WO2024092534A1 - 一种用于水性涂料领域的高纯高增稠易分散纳米蒙脱石及其制备方法 - Google Patents

一种用于水性涂料领域的高纯高增稠易分散纳米蒙脱石及其制备方法 Download PDF

Info

Publication number
WO2024092534A1
WO2024092534A1 PCT/CN2022/129112 CN2022129112W WO2024092534A1 WO 2024092534 A1 WO2024092534 A1 WO 2024092534A1 CN 2022129112 W CN2022129112 W CN 2022129112W WO 2024092534 A1 WO2024092534 A1 WO 2024092534A1
Authority
WO
WIPO (PCT)
Prior art keywords
montmorillonite
sodium
slurry
water
purity
Prior art date
Application number
PCT/CN2022/129112
Other languages
English (en)
French (fr)
Inventor
李静静
王春伟
宋海明
何倩
廖祥磊
罗军
周泽雄
孙洪
叶秋衫
Original Assignee
浙江丰虹新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江丰虹新材料股份有限公司 filed Critical 浙江丰虹新材料股份有限公司
Priority to PCT/CN2022/129112 priority Critical patent/WO2024092534A1/zh
Publication of WO2024092534A1 publication Critical patent/WO2024092534A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C1/00Apparatus or methods for obtaining or processing clay
    • B28C1/02Apparatus or methods for obtaining or processing clay for producing or processing clay suspensions, e.g. slip
    • B28C1/04Producing suspensions, e.g. by blunging or mixing; with means for removing stones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C1/00Apparatus or methods for obtaining or processing clay
    • B28C1/02Apparatus or methods for obtaining or processing clay for producing or processing clay suspensions, e.g. slip
    • B28C1/06Processing suspensions, i.e. after mixing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • C01B33/40Clays
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/43Thickening agents

Definitions

  • the invention relates to a method for preparing nano-montmorillonite for water-based paint, and belongs to the technical field of bentonite modification.
  • Montmorillonite is the main mineral component of bentonite. Its microstructure is a 2:1 lamellar structure consisting of two layers of silicon-oxygen tetrahedrons sandwiching one layer of aluminum-oxygen octahedron. The thickness of a single layer is about 1nm, so it is also called a natural two-dimensional nanomaterial. Montmorillonite lamellae are naturally electronegative, and there are exchangeable cations between montmorillonite lamellae. Generally, according to the difference in the types of exchangeable cations between montmorillonite lamellae, montmorillonite is divided into calcium-based montmorillonite, sodium-based montmorillonite, hydrogen-based montmorillonite and other types.
  • montmorillonite shows obvious differences in physical and chemical properties, and their application fields are also different.
  • calcium-based montmorillonite has the characteristics of fast water absorption rate and is often used as a desiccant
  • hydrogen-based montmorillonite has certain catalytic and decolorizing abilities, and is often used as a catalyst carrier or decolorizer
  • sodium-based montmorillonite can be dispersed in water to form a colloid with thixotropic properties, and is often used as a rheological additive.
  • Bentonite in nature is mainly composed of minerals such as montmorillonite, quartz, feldspar, calcite, kaolinite, zeolite and illite.
  • montmorillonite There are certain differences in the content of montmorillonite and the types of associated minerals in bentonite deposits of different origins and genesis. Generally speaking, the higher the montmorillonite content and the better the quality of the deposit, the better the application effect.
  • the preparation of high-purity montmorillonite has always been a hot spot in the field of montmorillonite deep processing.
  • Montmorillonite purification generally uses the principle of gravity sedimentation. The difference in specific gravity between montmorillonite and impurity minerals is used to separate them in water medium to obtain montmorillonite with higher purity.
  • montmorillonites sodium-based montmorillonite has the best suspension. Therefore, sodium modifiers or dispersants are generally added during the purification process to modify montmorillonite to improve the suspension performance of montmorillonite. After separation and purification, high-purity montmorillonite is obtained.
  • the invention patent document with patent number 200410039840.5 discloses a method for preparing a high-purity magnesium aluminum silicate inorganic gel.
  • the method uses magnesium hectorite, bentonite, saponite, and attapulgite as raw materials, crushes the raw ore, adds water and a viscosity reducer to stir to prepare a slurry, centrifuges for purification, removes iron by strong magnetic separation, adds type A modifier (lithium sulfate and potassium sulfate); adds type B modifier (magnesium sulfate and aluminum sulfate) for modification, centrifuges for concentration, filters and washes the slurry with an alcohol preparation, and then dries to obtain the product.
  • type A modifier lithium sulfate and potassium sulfate
  • type B modifier magnesium sulfate and aluminum sulfate
  • the invention patent document with patent number 200710004960.5 discloses a method for preparing sodium bentonite from calcium bentonite.
  • the method adds crushed calcium bentonite to a sodium hexametaphosphate aqueous solution and stirs evenly, then adds a saturated sodium carbonate solution and performs stirring aging, heating modification, high-speed dispersion, siphon impurity removal, centrifugal purification, flocculation dehydration and other processes to obtain high-quality sodium bentonite.
  • the flocculation dehydration uses a chitosan acetic acid aqueous solution.
  • the invention patent document with patent number 200510120588.5 discloses a method for preparing high-purity montmorillonite.
  • the method comprises mixing bentonite ore powder, sodium salt powder and urea powder to obtain dispersible bentonite with an expansion multiple of more than 50 ml/g, adding water to stir and slurry, centrifuging to obtain high-purity montmorillonite slurry, and then adjusting the pH of the slurry to 2-4 with acid, adding sodium dithionite to remove iron, adding polyacrylamide to flocculate and dehydrate, washing, drying and crushing to obtain high-purity montmorillonite powder.
  • the invention patent No. 200710067840.X discloses a method for ultrafine purification of montmorillonite.
  • the method includes preparing slurry of bentonite ore and water in a certain proportion, soaking and stirring the slurry, sieving to remove large particles of impurities, and then entering the ultrafine flaking equipment for ultrafine flaking, and then removing fine sand by classification to obtain high-purity ultrafine slurry, and finally dehydrating, drying and crushing to obtain high-purity ultrafine montmorillonite.
  • the invention patent document with application number 201210501810.6 discloses a method for separating and purifying montmorillonite from calcium-based bentonite.
  • the method prepares calcium-based bentonite into a suspension, adds a sodium carbonate dispersant and adjusts the pH of the suspension, and after separation and purification, adjusts the slurry to a specific pH and then performs ultrasonic treatment to obtain high-purity montmorillonite after separation.
  • the invention patent document with application number 201810946424.5 discloses a production process for refined montmorillonite using bentonite. This method prepares bentonite into pulp, sieves to remove coarse impurities, then modifies it with a modifier (sodium carbonate, lithium carbonate, sodium citrate, EDTA), adds a viscosity reducer (sodium pyrophosphate, sodium hexametaphosphate, sodium tripolyphosphate, polycarboxylate modified pyrophosphate), and then filters and separates to obtain a slurry with high purity, then adds a flocculant (magnesium chloride) for flocculation, and centrifuges to dehydrate to obtain a high-solid slurry, then adjusts the pH to 6-7 with acid, washes to remove soluble impurities; adds a flocculant again to concentrate to obtain a high-solid slurry, dilutes it twice and adds a viscosity reducer, then flakes it with a
  • montmorillonite in the above patents use modifiers to prepare montmorillonite into sodium montmorillonite or lithium montmorillonite with better suspension, and then centrifuge to obtain high-purity montmorillonite slurry, and then perform exfoliation/ultrasonic treatment on the slurry to improve the exfoliation effect of montmorillonite in water, further separate fine particle impurities, and improve the purity of montmorillonite; then use alcohol washing, flocculation, concentration, dehydration and other methods to increase the solid content of the slurry, and dry and crush to obtain a high-purity montmorillonite product.
  • additives such as viscosity reducers and flocculants will reduce the thickening ability of montmorillonite after secondary dispersion, thereby reducing the performance of montmorillonite as a thickening rheological additive.
  • the technical problem to be solved by the present invention is to provide a method for preparing high-purity, high-thickening and easily dispersible nano-montmorillonite for use in the field of water-based coatings.
  • This method for preparing high-purity, high-thickening and easily dispersible nano-montmorillonite can significantly improve the thickening ability of montmorillonite to form a gel when dispersed in water, and has good thickening and thixotropic properties in the fields of water-based coatings and the like.
  • a method for preparing high-purity, high-thickening, easily dispersible nano-montmorillonite for use in the field of water-based coatings comprises the following steps:
  • step 5) adjusting the pH of the slurry obtained in step 4) to 7-9 with alkali, and stirring at a constant temperature of 20-70° C. for 1-2 hours;
  • step 6) Drying the slurry obtained in step 5) to obtain high-purity, high-thickening, and easily dispersible nano-montmorillonite.
  • the sodium modifier in step 1) is selected from one or more of sodium carbonate, sodium fluoride and sodium oxalate, and the amount of the sodium modifier is 0.5 to 2.0 times the cation exchange capacity of bentonite, and more preferably 0.8 to 1.5 times.
  • the dispersant in step 1) is polyacrylate with a molecular weight of 500-5000, and the amount of the dispersant is 0.5% to 2% of the mass of the bentonite.
  • the solid content of the slurry in step 2) is 2 to 15%, more preferably 5 to 8%.
  • the acid in step 3) is selected from one or more of hydrochloric acid, sulfuric acid and phosphoric acid; more preferably, sulfuric acid is used after dilution, which is more beneficial to the control of the pH of the slurry.
  • the modifier in step 4) is selected from one or two of polyacrylic acid-carboxyethylene copolymer and polyacrylate; the amount of the modifier is 0.1-10% of the mass of montmorillonite, more preferably 0.5-5%.
  • the alkali in step 5) is selected from one or more of sodium hydroxide, magnesium hydroxide and calcium hydroxide.
  • the drying process in step 6) is selected from spray drying, drum film drying, and hot air oven drying.
  • step 1) the purpose of step 1) is to convert calcium-based bentonite into sodium-based bentonite.
  • the addition of dispersant is conducive to the full sodiumization.
  • the dispersant will reduce the viscosity of the slurry in the subsequent slurrying step, which is beneficial to the purification of montmorillonite.
  • step 2) of the present invention when sodium bentonite is slurried, the viscosity of the slurry increases with the increase of concentration. Controlling the appropriate solid content of the slurry is critical to the purification purity of montmorillonite. Therefore, the solid content of the slurry in step 2) is 2-15%, preferably 5-8%.
  • step 3 of the present invention is to control the pH of the purified slurry, and the pH control range is 8 to 10. This step has a key impact on the dispersibility of the montmorillonite product.
  • step 4) of the present invention is to introduce hydrophilic organic polymer segments into the high-purity montmorillonite slurry, so that the montmorillonite flakes are adsorbed on the polymer segments to form an organic/inorganic composite network structure, thereby improving the thickening ability of the montmorillonite.
  • step 5 of the present invention is to adjust the pH of the slurry to between 7 and 9, under which pH conditions the organic components in step 4 are combined with montmorillonite.
  • step 6 of the present invention the slurry is not subjected to concentration or flocculation dehydration treatment before drying, in order to maintain the dispersibility and thickening ability of montmorillonite.
  • the present invention has the following beneficial effects:
  • the present invention adopts a stacking treatment process to perform sodium modification on calcium-based bentonite, and introduces low molecular weight sodium polyacrylate during the modification process, which promotes the sodium modification and facilitates the subsequent pulping steps; the sodium modification process has low energy consumption and the process is simple and easy.
  • the present invention regulates the pH value of the purified sodium-based bentonite slurry, controls the end surface charge of the montmorillonite sheet, and significantly improves the dispersion performance of the montmorillonite.
  • step 4) of the present invention the introduction of hydrophilic organic polymer chain segments can greatly improve the thickening ability of montmorillonite.
  • step 6 The process technology of direct drying of the slurry in step 6) of the present invention ensures that the combination of the montmorillonite flakes and the organic polymer chain segments is not destroyed, and ensures that the thickening ability of the finished product is not lost.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • montmorillonite Cru 10 kg of sodium bentonite powder in Example 1, slowly add it to 200 kg of water, fully stir and disperse, let stand for 24 hours, centrifuge and purify to obtain high-purity montmorillonite slurry. Test the solid content and montmorillonite content of the slurry (the montmorillonite content is characterized by the blue absorption amount). The test results show that the slurry solid content is 3.5%, and the blue absorption amount is 45%. Take part of the purified slurry and directly spray dry it to obtain a high-purity montmorillonite sample, labeled FH-1.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • montmorillonite Cru 10 kg of sodium bentonite powder in Example 2, slowly add it to 200 kg of water, fully stir and disperse, let stand for 24 hours, centrifuge and purify to obtain high-purity montmorillonite slurry. Test the solid content and montmorillonite content of the slurry (the montmorillonite content is characterized by the blue absorption amount). The test results show that the slurry solid content is 3.0% and the blue absorption amount is 40%. Take part of the purified slurry and directly spray dry it to obtain a high-purity montmorillonite sample, labeled FH-2.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • Modification of purified montmorillonite slurry Take 10 kg of the purified montmorillonite slurry in Example 3, test the pH to 10.56, add dilute sulfuric acid to adjust the slurry pH to 9.5, and stir and disperse for 2 hours at room temperature; add 7 g of polyacrylic acid-carboxyl copolymer, stir at 50°C for 2 hours; test the slurry pH to 7.56; add sodium hydroxide solution to adjust the slurry pH to 9.0, stir at 50°C for 1 hour, and spray dry to obtain a high-purity, high-viscosity, easily dispersible montmorillonite sample, labeled FH-3.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • Modification of purified montmorillonite slurry Take 10 kg of the purified montmorillonite slurry in Example 3, test the pH to 10.56, add 7 g of polyacrylic acid-hydroxyethyl copolymer, and stir at 50°C for 2 h; test the slurry pH to 7.56; add sodium hydroxide solution to adjust the slurry pH to 9.0, stir at 50°C for 1 h, and spray dry to obtain a high-purity, high-viscosity, easily dispersible montmorillonite sample, labeled FH-4.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • Modification of purified montmorillonite slurry Take 10 kg of the purified montmorillonite slurry in Example 3, test the pH to 10.56, add dilute sulfuric acid to adjust the slurry pH to 8, and stir and disperse for 2 hours at room temperature; add polyacrylic acid-hydroxyethyl copolymer: 7 g, stir at 50°C for 2 hours; test the slurry pH to 7.56; add sodium hydroxide solution to adjust the slurry pH to 9.0, stir at 50°C for 1 hour, and spray dry to obtain a high-purity, high-viscosity, easily dispersible montmorillonite sample, labeled FH-5.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • Modification of purified montmorillonite slurry Take 10 kg of the purified montmorillonite slurry in Example 3, test the pH to 10.56, add dilute sulfuric acid to adjust the slurry pH to 9.5, and stir and disperse for 2 hours at room temperature; add 5 g of polyacrylic acid-carboxyethylene copolymer, stir at 50°C for 2 hours; test the slurry pH to 8.0; add sodium hydroxide solution to adjust the slurry pH to 9.0, stir at 50°C for 1 hour, and spray dry to obtain a high-purity, high-viscosity, easily dispersible montmorillonite sample, labeled FH-6.
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • Modification of purified montmorillonite slurry Take 10 kg of the purified montmorillonite slurry in Example 3, test the pH to 10.56, add dilute sulfuric acid to adjust the slurry pH to 9.5, and stir and disperse for 2 hours at room temperature; add 7 g of polyacrylic acid-carboxyethylene copolymer, stir at 50°C for 2 hours; test the slurry pH to 8.0; spray dry to obtain a high-purity, high-viscosity, easily dispersible montmorillonite sample, labeled FH-7.
  • Embodiment 10 is a diagrammatic representation of Embodiment 10:
  • Modification of purified montmorillonite slurry Take 10 kg of the purified montmorillonite slurry in Example 3, test the pH to 10.56, add dilute sulfuric acid to adjust the slurry pH to 7.5, and stir and disperse for 2 hours at room temperature; add 5 g of polyacrylic acid-carboxyethylene copolymer, stir at 50°C for 2 hours; test the slurry pH to 7.0; spray dry to obtain a high-purity, high-viscosity, easily dispersible montmorillonite sample, labeled FH-8.
  • Embodiment 11 is a diagrammatic representation of Embodiment 11:
  • Modification of purified montmorillonite slurry Take 10 kg of the purified montmorillonite slurry in Example 4, test the pH to 10.24, add dilute sulfuric acid to adjust the slurry pH to 9.5, and stir and disperse for 2 hours at room temperature; add polyacrylic acid-carboxyethylene copolymer: 6 g, stir at 50°C for 2 hours; test the slurry pH to 8.2; add sodium hydroxide solution to adjust the slurry pH to 9.0, stir at 50°C for 1 hour, and spray dry to obtain a high-purity, high-viscosity, easily dispersible montmorillonite sample, labeled FH-9.
  • Embodiment 12 is a diagrammatic representation of Embodiment 12
  • Modification of purified montmorillonite slurry Take 10 kg of the purified montmorillonite slurry in Example 4, test the pH to 10.24, add dilute sulfuric acid to adjust the slurry pH to 9.5, and stir and disperse for 2 hours at room temperature; add 6 g of polyacrylate, stir at 70°C for 2 hours; test the slurry pH to 8.2; add sodium hydroxide solution to adjust the slurry pH to 9.0, stir at 70°C for 1 hour, and spray dry to obtain a high-purity, high-viscosity, easily dispersible montmorillonite sample, labeled FH-10.
  • Sample evaluation plan Weigh 190g of distilled water in a clean and dry container, place it under a high-speed stirrer, immerse the dispersion plate to 1/3 of the water, turn on the high-speed stirrer, adjust the speed to 500rpm, and under this stirring condition, slowly add the 10g sample that has been weighed, then increase the stirring speed to 2000rpm, stir for 15 minutes, stop and remove the container, and place the container in a DV2T digital rotational viscometer to test the viscosity.
  • the test results are shown in the following table.
  • the sodium bentonite powders prepared in Example 1 and Example 2 showed obvious differences in the slurry preparation process.
  • the sample prepared in Example 1 can be quickly dispersed in water, and basically no undispersed particles appear during the stirring process.
  • the sample prepared in Example 2 is dispersed in water, it is easy to form undispersed particles that stick to the stirring rod and the inner wall of the stirring cylinder, which need to be cleaned manually.
  • the viscosity value of the sample prepared in Example 2 after dispersion in water is significantly higher than that of the sample prepared in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明涉及一种用于水性涂料的纳米蒙脱石的制备方法,属于膨润土改性技术领域。该法包括以下步骤:1)将钙基膨润土矿粉、钠化改性剂、分散剂混合均匀,加入水,混合均匀,堆放72h以上,干燥、粉碎;2)加水搅拌制浆,离心;3)调pH至8~10,搅拌反应;4)加入改性剂,20~70℃恒温搅拌;5)调pH至7~9,20~70℃恒温搅拌;6)干燥。本发明采用堆放处理工艺对钙基膨润土进行钠化改性,并在改性过程中引入低分子量聚丙烯酸钠,促进钠化进行的同时利于后续制浆步骤的进行;控制蒙脱石片层端面电荷,明显改善蒙脱石的分散性能;引入亲水性有机高分子链段,大幅提高蒙脱石的增稠能力。

Description

一种用于水性涂料领域的高纯高增稠易分散纳米蒙脱石及其制备方法 技术领域
本发明涉及一种用于水性涂料的纳米蒙脱石的制备方法,属于膨润土改性技术领域。
背景技术
蒙脱石是膨润土的主要矿物成分,微观结构是由两层硅氧四面体夹一层铝氧八面体构成的2:1型片层结构,单片层的厚度在1nm左右,因此也被称为天然的二维纳米材料。蒙脱石片层天然具有电负性,在蒙脱石片层与片层之间具有可交换性阳离子。一般根据蒙脱石层间可交换性阳离子种类的差异,将蒙脱石分为钙基蒙脱石、钠基蒙脱石、氢基蒙脱石等等类型。不同类型的蒙脱石表现出的理化性能存在明显差异,应用领域也各不相同。如钙基蒙脱石具有吸水速率快的特点,常用作干燥剂使用;氢基蒙脱石具有一定的催化和脱色能力,常用作催化剂载体或脱色剂使用;钠基蒙脱石可以在水中分散形成具有触变性能的胶体,常用作流变助剂使用。
自然界中的膨润土中主要由蒙脱石、石英、长石、方解石、高岭石、沸石和伊利石等矿物组成。不同产地、不同成因的膨润土矿床中蒙脱石的含量,以及伴生矿物的种类均存在一定差异。一般来说,蒙脱石含量越高、矿床品质越好,应用效果越好。高纯蒙脱石的制备一直是蒙脱石深加工领域的一个热点。蒙脱石提纯一般是利用重力沉降原理,蒙脱石与杂质矿物比重差异,在水介质中实现分离,获得纯度较高蒙脱石。蒙脱石中以钠基蒙脱石的悬浮性最好,因此提纯过程中一般会加入钠化改性剂或分散剂对蒙脱石进行钠化改性,提高蒙脱石悬浮性能,分离提纯后,得到高纯度蒙脱石。
专利号为200410039840.5的发明专利文献,公开了一种高纯度硅酸镁铝无机凝胶的制备方法。该法以镁锂皂石、膨润土、皂土、凹凸棒石为原料,通过原矿粉碎、加水加降粘剂搅拌制备浆液,离心分离提纯,强磁选除铁,加入A型改性剂(硫酸锂和硫酸钾);加入B型改性剂(硫酸镁和硫酸铝)改性,离心浓缩,用醇类制剂对矿浆进行过滤洗涤,然后干燥得到产品。
专利号为200710004960.5的发明专利文献,公开了一种用钙基膨润土制备钠基膨润土的方法。该法将粉碎的钙基膨润土加入到六偏磷酸钠水溶液中搅拌均匀,然后加入饱和碳酸钠溶液进行搅拌陈化、加热改型、高速分散、虹吸除杂、离心提纯、絮凝脱水等工序得到了优质钠基膨润土。絮凝脱水采用的是壳聚糖醋酸水溶液。
专利号为200510120588.5的发明专利文献,公开了一种高纯蒙脱石的制备方法。该法将膨润土矿粉、钠盐粉料和尿素粉料混合均有,制得膨胀倍数50ml/g以上的分散性膨润土,加水搅拌制浆,离心分离得到高纯蒙脱石浆液,然后用酸调浆液pH到2-4,加入连二亚硫酸钠除铁,加入聚丙烯酰胺絮凝脱水,洗涤、干燥、粉碎得到高纯蒙脱石粉料。
专利号为200710067840.X的发明专利公开了一种蒙脱石超细提纯方法。该法包括将膨润土原矿和水按照一定比例制浆,浸泡搅拌制浆后过筛除去大颗粒杂质,然后进入超细剥片设备中进行超细剥片,然后分级除去细沙得到高纯超细浆液,最后脱水、干燥粉碎得到高纯超细蒙脱石。
申请号为201210501810.6的发明专利文献公开了一种从钙基膨润土中分离提纯蒙脱石的方法。该法将钙基膨润土制备成悬液后,加入碳酸钠类分散剂并调整悬液pH,分离提纯后,将浆液调整至特定pH后进行超声处理,分离后得到高纯度蒙脱石。
申请号为201810946424.5的发明专利文献公开了一种利用膨润土精制蒙脱石生产工艺。该法将膨润土制浆后,过筛除去粗杂质,然后用改性剂改型(碳酸钠、碳酸锂、柠檬酸钠、EDTA),再加入降粘剂(焦磷酸钠、六偏磷酸钠、三聚磷酸钠、聚羧酸盐改型焦磷酸酯),然后过滤分离,得到纯度较高的浆料,然后加入絮凝剂(氯化镁)絮凝,并离心脱水,得到高固含浆料,再用酸调节pH至6-7,洗涤除去可溶性杂质;再次加入絮凝剂浓缩后得到高固含浆料,二次稀释并加入降粘剂,再经剥片机剥片后,第三次浓缩,喷雾干燥。
上述专利中蒙脱石提纯方法大同小异,均采用改性剂将蒙脱石制备成悬浮性更好的钠基蒙脱石或锂基蒙脱石,然后离心分离获得纯度高的蒙脱石浆液,再对浆液进行剥片/超声处理,提高蒙脱石在水中的剥离效果,进一步分离细颗粒杂质,提高蒙脱石纯度;然后再用醇洗涤、絮凝、浓缩、脱水等方法提高浆液固含,干燥、粉碎获得高纯蒙脱石产品。但降粘剂、絮凝剂等助剂的加入会降低蒙脱石二次分散后的增稠能力,从而降低蒙脱石作为增稠流变助剂的使用性能。
发明内容
本发明要解决的技术问题是提供一种用于水性涂料领域的高纯高增稠易分散纳米蒙脱石的制备方法,这种制备高纯高增稠易分散纳米蒙脱石的方法可明显提高蒙脱石在水中分散形成凝胶的增稠能力,在水性涂料等领域中起到良好的增稠、触变性能。
本发明解决上述问题的技术方案如下:
一种用于水性涂料领域的高纯高增稠易分散纳米蒙脱石的制备方法,包括以下几个步骤:
1)将钙基膨润土矿粉、钠化改性剂、分散剂混合均匀,然后加入膨润土质量20~30%的水,混合均匀,堆放72h以上,干燥、粉碎,得到钠基膨润土矿粉;
2)将钠基膨润土矿粉加水搅拌制浆,离心提纯至蒙脱石含量>90wt%的悬液浆液;
3)用酸调悬浮浆液的pH至8~10,搅拌反应0.5~5小时;
4)加入改性剂对蒙脱石进行改性处理,20~70℃恒温搅拌1~10小时;
5)用碱调步骤4)所得浆液的pH至7~9,20~70℃恒温搅拌1~2h;
6)干燥步骤5)所得浆液,得到高纯高增稠易分散纳米蒙脱石。
作为优选,步骤1)中的钠化改性剂选自碳酸钠、氟化钠、草酸钠中的一种或几种,钠化改性剂的用量为膨润土阳离子交换容量的0.5~2.0倍,进一步优选为0.8~1.5倍。
作为优选,步骤1)中的分散剂为聚丙烯酸盐,分子量在500-5000,分散剂用量为膨润土质量的0.5%~2%。
作为优选,步骤2)中的浆液固含量在2~15%,进一步优选为5~8%。
作为优选,步骤3)中的酸选自盐酸、硫酸、磷酸中的一种或多种;进一步优选为硫酸,且硫酸应在稀释后使用,这样对浆液pH的控制更有利。
作为优选,步骤4)中的改性剂选自聚丙烯酸-羧基乙烯共聚物、聚丙烯酸酯一种或两种;改性剂的用量为蒙脱石质量的0.1~10%,进一步优选为0.5~5%。
作为优选,步骤5)中的碱选自氢氧化钠、氢氧化镁、氢氧化钙中的一种多种。
作为优选,步骤6)中的干燥工艺,选自喷雾干燥、滚筒薄膜干燥、热风烘箱干燥中的一种。
本发明上述技术方案中,步骤1)的目的是将钙基膨润土转化为钠基膨润土,分散剂的加入有利于钠化的充分进行,同时分散剂会在后续制浆步骤中降低浆液粘稠度,利于蒙脱石的提纯。
本发明所述步骤2)中,在钠基膨润土制浆时,浆液的粘度随浓度的增加而提高,控制合适的浆液固含,对蒙脱石的提纯纯度具有关键意义。故,步骤2)中的浆液固含量在2~15%,优选为5~8%。
本发明所述步骤3)的目的是控制提纯浆液的pH,pH控制范围在8~10。该步骤对蒙脱石产品的易分散性有关键影响。
本发明所述步骤4)的目的是将亲水有机高分子链段引入高纯蒙脱石浆液中,使得蒙脱石片层吸附于高分子链段上,形成有机/无机复合网状结构,提升蒙脱石的增稠能力。
本发明所述步骤5)的目的是调节浆液pH在7-9之间,在该pH条件下有利于步骤4中有机物组分于蒙脱石的结合。
本发明所述步骤6)的干燥工艺,干燥前不对浆液进行浓缩或絮凝脱水处理,目的是保持蒙脱石的分散和增稠能力。
综上所述,本发明具有以下有益效果:
1、本发明采用堆放处理工艺对钙基膨润土进行钠化改性,并在改性过程中引入低分子量聚丙烯酸钠,促进钠化进行的同时利于后续制浆步骤的进行;钠化过程能耗低,工艺简单易行。
2、本发明对提纯后的钠基膨润土浆液进行pH调控,控制蒙脱石片层端面电荷,明显改善蒙脱石的分散性能。
3、本发明步骤4)中,亲水性有机高分子链段的引入,可大幅提高蒙脱石的增稠能力。
4、本发明步骤6),浆液直接干燥的工艺技术,保证了蒙脱石片层与有机高分子链段的结合不受破坏,保障成品增稠能力不损失。
具体实施方法
为了加深对本发明的理解,下面将结合实施例对本发明作进一步详述。实施例仅用于解释本发明,并不构成对本发明保护范围的限定。
实施例1:
钙基膨润土的钠化处理。称取300kg钙基膨润土(水分:12%;阳离子交换容量(CEC):60mmol/100g土),加入碳酸钠10kg(1.5倍CEC),加入聚丙烯酸钠(分子量5000)2.6kg(1%干土),于混合机中混合均有,然后加入90kg水,再次混合均匀,堆放1个月,干燥,粉碎得到钠基膨润土粉,备用。
实施例2:
钙基膨润土的钠化处理。称取300kg钙基膨润土(水分:12%;阳离子交换容量(CEC):60mmol/100g土),加入碳酸钠10kg(1.5倍CEC)于混合机中混合均有,然后加入90kg水,再次混合均匀,堆放1个月,干燥,粉碎得到钠基膨润土粉,备用。
实施例3:
蒙脱石提纯。取实施例1中钠基膨润土粉10kg,缓慢加入至200kg水中,充分搅拌分散,静置24h,离心提纯,得到高纯蒙脱石浆液。测试浆液固含和蒙脱石含量(用吸蓝量表征蒙脱石含量)。测试结果,浆液固含3.5%,吸蓝量:45%。取部分提纯浆液直接喷雾干燥得到高纯蒙脱石样品,标号FH-1。
实施例4:
蒙脱石提纯。取实施例2中钠基膨润土粉10kg,缓慢加入至200kg水中,充分搅拌分散,静置24h,离心提纯,得到高纯蒙脱石浆液。测试浆液固含和蒙脱石含量(用吸蓝量表征蒙脱石含量)。测试结果,浆液固含3.0%,吸蓝量:40%。取部分提纯浆液直接喷雾干燥得到高纯蒙脱石样品,标号FH-2。
实施例5:
提纯蒙脱石浆液改性处理。取实施例3中的蒙脱石提纯浆液10kg,测试pH10.56,加入稀硫酸调浆液pH至9.5,室温条件下搅拌分散2h;加入聚丙烯酸-羧基基共聚物:7g,50℃恒温搅拌2h;测试浆液pH为7.56;加入氢氧化钠溶液调浆液pH至9.0,50℃恒温搅拌1h,喷雾干燥,得到高纯高粘易分散蒙脱石样品,标号为FH-3。
实施例6:
提纯蒙脱石浆液改性处理。取实施例3中的蒙脱石提纯浆液10kg,测试pH10.56,加入聚丙烯酸-羟乙基共聚物:7g,50℃恒温搅拌2h;测试浆液pH为7.56;加入氢氧化钠溶液调浆液pH至9.0,50℃恒温搅拌1h,喷雾干燥,得到高纯高粘易分散蒙脱石样品,标号为FH-4。
实施例7:
提纯蒙脱石浆液改性处理。取实施例3中的蒙脱石提纯浆液10kg,测试pH10.56,加入稀硫酸调浆液pH至8,室温条件下搅拌分散2h;加入聚丙烯酸-羟乙基共聚物:7g,50℃恒温搅拌2h;测试浆液pH为7.56;加入氢氧化钠溶液调浆液pH至9.0,50℃恒温搅拌1h,喷雾干燥,得到高纯高粘易分散蒙脱石样品,标号为FH-5。
实施例8:
提纯蒙脱石浆液改性处理。取实施例3中的蒙脱石提纯浆液10kg,测试pH10.56,加入稀硫酸调浆液pH至9.5,室温条件下搅拌分散2h;加入聚丙烯酸-羧基乙烯共聚物:5g,50℃恒温搅拌2h;测试浆液pH为8.0;加入氢氧化钠溶液调浆液pH至9.0,50℃恒温搅拌1h,喷雾干燥,得到高纯高粘易分散蒙脱石样品,标号为FH-6。
实施例9:
提纯蒙脱石浆液改性处理。取实施例3中的蒙脱石提纯浆液10kg,测试pH10.56,加入稀硫酸调浆液pH至9.5,室温条件下搅拌分散2h;加入聚丙烯酸-羧基乙烯共聚物:7g,50℃恒温搅拌2h;测试浆液pH为8.0;喷雾干燥,得到高纯高粘易分散蒙脱石样品,标号为FH-7。
实施例10:
提纯蒙脱石浆液改性处理。取实施例3中的蒙脱石提纯浆液10kg,测试pH10.56,加入稀硫酸调浆液pH至7.5,室温条件下搅拌分散2h;加入聚丙烯酸-羧基乙烯共聚物:5g,50℃恒温搅拌2h;测试浆液pH为7.0;喷雾干燥,得到高纯高粘易分散蒙脱石样品,标号为FH-8。
实施例11:
提纯蒙脱石浆液改性处理。取实施例4中的蒙脱石提纯浆液10kg,测试pH10.24,加入稀硫酸调浆液pH至9.5,室温条件下搅拌分散2h;加入聚丙烯酸-羧基乙烯共聚物:6g,50℃恒温搅拌2h;测试浆液pH为8.2;加入氢氧化钠溶液调浆液pH至9.0,50℃恒温搅拌1h,喷雾干燥,得到高纯高粘易分散蒙脱石样品,标号为FH-9。
实施例12:
提纯蒙脱石浆液改性处理。取实施例4中的蒙脱石提纯浆液10kg,测试pH10.24,加入稀硫酸调浆液pH至9.5,室温条件下搅拌分散2h;加入聚丙烯酸酯:6g,70℃恒温搅拌2h;测试浆液pH为8.2;加入氢氧化钠溶液调浆液pH至9.0,70℃恒温搅拌1h,喷雾干燥,得到高纯高粘易分散蒙脱石样品,标号为FH-10。
样品评价方案:称取190g蒸馏水于洁净干燥的容器中,置于高速搅拌机下,分散盘浸没至水下1/3处,开启高速搅拌机,将转速调至500rpm,在此搅拌条件下,缓慢加入已经称取的10g样品,然后将搅拌转速提高至2000rpm,搅拌15分钟后,停止并取下容器,将容器置于DV2T数字旋转粘度计中测试粘度。测试结果如下表所示。
实施例1和实施例2制备得到的钠基膨润土粉在制备浆液过程中表现出明显差异。实施例1制备出的样品可以很快的分散至水中,在搅拌过程中基本无不分散颗粒出现。实施例2制备出的样品在水中分散时,容易形成不分散颗粒黏在搅拌杆和搅拌缸内壁,需要手动清理。且在相同分散浓度条件下,实施例2制备出的样品在水中分散后的粘度值明显高于实施例1制备出样品。
表、实施例中制备样品在水中分散至5%胶体数据对比
Figure PCTCN2022129112-appb-000001

Claims (4)

  1. 一种用于水性涂料领域的高纯高增稠易分散纳米蒙脱石的制备方法,包括以下几个步骤:
    1)将钙基膨润土矿粉、钠化改性剂、分散剂混合均匀,然后加入膨润土质量20~30%的水,混合均匀,堆放72h以上,干燥、粉碎,得到钠基膨润土矿粉;
    2)将钠基膨润土矿粉加水搅拌制浆,离心提纯至蒙脱石含量>90wt%的悬液浆液;
    3)用酸调悬浮浆液的pH至8~10,搅拌反应0.5~5小时;
    4)加入改性剂对蒙脱石进行改性处理,20~70℃恒温搅拌1~10小时;
    5)用碱调步骤4)所得浆液的pH至7~9,20~70℃恒温搅拌1~2h;
    6)干燥步骤5)所得浆液,得到高纯高增稠易分散纳米蒙脱石;
    步骤1)中的钠化改性剂选自碳酸钠、氟化钠、草酸钠中的一种或几种,钠化改性剂的用量为膨润土阳离子交换容量的0.5~2.0倍;
    步骤2)中的浆液固含量在2~15%;
    步骤4)中的改性剂选自聚丙烯酸-羧基乙烯共聚物、聚丙烯酸酯一种或两种;改性剂的用量为蒙脱石质量的0.1~10%;
    步骤6)中的干燥,是浆液直接干燥,干燥前不对浆液进行浓缩或絮凝脱水处理,选自喷雾干燥、滚筒薄膜干燥、热风烘箱干燥中的一种。
  2. 根据权利要求1所述的一种用于水性涂料领域的高纯高增稠易分散纳米蒙脱石的制备方法,其特征在于:步骤1)中的分散剂为聚丙烯酸盐,分子量在500-5000,分散剂用量为膨润土质量的0.5%~2%。
  3. 根据权利要求1所述的一种用于水性涂料领域的高纯高增稠易分散纳米蒙脱石的制备方法,其特征在于:步骤3)中的酸选自盐酸、硫酸、磷酸中的一种或多种。
  4. 根据权利要求1所述的一种用于水性涂料领域的高纯高增稠易分散纳米蒙脱石的制备方法,其特征在于:步骤5)中的碱选自氢氧化钠、氢氧化钙中的一种或两种。
PCT/CN2022/129112 2022-11-02 2022-11-02 一种用于水性涂料领域的高纯高增稠易分散纳米蒙脱石及其制备方法 WO2024092534A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129112 WO2024092534A1 (zh) 2022-11-02 2022-11-02 一种用于水性涂料领域的高纯高增稠易分散纳米蒙脱石及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129112 WO2024092534A1 (zh) 2022-11-02 2022-11-02 一种用于水性涂料领域的高纯高增稠易分散纳米蒙脱石及其制备方法

Publications (1)

Publication Number Publication Date
WO2024092534A1 true WO2024092534A1 (zh) 2024-05-10

Family

ID=90929075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129112 WO2024092534A1 (zh) 2022-11-02 2022-11-02 一种用于水性涂料领域的高纯高增稠易分散纳米蒙脱石及其制备方法

Country Status (1)

Country Link
WO (1) WO2024092534A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85106842A (zh) * 1985-09-09 1987-01-31 波利萨财务服务股份有限公司 增稠剂
CN101244828A (zh) * 2007-02-14 2008-08-20 内蒙古大学 用钙基膨润土制备钠基膨润土的方法
EP2380850A1 (en) * 2009-01-08 2011-10-26 Hailisheng Pharmaceutical Co., Ltd Modified sodium-montmorillonite, preparing method and uses thereof
CN103848430A (zh) * 2012-11-29 2014-06-11 中国地质大学(北京) 一种从钙基膨润土中分离提纯蒙脱石的方法
CN104760968A (zh) * 2015-03-26 2015-07-08 黄山市白岳活性白土有限公司 一种纳米级有机膨润土的制备方法
CN107399742A (zh) * 2017-08-25 2017-11-28 芜湖飞尚非金属材料有限公司 一种超细蒙脱石的制备工艺
CN109250725A (zh) * 2018-08-20 2019-01-22 杭州柏科立新材料有限公司 一种利用膨润土精制蒙脱石生产工艺
CN111269606A (zh) * 2020-03-06 2020-06-12 浙江丰虹新材料股份有限公司 一种用于水性涂料领域的高纯高增稠易分散纳米蒙脱石及其制备方法
CN111268687A (zh) * 2020-03-06 2020-06-12 浙江丰虹新材料股份有限公司 一种有机粘土组合物及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85106842A (zh) * 1985-09-09 1987-01-31 波利萨财务服务股份有限公司 增稠剂
CN101244828A (zh) * 2007-02-14 2008-08-20 内蒙古大学 用钙基膨润土制备钠基膨润土的方法
EP2380850A1 (en) * 2009-01-08 2011-10-26 Hailisheng Pharmaceutical Co., Ltd Modified sodium-montmorillonite, preparing method and uses thereof
CN103848430A (zh) * 2012-11-29 2014-06-11 中国地质大学(北京) 一种从钙基膨润土中分离提纯蒙脱石的方法
CN104760968A (zh) * 2015-03-26 2015-07-08 黄山市白岳活性白土有限公司 一种纳米级有机膨润土的制备方法
CN107399742A (zh) * 2017-08-25 2017-11-28 芜湖飞尚非金属材料有限公司 一种超细蒙脱石的制备工艺
CN109250725A (zh) * 2018-08-20 2019-01-22 杭州柏科立新材料有限公司 一种利用膨润土精制蒙脱石生产工艺
CN111269606A (zh) * 2020-03-06 2020-06-12 浙江丰虹新材料股份有限公司 一种用于水性涂料领域的高纯高增稠易分散纳米蒙脱石及其制备方法
CN111268687A (zh) * 2020-03-06 2020-06-12 浙江丰虹新材料股份有限公司 一种有机粘土组合物及其制备方法

Similar Documents

Publication Publication Date Title
CN111269606B (zh) 一种用于水性涂料领域的高纯高增稠易分散纳米蒙脱石及其制备方法
Xu et al. Disaggregation of palygorskite crystal bundles via high-pressure homogenization
EP2036958B1 (en) Process for producing kaolin product for paper coating
JP4063664B2 (ja) 精製されたアタパルジャイト粘土
US6172121B1 (en) Process for preparing organoclays for aqueous and polar-organic systems
CN104760968A (zh) 一种纳米级有机膨润土的制备方法
CN101049940A (zh) 一种蒙脱石超细提纯方法
CN103359748A (zh) 膨润土的活化处理
CN109250725B (zh) 一种利用膨润土精制蒙脱石生产工艺
CN106315605B (zh) 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法
CN102249255A (zh) 阴离子-非离子复合型有机蒙脱石及其制备方法
CN107082434B (zh) 一种海泡石提纯和有机改性的一步法工艺
CN1363515A (zh) 天然硅酸镁铝凝胶的制备方法
CN104944430A (zh) 一种深度提纯膨润土制备高纯蒙脱石的新技术
WO2016008435A1 (zh) 活性硅酸钙的制备方法
CN114105652B (zh) 一种复合型陶瓷减水剂
CN102964880B (zh) 一种用于造纸涂料的改性滑石及其制备方法
CN112569877B (zh) 一种改性膨润土无机凝胶及其制备方法及应用
CN107555445B (zh) 一种硅酸镁铝无机凝胶及其制备方法
WO2024092534A1 (zh) 一种用于水性涂料领域的高纯高增稠易分散纳米蒙脱石及其制备方法
CN102951651A (zh) 高纯微细白色蒙脱石的制备工艺技术
CN103484027B (zh) 用伊蒙混层类粘土生产粘合剂的方法
CN109126646B (zh) 低重金属和方英石的高悬浮矿物凝胶及其制备方法
JP4177569B2 (ja) 新規多孔性粒体
JP4773365B2 (ja) 疑似層状珪酸塩から分散容易なレオロジーグレード生成物を製造する方法、該製造法で得られる生成物および該生成物の使用法