relationship between the first sub-image pixel coordinate system and the world coordinate system. Determining a second sub-mapping relationship between the second sub-image pixel coordinate system and the world coordinate system. Determining the first mapping relationship based on the first sub-mapping relationship and the second sub-mapping relationship.
  • the step of determining the second mapping relationship between the second image pixel coordinate system of the backplane carrier and the world coordinate system through the backplane carrier and the visual hand-eye calibration includes: (1-4) to (1-6).
  • (1-4) Place the second target on the backplane carrier, and the camera of the backplane carrier acquires a second image.
  • the second image includes the second target and the second image pixel coordinate system.
  • (1-5) Establish the sixth mapping relationship between the second camera coordinate system of the backplane carrier and the second image pixel coordinate system through the camera intrinsic parameters of the backplane carrier.
  • (1-6) Determine the second mapping relationship between the second image pixel coordinate system and the world coordinate system based on the sixth mapping relationship and the seventh mapping relationship.
  • the first target and the second target include: a visual calibration plate.
  • the camera of the backplane carrier includes: a second coarse alignment camera and a second fine alignment camera, the second coarse alignment camera is used to obtain a third sub-image, the third sub-image includes a third sub-image pixel coordinate system.
  • the second fine alignment camera is used to obtain a fourth sub-image, the fourth sub-image includes a fourth sub-image pixel coordinate system.
  • the second image pixel coordinate system includes: the third sub-image pixel coordinate system and the fourth sub-image pixel coordinate system.
  • the step of determining the second mapping relationship between the second image pixel coordinate system of the backplane carrier and the world coordinate system includes: determining a third sub-mapping relationship between the third sub-image pixel coordinate system and the world coordinate system. Determining a fourth sub-mapping relationship between the fourth sub-image pixel coordinate system and the world coordinate system. Determining the second mapping relationship based on the third sub-mapping relationship and the fourth sub-mapping relationship.
  • the step of determining that the galvanometer starting point of the laser is located at the galvanometer starting point coordinates in the world coordinate system includes: (2-1) to (2-4). (2-1) Determine the laser spot processing format of the galvanometer. (2-2) Move the backplane carrier provided with the identification point to the position directly below the laser spot processing format of the galvanometer, and the laser outputs the spot at the starting point coordinates of the galvanometer. (2-3) Move the backplane carrier to the field of view of the second precision alignment camera.
  • step (2-3) the method for judging whether the backplane carrier is moved into the field of view of the second precision alignment camera includes: if the light spot at the coordinates of the identification point of the backplane carrier and the starting point of the galvanometer appears simultaneously in the field of view of the second precision alignment camera, the backplane carrier is moved into the field of view of the second precision alignment camera. If the light spot at the coordinates of the identification point of the backplane carrier and the starting point of the galvanometer does not appear simultaneously in the field of view of the second precision alignment camera, then the process returns to step (2-2).
  • the step of using the first mapping relationship and the galvanometer starting point coordinates to obtain the first template calibration coordinates of the carrier substrate in the world coordinate system includes: (3-1) to (3-4). (3-1) Place the carrier substrate on the carrier substrate carrier, wherein a plurality of light emitting diodes are arrayed on the carrier substrate. (3-2) The carrier substrate carrier moves to the position directly below the field of view of the first rough alignment camera, collects the first feature point image, and uses the first mapping relationship and the first feature point coordinates in the first image pixel coordinate system to determine the first coordinates of the carrier substrate carrier in the world coordinate system.
  • the carrier substrate carrier moves to the position where the coordinates of the light emitting diode at the starting point of the carrier substrate coincide with the coordinates of the galvanometer starting point, and the first fine alignment camera collects the second feature point image, and uses the first mapping relationship and the second feature point coordinates in the first image pixel coordinate system to determine the second coordinates of the carrier substrate carrier in the world coordinate system.
  • the first fine alignment camera collects the second feature point image, and uses the first mapping relationship and the second feature point coordinates in the first image pixel coordinate system to determine the second coordinates of the carrier substrate carrier in the world coordinate system.
  • Based on the first coordinates and the second coordinates obtain the first template calibration coordinates of the carrier substrate in the world coordinate system.
  • the step of aligning the medium carrier substrate based on the actual coordinates of the medium carrier substrate carrier and the first template calibration coordinates includes: (4-1) to (4-4). (4-1) Place the medium carrier substrate on the medium carrier substrate carrier. (4-2) The medium carrier substrate carrier moves to the position of the first coordinate, collects the fifth feature point image, and obtains the first position deviation coordinate between the fifth feature point image and the first feature point image. (4-3) The medium carrier substrate carrier moves to the position where the second coordinate and the first position deviation coordinate are calculated and the first precision alignment camera collects the sixth feature point image, and obtains the second position deviation coordinate between the sixth feature point image and the second feature point image. (4-4) The medium carrier substrate carrier moves to the position of the second position deviation coordinate to complete the alignment of the medium carrier substrate.
  • the step of using the second mapping relationship and the galvanometer starting point coordinates to obtain the second template calibration coordinates of the backplane in the world coordinate system includes: (3-5) to (3-9). (3-5) Place the backplane on the backplane carrier, wherein a plurality of pads are arranged in an array on the backplane. (3-6) The backplane carrier moves to the position directly below the field of view of the second rough alignment camera, collects the third feature point image, and uses the second mapping relationship and the third feature point coordinates in the second image pixel coordinate system to determine the third coordinates of the backplane carrier in the world coordinate system.
  • the backplane carrier moves to the position directly below the field of view of the second fine alignment camera, collects the fourth feature point image, and uses the second mapping relationship and the fourth feature point coordinates in the second image pixel coordinate system to determine the fourth coordinates of the backplane carrier in the world coordinate system.
  • the backplane carrier moves to the position where the pad coordinates of the backplane starting point coincide with the coordinates of the galvanometer starting point, and records the fifth coordinates of the backplane carrier in the world coordinate system.
  • (3-9) Based on the third coordinate, the fourth coordinate and the fifth coordinate, obtain the second template calibration coordinates of the backplate in the world coordinate system.
  • the step of aligning the backplane based on the actual coordinates of the backplane carrier and the calibration coordinates of the second template includes: after the alignment of the middle carrier substrate in the first row and the first column is completed, the backplane is aligned, and the step includes: (4-5) to (4-8). (4-5) Place the backplane on the backplane carrier. (4-6) The backplane carrier moves to the position of the third coordinate, captures the seventh feature point image, and obtains the third position deviation coordinate between the seventh feature point image and the third feature point image.
  • the backplane carrier moves to the position where the fourth coordinate and the third position deviation coordinate are calculated, and the second precision alignment camera captures the eighth feature point image, and obtains the fourth position deviation coordinate between the eighth feature point image and the fourth feature point image.
  • the backplane carrier moves to the position where the fifth coordinate and the fourth position deviation coordinate are calculated, and the backplane alignment is completed.
  • the ratio of the number of light-emitting diodes on the carrier substrate to the number of backplane pads is T:1.
  • the standard size is the size occupied by a row of the light-emitting diodes arranged along the first direction.
  • T is a positive integer greater than or equal to 1.
  • the step of aligning the backplane based on the actual coordinates of the backplane carrier and the second template calibration coordinates in the mass transfer process includes: after the alignment of the middle carrier substrates in the first row n columns is completed, the backplane is aligned.
  • n is a positive integer greater than or equal to 2
  • the step includes: (5-5) to (5-7).
  • the step includes: (5-5) After the transfer of the middle carrier substrates in the first row (n-1) columns is completed, the number of transferred light-emitting diodes is recorded, and the fifth position deviation coordinates of the starting point position of the middle carrier substrates in the first row n columns and the starting point position of the middle carrier substrates in the first row (n-1) columns are obtained.
  • the backplane carrier moves to the position where the fourth coordinate, the third position deviation coordinate and the fifth position deviation coordinate are calculated and the second precision alignment camera captures the eighth feature point image, and obtains the fourth position deviation coordinates of the eighth feature point image and the fourth feature point image.
  • the backplane carrier moves to the position where the fifth coordinate and the fourth position deviation coordinate are calculated and the backplane alignment is completed.
  • the step of aligning the backplane in the mass transfer process based on the actual coordinates of the backplane carrier and the second template calibration coordinates includes: after the alignment of the first row n columns of the middle carrier substrate is completed, the backplane is aligned.
  • n is a positive integer greater than or equal to 2
  • the step includes: (6-5) to (6-7).
  • the backplane carrier moves to the position where the fourth coordinate, the third position deviation coordinate and the fifth position deviation coordinate are calculated and the second precision alignment camera captures the eighth feature point image, and obtains the fourth position deviation coordinates of the eighth feature point image and the fourth feature point image.
  • the backplane carrier moves to the position where the fifth coordinate, the fourth position deviation coordinate and the sixth position deviation coordinate are calculated and the backplane alignment is completed.
  • the step of aligning the backplane based on the actual coordinates of the backplane carrier and the second template calibration coordinates in the mass transfer process includes: after the alignment of the middle carrier substrate in the first column of the mth row is completed, the backplane is aligned.
  • m is a positive integer greater than or equal to 2
  • the step includes: (7-5) to (7-7).
  • the step of aligning the backplane in the mass transfer process based on the actual coordinates of the backplane carrier and the second template calibration coordinates includes: after the alignment of the middle carrier substrate in the first column of the mth row is completed, the backplane is aligned.
  • m is a positive integer greater than or equal to 2
  • the step includes: (8-5) to (8-7).
  • the backplane carrier moves to the position where the fourth coordinate, the third position deviation coordinate and the seventh position deviation coordinate are calculated and the second precision alignment camera captures the eighth feature point image, and calculates the fourth position deviation coordinates of the eighth feature point image and the fourth feature point image.
  • the backplane carrier moves to the position where the fifth coordinate, the fourth position deviation coordinate and the sixth position deviation coordinate are calculated and the backplane alignment is completed.
  • a non-transitory computer-readable storage medium stores computer instructions, and the computer instructions are used to enable a computer to execute the multi-coordinate system calibration and device alignment method described in any of the above embodiments.
  • a mass transfer device including a memory, a middle carrier substrate, a middle carrier substrate carrier stage, a camera of the middle carrier substrate carrier stage, a backplane, a backplane carrier stage, a camera of the backplane carrier stage, a laser, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the program, the multi-coordinate system calibration and device alignment method described in any of the above embodiments is implemented.
  • FIG1 is a structural diagram of a carrier substrate and a backplane provided according to some embodiments of the present disclosure
  • FIG2 is a structural diagram of a system for using a multi-coordinate system calibration and device alignment method provided in accordance with some embodiments of the present disclosure
  • FIG3 is a flow chart of a multi-coordinate system calibration and device alignment method provided according to some embodiments of the present disclosure
  • FIG. 4 is a diagram showing steps of a mid-carrying substrate carrier and visual hand-eye calibration according to some embodiments of the present disclosure
  • FIG5 is a diagram showing steps of backplane carrier and visual hand-eye calibration according to some embodiments of the present disclosure
  • FIG. 6 is a diagram showing the steps of determining the coordinates of the galvanometer starting point of the laser in the world coordinate system according to some embodiments of the present disclosure
  • FIG. 7 is a flow chart of a substrate carrier and visual hand-eye calibration according to some embodiments of the present disclosure.
  • FIGS. 8 and 9 are diagrams showing steps of a mid-carrying substrate carrier and visual hand-eye calibration according to some embodiments of the present disclosure
  • FIG10 is a flow chart of backplane carrier and visual hand-eye calibration according to some embodiments of the present disclosure.
  • FIGS. 11 and 12 are diagrams showing steps of backplane carrier and visual hand-eye calibration according to some embodiments of the present disclosure
  • FIG13 is a flow chart of determining the coordinates of the galvanometer starting point of a laser in the world coordinate system according to some embodiments of the present disclosure
  • FIG14 is another flow chart of determining the coordinates of the galvanometer starting point of the laser in the world coordinate system according to some embodiments of the present disclosure
  • FIG15 is a flow chart of obtaining the first template calibration coordinates of the carrier substrate in the world coordinate system according to some embodiments of the present disclosure
  • FIG. 16 is a diagram showing steps for obtaining the first template calibration coordinates of the carrier substrate in the world coordinate system according to some embodiments of the present disclosure
  • FIG. 17 is a flow chart of aligning a carrier substrate according to some embodiments of the present disclosure.
  • FIG18 is a flow chart of obtaining the second template calibration coordinates of the backplane in the world coordinate system according to some embodiments of the present disclosure
  • 19 to 21 are diagrams showing steps of obtaining the second template calibration coordinates of the backplane in the world coordinate system according to some embodiments of the present disclosure
  • FIG22 is another structural diagram of a carrier substrate and a backplane provided according to some embodiments of the present disclosure.
  • FIG23 is a flow chart of backplane alignment according to some embodiments of the present disclosure.
  • FIG24 is another structural diagram of a carrier substrate and a backplane provided according to some embodiments of the present disclosure.
  • FIG25 is another flowchart of backplane alignment according to some embodiments of the present disclosure.
  • FIG26 is another flowchart of backplane alignment according to some embodiments of the present disclosure.
  • FIG27 is another flowchart of backplane alignment according to some embodiments of the present disclosure.
  • FIG28 is another structural diagram of a carrier substrate and a backplane provided according to some embodiments of the present disclosure.
  • FIG29 is another flowchart of backplane alignment according to some embodiments of the present disclosure.
  • FIG30 is another flow chart of backplane alignment according to some embodiments of the present disclosure.
  • FIG31 is another flowchart of backplane alignment according to some embodiments of the present disclosure.
  • FIG32 is another flowchart of backplane alignment according to some embodiments of the present disclosure.
  • FIG33 is another flowchart of backplane alignment according to some embodiments of the present disclosure.
  • FIG. 34 is a structural diagram of a mass transfer device provided according to some embodiments of the present disclosure.
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • plural means two or more.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • coupled indicates, for example, that two or more components are in direct physical or electrical contact.
  • coupled or “communicatively coupled” may also refer to two or more components that are not in direct contact with each other, but still cooperate or interact with each other.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C” and both include the following combinations of A, B, and C: A only, B only, C only, the combination of A and B, the combination of A and C, the combination of B and C, and the combination of A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • the term “if” is optionally interpreted to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context.
  • the phrases “if it is determined that” or “if [a stated condition or event] is detected” are optionally interpreted to mean “upon determining that” or “in response to determining that” or “upon detecting [a stated condition or event]” or “in response to detecting [a stated condition or event],” depending on the context.
  • parallel includes absolute parallelism and approximate parallelism, wherein the acceptable deviation range of approximate parallelism can be, for example, a deviation within 5°;
  • perpendicular includes absolute perpendicularity and approximate perpendicularity, wherein the acceptable deviation range of approximate perpendicularity can also be, for example, a deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the acceptable deviation range of approximate equality can be, for example, the difference between the two equalities is less than or equal to 5% of either one.
  • Exemplary embodiments are described herein with reference to cross-sectional views and/or plan views that are idealized exemplary drawings.
  • the thickness of the layers and the area of the regions are exaggerated for clarity. Therefore, variations in shape relative to the drawings due to, for example, manufacturing techniques and/or tolerances are conceivable. Therefore, the exemplary embodiments should not be interpreted as being limited to the shapes of the regions shown herein, but include shape deviations due to, for example, manufacturing. For example, an etched region shown as a rectangle will typically have curved features. Therefore, the regions shown in the drawings are schematic in nature, and their shapes are not intended to illustrate the actual shape of the regions of the device, and are not intended to limit the scope of the exemplary embodiments.
  • Mini-LED sub-millimeter light-emitting diode
  • Micro-LED Micro Light Emitting Diode
  • LCD Liquid Crystal Display
  • OLED Organic Light Emitting Diode
  • Micro-LED and Mini-LED Compared with traditional small-pitch LEDs (Light Emitting Diodes), Micro-LED and Mini-LED have significantly improved display resolution and image quality due to their relatively small pitch.
  • the optical angle can make the viewing angle wider, the contrast higher, and the image quality better.
  • the micron-level pixel pitch can cover multiple application scenarios from small and medium-sized displays to large and medium-sized displays. It is suitable for a variety of display scenarios such as virtual reality, small projectors, micro displays, visible light communications, and medical research.
  • a plurality of light-emitting diodes 1 are arranged in an array on the middle substrate 10.
  • the light-emitting diodes 1 on the middle substrate 10 need to be transferred to the pads 2 of the backplane 20.
  • the accuracy and speed requirements of the transfer process are very high, which has become a key technology restricting the mass production of Micro-LED and Mini-LED.
  • the size of the middle substrate 10 is 1:30 to the size of the backplane 20.
  • the middle substrate 10 and the backplane 20 are both square, the area of the middle substrate 10 is Sa, the area of the backplane 20 is Sb, and the ratio of the area Sa to the area Sb is 1:30.
  • This size ratio indicates that if the light-emitting diode 1 on the backplane 20 is transferred, the middle substrate 10 and the backplane 20 need to be aligned 30 times.
  • the middle carrier substrate 10 includes: a plurality of light-emitting diodes 1 arranged in an array along a first direction U and a second direction V.
  • the first direction U is the row direction in which the plurality of light-emitting diodes 1 are arranged
  • the second direction V is the column direction in which the plurality of light-emitting diodes 1 are arranged.
  • the backplane 20 includes a plurality of pads 2 arranged in an array along the first direction U and the second direction V.
  • the first direction U is the row direction in which the plurality of pads 2 are arranged
  • the second direction V is the column direction in which the plurality of pads 2 are arranged.
  • the pad 2 in FIG. 1 may be a pad group, and the pad 2 in the figure is only a schematic diagram of the position of the pad 2 , and does not limit its structure.
  • the present disclosure provides a multi-coordinate system calibration and device alignment method.
  • the multi-coordinate system calibration and device alignment method can be applied to Micro-LED, Mini-LED and micro components of similar size to Micro-LED and Mini-LED, such as micro IC (Integrated Circuit), etc., without limitation here.
  • the use system 100 includes: a middle carrier substrate 10, a middle carrier substrate transport stage 11, a camera 12 of the middle carrier substrate transport stage 11, a back plate 20, a back plate transport stage 21 and a camera 22 of the back plate transport stage 21, as well as a galvanometer 30 and a field lens 31 of a laser (not shown in the figure).
  • the middle substrate 10 can be placed on the middle substrate carrier stage 11, the middle substrate carrier stage 11 is used to transport the middle substrate 10, and the camera 12 of the middle substrate carrier stage 11 is used to capture images.
  • the backplane 20 can be placed on the backplane carrier stage 21, the backplane carrier stage 21 is used to transport the backplane 20, and the camera 22 of the backplane carrier stage 21 is used to capture images.
  • the galvanometer 30 can also be called a laser scanner, and the field lens 31 is a focusing lens. Through the selection and matching of the galvanometer 30 and the field lens 31, the spot processing width N1 that meets the process requirements can be determined.
  • the light-emitting diode 1 can be dissociated from the middle substrate 10, so that the light-emitting diode 1 is connected to the corresponding pad 2 on the backplane 20, and the transfer operation of the light-emitting diode 1 on the backplane 20 is realized.
  • middle substrate 10 can be stacked on the middle substrate carrier platform 11, and the middle substrate 10 and the middle substrate carrier platform 11 in Figure 2 are represented by the same graphic.
  • the backplane 20 can be stacked on the backplane carrier platform 21, and the backplane 20 and the backplane carrier platform 21 in Figure 2 are represented by the same graphic.
  • a multi-coordinate system calibration and device alignment method includes steps: S1 to S7 .
  • a first mapping relationship between a first image pixel coordinate system Pi1 of the intermediate substrate carrier stage 11 and a world coordinate system Pw is determined through visual hand-eye calibration of the intermediate substrate carrier stage 11 .
  • the visual hand-eye calibration is mainly to obtain the coordinate conversion relationship between the camera 12 and the moving part (eg, the intermediate substrate carrier 11), so that the coordinates of the first image pixel coordinate system Pi1 in the vision are expressed in the world coordinate system Pw.
  • the camera 12 can be used to capture images of the target point after it has been placed twice, and through the first mapping relationship between the first image pixel coordinate system Pi1 and the world coordinate system Pw, the image pixel coordinates of the target point in the two captured images are converted into coordinates in the world coordinate system Pw, the offset difference of the two coordinates is calculated and the position is adjusted, so that the target point can be accurately placed at the same target position twice.
  • step S1 By establishing a first mapping relationship between the first image pixel coordinate system Pi1 of the intermediate substrate carrier stage 11 and the world coordinate system Pw in step S1 , the coordinates on the image captured by the camera 12 of the intermediate substrate carrier stage 11 can be converted to the world coordinate system Pw.
  • the coordinate conversion relationship between the camera 22 and the moving component is obtained through visual hand-eye calibration, so that the coordinates of the second image pixel coordinate system Pi2 in the vision are expressed in the world coordinate system Pw.
  • a second mapping relationship between the second image pixel coordinate system Pi2 of the backplane carrier 21 and the world coordinate system Pw is established through step S2, so that the coordinates on the image taken by the camera 22 of the backplane carrier 21 can be converted to the world coordinate system Pw.
  • the third mapping relationship between the galvanometer coordinate system of the laser and the world coordinate system Pw is determined by the movement of the backplane carrier 21 and the observation of the camera 22 of the backplane carrier 21. Then, through the established third mapping relationship, it is determined that the galvanometer starting point of the laser is located at the galvanometer starting point coordinates (X0, Y0, ⁇ 0) in the world coordinate system Pw.
  • step S3 the position of the light spot of the galvanometer 30 in the world coordinate system Pw can be determined, so as to determine whether the light spot of the laser irradiates the target position, which can be understood as the position where the light spot is expected to irradiate.
  • the first template calibration coordinates are reference coordinates of the carrier substrate 10 in the world coordinate system Pw.
  • the reference coordinates of the carrier substrate 10 in the world coordinate system Pw are established by using a standard film (or sample film) of the carrier substrate 10.
  • step S4 the reference coordinates of the intermediate substrate 10 in the world coordinate system Pw are established, which are used to determine the position deviation coordinates of the intermediate substrate 10 to be aligned in the subsequent production process.
  • the second template calibration coordinates are the reference coordinates of the back plate 20 in the world coordinate system Pw.
  • the reference coordinates of the back plate 20 in the world coordinate system Pw are established through a standard film (or sample film) of the back plate 20.
  • step S5 the reference base coordinates of the back plate 20 in the world coordinate system Pw are established, which are used to determine the position deviation coordinates of the back plate 20 to be aligned in the subsequent production process.
  • the middle substrate 10 is aligned based on the actual coordinates of the middle substrate carrier stage 11 and the first template calibration coordinates.
  • the actual coordinates of the intermediate substrate carrying stage 11 refer to the coordinates of the intermediate substrate carrying stage 11 in the world coordinate system Pw.
  • the coordinates of the intermediate substrate 10 are determined by comparing the actual coordinates of the intermediate substrate stage 11 with the position deviation coordinates of the first template calibration coordinates, thereby completing the alignment of the intermediate substrate 10 .
  • the actual coordinates of the backplane carrier 21 refer to the coordinates of the backplane carrier 21 in the world coordinate system Pw.
  • the coordinates of the back plate 20 are determined by comparing the actual coordinates of the back plate carrier 21 with the position deviation coordinates of the second template calibration coordinates, thereby completing the alignment of the back plate 20 .
  • the middle substrate 10 and the backplane 20 are aligned. Therefore, through the above steps S1 to S7, the middle substrate 10 and the backplane 20 can be aligned accurately and efficiently, thereby improving the efficiency of Micro-LED and Mini-LED mass production.
  • the step of determining the first mapping relationship between the first image pixel coordinate system Pi1 of the intermediate substrate carrier 11 and the world coordinate system Pw through visual hand-eye calibration in S1 includes: (1-1) to (1-3).
  • the first image includes the first target object 41 and a first image pixel coordinate system Pi1.
  • the first target 41 includes a visual calibration plate.
  • the visual calibration plate is a glass substrate, and the size of the glass substrate is consistent with the size of the table of the intermediate substrate carrier 11.
  • a fourth mapping relationship between the first camera coordinate system Pc1 of the medium substrate carrier stage 11 and the first image pixel coordinate system Pi1 is established through the internal reference of the camera 12 of the medium substrate carrier stage 11.
  • a fifth mapping relationship between the first camera coordinate system Pc1 of the medium substrate carrier stage 11 and the world coordinate system Pw is established through the external reference of the camera 12 of the medium substrate carrier stage 11.
  • the internal parameters of the camera 12 can truly reflect the position information of the pixel points.
  • the external parameters of the camera 12 refer to the mapping and binding of the shooting data and the data actually obtained by the camera 12 after calculation based on the placement position and height of the camera 12.
  • the CCD (Charge Coupled Device) of the camera 12 the coordinates of the first target object 41 in the image can be converted into coordinates under the world coordinate system Pw through the changes of the internal and external parameters of the camera 12.
  • the target point on the image is obtained according to the image processing algorithm, and through the first mapping relationship in step (1-3), the coordinates of the target point in the first image pixel coordinate system Pi1 are converted to the coordinates in the world coordinate system Pw, thereby realizing the conversion of image pixel coordinates to world coordinates.
  • the transfer of the medium substrate carrier 11 in the world coordinate system Pw can be realized through calculation.
  • the specific transfer method of the medium substrate carrier 11 is shown in the following content and will not be described here.
  • the first mapping relationship between the first image pixel coordinate system Pi1 and the world coordinate system Pw of the intermediate substrate carrier stage 11 is determined.
  • the image coordinates captured by the camera 12 of the intermediate substrate carrier stage 11 can be converted into coordinates in the world coordinate system Pw for aligning the intermediate substrate carrier stage 11.
  • the camera 12 of the intermediate substrate carrier 11 includes: a first rough alignment camera 121 and a first fine alignment camera 122.
  • the first rough alignment camera 121 is used to obtain a first sub-image
  • the first sub-image includes a first sub-image pixel coordinate system Pi1a.
  • the first fine alignment camera 122 is used to obtain a second sub-image
  • the second sub-image includes a second sub-image pixel coordinate system Pi1b.
  • the first image pixel coordinate system Pi1 includes: a first sub-image pixel coordinate system Pi1a and a second sub-image pixel coordinate system Pi1b.
  • the position of the first fine alignment camera 122 may be fixed relative to the position of the backplane carrier 21 , that is, there is no relative position change between the first fine alignment camera 122 and the backplane carrier 21 .
  • the step of determining a first mapping relationship between the first image pixel coordinate system Pi1 and the world coordinate system Pw of the intermediate substrate carrier stage 11 includes: determining a first sub-mapping relationship between the first sub-image pixel coordinate system Pi1a and the world coordinate system Pw. Determining a second sub-mapping relationship between the second sub-image pixel coordinate system Pi1b and the world coordinate system Pw. Determining the first mapping relationship based on the first sub-mapping relationship and the second sub-mapping relationship.
  • the step of determining a first sub-mapping relationship between the first sub-image pixel coordinate system Pi1a of the intermediate substrate carrying stage 11 and the world coordinate system Pw includes: (1-11) to (1-13).
  • the first sub-image includes the first target object 41 and a first sub-image pixel coordinate system Pi1a.
  • a fifth sub-mapping relationship between the first sub-camera coordinate system of the intermediate substrate carrier stage 11 and the first sub-image pixel coordinate system Pi1a is established through the internal reference of the first coarse alignment camera 121.
  • a sixth sub-mapping relationship between the first sub-camera coordinate system of the intermediate substrate carrier stage 11 and the world coordinate system Pw is established through the external reference of the first coarse alignment camera 121.
  • the step of determining the second sub-mapping relationship between the second sub-image pixel coordinate system Pi1b of the intermediate substrate carrying stage 11 and the world coordinate system Pw includes: (1-14) to (1-16).
  • the first target object 41 is placed on the intermediate substrate carrier stage 11, and the first fine alignment camera 122 of the intermediate substrate carrier stage 11 acquires a second sub-image.
  • the second sub-image includes the first target object 41 and the second sub-image pixel coordinate system Pi1b.
  • a seventh sub-mapping relationship between the second sub-camera coordinate system of the intermediate substrate carrier stage 11 and the second sub-image pixel coordinate system Pi1b is established through the internal reference of the first precision alignment camera 122.
  • An eighth sub-mapping relationship between the second sub-camera coordinate system of the intermediate substrate carrier stage 11 and the world coordinate system Pw is established through the external reference of the first precision alignment camera 122.
  • the first camera coordinate system Pc1 includes a first sub-camera coordinate system and a second sub-camera coordinate system.
  • the first mapping relationship is determined.
  • the step of determining the second mapping relationship between the second image pixel coordinate system Pi2 of the backplane carrier 21 and the world coordinate system Pw through the backplane carrier 21 and the visual hand-eye calibration in S2 includes: (1-4) to (1-6).
  • the second image includes the second target object 42 and the second image pixel coordinate system Pi2.
  • the second target 42 includes a visual calibration plate.
  • the visual calibration plate is a glass substrate, and the size of the glass substrate is consistent with the size of the table of the backplane carrier 21.
  • a sixth mapping relationship between the second camera coordinate system Pc2 of the backplane carrier 21 and the second image pixel coordinate system Pi2 is established through the internal reference of the camera 22 of the backplane carrier 21.
  • a seventh mapping relationship between the second camera coordinate system Pc2 of the backplane carrier 21 and the world coordinate system Pw is established through the external reference of the camera 22 of the backplane carrier 21.
  • the coordinates of the second target object 42 in the image can be converted into coordinates in the world coordinate system Pw.
  • the target point on the image is obtained according to the image processing algorithm, and the coordinates of the target point in the second image pixel coordinate system Pi2 are converted into coordinates in the world coordinate system Pw through the second mapping relationship in step (1-6), thereby realizing the conversion of image pixel coordinates to world coordinates.
  • the backplane carrier 21 can be transferred in the world coordinate system Pw by calculation.
  • the specific transfer method of the backplane carrier 21 is described in the following content and will not be repeated here.
  • the second mapping relationship between the second image pixel coordinate system Pi2 and the world coordinate system Pw of the backplane carrier 21 is determined.
  • the image coordinates captured by the camera 22 of the backplane carrier 21 can be converted into coordinates under the world coordinate system Pw for positioning the backplane carrier 21.
  • the camera 22 of the backplane carrier 21 includes: a second rough alignment camera 221 and a second fine alignment camera 222, the second rough alignment camera 221 is used to obtain a third sub-image, and the third sub-image includes a third sub-image pixel coordinate system Pi2a.
  • the second fine alignment camera 222 is used to obtain a fourth sub-image, and the fourth sub-image includes a fourth sub-image pixel coordinate system Pi2b.
  • the second image pixel coordinate system Pi2 includes: a third sub-image pixel coordinate system Pi2a and a fourth sub-image pixel coordinate system Pi2b.
  • the step of determining the second mapping relationship between the second image pixel coordinate system Pi2 of the backplane carrier 21 and the world coordinate system Pw includes: determining a third sub-mapping relationship between the third sub-image pixel coordinate system Pi2a and the world coordinate system Pw. Determining a fourth sub-mapping relationship between the fourth sub-image pixel coordinate system Pi2b and the world coordinate system Pw. Based on the third sub-mapping relationship and the fourth sub-mapping relationship, determining the second mapping relationship.
  • the step of determining the third sub-mapping relationship between the third sub-image pixel coordinate system Pi2a and the world coordinate system Pw includes: (1-41) to (1-43).
  • the second target object 42 is placed on the backplane carrier 21, and the second coarse alignment camera 221 of the backplane carrier 21 acquires a third sub-image.
  • the third sub-image includes the second target object 42 and the third sub-image pixel coordinate system Pi2a.
  • a ninth sub-mapping relationship between the third sub-camera coordinate system of the backplane carrier 21 and the third sub-image pixel coordinate system Pi2a is established through the internal reference of the second coarse alignment camera 221 of the backplane carrier 21.
  • a tenth sub-mapping relationship between the third sub-camera coordinate system of the backplane carrier 21 and the world coordinate system Pw is established through the external reference of the second coarse alignment camera 221 of the backplane carrier 21.
  • the step of determining the fourth sub-mapping relationship between the fourth sub-image pixel coordinate system Pi2b and the world coordinate system Pw includes: (1-44) to (1-46).
  • the second target object 42 is placed on the backplane carrier 21, and the second precision alignment camera 222 of the backplane carrier 21 acquires the fourth sub-image.
  • the fourth sub-image includes the second target object 42 and the fourth sub-image pixel coordinate system Pi2b.
  • the eleventh sub-mapping relationship between the fourth sub-camera coordinate system of the backplane carrier 21 and the fourth sub-image pixel coordinate system Pi2b is established through the internal reference of the second precision alignment camera 222 of the backplane carrier 21.
  • the twelfth sub-mapping relationship between the fourth sub-camera coordinate system of the backplane carrier 21 and the world coordinate system Pw is established through the external reference of the second precision alignment camera 222 of the backplane carrier 21.
  • the second camera coordinate system Pc2 includes a third sub-camera coordinate system and a fourth sub-camera coordinate system.
  • the second mapping relationship is determined.
  • the field of view of the coarse alignment camera is 100mm*100mm, and the accuracy is 100 ⁇ m.
  • the field of view of the fine alignment camera is 10mm*10mm, and the accuracy is 3 ⁇ m.
  • the field of view of the coarse alignment camera is larger, the accuracy is lower, and the error range is larger.
  • the fine alignment camera has higher accuracy and a smaller error range.
  • the combined use of cameras with two accuracy ranges is conducive to improving the accuracy of position coordinate adjustment.
  • the coarse alignment camera includes: a first coarse alignment camera 121 and a second coarse alignment camera 221.
  • the fine alignment camera includes: a first fine alignment camera 122 and a second fine alignment camera 222.
  • the step of determining in S3 that the galvanometer starting point R1 of the laser is located at the galvanometer starting point coordinates (X0, Y0, ⁇ 0) in the world coordinate system Pw includes: (2-1) to (2-4).
  • the laser, the optical path, the galvanometer 30 and the field lens 31 can be selected to determine the spot processing width N1 that meets the process requirements.
  • the size of the spot processing width N1 is determined and the spatial position is fixed.
  • the size of the light spot processing area N1 is 120 mm*120 mm.
  • the identification point 50 includes a square structured identification point 50.
  • the size of the identification point 50 includes: 100 ⁇ m*100 ⁇ m.
  • the backplane carrier 21 is used as a reference, the light spot of the starting point R1 of the galvanometer 30 is irradiated onto the backplane 20, and the galvanometer coordinate system is calibrated with the identification point 50 on the backplane carrier 21 as a reference.
  • the image is captured by the precise positioning camera 222 to obtain coordinate data with accuracy that meets the requirements.
  • the purpose of determining that the galvanometer starting point R1 of the laser is located at the galvanometer starting point coordinates (X0, Y0, ⁇ 0) in the world coordinate system Pw is achieved. It is used to complete the spatial matching of the galvanometer 30 with the middle substrate 10 and the back plate 20 to determine the precise position where the light spot can be irradiated. It is used to calibrate the reference coordinates of the middle substrate 10 and the back plate 20 in the world coordinate system Pw.
  • the method for determining whether the backplane carrier 21 is moved into the field of view of the second precision alignment camera 222 includes: if the light spot at the coordinates of the identification point 50 of the backplane carrier 21 and the starting point R1 of the galvanometer 30 simultaneously appears in the field of view of the second precision alignment camera 222, then the backplane carrier 21 is moved into the field of view of the second precision alignment camera 222. If the light spot at the coordinates of the identification point 50 of the backplane carrier 21 and the starting point R1 of the galvanometer 30 does not simultaneously appear in the field of view of the second precision alignment camera 222, then the process returns to step (2-2).
  • the step of obtaining the first template calibration coordinates of the carrier substrate 10 in the world coordinate system Pw using the first mapping relationship and the galvanometer starting point coordinates (X0, Y0, ⁇ 0) in S4 includes: (3-1) to (3-4).
  • (3-1) Place the intermediate substrate 10 on the intermediate substrate carrying platform 11, wherein a plurality of light emitting diodes 1 are arrayed on the intermediate substrate 10 (as shown in FIG. 1).
  • middle carrier substrate 10 can be superimposed on the middle carrier substrate carrying platform 11.
  • the middle carrier substrate 10 and the middle carrier substrate carrying platform 11 in Figures 2 and 16 are represented by the same graphic. Since the coordinates of the middle carrier substrate 10 and the coordinates of the middle carrier substrate carrying platform 11 are converted in the world coordinate system Pw, the same graphic is used to exemplarily represent the middle carrier substrate 10 and the middle carrier substrate carrying platform 11 in the figures.
  • the intermediate substrate carrier stage 11 moves to a position just below the field of view of the first coarse alignment camera 121, and collects an image of the first feature point P1.
  • the first coordinates (X1, Y1, ⁇ 1) of the intermediate substrate carrier stage 11 in the world coordinate system Pw are determined by using the first mapping relationship and the coordinates of the first feature point P1 in the first image pixel coordinate system Pi1.
  • the characteristic point may be an identification point, or the characteristic point may be a row of light emitting diodes 1 located on the middle carrier substrate 10 (as shown in FIG. 1 ).
  • this step uses the image acquired by the first coarse alignment camera 121, the first mapping relationship and the coordinates of the first feature point P1 in the first image pixel coordinate system Pi1 are utilized. Specifically, the first sub-mapping relationship and the coordinates of the first feature point P1 in the first sub-image pixel coordinate system Pi1a are utilized to determine the first coordinates (X1, Y1, ⁇ 1) of the intermediate substrate carrier 11 in the world coordinate system Pw.
  • the intermediate substrate carrier stage 11 moves to the position where the coordinates of the light-emitting diode 1 at the starting point of the intermediate substrate 10 coincide with the coordinates of the galvanometer starting point (X0, Y0, ⁇ 0), and the first precision alignment camera 122 captures the image of the second feature point P2, and uses the first mapping relationship and the coordinates of the second feature point P2 in the first image pixel coordinate system Pi1 to determine the second coordinates (X2, Y2, ⁇ 2) of the intermediate substrate carrier stage 11 in the world coordinate system Pw.
  • the LED 1 at the starting point of the middle substrate 10 may be the first LED 1 to be transferred from the middle substrate 10.
  • the LED 1 in the first row and first column on the middle substrate 10 may be represented as LED W1 in Fig. 1.
  • the first coarse alignment camera 121 is first used to collect the image of the first feature point P1, and then the first fine alignment camera 122 is used to collect the image of the second feature point P2. This is because the displacement of the medium substrate 10 during loading is large and the position accuracy does not meet the requirements. For example, through the setting of the first coarse alignment camera 121, after the medium substrate 10 is loaded, the coordinate accuracy is adjusted from about 100 ⁇ m to about 10 ⁇ m through displacement, visual correction, compensation, etc. Then, through the setting of the first fine alignment camera 122, the position accuracy of the medium substrate 10 can be reduced from 10 ⁇ m to 3 ⁇ m, making the coordinate calibration more accurate.
  • the second coordinates (X2, Y2, ⁇ 2) of the intermediate substrate carrier 11 in the world coordinate system Pw are determined by utilizing the first mapping relationship and the coordinates of the second feature point P2 in the first image pixel coordinate system Pi1, specifically by utilizing the second sub-mapping relationship and the coordinates of the second feature point P2 in the second sub-image pixel coordinate system Pi1b.
  • the first template calibration coordinates of the middle carrier substrate 10 in the world coordinate system Pw are obtained, which provide reference coordinates for the alignment of the middle carrier substrate 10.
  • the step of aligning the intermediate substrate 10 based on the actual coordinates of the intermediate substrate carrier stage 11 and the first template calibration coordinates includes: (4-1) to (4-4).
  • (4-1) Place the intermediate substrate 10 on the intermediate substrate carrying platform 11 .
  • the loading of the intermediate substrate 10 can be completed first.
  • the intermediate substrate 10 with the light emitting diodes 1 arranged in an array is fixed on the intermediate substrate transporting platform 11, and the intermediate substrate 10 is transferred through the intermediate substrate transporting platform 11.
  • the intermediate substrate carrier stage 11 moves to the position of the first coordinate (X1, Y1, ⁇ 1), collects the image of the fifth feature point P5, and obtains the first position deviation coordinate (Xm, Ym, ⁇ m) between the image of the fifth feature point P5 and the image of the first feature point P1.
  • the intermediate substrate carrier 11 In the transfer process, when the intermediate substrate 10 is placed on the intermediate substrate carrier 11, the intermediate substrate carrier 11 must move in space. When the intermediate substrate carrier 11 moves to the first coordinate (X1, Y1, ⁇ 1) position again, there will be a position deviation. Through image acquisition and the conversion of the first image pixel coordinates and the world coordinates, the deviation value of the position can be calculated, and the deviation value is recorded as the first position deviation coordinate (Xm, Ym, ⁇ m).
  • the first position deviation coordinate (Xm, Ym, ⁇ m) does not represent a specific coordinate value, but refers to the coordinate identification of the deviation value generated when the intermediate substrate carrier 11 moves to the first coordinate (X1, Y1, ⁇ 1) position again.
  • the intermediate substrate carrier stage 11 moves to the position where the second coordinates (X2, Y2, ⁇ 2) and the first position deviation coordinates (Xm, Ym, ⁇ m) are calculated and the first precision alignment camera 122 captures the image of the sixth feature point P6 and obtains the second position deviation coordinates (Xn, Yn, ⁇ n) between the image of the sixth feature point P6 and the image of the second feature point P2.
  • the intermediate substrate carrier stage 11 moves to the position where the second coordinate (X2, Y2, ⁇ 2) and the first position deviation coordinate (Xm, Ym, ⁇ m) are calculated and the position deviation caused by the spatial movement of the intermediate substrate carrier stage 11 is compensated.
  • the image of the sixth feature point P6 is then captured by the first precision alignment camera 122, and the second position deviation coordinate (Xn, Yn, ⁇ n) between the positions of the image of the sixth feature point P6 and the image of the second feature point P2 is calculated, that is, by using the first precision alignment camera 122, the position deviation value that meets the accuracy requirement is further recorded, and the deviation value is recorded as the second position deviation coordinate (Xn, Yn, ⁇ n).
  • the intermediate substrate carrier stage 11 moves to the position of the second position deviation coordinate (Xn, Yn, ⁇ n), completing the alignment of the intermediate substrate 10.
  • the middle substrate 10 is aligned based on the actual coordinates of the middle substrate carrier stage 11 and the first template calibration coordinates.
  • the step of obtaining the second template calibration coordinates of the back plate 20 in the world coordinate system Pw using the second mapping relationship and the galvanometer starting point coordinates (X0, Y0, ⁇ 0) in S5 includes: (3-5) to (3-9).
  • the backplane carrier 21 moves to the position just below the field of view of the second coarse alignment camera 221, collects the image of the third feature point P3, and uses the second mapping relationship and the coordinates of the third feature point P3 in the second image pixel coordinate system Pi2 to determine the third coordinates (X3, Y3, ⁇ 3) of the backplane carrier 21 in the world coordinate system Pw.
  • the feature point may be an identification point, or the feature point may be a row of pads 2 located on the back plate 20 (as shown in FIG. 1 ).
  • the field of view M1 of the second rough alignment camera 221 is shown in Figure 19.
  • the camera field of view is usually located directly in front of the camera head, and directly below the field of view of the second rough alignment camera 221 can be understood as running the backplane carrier 21 to directly below the camera head of the second rough alignment camera 221.
  • backplane 20 can be superimposed on the backplane carrier 21.
  • the backplane 20 and the backplane carrier 21 in Figures 2 and 19 are represented by the same graphic. Since the coordinates of the backplane 20 and the coordinates of the backplane carrier 21 are converted to each other in the world coordinate system Pw, the same graphic is used to exemplarily represent the backplane 20 and the backplane carrier 21 in the figures.
  • the third coordinates (X3, Y3, ⁇ 3) of the backplane carrier 21 in the world coordinate system Pw are determined by utilizing the second mapping relationship and the coordinates of the third feature point P3 in the second image pixel coordinate system Pi2. Specifically, the third sub-mapping relationship and the coordinates of the third feature point P3 in the third sub-image pixel coordinate system Pi2a are used to determine the third coordinates (X3, Y3, ⁇ 3) of the backplane carrier 21 in the world coordinate system Pw.
  • the backplane carrier 21 moves to the position just below the field of view of the second precision alignment camera 222, and collects the image of the fourth feature point P4.
  • the fourth coordinates (X4, Y4, ⁇ 4) of the backplane carrier 21 in the world coordinate system Pw are determined by using the second mapping relationship and the coordinates of the fourth feature point P4 in the second image pixel coordinate system Pi2.
  • the field of view M2 of the second fine alignment camera 222 is as shown in FIG. 20 .
  • the fourth coordinates (X4, Y4, ⁇ 4) of the backplane carrier 21 in the world coordinate system Pw are determined by utilizing the second mapping relationship and the coordinates of the fourth feature point P4 in the second image pixel coordinate system Pi2, specifically by the fourth sub-mapping relationship and the coordinates of the fourth feature point P4 in the fourth sub-image pixel coordinate system Pi2b.
  • the backplane carrier 21 moves to the position where the coordinates of the pad 2 at the starting point of the backplane 20 coincide with the coordinates of the galvanometer starting point (X0, Y0, ⁇ 0), and records the fifth coordinates (X5, Y5, ⁇ 5) of the backplane carrier 21 in the world coordinate system Pw.
  • the starting pad 2 of the backplane 20 can be understood as the first pad 2 of the backplane 20 that needs to be installed with the light-emitting diode 1.
  • the pad 2 of the first row and first column on the backplane 20 can be defined as the starting pad 2, which is represented as W2 in FIG1 .
  • the second template calibration coordinates of the back plate 20 in the world coordinate system Pw are obtained, which provide reference reference coordinates for the alignment of the back plate 20.
  • the alignment process of the middle carrier substrate 10 and the backplane 20 includes: alignment of the middle carrier substrate 10 in the first row and the first column and the backplane 20, alignment of the middle carrier substrate 10 in the first row and the nth column and the backplane 20, and alignment of the middle carrier substrate 10 in the first row and the first column and the backplane 20.
  • n is a positive integer greater than or equal to 2
  • m is a positive integer greater than or equal to 2, that is, n ⁇ 2, m ⁇ 2.
  • the extension direction of the middle row in the first row and the first column is the first direction U
  • the extension direction of the middle column in the first row and the first column is the second direction V.
  • the middle carrier substrate 10 in the first row and the first column is represented as the middle carrier substrate 1011.
  • the middle carrier substrate 1012 in the first row and second column can be aligned, and at this time, n in the first row and n columns is equal to 2.
  • n is equal to 3
  • the middle carrier substrate 1013 in the first row and three columns is aligned.
  • the middle carrier substrate 1021 in the first column of the second row can be aligned, and at this time, m in the first column of the m row is equal to 2.
  • m is equal to 3
  • the middle carrier substrate 1031 in the first column of the third row is aligned.
  • each intermediate substrate 10 and the back plate 20 are aligned, and the transfer of the light-emitting diodes 1 is completed.
  • the size ratio of the middle substrate 10 to the backplane 20 is 1:30
  • 30 middle substrates are arranged in five rows and six columns.
  • the value of m is greater than or equal to 2 and less than or equal to 5, that is, 5 ⁇ m ⁇ 2
  • the value of n is greater than or equal to 2 and less than or equal to 6, that is, 6 ⁇ n ⁇ 2.
  • the sum of the sizes of the above 30 middle substrates 10 is equal to the size of one backplane 20, that is, the areas of the two are equal.
  • each of the 30 middle substrates 10 needs to be aligned with the backplane 20, and the alignment is performed 30 times to complete the transfer of the light-emitting diode 1.
  • the step of aligning the backplane 20 includes: after the alignment of the middle carrier substrate 10 in the first row and the first column is completed, the backplane 20 is aligned, and the steps include: (4-5) to (4-8).
  • the backplane 20 is first loaded.
  • the backplane 20 with the pads 2 arranged in an array is fixed on the backplane carrier 21, and the backplane 20 is transferred through the backplane carrier 21.
  • the backplane carrier 21 moves to the position of the third coordinate (X3, Y3, ⁇ 3), collects the image of the seventh feature point P7, and obtains the third position deviation coordinate (Xp, Yp, ⁇ p) between the image of the seventh feature point P7 and the image of the third feature point P3.
  • the backplane carrier 21 In the transfer process, when the backplane 20 is placed on the backplane carrier 21, the backplane carrier 21 must move in space. When the backplane carrier 21 moves to the third coordinate (X3, Y3, ⁇ 3) position again, there will be a position deviation. Through image acquisition and the conversion of the second image pixel coordinates and the world coordinates, the position deviation value can be calculated and recorded as the third position deviation coordinate (Xp, Yp, ⁇ p).
  • the third position deviation coordinate (Xp, Yp, ⁇ p) does not represent a specific coordinate value, but refers to the coordinate identification of the deviation value generated when the backplane carrier 21 runs to the third coordinate (X3, Y3, ⁇ 3) position again.
  • the backplane carrier 21 moves to the position where the fourth coordinate (X4, Y4, ⁇ 4) and the third position deviation coordinate (Xp, Yp, ⁇ p) are calculated and the second precision alignment camera 222 captures the eighth feature point P8 image and obtains the fourth position deviation coordinate (Xq, Yq, ⁇ q) between the eighth feature point P8 image and the fourth feature point image P4.
  • the backplane carrier 21 moves to the position where the fourth coordinate (X4, Y4, ⁇ 4) and the third position deviation coordinate (Xp, Yp, ⁇ p) are calculated and the position deviation caused by the spatial movement of the backplane carrier 21 is compensated.
  • the eighth feature point image P8 is then captured by the second precision alignment camera 222, and the fourth position deviation coordinate (Xq, Yq, ⁇ q) of the position of the eighth feature point image P8 and the fourth feature point image P4 is calculated, that is, through the use of the second precision alignment camera 222, the position deviation value that meets the accuracy requirement is further recorded, and the deviation value is recorded as the fourth position deviation coordinate (Xq, Yq, ⁇ q).
  • the back panel carrier 21 moves to the position where the fifth coordinate (X5, Y5, ⁇ 5) and the fourth position deviation coordinate (Xq, Yq, ⁇ q) are calculated and the back panel 20 is aligned.
  • the first row and first column of the middle substrate 10 are aligned based on the actual coordinates of the middle substrate carrier stage 11 and the first template calibration coordinates.
  • the backplane 20 is aligned based on the actual coordinates of the backplane carrier stage 21 and the second template calibration coordinates.
  • the first row and first column of the middle substrate 10 and the backplane 20 are aligned.
  • the ratio of the number of light-emitting diodes 1 of the intermediate substrate 10 to the number of pads 2 of the backplane 20 is T:1.
  • the standard size D1 is the size occupied by a row of light-emitting diodes 1 arranged along the first direction U.
  • T is a positive integer greater than or equal to 1, that is, T ⁇ 1.
  • the distance between each two adjacent light-emitting diodes 1 on the middle substrate 10 is 10 ⁇ m.
  • the distance between each two adjacent pads 2 on the back plate 20 is 30 ⁇ m, 60 ⁇ m or 90 ⁇ m. In other words, the light-emitting diodes 1 are arranged more densely.
  • the value of T is 1; when the distance between each adjacent two light-emitting diodes 1 on the carrier substrate 10 is 10 ⁇ m, and the distance between each adjacent two soldering pads 2 on the back panel 20 is 30 ⁇ m, the value of T is 3; when the distance between each adjacent two light-emitting diodes 1 on the carrier substrate 10 is 10 ⁇ m, and the distance between each adjacent two soldering pads 2 on the back panel 20 is 60 ⁇ m, the value of T is 6; when the distance between each adjacent two light-emitting diodes 1 on the carrier substrate 10 is 10 ⁇ m, and the distance between each adjacent two soldering pads 2 on the back panel 20 is 90 ⁇ m, the value of T is 9.
  • the step of aligning the backplane 20 based on the actual coordinates of the backplane carrier 21 and the second template calibration coordinates includes: after the alignment of the first row n columns of the middle carrier substrates 10 is completed, the backplane 20 is aligned.
  • n is a positive integer greater than or equal to 2
  • the steps include: (5-5) to (5-7).
  • the starting point position of the middle carrier substrate 10 in the first row n columns and the starting point position of the middle carrier substrate 10 in the first row (n-1) columns can be expressed as the starting point light-emitting diode 1 of the middle carrier substrate 10 in the first row n columns and the starting point light-emitting diode 1 of the middle carrier substrate 10 in the first row (n-1) columns, and the spacing between the light-emitting diode 1 in the first row n columns and the light-emitting diode 1 in the first row (n-1) columns in the first direction U, then Xa can be equal to the spacing.
  • the backplane carrier 21 moves to the position where the fourth coordinate (X4, Y4, ⁇ 4), the third position deviation coordinate (Xp, Yp, ⁇ p) and the fifth position deviation coordinate (Xa, 0, 0) are calculated and the second precision alignment camera 222 captures the eighth feature point P8 image, and obtains the fourth position deviation coordinate (Xq, Yq, ⁇ q) of the eighth feature point P8 image and the fourth feature point P4 image.
  • the back panel carrier 21 moves to the position where the fifth coordinate (X5, Y5, ⁇ 5) and the fourth position deviation coordinate (Xq, Yq, ⁇ q) are calculated and the back panel 20 is aligned.
  • the first row 2 columns are the first row secondary columns.
  • the steps of aligning the backplane 20 include: (5-5)' to (5-7)'.
  • the starting point position of the middle carrier substrate 1012 in the first row and the starting point position of the middle carrier substrate 1011 in the first row and the first column can be expressed as the distance between the starting point light-emitting diode 1 of the middle carrier substrate 1012 in the first row and the starting point light-emitting diode 1 of the middle carrier substrate 1011 in the first row and the first column in the first direction U, and the distance is equal to Xa.
  • the backplane carrier 21 moves to the fourth coordinate (X4, Y4, ⁇ 4), the third position deviation coordinate (Xp, Yp, ⁇ p) and the fifth position deviation coordinate (Xa, 0, 0) are calculated and the second precision alignment camera 222 captures the eighth feature point P8 image, and obtains the fourth position deviation coordinate (Xq, Yq, ⁇ q) of the eighth feature point P8 image and the fourth feature point P4 image.
  • the back panel carrier 21 moves to the position where the fifth coordinate (X5, Y5, ⁇ 5) and the fourth position deviation coordinate (Xq, Yq, ⁇ q) are calculated and the back panel 20 is aligned.
  • the first row of the middle substrate 10 is aligned based on the actual coordinates of the middle substrate carrier stage 11 and the first template calibration coordinates.
  • the backplane 20 is aligned based on the actual coordinates of the backplane carrier stage 21 and the second template calibration coordinates.
  • the first row of the middle substrate 10 and the backplane 20 are aligned.
  • step (5-6) and step (5-6)' the values of the third position deviation coordinate (Xp, Yp, ⁇ p) may be different.
  • the third position deviation coordinate (Xp, Yp, ⁇ p) only indicates that the identification of the deviation value in this case is the same, and does not mean that the coordinate values of the deviation value are equal.
  • the fourth position deviation coordinate (Xq, Yq, ⁇ q), the fifth position deviation coordinate (Xa, 0, 0) and the following sixth position deviation coordinate (Xb, 0, 0) and the seventh position deviation coordinate (0, Ya, 0) are similar.
  • the step of aligning the backplane 20 based on the actual coordinates of the backplane carrier 21 and the second template calibration coordinates includes: after the alignment of the first row n columns of the middle carrier substrates 10 is completed, the backplane 20 is aligned.
  • n is a positive integer greater than or equal to 2
  • the steps include: (6-5) to (6-7).
  • the distance between each two adjacent light-emitting diodes 1 on the middle substrate 10 is 10 ⁇ m
  • the LEDs 1 in the dashed box L1 in FIG. 28 are the LEDs 1 in the transferred column, i.e., in the previous transfer process, the LEDs 1 in this column have been separated from the middle substrate 10.
  • the LEDs 1 in the dashed box L2 in FIG. 28 are the LEDs 1 in the to-be-transferred column, i.e., in the next transfer process, the LEDs 1 in this column are the target LEDs 1 to be separated from the middle substrate 10.
  • the Xb in the sixth position deviation coordinate (Xb, 0, 0) between the starting position of the LEDs 1 in the to-be-transferred column of the middle substrate 10 and the starting position of the LEDs 1 in the transferred column is equal to the distance between each two adjacent LEDs 1 on the middle substrate 10 along the first direction U, which is 10 ⁇ m.
  • the backplane carrier 21 moves to the position where the fourth coordinate (X4, Y4, ⁇ 4), the third position deviation coordinate (Xp, Yp, ⁇ p) and the fifth position deviation coordinate (Xa, 0, 0) are calculated and the second precision alignment camera 222 captures the eighth feature point P8 image, and obtains the fourth position deviation coordinate (Xq, Yq, ⁇ q) of the eighth feature point P8 image and the fourth feature point P4 image.
  • the back panel carrier 21 moves to the fifth coordinate (X5, Y5, ⁇ 5), the fourth position deviation coordinate (Xq, Yq, ⁇ q) and the sixth position deviation coordinate (Xb, 0, 0) to calculate and position the back panel 20 to complete the alignment.
  • the first row 2 columns are the first row secondary columns.
  • the steps of aligning the backplane 20 include: (6-5)' to (6-7)'.
  • the backplane carrier 21 moves to the fourth coordinate (X4, Y4, ⁇ 4), the third position deviation coordinate (Xp, Yp, ⁇ p) and the fifth position deviation coordinate (Xa, 0, 0) are calculated and the second precision alignment camera 222 captures the eighth feature point P8 image, and obtains the fourth position deviation coordinate (Xq, Yq, ⁇ q) of the eighth feature point P8 image and the fourth feature point P4 image.
  • the backplane carrier 21 moves to the fifth coordinate (X5, Y5, ⁇ 5), the fourth position deviation coordinate (Xq, Yq, ⁇ q) and the sixth position deviation coordinate (Xb, 0, 0) to calculate and position the backplane 20 to complete the alignment.
  • the first row of the middle substrate 10 is aligned based on the actual coordinates of the middle substrate carrier stage 11 and the first template calibration coordinates.
  • the backplane 20 is aligned based on the actual coordinates of the backplane carrier stage 21 and the second template calibration coordinates.
  • the first row of the middle substrate 10 and the backplane 20 are aligned.
  • the step of aligning the backplane 20 based on the actual coordinates of the backplane carrier 21 and the second template calibration coordinates includes: after the alignment of the first row of the m-row middle carrier substrates 10 is completed, the backplane 20 is aligned.
  • m is a positive integer greater than or equal to 2
  • the steps include: (7-5) to (7-7).
  • the starting position of the middle carrier substrate 10 in the first column of the mth row and the starting position of the middle carrier substrate 10 in the first column of the (m-1)th row can be expressed as the distance between the starting point light-emitting diode 1 of the middle carrier substrate 10 in the first column of the mth row and the starting point light-emitting diode 1 of the middle carrier substrate 10 in the first column of the (m-1)th row in the second direction V, that is, Ya can be equal to the distance.
  • the backplane carrier 21 moves to the fourth coordinate (X4, Y4, ⁇ 4), the third position deviation coordinate (Xp, Yp, ⁇ p) and the seventh position deviation coordinate (0, Ya, 0) are calculated and the second precision alignment camera 222 collects the eighth feature point P8 image and calculates the fourth position deviation coordinate (Xq, Yq, ⁇ q) between the eighth feature point P8 image and the fourth feature point P4 image.
  • the back panel carrier 21 moves to the position where the fifth coordinate (X5, Y5, ⁇ 5) and the fourth position deviation coordinate (Xq, Yq, ⁇ q) are calculated and the back panel 20 is aligned.
  • the first column of the mth row is the first column of the second row.
  • the steps of aligning the backplane 20 include: (7-5)' to (7-7)'.
  • the backplane carrier 21 moves to the fourth coordinate (X4, Y4, ⁇ 4), the third position deviation coordinate (Xp, Yp, ⁇ p) and the seventh position deviation coordinate (0, Ya, 0) are calculated and the second precision alignment camera 222 collects the eighth feature point P8 image and calculates the fourth position deviation coordinate (Xq, Yq, ⁇ q) of the eighth feature point P8 image and the fourth feature point P4 image.
  • the back panel carrier 21 moves to the position where the fifth coordinate (X5, Y5, ⁇ 5) and the fourth position deviation coordinate (Xq, Yq, ⁇ q) are calculated and the back panel 20 is aligned.
  • the alignment of the middle substrate 10 in the first column of the second row is completed based on the actual coordinates of the middle substrate carrier stage 11 and the first template calibration coordinates.
  • the alignment of the backplane 20 is completed based on the actual coordinates of the backplane carrier stage 21 and the second template calibration coordinates.
  • the alignment of the middle substrate 10 in the first column of the second row and the backplane 20 is achieved.
  • the step of aligning the backplane 20 based on the actual coordinates of the backplane carrier 21 and the second template calibration coordinates includes: after the alignment of the first row of the m-row middle carrier substrates 10 is completed, the backplane 20 is aligned.
  • m is a positive integer greater than or equal to 2
  • the steps include: (8-5) to (8-7).
  • the backplane carrier 21 moves to the fourth coordinate (X4, Y4, ⁇ 4)
  • the third position deviation coordinate (Xp, Yp, ⁇ p) and the seventh position deviation coordinate (0, Ya, 0) are calculated and the second precision alignment camera 222 collects the eighth feature point P8 image and calculates the fourth position deviation coordinate (Xq, Yq, ⁇ q) between the eighth feature point P8 image and the fourth feature point P4 image.
  • the back panel carrier 21 moves to the fifth coordinate (X5, Y5, ⁇ 5), the fourth position deviation coordinate (Xq, Yq, ⁇ q) and the sixth position deviation coordinate (Xb, 0, 0) to calculate and position the back panel 20 to complete the alignment.
  • the first column of the mth row is the first column of the second row.
  • the steps for completing the alignment of the backplane 20 include: (8-5)' to (8-7)'.
  • the backplane carrier 21 moves to the fourth coordinate (X4, Y4, ⁇ 4), the third position deviation coordinate (Xp, Yp, ⁇ p) and the seventh position deviation coordinate (0, Ya, 0) are calculated and the second precision alignment camera 222 collects the eighth feature point P8 image and calculates the fourth position deviation coordinate (Xq, Yq, ⁇ q) of the eighth feature point P8 image and the fourth feature point P4 image.
  • the backplane carrier 21 moves to the fifth coordinate (X5, Y5, ⁇ 5), the fourth position deviation coordinate (Xq, Yq, ⁇ q) and the sixth position deviation coordinate (Xb, 0, 0) to calculate and position the backplane 20 to complete the alignment.
  • the alignment of the middle substrate 10 in the first column of the second row is completed based on the actual coordinates of the middle substrate carrier stage 11 and the first template calibration coordinates.
  • the alignment of the backplane 20 is completed based on the actual coordinates of the backplane carrier stage 21 and the second template calibration coordinates.
  • the alignment of the middle substrate 10 in the first column of the second row and the backplane 20 is achieved.
  • the back plate 20 is aligned, thereby achieving the alignment of the middle carrier substrate 10 and the back plate 20.
  • the alignment of the remaining middle carrier substrates 10 and the back plate 20 can refer to the above content, and the alignment of all the middle carrier substrates 10 and the back plate 20 can be completed through the relevant steps and the compensation of the corresponding deviation value, so as to complete the transfer process and achieve the precise alignment of the middle carrier substrate 10 and the back plate 20.
  • the multi-coordinate system calibration and equipment alignment method provided in any of the above embodiments can also be applied to the alignment of a double-layer structure alignment system, for example, the alignment of identification points and glass in an exposure machine, or the alignment of upper and lower substrates in nanoimprinting.
  • Some embodiments of the present disclosure also provide a non-transitory computer-readable storage medium, which stores computer instructions, and the computer instructions are used to enable a computer to execute the multi-coordinate system calibration and device alignment method described in any of the above embodiments.
  • non-transitory computer-readable storage media may include, but are not limited to: magnetic storage devices (e.g., hard disks, floppy disks or magnetic tapes, etc.), optical disks (e.g., CD (Compact Disk), DVD (Digital Versatile Disk), etc.), smart cards and flash memory devices (e.g., EPROM (Erasable Programmable Read-Only Memory), cards, sticks or key drives, etc.).
  • the various computer-readable storage media described in the present disclosure may represent one or more devices and/or other machine-readable storage media for storing information.
  • the term "machine-readable storage medium" may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • Some embodiments of the present disclosure also provide a mass transfer device 1000, as shown in Figure 34, including a memory 300, a middle carrier substrate 10, a middle carrier substrate carrier stage 11, a camera 12 of the middle carrier substrate carrier stage 11, a backplane 20, a backplane carrier stage 21, a camera 22 of the backplane carrier stage 21, a laser, a processor 200, and a computer program stored in the memory 300 and executable on the processor 200.
  • the processor 200 executes the program, the multi-coordinate system calibration and device alignment method described in any of the above embodiments is implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种多坐标系标定与设备对位方法,包括:通过中载基板运载台与视觉手眼标定,确定中载基板运载台的第一图像像素坐标系与世界坐标系的第一映射关系(S1);通过背板运载台与视觉手眼标定,确定背板运载台的第二图像像素坐标系与世界坐标系的第二映射关系(S2);确定激光器的振镜起始点位于世界坐标系下的振镜起始点坐标(S3);利用第一映射关系和振镜起始点坐标,获取中载基板在世界坐标系的第一模板标定坐标(S4);利用第二映射关系和振镜起始点坐标,获取背板在世界坐标系的第二模板标定坐标(S5);在巨量转移制程中,基于中载基板运载台的实际坐标和第一模板标定坐标,对中载基板进行对位(S6);在巨量转移制程中,基于背板运载台的实际坐标和第二模板标定坐标,对背板进行对位(S7)。

Description

多坐标系标定与设备对位方法、巨量转移设备 技术领域
本公开涉及显示技术领域,尤其涉及一种多坐标系标定与设备对位方法、非暂态计算机可读存储介质和巨量转移设备。
背景技术
目前,随着半导体显示技术的发展,Mini-LED(Mini Light Emitting Diode,迷你发光二极管)芯片和Micro-LED(Micro Light Emitting Diode,微型发光二极管)芯片具有更广泛的应用市场,通过在显示背板上组装尺寸小、数量庞大的Mini-LED芯片或Micro-LED芯片,有利于提高显示设备的显示性能,给人们带来更好的视觉体验。
发明内容
提供一种多坐标系标定与设备对位方法。该多坐标系标定与设备对位方法包括:通过中载基板运载台与视觉手眼标定,确定中载基板运载台的第一图像像素坐标系与世界坐标系的第一映射关系。通过背板运载台与视觉手眼标定,确定背板运载台的第二图像像素坐标系与世界坐标系的第二映射关系。确定激光器的振镜起始点位于世界坐标系下的振镜起始点坐标。利用所述第一映射关系和所述振镜起始点坐标,获取中载基板在世界坐标系的第一模板标定坐标。利用所述第二映射关系和所述振镜起始点坐标,获取背板在世界坐标系的第二模板标定坐标。在巨量转移制程中,基于中载基板运载台的实际坐标和所述第一模板标定坐标,对所述中载基板进行对位。在巨量转移制程中,基于背板运载台的实际坐标和所述第二模板标定坐标,对所述背板进行对位。
在一些实施例中,所述通过中载基板运载台与视觉手眼标定,确定中载基板运载台的第一图像像素坐标系与世界坐标系的第一映射关系的步骤包括:(1-1)~(1-3)。(1-1)、将第一目标物放置于中载基板运载台上,中载基板运载台的相机获取第一图像。所述第一图像包括所述第一目标物和所述第一图像像素坐标系。(1-2)、通过中载基板运载台的相机内参,建立中载基板运载台的第一相机坐标系与所述第一图像像素坐标系之间的第四映射关系。通过中载基板运载台的相机外参,建立中载基板运载台的第一相机坐标系与世界坐标系的第五映射关系。(1-3)、基于所述第四映射关系和所述第五映射关系,确定所述第一图像像素坐标系与所述世界坐标系之间的第一映射关系。
在一些实施例中,中载基板运载台的相机包括:第一粗对位相机和第一 精对位相机,所述第一粗对位相机用于获取第一子图像,所述第一子图像包括第一子图像像素坐标系。所述第一精对位相机用于获取第二子图像,所述第二子图像包括第二子图像像素坐标系。所述第一图像像素坐标系包括:所述第一子图像像素坐标系和所述第二子图像像素坐标系。
所述确定中载基板运载台的第一图像像素坐标系与世界坐标系的第一映射关系的步骤包括:确定所述第一子图像像素坐标系与所述世界坐标系之间的第一子映射关系。确定所述第二子图像像素坐标系与所述世界坐标系之间的第二子映射关系。基于所述第一子映射关系和所述第二子映射关系,确定所述第一映射关系。
在一些实施例中,所述通过背板运载台与视觉手眼标定,确定背板运载台的第二图像像素坐标系与世界坐标系的第二映射关系的步骤包括:(1-4)~(1-6)。(1-4)、将第二目标物放置于背板运载台上,背板运载台的相机获取第二图像。所述第二图像包括所述第二目标物和所述第二图像像素坐标系。(1-5)、通过背板运载台的相机内参,建立背板运载台的第二相机坐标系与所述第二图像像素坐标系之间的第六映射关系。通过背板运载台的相机外参,建立背板运载台的第二相机坐标系与世界坐标系的第七映射关系。(1-6)、基于所述第六映射关系和所述第七映射关系,确定所述第二图像像素坐标系与世界坐标系的第二映射关系。
在一些实施例中,所述第一目标物和所述第二目标物包括:视觉标定板。
在一些实施例中,背板运载台的相机包括:第二粗对位相机和第二精对位相机,所述第二粗对位相机用于获取第三子图像,所述第三子图像包括第三子图像像素坐标系。所述第二精对位相机用于获取第四子图像,所述第四子图像包括第四子图像像素坐标系。所述第二图像像素坐标系包括:所述第三子图像像素坐标系和所述第四子图像像素坐标系。
所述确定背板运载台的第二图像像素坐标系与世界坐标系的第二映射关系的步骤包括:确定所述第三子图像像素坐标系与所述世界坐标系的第三子映射关系。确定所述第四子图像像素坐标系与所述世界坐标系的第四子映射关系。基于所述第三子映射关系和所述第四子映射关系,确定所述第二映射关系。
在一些实施例中,所述确定激光器的振镜起始点位于世界坐标系下的振镜起始点坐标的步骤包括:(2-1)~(2-4)。(2-1)、确定振镜的激光光斑加工幅面。(2-2)、将设置有识别点的背板运载台运行至振镜的激光光斑加工幅面正下方,激光器输出振镜的起始点坐标下的光斑。(2-3)、将背板运载台运行到所述第 二精对位相机视野范围内。(2-4)、根据所述第二精对位相机的内参和外参的数据转换,获取所述识别点的中心与振镜的起始点坐标下的光斑中心的坐标偏移量,确定振镜起始点位于世界坐标系下的振镜起始点坐标。
在一些实施例中,所述步骤(2-3)中,将背板运载台运行到所述第二精对位相机视野范围内的判断方法包括:若所述第二精对位相机视野范围内同时出现背板运载台的识别点和振镜的起始点坐标下的光斑,则背板运载台运行到了所述第二精对位相机视野范围内。若所述第二精对位相机视野范围内未同时出现背板运载台的识别点和振镜的起始点坐标下的光斑,则返回所述步骤(2-2)。
在一些实施例中,所述利用所述第一映射关系和所述振镜起始点坐标,获取中载基板在世界坐标系的第一模板标定坐标的步骤包括:(3-1)~(3-4)。(3-1)、将中载基板放置于中载基板运载台,其中,中载基板上阵列设置有多个发光二极管。(3-2)、中载基板运载台运行至第一粗对位相机视野正下方,采集第一特征点图像,利用所述第一映射关系和第一图像像素坐标系下的第一特征点坐标,确定中载基板运载台在世界坐标系下的第一坐标。(3-3)、中载基板运载台运行至中载基板起始点的发光二极管的坐标与所述振镜起始点坐标重合位置,第一精对位相机采集第二特征点图像,利用所述第一映射关系和第一图像像素坐标系下的第二特征点坐标,确定中载基板运载台在世界坐标系下的第二坐标。(3-4)基于所述第一坐标和所述第二坐标获取中载基板在世界坐标系的第一模板标定坐标。
在一些实施例中,所述在巨量转移制程中,基于中载基板运载台的实际坐标和所述第一模板标定坐标,对所述中载基板进行对位的步骤包括:(4-1)~(4-4)。(4-1)、将中载基板放置于中载基板运载台。(4-2)、中载基板运载台运行至第一坐标的位置,采集第五特征点图像,获取第五特征点图像与第一特征点图像之间的第一位置偏差坐标。(4-3)、中载基板运载台运行至第二坐标与所述第一位置偏差坐标计算和的位置,第一精对位相机采集第六特征点图像,获取所述第六特征点图像和所述第二特征点图像之间的第二位置偏差坐标。(4-4)、中载基板运载台运行至所述第二位置偏差坐标的位置,完成中载基板对位。
在一些实施例中,所述利用所述第二映射关系和所述振镜起始点坐标,获取背板在世界坐标系的第二模板标定坐标的步骤包括:(3-5)~(3-9)。(3-5)、将背板放置于背板运载台,其中,背板上阵列设置有多个焊盘。(3-6)、背板运载台运行至第二粗对位相机视野正下方,采集第三特征点图像,利用所述 第二映射关系和第二图像像素坐标系下的第三特征点坐标,确定背板运载台在世界坐标系下的第三坐标。(3-7)、背板运载台运行至第二精对位相机视野正下方,采集第四特征点图像,利用所述第二映射关系和第二图像像素坐标系下的第四特征点坐标,确定背板运载台在世界坐标系下的第四坐标。(3-8)、背板运载台运行至背板起始点焊盘坐标与所述振镜起始点坐标重合位置,并记录背板运载台在世界坐标系下的第五坐标。(3-9)、基于所述第三坐标、所述第四坐标和所述第五坐标获取背板在世界坐标系的第二模板标定坐标。
在一些实施例中,所述在巨量转移制程中,基于背板运载台的实际坐标和所述第二模板标定坐标,对所述背板进行对位的步骤包括:首排首列的中载基板对位完成后,对所述背板进行对位,该步骤包括:(4-5)~(4-8)。(4-5)、将背板放置于背板运载台。(4-6)、背板运载台运行至第三坐标的位置,采集第七特征点图像,获取所述第七特征点图像与第三特征点图像之间的第三位置偏差坐标。(4-7)、背板运载台运行至所述第四坐标与所述第三位置偏差坐标计算和的位置,第二精对位相机采集第八特征点图像,获取所述第八特征点图像与所述第四特征点图像之间的第四位置偏差坐标。(4-8)、背板运载台运行至所述第五坐标与所述第四位置偏差坐标计算和的位置,完成背板对位。
在一些实施例中,沿所述第一方向,在标准尺寸下,中载基板的发光二极管的数量,与背板焊盘的数量比值为T:1。其中,所述标准尺寸为沿所述第一方向排列的一排所述发光二极管所占据的尺寸。T为大于或等于1的正整数。
在一些实施例中,当T等于1时,所述在巨量转移制程中,基于背板运载台的实际坐标和所述第二模板标定坐标,对所述背板进行对位的步骤包括:首排n列的中载基板对位完成后,对所述背板进行对位。其中,n为大于或等于2的正整数,该步骤包括:(5-5)~(5-7)。(5-5)、首排(n-1)列的中载基板转移完成后,记录已转移的发光二极管的数量,获取首排n列的中载基板的起始点位置与首排(n-1)列的中载基板起始点位置的第五位置偏差坐标。(5-6)、背板运载台运行至所述第四坐标、所述第三位置偏差坐标及第五位置偏差坐标计算和的位置,第二精对位相机采集第八特征点图像,获取所述第八特征点图像与所述第四特征点图像的第四位置偏差坐标。(5-7)、背板运载台运行至所述第五坐标与所述第四位置偏差坐标计算和的位置,完成背板对位。
在一些实施例中,当T大于1时,所述在巨量转移制程中,基于背板运载台的实际坐标和所述第二模板标定坐标,对所述背板进行对位的步骤包括:首排n列的中载基板对位完成后,对所述背板进行对位。其中,n为大于或等 于2的正整数,该步骤包括:(6-5)~(6-7)。(6-5)、首排(n-1)列的中载基板转移完成后,记录已转移的发光二极管的数量,获取首排n列的中载基板起始点位置的坐标与首排(n-1)列的中载基板起始点位置的第五位置偏差坐标,以及中载基板待转移列的发光二极管起始位置与已转移列的发光二极管起始位置的第六位置偏差坐标。(6-6)、背板运载台运行至所述第四坐标、所述第三位置偏差坐标及所述第五位置偏差坐标计算和的位置,第二精对位相机采集第八特征点图像,获取所述第八特征点图像与所述第四特征点图像的第四位置偏差坐标。(6-7)、背板运载台运行至所述第五坐标、所述第四位置偏差坐标及所述第六位置偏差坐标计算和的位置,完成背板对位。
在一些实施例中,当T等于1时,所述在巨量转移制程中,基于背板运载台的实际坐标和所述第二模板标定坐标,对所述背板进行对位的步骤包括:m排首列的中载基板对位完成后,对所述背板进行对位。其中,m为大于或等于2的正整数,该步骤包括:(7-5)~(7-7)。(7-5)、(m-1)排首列的中载基板转移完成后,记录已转移的发光二极管的数量,获取m排首列的中载基板起始点位置与(m-1)排首列的中载基板起始点位置的第七位置偏差坐标。(7-6)、背板运载台运行至所述第四坐标、所述第三位置偏差坐标及所述第七位置偏差坐标计算和的位置,第二精对位相机采集第八特征点图像,计算所述第八特征点图像与所述第四特征点图像的第四位置偏差坐标。(7-7)、背板运载台运行至所述第五坐标和所述第四位置偏差坐标计算和的位置,完成背板对位。
在一些实施例中,当T大于1时,所述在巨量转移制程中,基于背板运载台的实际坐标和所述第二模板标定坐标,对所述背板进行对位的步骤包括:m排首列的中载基板对位完成后,对所述背板进行对位。其中,m为大于或等于2的正整数,该步骤包括:(8-5)~(8-7)。(8-5)、(m-1)排首列的中载基板转移完成后,记录已转移的发光二极管的数量,获取m排首列中载基板的起始点位置与(m-1)排首列中载基板的起始点位置的第七位置偏差坐标,以及中载基板待转移列的发光二极管起始点位置与已转移列的发光二极管起始位置的第六位置偏差坐标。(8-6)、背板运载台运行至所述第四坐标、所述第三位置偏差坐标及所述第七位置偏差坐标计算和的位置,第二精对位相机采集第八特征点图像,计算所述第八特征点图像与所述第四特征点图像的第四位置偏差坐标。(8-7)、背板运载台运行至所述第五坐标、所述第四位置偏差坐标及所述第六位置偏差坐标计算和的位置,完成背板对位。
另一方面,提供一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令用于使计算机执行上述任一实 施例所述的多坐标系标定与设备对位方法。
又一方面,提供一种巨量转移设备,包括存储器、中载基板、中载基板运载台、中载基板运载台的相机、背板、背板运载台、背板运载台的相机、激光器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述任一实施例所述的多坐标系标定与设备对位方法。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据本公开一些实施例所提供的中载基板和背板的结构图;
图2为根据本公开一些实施例所提供的多坐标系标定与设备对位方法的使用系统的结构图;
图3为根据本公开一些实施例所提供的多坐标系标定与设备对位方法的流程图;
图4为根据本公开一些实施例所提供的中载基板运载台与视觉手眼标定的步骤图;
图5为根据本公开一些实施例所提供的背板运载台与视觉手眼标定的步骤图;
图6为根据本公开一些实施例所提供的确定激光器的振镜起始点位于世界坐标系下的振镜起始点坐标的步骤图;
图7为根据本公开一些实施例所提供的中载基板运载台与视觉手眼标定的流程图;
图8和图9为根据本公开一些实施例所提供的中载基板运载台与视觉手眼标定的步骤图;
图10为根据本公开一些实施例所提供的背板运载台与视觉手眼标定的流程图;
图11和图12为根据本公开一些实施例所提供的背板运载台与视觉手眼标定的步骤图;
图13为根据本公开一些实施例所提供的确定激光器的振镜起始点位 于世界坐标系下的振镜起始点坐标的流程图;
图14为根据本公开一些实施例所提供的确定激光器的振镜起始点位于世界坐标系下的振镜起始点坐标的另一种流程图;
图15为根据本公开一些实施例所提供的获取中载基板在世界坐标系的第一模板标定坐标的流程图;
图16为根据本公开一些实施例所提供的获取中载基板在世界坐标系的第一模板标定坐标的步骤图;
图17为根据本公开一些实施例所提供的中载基板对位的流程图;
图18为根据本公开一些实施例所提供的获取背板在世界坐标系的第二模板标定坐标的流程图;
图19~图21为根据本公开一些实施例所提供的获取背板在世界坐标系的第二模板标定坐标的步骤图;
图22为根据本公开一些实施例所提供的中载基板和背板的另一种结构图;
图23为根据本公开一些实施例所提供的背板对位的流程图;
图24为根据本公开一些实施例所提供的中载基板和背板的又一种结构图;
图25为根据本公开一些实施例所提供的背板对位的又一种流程图;
图26为根据本公开一些实施例所提供的背板对位的另一种流程图;
图27为根据本公开一些实施例所提供的背板对位的另一种流程图;
图28为根据本公开一些实施例所提供的中载基板和背板的又一种结构图;
图29为根据本公开一些实施例所提供的背板对位的另一种流程图;
图30为根据本公开一些实施例所提供的背板对位的另一种流程图;
图31为根据本公开一些实施例所提供的背板对位的另一种流程图;
图32为根据本公开一些实施例所提供的背板对位的另一种流程图;
图33为根据本公开一些实施例所提供的背板对位的另一种流程图;
图34为根据本公开一些实施例所提供的巨量转移设备的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。术语“耦接”例如表明两个或两个以上部件有直接物理接触或电接触。术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条 件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
应当理解的是,当层或元件被称为在另一层或基板上时,可以是该层或元件直接在另一层或基板上,或者也可以是该层或元件与另一层或基板之间存在中间层。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层的厚度和区域的面积。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
通常情况下,次毫米发光二极管(Mini Light Emitting Diode,简称Mini-LED)尺寸约为100μm~300μm,微型发光二极管(Micro Light Emitting Diode,简称Micro-LED)尺寸为100μm以下。Micro-LED、Mini-LED因其功耗低、响应快、寿命长、光效率高等特点,被视为继LCD(Liquid Crystal Display,液晶显示器)、OLED(Organic Light Emitting Diode,有机发光二极管)之后的新一代显示技术。
相比于传统小间距LED(Light Emitting Diode,发光二极管),由于Micro-LED、Mini-LED的间距相对微缩,显著提高了显示解析度和画质,光 学角度可以使得可视角度更开阔,对比度更高,画质更好。微米级别的像素间距可以使其覆盖从中小尺寸显示到大中尺寸显示等多个应用场景。适合虚拟现实、小型投影仪、微显示器、可见光通讯和医学研究等多种多样的显示场景。
然而,如图1所示,中载基板10上阵列设置有多个发光二极管1,在发光二极管1的转移制程中,需要将中载基板10上的发光二极管1转移至背板20的焊盘2上。但是由于每次转移的中载基板10的尺寸极小、发光二极管1的转移数量巨大,对转移制程的精确性和速率要求非常高,成为当前制约Micro-LED和Mini-LED量产的关键技术。
示例性的,如图1所示,中载基板10的尺寸,与背板20尺寸比值为1:30。例如,中载基板10与背板20均为方形,中载基板10的面积为Sa,背板20的面积为Sb,面积Sa与面积Sb的比值为1:30。该尺寸比值表示:如果实现背板20上的发光二极管1的转移,需要将中载基板10和背板20对位30次。
示例性的,中载基板10上包括:沿第一方向U和第二方向V阵列设置的多个发光二极管1。其中,第一方向U为多个发光二极管1排列的行方向,第二方向V为多个发光二极管1排列的列方向。背板20上包括沿第一方向U和第二方向V阵列设置的多个焊盘2。其中,第一方向U为多个焊盘2排列的行方向,第二方向V为多个焊盘2排列的列方向。
需要说明的是,图1中焊盘2可以为一个焊盘组,图中焊盘2只是对焊盘2位置的示意,对于其结构不做限定。
基于此,本公开提供一种多坐标系标定与设备对位方法。该多坐标系标定与设备对位方法可应用于Micro-LED、Mini-LED以及与Micro-LED、Mini-LED相似尺寸的微型元器件,例如,微型IC(Integrated Circuit,集成电路)等,此处并不设限。
为了方便的理解上述多坐标系标定与设备对位方法的具体实现过程,现首先介绍多坐标系标定与设备对位方法的示例性使用系统100,如图2所示,该使用系统100包括:中载基板10、中载基板运载台11、中载基板运载台11的相机12、背板20、背板运载台21和背板运载台21的相机22,以及激光器(图中未示出)的振镜30和场镜31。
其中,中载基板10可以放置于中载基板运载台11上,中载基板运载台11用于传送中载基板10,中载基板运载台11的相机12用于拍摄图像。背板20可以放置于背板运载台21上,背板运载台21用于传送背板20,背板运载台21的相机22用于拍摄图像。振镜30亦可称激光扫描器,场镜31为聚焦 镜,通过振镜30和场镜31的选型配合,可以确定满足工艺需求的光斑加工幅面N1。当中载基板10和背板20对位完成后,光斑照射中载基板10上的发光二极管1时,可以使得发光二极管1与中载基板10解离,从而使得发光二极管1与背板20上对应的焊盘2连接,实现背板20上的发光二极管1的转移作业。
需要说明的是,中载基板10可以叠合在中载基板运载台11上,图2中的中载基板10和中载基板运载台11采用了同一个图形表示。背板20可以叠合在背板运载台21上,图2中的背板20和背板运载台21采用了同一个图形表示。
在一些实施例中,如图3所示,一种多坐标系标定与设备对位方法包括步骤:S1~S7。
需要说明的是,S1~S7只是用于对各步骤进行标识,并不是对步骤顺序的限制。
S1:如图4所示,通过中载基板运载台11与视觉手眼标定,确定中载基板运载台11的第一图像像素坐标系Pi1与世界坐标系Pw的第一映射关系。
示例性的,视觉手眼标定主要是为了获得相机12和运动部件(例如,中载基板运载台11)之间的坐标转换关系。使得视觉中第一图像像素坐标系Pi1下的坐标表现在世界坐标系Pw中。
示例性的,需要将一个目标点(例如,识别点)两次放置至同一个目标位置时,为了使得第二次的目标点准确的放置至与第一次放置的目标位置重合,可以通过相机12拍摄目标点两次放置后的图像,通过第一图像像素坐标系Pi1和世界坐标系Pw的第一映射关系,将两次拍摄的图像中目标点的图像像素坐标转换成世界坐标系Pw中的坐标,计算两次坐标的偏移差值并进行位置调整,即可以实现目标点两次准确的放置在同一个目标位置。
通过步骤S1建立中载基板运载台11的第一图像像素坐标系Pi1与世界坐标系Pw的第一映射关系,从而可以将中载基板运载台11的相机12拍摄的图像上的坐标,转换至世界坐标系Pw下表示。
S2:如图5所示,通过背板运载台21与视觉手眼标定,确定背板运载台21的第二图像像素坐标系Pi2与世界坐标系Pw的第二映射关系。
示例性的,通过视觉手眼标定获得相机22和运动部件(例如,背板运载台21)之间的坐标转换关系。使得视觉中第二图像像素坐标系Pi2下的坐标表现在世界坐标系Pw中。
通过步骤S2建立背板运载台21的第二图像像素坐标系Pi2与世界坐标系 Pw的第二映射关系,从而可以将背板运载台21的相机22拍摄的图像上的坐标,转换至世界坐标系Pw下表示。
S3:如图6所示,确定激光器的振镜起始点位于世界坐标系Pw下的振镜起始点坐标(X0,Y0,θ0)。
示例性的,通过背板运载台21的运动和背板运载台21的相机22的观测,确定激光器的振镜坐标系与世界坐标系Pw的第三映射关系。然后,通过建立的第三映射关系,确定激光器的振镜起始点位于世界坐标系Pw下的振镜起始点坐标(X0,Y0,θ0)。
通过步骤S3,可以确定振镜30的光斑在世界坐标系Pw下的位置,从而用于确定激光器的光斑是否照射到目标位置,该目标位置可以理解为光斑预计需要照射到的位置。
S4:利用第一映射关系和振镜起始点坐标(X0,Y0,θ0),获取中载基板10在世界坐标系Pw的第一模板标定坐标。
示例性的,该第一模板标定坐标是中载基板10在世界坐标系Pw的参考基准坐标。例如,通过中载基板10的标准片(或样片),建立中载基板10在世界坐标系Pw的参考基准坐标。
通过步骤S4,建立中载基板10在世界坐标系Pw的参考基准坐标,用于确定后续生产过程中,待对位的中载基板10的位置偏差坐标。
S5:利用第二映射关系和振镜起始点坐标(X0,Y0,θ0),获取背板20在世界坐标系Pw的第二模板标定坐标。
示例性的,该第二模板标定坐标是背板20在世界坐标系Pw的参考基准坐标。例如,通过背板20的标准片(或样片),建立背板20在世界坐标系Pw的参考基准坐标。
通过步骤S5,建立背板20在世界坐标系Pw的参考基准坐标,用于确定后续生产过程中,待对位的背板20的位置偏差坐标。
S6:在巨量转移制程中,基于中载基板运载台11的实际坐标和第一模板标定坐标,对中载基板10进行对位。
需要说明的是,中载基板运载台11的实际坐标是指中载基板运载台11在世界坐标系Pw下的坐标。
也就说是,当进行中载基板10的对位时,通过比较中载基板运载台11的实际坐标与第一模板标定坐标的位置偏差坐标,进而确定中载基板10的坐标,完成中载基板10的对位。
S7:在巨量转移制程中,基于背板运载台21的实际坐标和第二模板标定 坐标,对背板20进行对位。
需要说明的是,背板运载台21的实际坐标是指背板运载台21在世界坐标系Pw下的坐标。
也就说是,当进行背板20的对位时,通过比较背板运载台21的实际坐标与第二模板标定坐标的位置偏差坐标,进而确定背板20的坐标,完成背板20的对位。
将中载基板10和背板20均对位完成后,即可实现了中载基板10和背板20的对位。因此,通过上述步骤S1~S7,可以精确的、高效率的实现中载基板10和背板20的对位,进而提高Micro-LED和Mini-LED量产的效率。
在一些实施例中,如图4和图7所示,S1中通过中载基板运载台11与视觉手眼标定,确定中载基板运载台11的第一图像像素坐标系Pi1与世界坐标系Pw的第一映射关系的步骤包括:(1-1)~(1-3)。
(1-1)、将第一目标物41放置于中载基板运载台11上,中载基板运载台11的相机12获取第一图像。第一图像包括第一目标物41和第一图像像素坐标系Pi1。
示例性的,第一目标物41包括视觉标定板。例如,视觉标定板为玻璃基板,该玻璃基板的尺寸与中载基板运载台11的台面尺寸一致。
(1-2)、通过中载基板运载台11的相机12内参,建立中载基板运载台11的第一相机坐标系Pc1与第一图像像素坐标系Pi1之间的第四映射关系。通过中载基板运载台11的相机12外参,建立中载基板运载台11的第一相机坐标系Pc1与世界坐标系Pw的第五映射关系。
在图像中,相机12内参可以真实的反应像素点的位置信息。相机12外参是指根据相机12放置位置、高度等进行计算之后,把拍摄数据和相机12实际得到的数据进行映射绑定。在相机12的CCD(Charge Coupled Device,电荷耦合器件)内,通过相机12内参和外参的变化,可以将第一目标物41在图像中的坐标,转化为世界坐标系Pw下的坐标。
(1-3)、基于第四映射关系和第五映射关系,确定第一图像像素坐标系Pi1与世界坐标系Pw之间的第一映射关系。
根据图像处理算法求出图像上的目标点,经过步骤(1-3)中的第一映射关系,将目标点在第一图像像素坐标系Pi1下的坐标,转换为世界坐标系Pw下的坐标,实现图像像素坐标到世界坐标的转换。
基于第一图像像素坐标系Pi1下的坐标和第一映射关系,通过计算,即可实现中载基板运载台11在世界坐标系Pw下的传送。中载基板运载台11具体 的传送方式,参见后序内容,此处不再赘述。
通过上述步骤(1-1)~(1-3),确定了中载基板运载台11的第一图像像素坐标系Pi1与世界坐标系Pw的第一映射关系。可以将中载基板运载台11的相机12拍摄的图像坐标转换成世界坐标系Pw下的坐标,用于对中载基板运载台11的对位。
在一些实施例中,如图2所示,中载基板运载台11的相机12包括:第一粗对位相机121和第一精对位相机122,第一粗对位相机121用于获取第一子图像,第一子图像包括第一子图像像素坐标系Pi1a。第一精对位相机122用于获取第二子图像,第二子图像包括第二子图像像素坐标系Pi1b。第一图像像素坐标系Pi1包括:第一子图像像素坐标系Pi1a和第二子图像像素坐标系Pi1b。
示例性的,如图2所示,第一精对位相机122的位置可以相对背板运载台21的位置固定。即第一精对位相机122与背板运载台21之间不存在相对位置的改变。
如图4所示,确定中载基板运载台11的第一图像像素坐标系Pi1与世界坐标系Pw的第一映射关系的步骤包括:确定第一子图像像素坐标系Pi1a与世界坐标系Pw之间的第一子映射关系。确定第二子图像像素坐标系Pi1b与世界坐标系Pw之间的第二子映射关系。基于第一子映射关系和第二子映射关系,确定第一映射关系。
示例性的,如图8所示,确定中载基板运载台11的第一子图像像素坐标系Pi1a与世界坐标系Pw之间的第一子映射关系的步骤包括:(1-11)~(1-13)。
(1-11)、将第一目标物41放置于中载基板运载台11上,中载基板运载台11的第一粗对位相机121获取第一子图像。第一子图像包括第一目标物41和第一子图像像素坐标系Pi1a。
(1-12)、通过第一粗对位相机121内参,建立中载基板运载台11的第一子相机坐标系与第一子图像像素坐标系Pi1a之间的第五子映射关系。通过第一粗对位相机121外参,建立中载基板运载台11的第一子相机坐标系与世界坐标系Pw的第六子映射关系。
(1-13)、基于第五子映射关系和第六子映射关系,确定第一子图像像素坐标系Pi1a与世界坐标系Pw之间的第一子映射关系。
示例性的,如图9所示,确定中载基板运载台11的第二子图像像素坐标系Pi1b与世界坐标系Pw之间的第二子映射关系的步骤包括:(1-14)~(1-16)。
(1-14)、将第一目标物41放置于中载基板运载台11上,中载基板运载台 11的第一精对位相机122获取第二子图像。第二子图像包括第一目标物41和第二子图像像素坐标系Pi1b。
(1-15)、通过第一精对位相机122内参,建立中载基板运载台11的第二子相机坐标系与第二子图像像素坐标系Pi1b之间的第七子映射关系。通过第一精对位相机122外参,建立中载基板运载台11的第二子相机坐标系与世界坐标系Pw的第八子映射关系。
(1-16)、基于第七子映射关系和第八子映射关系,确定第二子图像像素坐标系Pi1b与世界坐标系Pw之间的第二子映射关系。
需要说明的是,第一相机坐标系Pc1包括第一子相机坐标系和第二子相机坐标系。
基于上述步骤(1-11)~(1-13)获取的第一子映射关系,及步骤(1-14)~(1-16)获取的第二子映射关系,确定第一映射关系。
在一些实施例中,如图5和图10所示,S2中通过背板运载台21与视觉手眼标定,确定背板运载台21的第二图像像素坐标系Pi2与世界坐标系Pw的第二映射关系的步骤包括:(1-4)~(1-6)。
(1-4)、将第二目标物42放置于背板运载台21上,背板运载台21的相机22获取第二图像。第二图像包括第二目标物42和第二图像像素坐标系Pi2。
示例性的,第二目标物42包括视觉标定板。例如,视觉标定板为玻璃基板,该玻璃基板的尺寸与背板运载台21的台面尺寸一致。
(1-5)、通过背板运载台21的相机22内参,建立背板运载台21的第二相机坐标系Pc2与第二图像像素坐标系Pi2之间的第六映射关系。通过背板运载台21的相机22外参,建立背板运载台21的第二相机坐标系Pc2与世界坐标系Pw的第七映射关系。
通过背板运载台21的相机22内参和外参,可以将第二目标物42在图像中的坐标,转化为世界坐标系Pw下的坐标。
(1-6)、基于第六映射关系和第七映射关系,确定第二图像像素坐标系Pi2与世界坐标系Pw的第二映射关系。
根据图像处理算法求出图像上的目标点,经过步骤(1-6)中的第二映射关系,将目标点在第二图像像素坐标系Pi2下的坐标,转换为世界坐标系Pw下的坐标,实现图像像素坐标到世界坐标的转换。
基于第二图像像素坐标系Pi2下的坐标和第二映射关系,通过计算,即可实现背板运载台21在世界坐标系Pw下的传送。背板运载台21具体的传送方式,参见后序内容,此处不再赘述。
通过上述步骤(1-4)~(1-6),确定了背板运载台21的第二图像像素坐标系Pi2与世界坐标系Pw的第二映射关系。可以将背板运载台21的相机22拍摄的图像坐标转换成世界坐标系Pw下的坐标,用于对背板运载台21的对位。
在一些实施例中,如图2所示,背板运载台21的相机22包括:第二粗对位相机221和第二精对位相机222,第二粗对位相机221用于获取第三子图像,第三子图像包括第三子图像像素坐标系Pi2a。第二精对位相机222用于获取第四子图像,第四子图像包括第四子图像像素坐标系Pi2b。第二图像像素坐标系Pi2包括:第三子图像像素坐标系Pi2a和第四子图像像素坐标系Pi2b。
如图5所示,确定背板运载台21的第二图像像素坐标系Pi2与世界坐标系Pw的第二映射关系的步骤包括:确定第三子图像像素坐标系Pi2a与世界坐标系Pw的第三子映射关系。确定第四子图像像素坐标系Pi2b与世界坐标系Pw的第四子映射关系。基于第三子映射关系和第四子映射关系,确定第二映射关系。
示例性的,如图11所示,确定第三子图像像素坐标系Pi2a与世界坐标系Pw的第三子映射关系的步骤包括:(1-41)~(1-43)。
(1-41)、将第二目标物42放置于背板运载台21上,背板运载台21的第二粗对位相机221获取第三子图像。第三子图像包括第二目标物42和第三子图像像素坐标系Pi2a。
(1-42)、通过背板运载台21的第二粗对位相机221内参,建立背板运载台21的第三子相机坐标系与第三子图像像素坐标系Pi2a之间的第九子映射关系。通过背板运载台21的第二粗对位相机221外参,建立背板运载台21的第三子相机坐标系与世界坐标系Pw的第十子映射关系。
(1-43)、基于第九子映射关系和第十子映射关系,确定第三子图像像素坐标系Pi2a与世界坐标系Pw的第三子映射关系。
示例性的,如图12所示,确定第四子图像像素坐标系Pi2b与世界坐标系Pw的第四子映射关系的步骤包括:(1-44)~(1-46)。
(1-44)、将第二目标物42放置于背板运载台21上,背板运载台21的第二精对位相机222获取第四子图像。第四子图像包括第二目标物42和第四子图像像素坐标系Pi2b。
(1-45)、通过背板运载台21的第二精对位相机222内参,建立背板运载台21的第四子相机坐标系与第四子图像像素坐标系Pi2b之间的第十一子映射关系。通过背板运载台21的第二精对位相机222外参,建立背板运载台21 的第四子相机坐标系与世界坐标系Pw的第十二子映射关系。
(1-46)、基于第十一子映射关系和第十二子映射关系,确定第四子图像像素坐标系Pi2b与世界坐标系Pw的第四子映射关系。
需要说明的是,第二相机坐标系Pc2包括第三子相机坐标系和第四子相机坐标系。
基于上述步骤(1-41)~(1-43)获取的第三子映射关系,及步骤(1-44)~(1-46)获取的第四子映射关系,确定第二映射关系。
示例性的,粗对位相机的视野范围为100mm*100mm,精度为100μm。精对位相机的视野范围为10mm*10mm,精度为3μm。粗对位相机的视野范围较大,精度较低,误差范围大。精对位相机的精度较高,误差范围小。两种精度范围的相机的结合使用,有利于提高位置坐标调整的精度。其中,粗对位相机包括:第一粗对位相机121和第二粗对位相机221。精对位相机包括:第一精对位相机122和第二精对位相机222。
在一些实施例中,如图6和图13所示,S3中确定激光器的振镜起始点R1位于世界坐标系Pw下的振镜起始点坐标(X0,Y0,θ0)的步骤包括:(2-1)~(2-4)。
(2-1)、确定振镜30的激光光斑加工幅面N1。
示例性的,如图6所示,激光器、光路、振镜30和场镜31通过选型可以确定满足工艺需求的光斑加工幅面N1,当激光器光路搭建完成后,光斑加工幅面N1的大小确定,且空间位置固定。
示例性的,光斑加工幅面N1的尺寸为120mm*120mm。
(2-2)、将设置有识别点50的背板运载台21运行至振镜30的激光光斑加工幅面N1正下方,激光器输出振镜30的起始点R1坐标下的光斑。
示例性的,识别点50包括方形结构的识别点50。例如,识别点50的尺寸包括:100μm*100μm。
需要说明的是,“正下方”是指,光斑加工幅面N1和背板运载台21的台面平行设置,通过垂直背板运载台21的台面的视线观察,光斑加工幅面N1和背板运载台21的台面重叠。
也就是说,将背板运载台21作为参照基准,将振镜30的起始点R1的光斑,照射至背板20上,以背板运载台21上的识别点50作为参照,对振镜坐标系进行标定。
需要说明的是,背板20的坐标和背板运载台21的坐标具有一定的数据换算关系。通过将背板20上的坐标换算至背板运载台21的坐标系表示,可 得出背板20上的坐标在世界坐标系Pw下的坐标。
(2-3)、将背板运载台21运行到第二精对位相机222视野范围内。
通过精定位相机222拍摄图像,得到精度满足要求的坐标数据。
(2-4)、根据第二精对位相机222的内参和外参的数据转换,获取识别点50的中心与振镜的起始点R1坐标下的光斑中心的坐标偏移量,确定振镜起始点R1位于世界坐标系Pw下的振镜起始点坐标(X0,Y0,θ0)。
通过上述步骤(2-1)~(2-4),达到确定激光器的振镜起始点R1位于世界坐标系Pw下的振镜起始点坐标(X0,Y0,θ0)的目的。用于完成振镜30与中载基板10、背板20的空间匹配,以确定光斑可以照射到的精确位置。用于中载基板10和背板20在世界坐标系Pw的参考基准坐标的标定。
在一些实施例中,如图14所示,步骤(2-3)中,将背板运载台21运行到第二精对位相机222视野范围内的判断方法包括:若第二精对位相机视222野范围内同时出现背板运载台21的识别点50和振镜30的起始点R1坐标下的光斑,则背板运载台21运行到了第二精对位相机222视野范围内。若第二精对位相机222视野范围内未同时出现背板运载台21的识别点50和振镜30的起始点R1坐标下的光斑,则返回步骤(2-2)。
通过判断第二精对位相机视222野范围内是否同时出现背板运载台21的识别点50和振镜30的起始点R1坐标下的光斑,可以准确的判断背板运载台21是否运行到了第二精对位相机222视野范围内,有利于提高激光器的振镜起始点位于世界坐标系Pw下的振镜起始点坐标(X0,Y0,θ0)的精确性。
在一些实施例中,如图15和图16所示,S4中利用第一映射关系和振镜起始点坐标(X0,Y0,θ0),获取中载基板10在世界坐标系Pw的第一模板标定坐标的步骤包括:(3-1)~(3-4)。
(3-1)、将中载基板10放置于中载基板运载台11,其中,中载基板10上阵列设置有多个发光二极管1(如图1所示)。
需要说明的是,中载基板10可以叠合在中载基板运载台11上,图2和图16中的中载基板10和中载基板运载台11采用同一个图形表示,由于中载基板10的坐标和中载基板运载台11的坐标在世界坐标系Pw下存在换算关系,因此,在图中示例性的采用同一个图形表示中载基板10和中载基板运载台11。
(3-2)、中载基板运载台11运行至第一粗对位相机121视野正下方,采集第一特征点P1图像,利用第一映射关系和第一图像像素坐标系Pi1下的第一特征点P1坐标,确定中载基板运载台11在世界坐标系Pw下的第一坐标(X1, Y1,θ1)。
示例性的,特征点可以为一个识别点,或者特征点可以为一排位于中载基板10上的发光二极管1(如图1所示)。
由于本步骤使用的是第一粗对位相机121获取的图像,利用第一映射关系和第一图像像素坐标系Pi1下的第一特征点P1坐标,具体的是通过利用第一子映射关系和第一子图像像素坐标系Pi1a下的第一特征点P1坐标,确定中载基板运载台11在世界坐标系Pw下的第一坐标(X1,Y1,θ1)。
(3-3)、中载基板运载台11运行至中载基板10起始点的发光二极管1的坐标与振镜起始点坐标(X0,Y0,θ0)重合位置,第一精对位相机122采集第二特征点P2图像,利用第一映射关系和第一图像像素坐标系Pi1下的第二特征点P2坐标,确定中载基板运载台11在世界坐标系Pw下的第二坐标(X2,Y2,θ2)。
示例性的,如图1所示,中载基板10起始点的发光二极管1,可以为中载基板10需要转移的第一个发光二极管1。例如,可以位于中载基板10上的首排首列的发光二极管1,在图1中表示为发光二极管W1。
需要说明的是,首先采用第一粗对位相机121采集第一特征点P1图像,然后采用第一精对位相机122采集第二特征点P2图像,这是由于中载基板10上料时的位移量较大,位置精度达不到要求。例如,通过第一粗对位相机121的设置,中载基板10上料后,通过位移、视觉矫正、补偿等,使得坐标精度从100μm左右调整到10μm左右。然后,通过第一精对位相机122的设置,可以使得中载基板10的位置精度由10μm缩小到3μm,使得坐标标定更精准。
由于本步骤是使用的第一精对位相机122获取的图像,因此,利用第一映射关系和第一图像像素坐标系Pi1下的第二特征点P2坐标,具体的是通过利用第二子映射关系和第二子图像像素坐标系Pi1b下的第二特征点P2坐标,确定中载基板运载台11在世界坐标系Pw下的第二坐标(X2,Y2,θ2)。
(3-4)、基于第一坐标(X1,Y1,θ1)和第二坐标(X2,Y2,θ2)获取中载基板10在世界坐标系Pw的第一模板标定坐标。
通过上述步骤(3-1)~(3-4),获取了中载基板10在世界坐标系Pw的第一模板标定坐标,为中载基板10的对位提供了参考基准坐标。
在一些实施例中,如图17所示,S6中在巨量转移制程中,基于中载基板运载台11的实际坐标和第一模板标定坐标,对中载基板10进行对位的步骤包括:(4-1)~(4-4)。
(4-1)、将中载基板10放置于中载基板运载台11。
在转移制程中,可以首先完成中载基板10的上料。将阵列设置有发光二极管1的中载基板10固定在中载基板运载台11,通过中载基板运载台11完成中载基板10的传送。
(4-2)、中载基板运载台11运行至第一坐标(X1,Y1,θ1)的位置,采集第五特征点P5图像,获取第五特征点P5图像与第一特征点P1图像之间的第一位置偏差坐标(Xm,Ym,θm)。
在转移制程中,由于中载基板10放置于中载基板运载台11时,必然存在中载基板运载台11在空间的移动,当中载基板运载台11再次运行至第一坐标(X1,Y1,θ1)位置时,会存在位置偏差。通过图像的采集,以及第一图像像素坐标和世界坐标的转换,可以计算出该位置的偏差值,该偏差值记录为第一位置偏差坐标(Xm,Ym,θm)。
需要说明的是,第一位置偏差坐标(Xm,Ym,θm)并不是表示一个特定的坐标数值,而是指由于中载基板运载台11再次运行至第一坐标(X1,Y1,θ1)位置时,对产生的偏差值的坐标标识。
(4-3)、中载基板运载台11运行至第二坐标(X2,Y2,θ2)与第一位置偏差坐标(Xm,Ym,θm)计算和的位置,第一精对位相机122采集第六特征点P6图像,获取第六特征点P6图像和第二特征点P2图像之间的第二位置偏差坐标(Xn,Yn,θn)。
中载基板运载台11运行至第二坐标(X2,Y2,θ2)与第一位置偏差坐标(Xm,Ym,θm)计算和的位置,将中载基板运载台11由于空间移动引起的位置偏差进行补偿。再通过第一精对位相机122采集第六特征点P6图像,计算第六特征点P6图像和第二特征点P2图像的位置之间的第二位置偏差坐标(Xn,Yn,θn),即通过第一精对位相机122的使用,进一步记录精度满足要求的位置偏差值,该偏差值记录为第二位置偏差坐标(Xn,Yn,θn)。
(4-4)、中载基板运载台11运行至第二位置偏差坐标(Xn,Yn,θn)的位置,完成中载基板10对位。
通过步骤(4-1)~(4-4),基于中载基板运载台11的实际坐标和第一模板标定坐标,完成了中载基板10的对位。
在一些实施例中,如图18~图21所示,S5中利用第二映射关系和振镜起始点坐标(X0,Y0,θ0),获取背板20在世界坐标系Pw的第二模板标定坐标的步骤包括:(3-5)~(3-9)。
(3-5)、将背板20放置于背板运载台21,其中,背板20上阵列设置有多个焊盘2(如图1所示)。
(3-6)、如图19所示,背板运载台21运行至第二粗对位相机221视野正下方,采集第三特征点P3图像,利用第二映射关系和第二图像像素坐标系Pi2下的第三特征点P3坐标,确定背板运载台21在世界坐标系Pw下的第三坐标(X3,Y3,θ3)。
示例性的,特征点可以为一个识别点,或者特征点可以为一排位于背板20上的焊盘2(如图1所示)。
示例性的,第二粗对位相机221的视野范围M1如图19中所示。相机视野范围通常位于相机摄像头的正前方,第二粗对位相机221视野正下方可以理解为将背板运载台21运行至第二粗对位相机221的摄像头的正下方。
需要说明的是,背板20可以叠合在背板运载台21上,图2和图19中的背板20和背板运载台21采用同一个图形表示,由于背板20的坐标和背板运载台21的坐标在世界坐标系Pw下存在换算关系,因此,在图中示例性的采用同一个图形表示背板20和背板运载台21。
由于本步骤是使用的第二粗对位相机221获取的图像,因此,利用第二映射关系和第二图像像素坐标系Pi2下的第三特征点P3坐标,具体的是通过利用第三子映射关系和第三子图像像素坐标系Pi2a下的第三特征点P3坐标,确定背板运载台21在世界坐标系Pw下的第三坐标(X3,Y3,θ3)。
(3-7)、如图20所示,背板运载台21运行至第二精对位相机222视野正下方,采集第四特征点P4图像,利用第二映射关系和第二图像像素坐标系Pi2下的第四特征点P4坐标,确定背板运载台21在世界坐标系Pw下的第四坐标(X4,Y4,θ4)。
示例性的,第二精对位相机222视野范围M2如图20中所示。
由于本步骤是使用的第二精对位相机222获取的图像,因此,利用第二映射关系和第二图像像素坐标系Pi2下的第四特征点P4坐标,具体的是通过第四子映射关系和第四子图像像素坐标系Pi2b下的第四特征点P4坐标,确定背板运载台21在世界坐标系Pw下的第四坐标(X4,Y4,θ4)。
(3-8)、如图21所示,背板运载台21运行至背板20起始点焊盘2坐标与振镜起始点坐标(X0,Y0,θ0)重合位置,并记录背板运载台21在世界坐标系Pw下的第五坐标(X5,Y5,θ5)。
示例性的,如图1所示,背板20起始点焊盘2可以理解为背板20第一个需要安装发光二极管1的焊盘2。例如,当背板20第一次进行发光二极管1的对位转移时,可以将背板20上首排首列的焊盘2定为起始点焊盘2,在图1中表示为W2。
(3-9)、基于第三坐标(X3,Y3,θ3)、第四坐标(X4,Y4,θ4)和第五坐标(X5,Y5,θ5)获取背板20在世界坐标系Pw的第二模板标定坐标。
通过上述步骤(3-5)~(3-9),获取背板20在世界坐标系Pw的第二模板标定坐标,为背板20的对位提供了参考基准坐标。
在一些实施例中,如图22所示,在转移制程中,需要实现中载基板10的对位,并实现背板20的对位,从而实现中载基板10和背板20的对位,进而完成发光二极管1的转移。
示例性的,如图22所示,中载基板10和背板20的对位过程包括:首排首列的中载基板10与背板20的对位,首排n列的中载基板10与背板20的对位、以及m排首列的中载基板10与背板20的对位。其中,n为大于或等于2的正整数,m为大于或等于2的正整数,即n≥2,m≥2。示例性的,首排首列中排的延伸方向为第一方向U,首排首列中列的延伸方向为第二方向V。
示例性的,在转移制程中,如图22所示,要完成中载基板10和背板20的对位,首先需要完成首排首列的中载基板10与背板20的对位。在图22中,首排首列的中载基板10表示为中载基板1011。
例如,中载基板1011对位完成后,可以进行首排次列的中载基板1012的对位,此时,首排n列中的n等于2。以此类推,当n等于3时,为进行首排三列的中载基板1013的对位。
例如,中载基板1011对位完成后,可以进行次排首列的中载基板1021的对位,此时,m排首列中的m等于2。依次类推,当m等于3时,为进行三排首列的中载基板1031的对位。
由此进行每一个中载基板10和背板20的对位,完成发光二极管1的转移。
示例性的,当中载基板10的尺寸,与背板20尺寸比值为1:30时,取30个中载基板进行五排六列排布,那么,m的取值大于或等于2,且小于或等于5,即5≥m≥2;n的取值大于或等于2,且小于或等于6,即6≥n≥2。上述30个中载基板10的加和尺寸,与一个背板20的尺寸相等,即两者面积相等。那么,需要将30个中载基板10中的每一个中载基板10,与背板20对位,进行30次的对位,完成发光二极管1的转移。
在一些实施例中,如图23所示,S7中在巨量转移制程中,基于背板运载台21的实际坐标和第二模板标定坐标,对背板20进行对位的步骤包括:首排首列的中载基板10对位完成后,对背板20进行对位,该步骤包括:(4-5)~(4-8)。
(4-5)、将背板20放置于背板运载台21。
在转移制程中,首先完成背板20上料。将阵列设置有焊盘2的背板20固定在背板运载台21上,通过背板运载台21完成背板20的传送。
(4-6)、背板运载台21运行至第三坐标(X3,Y3,θ3)的位置,采集第七特征点P7图像,获取第七特征点P7图像与第三特征点P3图像之间的第三位置偏差坐标(Xp,Yp,θp)。
在转移制程中,由于背板20放置于背板运载台21时,必然存在背板运载台21在空间的移动,当背板运载台21再次运行至第三坐标(X3,Y3,θ3)位置时,会存在位置偏差。通过图像的采集,以及第二图像像素坐标和世界坐标的转换,可以计算出该位置偏差值,该偏差值记录为第三位置偏差坐标(Xp,Yp,θp)。
需要说明的是,第三位置偏差坐标(Xp,Yp,θp)并不是表示一个特定的坐标数值,而是指由于背板运载台21再次运行至第三坐标(X3,Y3,θ3)位置时,对产生的偏差值的坐标标识。
(4-7)、背板运载台21运行至第四坐标(X4,Y4,θ4)与第三位置偏差坐标(Xp,Yp,θp)计算和的位置,第二精对位相机222采集第八特征点P8图像,获取第八特征点P8图像与第四特征点图像P4之间的第四位置偏差坐标(Xq,Yq,θq)。
背板运载台21运行至第四坐标(X4,Y4,θ4)与第三位置偏差坐标(Xp,Yp,θp)计算和的位置,将由于背板运载台21的空间移动引起的位置偏差进行补偿。再通过第二精对位相机222采集第八特征点图像P8,计算第八特征点图像P8与第四特征点图像P4的位置第四位置偏差坐标(Xq,Yq,θq),即通过第二精对位相机222的使用,进一步记录精度满足要求的位置偏差值,该偏差值记录为第四位置偏差坐标(Xq,Yq,θq)。
(4-8)、背板运载台21运行至第五坐标(X5,Y5,θ5)与与第四位置偏差坐标(Xq,Yq,θq)计算和的位置,完成背板20对位。
示例性的,通过步骤(4-1)~(4-4),基于中载基板运载台11的实际坐标和第一模板标定坐标,完成首排首列的中载基板10的对位。然后,通过上述步骤(4-5)~(4-8),基于背板运载台21的实际坐标和第二模板标定坐标,完成背板20的对位。从而实现首排首列的中载基板10和背板20的对位。
在一些实施例中,如图24所示,沿第一方向U,在标准尺寸D1下,中载基板10的发光二极管1的数量,与背板20焊盘2的数量比值为T:1。其中,标准尺寸D1为沿第一方向U排列的一排发光二极管1所占据的尺寸。T 为大于或等于1的正整数,即T≥1。
示例性的,如图24所示,沿第一方向U,中载基板10上每相邻的两个发光二极管1之间的距离为10μm。沿第一方向U,背板20上每相邻的两个焊盘2之间的距离为30μm、60μm或90μm。也就是说,发光二极管1排布更密集。
例如,当中载基板10上每相邻的两个发光二极管1之间的距离为10μm,背板20上每相邻的两个焊盘2之间的距离为10μm时,T的值为1;当中载基板10上每相邻的两个发光二极管1之间的距离为10μm,背板20上每相邻的两个焊盘2之间的距离为30μm时,T的值为3;当中载基板10上每相邻的两个发光二极管1之间的距离为10μm,背板20上每相邻的两个焊盘2之间的距离为60μm时,T的值为6;当中载基板10上每相邻的两个发光二极管1之间的距离为10μm,背板20上每相邻的两个焊盘2之间的距离为90μm时,T的值为9。
在一些实施例中,如图25所示,当T等于1时,S7中在巨量转移制程中,基于背板运载台21的实际坐标和第二模板标定坐标,对背板20进行对位的步骤包括:首排n列的中载基板10对位完成后,对背板20进行对位。其中,n为大于或等于2的正整数,该步骤包括:(5-5)~(5-7)。
(5-5)、首排(n-1)列的中载基板10转移完成后,记录已转移的发光二极管1的数量,获取首排n列的中载基板10的起始点位置与首排(n-1)列的中载基板10起始点位置的第五位置偏差坐标(Xa,0,0)。
示例性的,首排n列的中载基板10的起始点位置与首排(n-1)列的中载基板10起始点位置,可以表示为,首排n列的中载基板10的起始点发光二极管1与首排(n-1)列的中载基板10的起始点发光二极管1,首排n列的发光二极管1与首排(n-1)列的发光二极管1在第一方向U的间距,那么,Xa可以等于该间距。
(5-6)、背板运载台21运行至第四坐标(X4,Y4,θ4)、第三位置偏差坐标(Xp,Yp,θp)及第五位置偏差坐标(Xa,0,0)计算和的位置,第二精对位相机222采集第八特征点P8图像,获取第八特征点P8图像与第四特征点P4图像的第四位置偏差坐标(Xq,Yq,θq)。
(5-7)、背板运载台21运行至第五坐标(X5,Y5,θ5)与第四位置偏差坐标(Xq,Yq,θq)计算和的位置,完成背板20对位。
示例性的,如图26所示,当T=1、n=2时,首排2列即为首排次列,首排次列的中载基板10对位完成后,背板20对位的步骤包括:(5-5)'~(5-7)'。
(5-5)'、首排首列的中载基板10转移完成后,记录已转移的发光二极管1的数量,获取首排次列的中载基板10的起始点位置与首排首列的中载基板10起始点位置的第五位置偏差坐标(Xa,0,0)。
示例性的,如图22所示,首排次列的中载基板1012的起始点位置与首排首列的中载基板1011起始点位置,可以表示为首排次列的中载基板1012的起始点发光二极管1与首排首列的中载基板1011起始点发光二极管1在第一方向U上的间距,该间距等于Xa。
(5-6)'、背板运载台21运行至第四坐标(X4,Y4,θ4)、第三位置偏差坐标(Xp,Yp,θp)及第五位置偏差坐标(Xa,0,0)计算和的位置,第二精对位相机222采集第八特征点P8图像,获取第八特征点P8图像与第四特征点P4图像的第四位置偏差坐标(Xq,Yq,θq)。
(5-7)'、背板运载台21运行至第五坐标(X5,Y5,θ5)与第四位置偏差坐标(Xq,Yq,θq)计算和的位置,完成背板20对位。
示例性的,通过步骤(4-1)~(4-4),基于中载基板运载台11的实际坐标和第一模板标定坐标,完成首排次列的中载基板10的对位。然后,通过上述步骤(5-5)'~(5-7)',基于背板运载台21的实际坐标和第二模板标定坐标,完成背板20的对位。从而实现首排次列的中载基板10和背板20的对位。
需要说明的是,在步骤(5-6)和步骤(5-6)'中,第三位置偏差坐标(Xp,Yp,θp)的取值可以不同。其中,第三位置偏差坐标(Xp,Yp,θp)只是表示该种情况下偏差值的标识相同,并不是表示偏差值的坐标取值相等。第四位置偏差坐标(Xq,Yq,θq)、第五位置偏差坐标(Xa,0,0)和下述的第六位置偏差坐标(Xb,0,0)及第七位置偏差坐标(0,Ya,0)的示例同理。
在一些实施例中,如图27所示,当T大于1时,S7中在巨量转移制程中,基于背板运载台21的实际坐标和第二模板标定坐标,对背板20进行对位的步骤包括:首排n列的中载基板10对位完成后,对背板20进行对位。其中,n为大于或等于2的正整数,该步骤包括:(6-5)~(6-7)。
(6-5)、首排(n-1)列的中载基板10转移完成后,记录已转移的发光二极管1的数量,获取首排n列的中载基板10起始点位置的坐标与首排(n-1)列的中载基板10起始点位置的第五位置偏差坐标(Xa,0,0),以及中载基板10待转移列的发光二极管1起始位置与已转移列的发光二极管1起始位置的第六位置偏差坐标(Xb,0,0)。
示例性的,如图28所示,沿第一方向U,中载基板10上每相邻的两个发光二极管1之间的距离为10μm,背板20上每相邻的两个焊盘2之间的距 离为20μm,即T=2。
图28中虚线框L1中的发光二极管1为已转移列的发光二极管1,即在之前的转移制程中,该列的发光二极管1已经与中载基板10解离。图28中虚线框L2中的发光二极管1为待转移列的发光二极管1,即在接下来的转移制程中,该列的发光二极管1为即将与中载基板10解离的目标列发光二极管1。中载基板10待转移列的发光二极管1起始位置与已转移列的发光二极管1起始位置的第六位置偏差坐标(Xb,0,0)中的Xb即等于沿第一方向U,中载基板10上每相邻的两个发光二极管1之间的距离10μm。
(6-6)、背板运载台21运行至第四坐标(X4,Y4,θ4)、第三位置偏差坐标(Xp,Yp,θp)及第五位置偏差坐标(Xa,0,0)计算和的位置,第二精对位相机222采集第八特征点P8图像,获取第八特征点P8图像与第四特征点P4图像的第四位置偏差坐标(Xq,Yq,θq)。
(6-7)、背板运载台21运行至第五坐标(X5,Y5,θ5)、第四位置偏差坐标(Xq,Yq,θq)及第六位置偏差坐标(Xb,0,0)计算和的位置,完成背板20对位。
在一些示例中,如图29所示,当T>1,n=2时,首排2列即为首排次列,首排次列的中载基板10对位完成后,背板20对位的步骤包括:(6-5)'~(6-7)'。
(6-5)'、首排首列的中载基板10转移完成后,记录已转移的发光二极管1的数量,获取首排次列的中载基板10起始点位置的坐标与首排首列的中载基板10起始点位置的第五位置偏差坐标(Xa,0,0),以及中载基板10待转移列的发光二极管1起始位置与已转移列的发光二极管1起始位置的第六位置偏差坐标(Xb,0,0)。
(6-6)'、背板运载台21运行至第四坐标(X4,Y4,θ4)、第三位置偏差坐标(Xp,Yp,θp)及第五位置偏差坐标(Xa,0,0)计算和的位置,第二精对位相机222采集第八特征点P8图像,获取第八特征点P8图像与第四特征点P4图像的第四位置偏差坐标(Xq,Yq,θq)。
(6-7)'、背板运载台21运行至第五坐标(X5,Y5,θ5)、第四位置偏差坐标(Xq,Yq,θq)及第六位置偏差坐标(Xb,0,0)计算和的位置,完成背板20对位。
示例性的,通过步骤(4-1)~(4-4),基于中载基板运载台11的实际坐标和第一模板标定坐标,完成首排次列的中载基板10的对位。然后,通过上述步骤(6-5)'~(6-7)',基于背板运载台21的实际坐标和第二模板标定坐标,完成背板20的对位。从而实现首排次列的中载基板10和背板20的对位。
在一些实施例中,如图30所示,当T等于1时,S7中在巨量转移制程中,基于背板运载台21的实际坐标和第二模板标定坐标,对背板20进行对位的步骤包括:m排首列的中载基板10对位完成后,对背板20进行对位。其中,m为大于或等于2的正整数,该步骤包括:(7-5)~(7-7)。
(7-5)、(m-1)排首列的中载基板10转移完成后,记录已转移的发光二极管1的数量,获取m排首列的中载基板10起始点位置与(m-1)排首列的中载基板10起始点位置的第七位置偏差坐标(0,Ya,0)。
示例性的,m排首列的中载基板10起始位置与(m-1)排首列的中载基板10起始位置,可以表示为m排首列的中载基板10起始点发光二极管1与(m-1)排首列的中载基板10起始点发光二极管1在第二方向V的间距,即Ya可以等于该间距。
(7-6)、背板运载台21运行至第四坐标(X4,Y4,θ4)、第三位置偏差坐标(Xp,Yp,θp)及第七位置偏差坐标(0,Ya,0)计算和的位置,第二精对位相机222采集第八特征点P8图像,计算第八特征点P8图像与第四特征点P4图像的第四位置偏差坐标(Xq,Yq,θq)。
(7-7)、背板运载台21运行至第五坐标(X5,Y5,θ5)和第四位置偏差坐标(Xq,Yq,θq)计算和的位置,完成背板20对位。
在一些示例中,如图31所示,当T=1、m=2时,m排首列即为次排首列,次排首列的中载基板10对位完成后,背板20对位的步骤包括:(7-5)'~(7-7)'。
(7-5)'、首排首列的中载基板10转移完成后,记录已转移的发光二极管1的数量,获取次排首列的中载基板10起始点位置与首排首列的中载基板10起始点位置的第七位置偏差坐标(0,Ya,0)。
(7-6)'、背板运载台21运行至第四坐标(X4,Y4,θ4)、第三位置偏差坐标(Xp,Yp,θp)及第七位置偏差坐标(0,Ya,0)计算和的位置,第二精对位相机222采集第八特征点P8图像,计算第八特征点P8图像与第四特征点P4图像的第四位置偏差坐标(Xq,Yq,θq)。
(7-7)'、背板运载台21运行至第五坐标(X5,Y5,θ5)和第四位置偏差坐标(Xq,Yq,θq)计算和的位置,完成背板20对位。
示例性的,通过步骤(4-1)~(4-4),基于中载基板运载台11的实际坐标和第一模板标定坐标,完成次排首列的中载基板10的对位。然后,通过上述步骤(7-5)'~(7-7)',基于背板运载台21的实际坐标和第二模板标定坐标,完成背板20的对位。从而实现次排首列的中载基板10和背板20的对位。
在一些实施例中,如图32所示,当T大于1时,S7中在巨量转移制程 中,基于背板运载台21的实际坐标和第二模板标定坐标,对背板20进行对位的步骤包括:m排首列的中载基板10对位完成后,对背板20进行对位。其中,m为大于或等于2的正整数,该步骤包括:(8-5)~(8-7)。
(8-5)、(m-1)排首列的中载基板10转移完成后,记录已转移的发光二极管1的数量,获取m排首列中载基板10的起始点位置与(m-1)排首列中载基板10的起始点位置的第七位置偏差坐标(0,Ya,0),以及中载基板10待转移列的发光二极管1起始点位置与已转移列的发光二极管1起始位置的第六位置偏差坐标(Xb,0,0)。
其中,Xa和Xb的理解可以参照上述内容,此处不再赘述。
(8-6)、背板运载台21运行至第四坐标(X4,Y4,θ4)、第三位置偏差坐标(Xp,Yp,θp)及第七位置偏差坐标(0,Ya,0)计算和的位置,第二精对位相机222采集第八特征点P8图像,计算第八特征点P8图像与第四特征点P4图像的第四位置偏差坐标(Xq,Yq,θq)。
(8-7)、背板运载台21运行至第五坐标(X5,Y5,θ5)、第四位置偏差坐标(Xq,Yq,θq)及第六位置偏差坐标(Xb,0,0)计算和的位置,完成背板20对位。
在一些示例中,如图33所示,当T>1、m=2时,m排首列即为次排首列,次排首列的中载基板10的对位完成后,完成背板20对位的步骤包括:(8-5)'~(8-7)'。
(8-5)'、首排首列的中载基板10转移完成后,记录已转移的发光二极管1的数量,获取次排首列中载基板10的起始点位置与首排首列中载基板10的起始点位置的第七位置偏差坐标(0,Ya,0),以及中载基板10待转移列的发光二极管1起始点位置与已转移列的发光二极管1起始位置的第六位置偏差坐标(Xb,0,0)。
(8-6)'、背板运载台21运行至第四坐标(X4,Y4,θ4)、第三位置偏差坐标(Xp,Yp,θp)及第七位置偏差坐标(0,Ya,0)计算和的位置,第二精对位相机222采集第八特征点P8图像,计算第八特征点P8图像与第四特征点P4图像的第四位置偏差坐标(Xq,Yq,θq)。
(8-7)'、背板运载台21运行至第五坐标(X5,Y5,θ5)、第四位置偏差坐标(Xq,Yq,θq)及第六位置偏差坐标(Xb,0,0)计算和的位置,完成背板20对位。
示例性的,通过步骤(4-1)~(4-4),基于中载基板运载台11的实际坐标和第一模板标定坐标,完成次排首列的中载基板10的对位。然后,通过上述步 骤(8-5)'~(8-7)',基于背板运载台21的实际坐标和第二模板标定坐标,完成背板20的对位。从而实现次排首列的中载基板10和背板20的对位。
可以理解的是,以上实施例通过首排首列、首排次列、次排首列的中载基板10的对位完成后,进行背板20的对位,从而实现中载基板10的和背板20的对位。其余的中载基板10与背板20的对位,可以参照上述内容,通过相关步骤及对应偏差值的补偿进行所有中载基板10与背板20的对位,即可完成转移制程,实现中载基板10与背板20的精确对位。
上述任一实施例所提供的多坐标系标定与设备对位方法还可以应用于双层结构对位系统的对位。例如,曝光机中的识别点和玻璃的对位。或者,纳米压印中,上下两层基板的对位。
通过多坐标系标定与设备对位方法可以实现上下两层基板精确的、高效率的对位。
本公开的一些实施例还提供一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令用于使计算机执行上述任一实施例所述的多坐标系标定与设备对位方法。
示例性的,上述非暂态计算机可读存储介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。本公开描述的各种计算机可读存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读存储介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
上述非暂态计算机可读存储介质的有益效果和上述一些实施例所述的多坐标系标定与设备对位方法的有益效果相同,此处不再赘述。
本公开的一些实施例还提供一种巨量转移设备1000,如图34所示,包括存储器300、中载基板10、中载基板运载台11、中载基板运载台11的相机12、背板20、背板运载台21、背板运载台21的相机22、激光器、处理器200及存储在存储器300上并可在处理器200上运行的计算机程序,处理器200执行所述程序时实现上述任一实施例所述的多坐标系标定与设备对位方法。
上述巨量转移设备1000的有益效果和上述一些实施例所述的多坐标系标定与设备对位方法的有益效果相同,此处不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不 局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种多坐标系标定与设备对位方法,包括:
    通过中载基板运载台与视觉手眼标定,确定中载基板运载台的第一图像像素坐标系与世界坐标系的第一映射关系;
    通过背板运载台与视觉手眼标定,确定背板运载台的第二图像像素坐标系与世界坐标系的第二映射关系;
    确定激光器的振镜起始点位于世界坐标系下的振镜起始点坐标;
    利用所述第一映射关系和所述振镜起始点坐标,获取中载基板在世界坐标系的第一模板标定坐标;
    利用所述第二映射关系和所述振镜起始点坐标,获取背板在世界坐标系的第二模板标定坐标;
    在巨量转移制程中,基于中载基板运载台的实际坐标和所述第一模板标定坐标,对所述中载基板进行对位;
    在巨量转移制程中,基于背板运载台的实际坐标和所述第二模板标定坐标,对所述背板进行对位。
  2. 根据权利要求1所述的多坐标系标定与设备对位方法,其中,所述通过中载基板运载台与视觉手眼标定,确定中载基板运载台的第一图像像素坐标系与世界坐标系的第一映射关系的步骤包括:
    1-1)、将第一目标物放置于中载基板运载台上,中载基板运载台的相机获取第一图像;所述第一图像包括所述第一目标物和所述第一图像像素坐标系;
    1-2)、通过中载基板运载台的相机内参,建立中载基板运载台的第一相机坐标系与所述第一图像像素坐标系之间的第四映射关系;通过中载基板运载台的相机外参,建立中载基板运载台的第一相机坐标系与世界坐标系的第五映射关系;
    1-3)、基于所述第四映射关系和所述第五映射关系,确定所述第一图像像素坐标系与所述世界坐标系之间的第一映射关系。
  3. 根据权利要求1或2所述的多坐标系标定与设备对位方法,其中,中载基板运载台的相机包括:第一粗对位相机和第一精对位相机;所述第一粗对位相机用于获取第一子图像,所述第一子图像包括第一子图像像素坐标系;所述第一精对位相机用于获取第二子图像,所述第二子图像包括第二子图像像素坐标系;所述第一图像像素坐标系包括:所述第一子图像像素坐标系和所述第二子图像像素坐标系;
    所述确定中载基板运载台的第一图像像素坐标系与世界坐标系的第一映射关系的步骤包括:
    确定所述第一子图像像素坐标系与所述世界坐标系之间的第一子映射关系;
    确定所述第二子图像像素坐标系与所述世界坐标系之间的第二子映射关系;
    基于所述第一子映射关系和所述第二子映射关系,确定所述第一映射关系。
  4. 根据权利要求3所述的多坐标系标定与设备对位方法,其中,所述通过背板运载台与视觉手眼标定,确定背板运载台的第二图像像素坐标系与世界坐标系的第二映射关系的步骤包括:
    1-4)、将第二目标物放置于背板运载台上,背板运载台的相机获取第二图像;所述第二图像包括所述第二目标物和所述第二图像像素坐标系;
    1-5)、通过背板运载台的相机内参,建立背板运载台的第二相机坐标系与所述第二图像像素坐标系之间的第六映射关系;通过背板运载台的相机外参,建立背板运载台的第二相机坐标系与世界坐标系的第七映射关系;
    1-6)、基于所述第六映射关系和所述第七映射关系,确定所述第二图像像素坐标系与世界坐标系的第二映射关系。
  5. 根据权利要求2或4所述的多坐标系标定与设备对位方法,其中,所述第一目标物和所述第二目标物包括:视觉标定板。
  6. 根据权利要求3或4所述的多坐标系标定与设备对位方法,其中,背板运载台的相机包括:第二粗对位相机和第二精对位相机;所述第二粗对位相机用于获取第三子图像,所述第三子图像包括第三子图像像素坐标系;所述第二精对位相机用于获取第四子图像,所述第四子图像包括第四子图像像素坐标系;所述第二图像像素坐标系包括:所述第三子图像像素坐标系和所述第四子图像像素坐标系;
    所述确定背板运载台的第二图像像素坐标系与世界坐标系的第二映射关系的步骤包括:
    确定所述第三子图像像素坐标系与所述世界坐标系的第三子映射关系;
    确定所述第四子图像像素坐标系与所述世界坐标系的第四子映射关系;
    基于所述第三子映射关系和所述第四子映射关系,确定所述第二映射关系。
  7. 根据权利要求6所述的多坐标系标定与设备对位方法,其中,所述确定激光器的振镜起始点位于世界坐标系下的振镜起始点坐标的步骤包括:
    2-1)、确定振镜的激光光斑加工幅面;
    2-2)、将设置有识别点的背板运载台运行至振镜的激光光斑加工幅面正下方,激光器输出振镜的起始点坐标下的光斑;
    2-3)、将背板运载台运行到所述第二精对位相机视野范围内;
    2-4)、根据所述第二精对位相机的内参和外参的数据转换,获取所述识别点的中心与振镜的起始点坐标下的光斑中心的坐标偏移量,确定振镜起始点位于世界坐标系下的振镜起始点坐标。
  8. 根据权利要求7所述的多坐标系标定与设备对位方法,其中,所述步骤2-3)中,将背板运载台运行到所述第二精对位相机视野范围内的判断方法包括:
    若所述第二精对位相机视野范围内同时出现背板运载台的识别点和振镜的起始点坐标下的光斑,则背板运载台运行到了所述第二精对位相机视野范围内;
    若所述第二精对位相机视野范围内未同时出现背板运载台的识别点和振镜的起始点坐标下的光斑,则返回所述步骤2-2)。
  9. 根据权利要求7或8所述的多坐标系标定与设备对位方法,其中,所述利用所述第一映射关系和所述振镜起始点坐标,获取中载基板在世界坐标系的第一模板标定坐标的步骤包括:
    3-1)、将中载基板放置于中载基板运载台,其中,中载基板上阵列设置有多个发光二极管;
    3-2)、中载基板运载台运行至第一粗对位相机视野正下方,采集第一特征点图像,利用所述第一映射关系和第一图像像素坐标系下的第一特征点坐标,确定中载基板运载台在世界坐标系下的第一坐标;
    3-3)、中载基板运载台运行至中载基板起始点的发光二极管的坐标与所述振镜起始点坐标重合位置,第一精对位相机采集第二特征点图像,利用所述第一映射关系和第一图像像素坐标系下的第二特征点坐标,确定中载基板运载台在世界坐标系下的第二坐标;
    3-4)基于所述第一坐标和所述第二坐标获取中载基板在世界坐标系的第一模板标定坐标。
  10. 根据权利要求9所述的多坐标系标定与设备对位方法,其中,所述在巨量转移制程中,基于中载基板运载台的实际坐标和所述第一模板标定坐标,对所述中载基板进行对位的步骤包括:
    4-1)、将中载基板放置于中载基板运载台;
    4-2)、中载基板运载台运行至第一坐标的位置,采集第五特征点图像,获 取第五特征点图像与第一特征点图像之间的第一位置偏差坐标;
    4-3)、中载基板运载台运行至第二坐标与所述第一位置偏差坐标计算和的位置,第一精对位相机采集第六特征点图像,获取所述第六特征点图像和所述第二特征点图像之间的第二位置偏差坐标;
    4-4)、中载基板运载台运行至所述第二位置偏差坐标的位置,完成中载基板对位。
  11. 根据权利要求7~10任一项所述的多坐标系标定与设备对位方法,其中,所述利用所述第二映射关系和所述振镜起始点坐标,获取背板在世界坐标系的第二模板标定坐标的步骤包括:
    3-5)、将背板放置于背板运载台,其中,背板上阵列设置有多个焊盘;
    3-6)、背板运载台运行至第二粗对位相机视野正下方,采集第三特征点图像,利用所述第二映射关系和第二图像像素坐标系下的第三特征点坐标,确定背板运载台在世界坐标系下的第三坐标;
    3-7)、背板运载台运行至第二精对位相机视野正下方,采集第四特征点图像,利用所述第二映射关系和第二图像像素坐标系下的第四特征点坐标,确定背板运载台在世界坐标系下的第四坐标;
    3-8)、背板运载台运行至背板起始点焊盘坐标与所述振镜起始点坐标重合位置,并记录背板运载台在世界坐标系下的第五坐标;
    3-9)、基于所述第三坐标、所述第四坐标和所述第五坐标获取背板在世界坐标系的第二模板标定坐标。
  12. 根据权利要求11所述的多坐标系标定与设备对位方法,其中,所述在巨量转移制程中,基于背板运载台的实际坐标和所述第二模板标定坐标,对所述背板进行对位的步骤包括:首排首列的中载基板对位完成后,对所述背板进行对位,该步骤包括:
    4-5)、将背板放置于背板运载台;
    4-6)、背板运载台运行至第三坐标的位置,采集第七特征点图像,获取所述第七特征点图像与第三特征点图像之间的第三位置偏差坐标;
    4-7)、背板运载台运行至所述第四坐标与所述第三位置偏差坐标计算和的位置,第二精对位相机采集第八特征点图像,获取所述第八特征点图像与所述第四特征点图像之间的第四位置偏差坐标;
    4-8)、背板运载台运行至所述第五坐标与所述第四位置偏差坐标计算和的位置,完成背板对位。
  13. 根据权利要求11所述的多坐标系标定与设备对位方法,其中,沿所 述第一方向,在标准尺寸下,中载基板的发光二极管的数量,与背板焊盘的数量比值为T:1;其中,所述标准尺寸为沿所述第一方向排列的一排所述发光二极管所占据的尺寸;T为大于或等于1的正整数。
  14. 根据权利要求13所述的多坐标系标定与设备对位方法,其中,当T等于1时,所述在巨量转移制程中,基于背板运载台的实际坐标和所述第二模板标定坐标,对所述背板进行对位的步骤包括:首排n列的中载基板对位完成后,对所述背板进行对位;其中,n为大于或等于2的正整数,该步骤包括:
    5-5)、首排(n-1)列的中载基板转移完成后,记录已转移的发光二极管的数量,获取首排n列的中载基板的起始点位置与首排(n-1)列的中载基板起始点位置的第五位置偏差坐标;
    5-6)、背板运载台运行至所述第四坐标、所述第三位置偏差坐标及第五位置偏差坐标计算和的位置,第二精对位相机采集第八特征点图像,获取所述第八特征点图像与所述第四特征点图像的第四位置偏差坐标;
    5-7)、背板运载台运行至所述第五坐标与所述第四位置偏差坐标计算和的位置,完成背板对位。
  15. 根据权利要求13所述的多坐标系标定与设备对位方法,其中,当T大于1时,所述在巨量转移制程中,基于背板运载台的实际坐标和所述第二模板标定坐标,对所述背板进行对位的步骤包括:首排n列的中载基板对位完成后,对所述背板进行对位;其中,n为大于或等于2的正整数,该步骤包括:
    6-5)、首排(n-1)列的中载基板转移完成后,记录已转移的发光二极管的数量,获取首排n列的中载基板起始点位置的坐标与首排(n-1)列的中载基板起始点位置的第五位置偏差坐标,以及中载基板待转移列的发光二极管起始位置与已转移列的发光二极管起始位置的第六位置偏差坐标;
    6-6)、背板运载台运行至所述第四坐标、所述第三位置偏差坐标及所述第五位置偏差坐标计算和的位置,第二精对位相机采集第八特征点图像,获取所述第八特征点图像与所述第四特征点图像的第四位置偏差坐标;
    6-7)、背板运载台运行至所述第五坐标、所述第四位置偏差坐标及所述第六位置偏差坐标计算和的位置,完成背板对位。
  16. 根据权利要求13所述的多坐标系标定与设备对位方法,其中,当T等于1时,所述在巨量转移制程中,基于背板运载台的实际坐标和所述第二模板标定坐标,对所述背板进行对位的步骤包括:m排首列的中载基板对位 完成后,对所述背板进行对位;其中,m为大于或等于2的正整数,该步骤包括:
    7-5)、(m-1)排首列的中载基板转移完成后,记录已转移的发光二极管的数量,获取m排首列的中载基板起始点位置与(m-1)排首列的中载基板起始点位置的第七位置偏差坐标;
    7-6)、背板运载台运行至所述第四坐标、所述第三位置偏差坐标及所述第七位置偏差坐标计算和的位置,第二精对位相机采集第八特征点图像,计算所述第八特征点图像与所述第四特征点图像的第四位置偏差坐标;
    7-7)、背板运载台运行至所述第五坐标和所述第四位置偏差坐标计算和的位置,完成背板对位。
  17. 根据权利要求13所述的多坐标系标定与设备对位方法,其中,当T大于1时,所述在巨量转移制程中,基于背板运载台的实际坐标和所述第二模板标定坐标,对所述背板进行对位的步骤包括:m排首列的中载基板对位完成后,对所述背板进行对位;其中,m为大于或等于2的正整数,该步骤包括:
    8-5)、(m-1)排首列的中载基板转移完成后,记录已转移的发光二极管的数量,获取m排首列中载基板的起始点位置与(m-1)排首列中载基板的起始点位置的第七位置偏差坐标,以及中载基板待转移列的发光二极管起始点位置与已转移列的发光二极管起始位置的第六位置偏差坐标;
    8-6)、背板运载台运行至所述第四坐标、所述第三位置偏差坐标及所述第七位置偏差坐标计算和的位置,第二精对位相机采集第八特征点图像,计算所述第八特征点图像与所述第四特征点图像的第四位置偏差坐标;
    8-7)、背板运载台运行至所述第五坐标、所述第四位置偏差坐标及所述第六位置偏差坐标计算和的位置,完成背板对位。
  18. 一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令用于使计算机执行如权利要求1-17任一项所述的多坐标系标定与设备对位方法。
  19. 一种巨量转移设备,包括存储器、中载基板、中载基板运载台、中载基板运载台的相机、背板、背板运载台、背板运载台的相机、激光器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如权利要求1-17任一项所述的多坐标系标定与设备对位方法。
PCT/CN2022/129297 2022-11-02 2022-11-02 多坐标系标定与设备对位方法、巨量转移设备 WO2024092560A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/129297 WO2024092560A1 (zh) 2022-11-02 2022-11-02 多坐标系标定与设备对位方法、巨量转移设备
CN202280003991.1A CN118451559A (zh) 2022-11-02 2022-11-02 多坐标系标定与设备对位方法、巨量转移设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129297 WO2024092560A1 (zh) 2022-11-02 2022-11-02 多坐标系标定与设备对位方法、巨量转移设备

Publications (1)

Publication Number Publication Date
WO2024092560A1 true WO2024092560A1 (zh) 2024-05-10

Family

ID=90929124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129297 WO2024092560A1 (zh) 2022-11-02 2022-11-02 多坐标系标定与设备对位方法、巨量转移设备

Country Status (2)

Country Link
CN (1) CN118451559A (zh)
WO (1) WO2024092560A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190334056A1 (en) * 2016-11-03 2019-10-31 Mühlbauer Gmbh & Co. Kg Method and device for transferring electronic components between substrates
US20200194616A1 (en) * 2018-12-13 2020-06-18 Tesoro Scientific, Inc. Light emitting diode (led) mass-transfer apparatus and method of manufacture
WO2021000384A1 (zh) * 2019-07-02 2021-01-07 深圳市思坦科技有限公司 一种Micro-LED芯片转移方法及显示装置
CN113257978A (zh) * 2021-05-12 2021-08-13 华南理工大学 芯片转移装置和芯片转移方法
CN113675122A (zh) * 2021-07-13 2021-11-19 深圳铭创智能装备有限公司 一种显示面板加工系统及批量转移芯片的方法
CN216288360U (zh) * 2021-01-29 2022-04-12 京东方科技集团股份有限公司 发光二极管芯片转移用设备
CN114420607A (zh) * 2022-01-19 2022-04-29 曲面超精密光电(深圳)有限公司 Micro LED巨量转移和修复装置、方法及其设备
CN114792344A (zh) * 2022-06-24 2022-07-26 季华实验室 多相机位置标定方法、装置、系统及存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190334056A1 (en) * 2016-11-03 2019-10-31 Mühlbauer Gmbh & Co. Kg Method and device for transferring electronic components between substrates
US20200194616A1 (en) * 2018-12-13 2020-06-18 Tesoro Scientific, Inc. Light emitting diode (led) mass-transfer apparatus and method of manufacture
WO2021000384A1 (zh) * 2019-07-02 2021-01-07 深圳市思坦科技有限公司 一种Micro-LED芯片转移方法及显示装置
CN216288360U (zh) * 2021-01-29 2022-04-12 京东方科技集团股份有限公司 发光二极管芯片转移用设备
CN113257978A (zh) * 2021-05-12 2021-08-13 华南理工大学 芯片转移装置和芯片转移方法
CN113675122A (zh) * 2021-07-13 2021-11-19 深圳铭创智能装备有限公司 一种显示面板加工系统及批量转移芯片的方法
CN114420607A (zh) * 2022-01-19 2022-04-29 曲面超精密光电(深圳)有限公司 Micro LED巨量转移和修复装置、方法及其设备
CN114792344A (zh) * 2022-06-24 2022-07-26 季华实验室 多相机位置标定方法、装置、系统及存储介质

Also Published As

Publication number Publication date
CN118451559A (zh) 2024-08-06

Similar Documents

Publication Publication Date Title
US9052187B2 (en) Inspection apparatus and inspection method for semiconductor device
WO2009110518A1 (ja) 電子部品検査方法およびそれに用いられる装置
TWI402927B (zh) Method and inspection system for inspection conditions of semiconductor wafer appearance inspection device
JP2020516883A (ja) 高精密な校正システム及び方法
TW201024724A (en) Array test apparatus, and method of measuring position of point of substrate thereof and method of measuring coordinates of point photographed by camera assembly
JP2013545972A (ja) 基板検査方法
TW201139973A (en) Method for inspecting polarizer bonding precision and bonding precision inspection apparatus
US9423242B2 (en) Board-warping measuring apparatus and board-warping measuring method thereof
CN106353971B (zh) 曝光装置、曝光方法及器件制造方法
JP6717382B2 (ja) 測長装置
WO2021135044A1 (zh) 一种缺陷检查的装置和方法
JP2006292426A (ja) 座標測定方法及び寸法測定方法
WO2024092560A1 (zh) 多坐标系标定与设备对位方法、巨量转移设备
TWI512868B (zh) Image Key Dimension Measurement Calibration Method and System
JP2011033507A (ja) 3次元計測装置
TWI429902B (zh) 電路板的標記檢知及偏移量檢知之方法及其置件方法
KR101633139B1 (ko) 전자 부품의 접촉 요소의 각각의 위치를 측정하는 방법 및 수단
CN117012688A (zh) 晶圆检测定位校正方法及系统
CN112304214B (zh) 基于摄影测量的工装检测方法和工装检测系统
US20150192404A1 (en) Reducing registration error of front and back wafer surfaces utilizing a see-through calibration wafer
JP2002057196A (ja) プローブ方法及びプローブ装置
JP7377655B2 (ja) ダイボンディング装置および半導体装置の製造方法
TWI449119B (zh) Circuit board placement method
CN201716021U (zh) 一种激光测量仪
WO2021033377A1 (ja) 基板の位置合わせ方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963877

Country of ref document: EP

Kind code of ref document: A1